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[1] Proposed in the 1950’s, Båth’s law states that the
largest aftershock has a magnitude that is typically 1.2 less
than that of the mainshock. Thirty years of the global
earthquake catalog allow us to extend Båth’s law in time,
space and focal mechanism. On average, reverse faults
have a smaller magnitude and distance from the mainshock
to largest aftershock than strike-slip faults. The distribution
of the time intervals between mainshocks and their largest
aftershocks obeys power law, but with a somewhat faster
rate of decay than for aftershocks, in general. This implies
that the largest aftershocks are more likely to occur
earlier rather than later in a given sequence of aftershocks.
Citation: Tahir, M., J.-R. Grasso, and D. Amorèse (2012), The
largest aftershock: How strong, how far away, how delayed?, Geo-
phys. Res. Lett., 39, L04301, doi:10.1029/2011GL050604.

1. Introduction

[2] Earthquakes are the brittle response of the earth crust
to stress–strain changes. These brittle seismic instabilities in
the crust emerge as combined and complex effects of the
response of heterogeneous media to small changes in load-
ing rate which occur over a wide range of scales [e.g., Bak
and Tang, 1989; Sornette and Sornette, 1989; Main, 1995;
Rundle et al., 2003]. These brittle deformations scale from
dislocations and microcracks (�1 mm to 1 cm) to tectonic
plate boundaries (103–104 km), whereas time scales range
from a few seconds during dynamic rupture to 103–104 years
(as the repeat times for the largeM > 7 � 8 earthquakes) and
to 107–108 years (evolution of the plate boundaries) [e.g.,
Rundle et al., 2003]. For earthquakes,Gutenberg and Richter
[1944] suggested the frequency magnitude distribution as;

log10N ¼ a� bM ð1Þ

whereN is the total number of earthquakes with magnitudeM
or greater, a and b are constants. Regional analyses [e.g.,
Utsu, 2002] suggest b – values in the 0.8–1.2 range, includ-
ing for aftershock sequences. Variation in b – value across
different stress regimes are suggested by Schorlemmer et al.
[2005]. Aftershocks also are observed to obey Omori’s law
[Utsu, 1961]

NðtÞ ¼ K

ðt þ cÞp ; ð2Þ

where N(t) is the number of aftershocks per unit time, t is the
elapsed time since the mainshock, K, c and p are constants. A

median p – value of �1.1 is reported for the aftershock
sequences in the various parts of the world, with a range of
�0.6–2.5 [Utsu et al., 1995]. Narteau et al. [2009] observed
that c – value varied with mainshock faulting styles. As
proposed by Helmstetter and Sornette [2003a]

K ¼ 10aðM�McÞ ð3Þ
Mc is threshold magnitude for catalog completeness, a is a
parameter that controls the relative number of aftershocks
triggered as a function of mainshock magnitude(a = 0.66 �
1.15, suggested by Hainzl and Marsan [2008] for the global
catalog). Thirdly Båth’s law for earthquake aftershocks is
observed in many empirical and statistical studies. Initially
reported by Richter [1958] as Båth’s observation, it states the
average magnitude difference (DM) between the mainshock
and its largest aftershock is 1.2, regardless of mainshock
magnitude [Båth, 1965]. A number of studies have been
conducted for the physical interpretation of Båth’s law [e.g.,
Vere-Jones, 1969; Console et al., 2003; Helmstetter and
Sornette, 2003b; Shcherbakov et al., 2006; Vere-Jones,
2008]. Among them Helmstetter and Sornette [2003b]
using ETAS (epidemic type aftershock sequence for seis-
micity model) simulations provide a comprehensive analysis
of the empirical Båth’s law.
[3] They suggest that Båth’s law occurrence depends on

both a – value of the mainshock and the relative difference,
(Mm � Mc), between mainshock magnitude (Mm) and cata-
log completeness (Mc) value. When Mm � Mc ≥ 2 and a =
0.8 � 1.0, then Båth’s law applies. In other cases, i.e.,Mm �
Mc < 2, a-value < 0.8, 〈DM〉 is smaller than 1.2 (i.e.,
ranging between 0 and 1.2) and it increases rapidly withMm.
[4] In this latter case, the apparent increase in 〈DM〉 is

correlated with a low a – value. A lower aftershock rate
implies a lower picking rate in the Gutenberg-Richter law
distribution, and thus a lower probability of a large magni-
tude occurrence [see Helmstetter and Sornette, 2003b,
equation 1]. More recently Saichev and Sornette [2005]
showed the relationship of Båth’s DM = 1.2 value to the
branching ratio (n) of the ETAS point process model of
earthquake interactions. For high n (n ≥ 0.8), a (a ≥ 0.9)
values, the ETAS model yields a constant value ofDM = 1.2
(Båth’s law) and for low n (n ≤ 0.6) and a (a ≤ 0.5) Båth’s
law does not apply.
[5] In this paper we extend Båth’s law, (i) to space and

time patterns of the largest aftershocks, and (ii) we consider
the earthquake faulting style as a possible control parameter
on size and location of the largest aftershock. To do this, we
explore DT = Tm � Ta (Tm = mainshock time, Ta = largest
aftershock time) and DD* = Da* is the normalized distance
between the largest aftershock and the mainshock epicenter.
[6] Using the USGS global earthquake catalog, we verify

that the DM, DT and DD* values are independent of
mainshock magnitude. Second, we investigate density dis-
tributions of size, time and space patterns of aftershocks.
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Third, we analyse DM and DD* values as functions of
earthquake faulting styles, as defined according mainshock
rake angle [e.g., Aki and Richards, 2002].

2. Data and Methods

[7] We selected shallow (depth < 70 km) earthquakes of
the available global earthquake catalog, (1973–2010, http://
earthquake.usgs.gov) with Ms (surface wave magnitude) ≥
Mc (threshold magnitude). For the selection of aftershocks
and mainshocks, the completeness magnitude Mc is com-
puted for the entire USGS catalog containing all earth-
quakes. Using median-based analysis of the segment slope
(MBASS) method [Amorese, 2007], we derive Mc = 5, the
same Mc value was previously reported by Kagan and
Jackson [2010]. Focal mechanism solutions are taken from
global Harvard CMT catalog (http://earthquake.usgs.gov/
earthquakes/eqarchives/sopar/), 1977–2010.
[8] A number of declustering procedures are available to

isolate aftershocks from background seismicity [e.g., Gardner
and Knopoff, 1974; Reasenberg, 1985;Kagan, 1991;Knopoff,
2000; Felzer et al., 2004;Helmstetter et al., 2005;Marsan and
Lengline, 2008]. None of them being 100% robust, we instead
focus in the near field by selecting aftershocks as events which
occur within one fault length (L) distance from the mainshock.
By using normalized distance to mainshock as D* = jD/Lj,
D is the aftershock distance to the mainshock, which is
measured as the arc length on the earth’s surface. L is the
earthquake rupture length, derived from the earthquake
magnitude, L � 100.59Mm [Wells and Coppersmith, 1994,
Table 2A]. We test how the patterns evolve when using
D* = [1,2,…5] and [1,2,…5] years for the space and time
windows respectively (see auxiliary material).1

[9] For mainshock selection we follow Helmstetter and
Sornette [2003b]; Saichev and Sornette [2005] who
observed that Båth’s law only exists for events whose a �
value is larger than 0.5 (see equation (3)). This criterion
corresponds to Mm �Mc ≥ 2 [e.g., Helmstetter and Sornette,
2003b]. Because Mc = 5 for the global data, we expect a
constant DM with respect to mainshock magnitude for
Mm ≥ 7 (Figures 1 and 2). To ensure the robustness of the
Mm �Mc ≥ 2 mainshock selection, we estimate a – value for
the entire earthquake catalog and for the thrust, strike slip
faulting styles (Figure 1a). We sum up the number of after-
shocks within time = 1 year, D* = 1 window with mainshock
magnitude ∈ [Mm , Mm + 0.1] bin and we further normalize
by the number of mainshocks in each bin. The least square
estimate of the slope value is defined as the a value.
Accordingly, Figure 1 suggestsMm ≥ 7 as the threshold value
for events with a ≥ 0.5.
[10] First, we compute magnitude difference (DM), time

(DT ) and normalized distance (DD*) between mainshock
and largest aftershock as a function of mainshock magnitude
classes [Mm, Mm + 0.1] for Mm = 7–9.5. Then average,
standard deviation and median with first and third quartiles
(Q1,Q3) are being determined for each of the magnitude
classes. Quartiles provide an interesting measure of the data
dispersion since they are less susceptible than standard
deviation when the data distribution is skewed or has many
outliers. Because aboveM = 8.3 and for normal events, there
is at most 1 single event per magnitude bin, we cannot
compute error bars. Using Mm ≥ 7, in the global catalog we
only have 26 normal faulting events for 100 and 191 strike
slip and thrust events, respectively. Accordingly, we restrict
the following analysis to M ≤ 8.3 of strike slip and reverse
faulting earthquakes.
[11] Second, the density distribution of magnitude (DM),

time (DT ) and average linear density [e.g., Felzer and
Brodsky, 2006] of normalized distance (DD*) between

Figure 1. Aftershock normalised rate (Ra* = Ra/Nm) as a function of mainshock size and faulting style: Ra is the number of
aftershocks within mainshock magnitude class ∈ [Mm, Mm + 0.2] for Mm ≥ 5, Nm is the number of mainshocks. (a) After-
shock within 1 yr and D* = 1 window (red cross), aftershock from randomly reshuffled magnitude catalog (green circle),
aftershocks (black cross) within 5 yr, D* = 5 window. The slope of the rate versus magnitude plot is defined as a – value
[e.g., Helmstetter, 2003]. Note that the increase in a – value for Mm > 7 events, corresponds to Mm � Mc ≥ 2. Below
Mm = 7 a – value is close to 0.38 � 0.03 for random and real data. Above Mm = 7, the slope value is 0.34 � 0.08
and 0.91 � 0.03 for random and real data respectively (see text for details). (b) Aftershock rate as a function of faulting
style: reverse slip (blue cross, a = 0.91 � 0.06); strike slip (orange cross, a = 1.16 � 0.12). Note that the aftershock rates
is always larger for reverse slip aftershocks than for strike slip aftershocks for Mm < 8.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL050604.
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mainshock and the largest aftershock are analyzed. In order
to test the stability of the results, we compare each of DM,
DT andDD* outputs against the one derived from randomly
reshuffled magnitude, time and location, respectively (i.e.,
either magnitude or time or location of events within the
catalog are randomly interchanged with each other). Each
reshuffled data are averaged results from 100 simulations.

3. Results and Discussion

[12] For the global earthquakes catalog using Mm ≥ Mc +
2, time ≤ 1 yr and D* ≤ 1 for time and space window, we
observe a = 0.91 � 0.03 (Figure 1). This value falls in the

suggested range for Båth’s law [e.g., Helmstetter and
Sornette, 2003b; Saichev and Sornette, 2005].
[13] We showed that the normalized aftershock rate of

reverse events remains higher than for strike slip events for
Mm < 8.0 (Figure 1b). This pattern indicate more aftershocks
for reverse than strike slip events.
[14] By selecting mainshock magnitude ≥ Mc + 2

[Helmstetter and Sornette, 2003b; Saichev and Sornette,
2005] we first validated Båth’s law for world wide
earthquake catalog, i.e., average DM � 1.2, independent
of the mainshock magnitude (Figure 2) and second, we
extend this empirical law to distance (DD*) and time (DT),
(Figures 3 and 4). The average density distribution of DM is

Figure 3. Normalized distance difference (DD*) between mainshock and its corresponding largest aftershock. (a) Average
DD* (black), median DD* (red) and average DD* for reshuffled location (green). Vertical blue box plots lower quartile
(Q1), and upper quartile (Q3). Horizontal dotted lines are global average for data and reshuffled location. (b) linear density
distribution of DD* for different faulting styles, with all type (black), reverse events (blue), strike slip (orange) and
reshuffled location (green). Same as Figure 2 but for data selection.

Figure 2. Magnitude difference (DM) between mainshock and its corresponding largest aftershock. (a) Average (black),
median DM (red) and average DM for reshuffled magnitude (green). Vertical blue box plots lower quartile (Q1), and upper
quartile (Q3). Horizontal dotted lines are global average for data and reshuffled magnitude (b) DM distribution for different
faulting styles. All type of mainshock (black), reverse events (blue), strike slip (orange) and reshuffled magnitude (green).
Dotted vertical lines are mode values, and red vertical line is Båth’s law. Aftershocks are selected within time = 1 year
and D* = 1. Because above M = 8.3 there is at most 1 single event per magnitude bin, we cannot compute error bars.
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not gaussian as it shows a fat tail, reminiscent of the
Gutenberg Richter law (Figure 2b and S1e). Furthermore,
the DM distribution is faulting style dependent i.e., mode
of DMss > DMr (1.51, 0.95, DMss, DMr being magni-
tude difference between mainshock and largest aftershock
for strike slip and reverse events respectively). Accord-
ingly, we expect on average DMss � DMr = 0.24, i.e., a
0.24 magnitude decrease for the largest aftershock of
strike slip mainshocks relatively to reverse events. This
0.24 average magnitude decrease is within the 〈DM〉 =
0.19–0.33 range of analytical DM estimates as a func-
tion of aftershock rate and b – value [Feller, 1966;
Helmstetter and Sornette, 2003b]. From equation (1) and (4)
of Helmstetter and Sornette [2003b] we derived DMh ir �
DMh iss � 1

br
log10

Nr
Nm

� 1
bss

log10
Nss
Nm

. For these 〈DM〉 esti-
mates we use b – value br = 0.99� 0.06, bss = 1.12� 0.09 as
estimated for global CMT catalog by M. Tahir and J. Grasso
(Faulting style controls on the Omori law parameters from
global earthquake catalogs, submitted to Journal of Geo-
physical Research, 2012).
[15] The average linear density distribution of DD* is

strongly peaked at DD* = 0.2, with mode values for
DDss* > DDr* (Figure 3). Accordingly, the largest after-
shocks of strike slip mainshocks are on average, smaller
than and occur at a larger distance from the mainshock
than those triggered by reverse shocks (Figures 2 and 3).
[16] For any magnitude bin, the rate of aftershocks is

always larger for reverse triggers than for strike slip triggers
(Figure 1b). Tahir and Grasso [2009, submitted manuscript,
2012] suggested this global production of aftershock is
driven by a lower p – value, larger K – value, for reverse
events than that for strike slip events, respectively. For fixed
b – value, a larger aftershock rate imply a greater probability
to randomly pick a large earthquake from Gutenberg-Richter
law [see][as predicted by ETAS model Helmstetter et al.,
2003]. Accordingly, the larger aftershock rate we resolve

forMm ≥ 7.0 on Figure 1b drives the larger magnitude which
emerges for the largest aftershocks of reverse events than for
strike slip events, respectively. Also, one must note the
lower a value we resolve for reverse earthquakes than for
strike slip ones further re-enforces this pattern, with 〈DM〉 =
f(b � a/b, Mm, K/1-n) as derived from analytical solution of
ETAS model [e.g., Helmstetter and Sornette, 2003b, equa-
tion (5)]. For the distance patterns, it appears that in the near
field, within 1–3 fault length of the mainshock, the after-
shocks are driven by the co-seismic static stress changes
[Kanamori and Brodsky, 2004; Parsons and Velasco, 2009;
Hainzl et al., 2010; Marsan and Lengliné, 2010]. Accord-
ingly, most of strike-slip aftershock epicenters are observed
to be clustered at the fault edges, i.e., at larger distance and
more clustered than the rough plateau density of reverse
aftershock epicenters which are located within the hanging
wall [King et al., 1994; Stein, 1999; Freed, 2005]. We find
that the DT distribution is independent of faulting style and
obeys power law. The observed 0.2 slope difference between
inter-event time of the largest aftershock and regular after-
shock relaxation is found to emerge from synthetic catalogs
(Figure 4b, inset) using epidemic cascading point process
(ETAS) for earthquake interactions [e.g., Helmstetter et al.,
2003].

4. Conclusions

[17] Thirty years of the global earthquake catalog allow us
to extend Båth’s law in time, space and focal mechanism.
First, more aftershocks are observed for reverse than for
strike slip events. Second, for reverse faults the DM of
largest aftershock is in average smaller than the one of strike
slip events, all being independent of magnitude. Third the
distance from the mainshock to the largest aftershock is
somewhat less for reverse faults than for strike slip faults.
Fourth, the distribution of time intervals between main-
shocks and their largest aftershocks is consistent with power

Figure 4. Time difference (DT) between mainshock and its corresponding largest aftershock. (a) Average (black), median
(red) and average DT for reshuffled time (green). Horizontal dotted lines are global average. Vertical blue box plots lower
quartile (Q1), and upper quartile (Q3). (b) DT distribution of largest aftershock for different faulting styles. Slope of the
DT distribution for all type, reverse and strike slip events are respectively 0.96 � 0.03, 0.96 � 0.04 and 0.98 � 0.05.
Relaxation rate (sky blue) for regular aftershock (not restricted to the largest one) corresponds to p – value = 0.82 �
0.009. Insert in Figure 4b is the average of 1000 ETAS model simulations with input p = 1.2 and n = 0.99, (n is the branch-
ing ratio [e.g., Helmstetter and Sornette, 2003b]). Black line is the DT distribution for the largest aftershock from synthetic
catalog, slope = 0.85 � 0.027 and light blue is the Omori’s law for all aftershocks, p – value = 1.05 � 0.0008.
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law but with a somewhat faster rate of decay than for after-
shocks in general. This implies that the largest aftershock is
more likely to occur earlier than later in a given sequence of
aftershocks (i.e., median DT � 3 days).
[18] These empirical results for, DM, DD*, DT are

robust patterns that are direct inputs to refine the current
practice of early forecasts of earthquakes activity (http://
www.cseptesting.org/).
[19] On the one hand, these results provides quantitative

probabilistic prediction tools for time space and size esti-
mates of the largest aftershock. On the other hand these
predictions, size and distance dependent on the faulting
style, argue for going beyond the point process for the cas-
cading model of earthquake interactions. Our analysis of the
largest aftershock patterns confirms the role of static trig-
gering as the main process to trigger earthquake in the near
field, i.e., within 1 year and 1 fault length of mainshock.
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is supported by the HEC – French Pakistan program. We acknowledge use-
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