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Abstract: Methods for computing approximately bisimilar symbolic models for incrementally
stable switched systems are usually based on discretization of time and space, where the value
of time and space sampling parameters must be carefully chosen in order to achieve a desired
precision. This often results in symbolic models that have a very large number of transitions,
especially when the time sampling, and thus the space sampling parameters are small. In this
paper, we present an approach to the computation of symbolic models for switched systems using
multirate time sampling, where the period of symbolic transitions is a multiple of the control
(i.e. switching) period. We show that multirate symbolic models are approximately bisimilar to
the original incrementally stable switched system. The main contribution of the paper is the
explicit determination of the optimal sampling ratio between transition and control periods,
which minimizes the number of transitions in the symbolic model. Interestingly, this optimal
sampling ratio is mainly determined by the state space dimension and the number of modes of
the switched system. Finally, an illustration of the proposed approach is shown for the boost
DC-DC converter, which shows the benefit of multirate symbolic models.

Keywords: Approximate bisimulation, switched systems, symbolic control, multirate sampling,
incremental stability.

1. INTRODUCTION

Hybrid systems are dynamical systems combining both
discrete and continuous behaviors and for which verifica-
tion and control problems cannot be solved by the classical
tools of continuous control. For this reason, over recent
years, several studies focused on the use of discrete ab-
stractions of hybrid systems, also called symbolic models
(see Tabuada (2009) and the refences therein). The main
advantage of these approaches is that they enable the
use of existing control techniques developed in the areas
of supervisory control of discrete event systems (Cassan-
dras and Lafortune (2009)) and algorithmic game theory
(Bloem et al. (2012)).

The symbolic models and the original system are often
related by some approximate equivalence relationships
such as approximate bisimulation (Girard and Pappas
(2007)) or alternating approximate bisimulation (Pola and
Tabuada (2009)). In particular, it was shown that approx-
imately bisimilar discrete abstractions are computable for
several classes of incrementally stable systems including
nonlinear systems with or without disturbances (Pola et al.
(2008), Pola and Tabuada (2009)) or switched systems
with or without dwell-time assumption (Girard et al.
(2010)).

In this paper, we deal with incrementally stable switched
systems, for which symbolic models can be computed by
discretizing time and space. It was shown in Girard et al.

? This work has been supported by the Labex Digicosme, Université
Paris-Saclay (CODECSYS project).

(2010), that discrete abstractions of arbitrary precision can
be obtained by carefully choosing time and space sampling
parameters. However, for a given precision, the choice
of a small time sampling parameter imposes to choose
a small space sampling parameter resulting in symbolic
models with a prohibitively large number of transitions.
This constitutes a limiting factor of the approach because
the size of the symbolic models is a crucial factor for
computational efficiency of symbolic controller synthesis.

The main idea of this paper is to reduce the size of the sym-
bolic model by using a multirate sampling. Multirate sam-
pling has been used in the area of discrete-time systems
to face some of the sampling processes disadvantages (see
e.g. Monaco and Normand-Cyrot (1991)). In this paper,
we present an approach to the computation of multirate
symbolic models for switched systems, where the period
of symbolic transitions is a multiple of the control (i.e.
switching) period. We show that multirate symbolic mod-
els are approximately bisimilar to the original incremen-
tally stable switched system. A similar approach has been
explored in the symbolic control literature in the context of
nonlinear digital control systems (Majumdar and Zamani
(2012)). The main contribution of the current paper is the
explicit determination of the optimal sampling ratio be-
tween transition and control periods which minimizes the
number of transitions in the symbolic model. Interestingly,
this optimal sampling ratio is mainly determined by the
state space dimension and the number of modes of the
switched system.



This paper is organized as follows. In Section 2, we in-
troduce the notions of transitions systems, approximate
bisimulation and incrementally stable switched systems. In
Section 3, we present the construction of symbolic models
for incrementally stable switched systems using multirate
sampling. In Section 4, we establish the optimal sampling
ratio between control and transition periods which min-
imizes the number of transitions in the symbolic model.
Finally, in Section 5, we illustrate our approach using the
boost DC-DC converter, which shows the benefits of the
proposed multirate symbolic models.

Notations: Z, N and N+ denote the sets of integers of
non-negative integers and of positive integers, respectively.
R,R+

0 and R+ denote the sets of real, of non-negative real
and of positive real numbers, respectively. For s ∈ R+

0 , bsc
denote its integer part, i.e. the largest nonnegative integer
r ∈ N such that r ≤ s. For x ∈ Rn, x[i] denotes its i-th
coordinate, i = 1, . . . , n; ‖x‖ denotes the Euclidean norm
of x. A continuous function γ : R+

0 → R+
0 is said to belong

to class K if it is strictly increasing and γ(0) = 0; γ is said
to belong to class K∞ if γ is K and γ(r)→∞ as r →∞.
A continuous function β : R+

0 ×R+
0 → R+

0 is said to belong
to class KL if, for each fixed s, the map β(·, s) belongs to
class K, and for each fixed nonzero r, the map β(r, ·) is
strictly decreasing and β(r, s)→ 0 as s→∞.

2. PRELIMINARIES

2.1 Transition systems

We present the notion of transition systems, which allows
us to describe in a unified framework the switched system
and its symbolic model.

Definition 1. A transition system is a tuple T = (X,U, Y,
∆, X0) consisting of:

• a set of states X;
• a set of inputs U ;
• a set of outputs Y ;
• a transition relation ∆ ⊆ X × U ×X × Y ;
• a set of initial states X0 ⊆ X.

T is said to be metric if the set of outputs Y is equipped
with a metric d, symbolic ifX and U are finite or countable
sets.

The transition (x, u, x′, y) ∈ ∆ will be denoted (x′, y) ∈
∆(x, u) and means that the system can evolve from state
x to state x′ under the action of input u, while producing
output y. An input u ∈ U belongs to the set of enabled
inputs at state x ∈ X, denoted Enab(x), if ∆(x, u) 6= ∅.
T is said to be deterministic if for all x ∈ X and for
all u ∈ Enab(x), ∆(x, u) consists of a unique element.
State x ∈ X is said to be blocking if Enab(x) = ∅,
otherwise it is said to be non-blocking. A trajectory of
the transition system is a finite or infinite sequence of
transitions σ = (x0, u0, y0)(x1, u1, y1) (x2, u2, y2) . . . where
(xi+1, yi) ∈ ∆(xi, ui), for i ≥ 0. It is initialized if x0 ∈ X0.
A state x ∈ X is reachable if there exists an initialized
trajectory such that xi = x, for some i ≥ 0. The transition
system is said to be non-blocking if all reachable states
are non-blocking. The output behavior associated to the
trajectory σ is the sequence of outputs y0y1y2 . . .

In this paper, we consider the approximation relationship
for transition systems based on the notion of approximate
bisimulation (Girard and Pappas (2007)), which requires
that the distance between the output behaviors of two
transition systems remains bounded by some specified
precision. The following definition is taken from Girard
et al. (2016) and generalizes that of Girard and Pappas
(2007) to accommodate the encoding of the output map
within the transition relation.

Definition 2. Let T1 = (X1, U, Y,∆1, X
0
1 ) and T2 =

(X2, U, Y,∆2, X
0
2 ) be two metric transition systems with

the same input set U and the same output set Y equipped
with a metric d. Let ε ≥ 0 be a given precision. A relation
R ⊆ X1 ×X2 is said to be an ε-approximate bisimulation
relation between T1 and T2 if for all (x1, x2) ∈ R, u ∈ U :

∀(x′1, y1) ∈ ∆1(x1, u),∃(x′2, y2) ∈ ∆2(x2, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R;

∀(x′2, y2) ∈ ∆2(x2, u),∃(x′1, y1) ∈ ∆1(x1, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R.

The transition systems T1 and T2 are said to be ε-
approximately bisimilar, denoted T1 ∼ε T2, if:

• ∀x1 ∈ X0
1 , ∃x2 ∈ X0

2 , such that (x1, x2) ∈ R;

• ∀x2 ∈ X0
2 , ∃x1 ∈ X0

1 , such that (x1, x2) ∈ R.

The approximate bisimulation relation guarantees that for
each output behavior of T1 (respectively of T2), there exists
an output behavior of T2 (respectively of T1) such that
the distance between these output behaviors is uniformly
bounded by ε.

2.2 Incrementally stable switched systems

We introduce the class of systems that we consider in this
paper:

Definition 3. A switched system is a quadruple Σ =
(Rn, P,P, F ), where:

• Rn is the state space;
• P = {1, . . . ,m} is the finite set of modes;
• P is a subset of S(R+

0 , P ) which denotes the set of
piecewise constant functions from R+

0 to P , continu-
ous from the right and with a finite number of dis-
continuities on every bounded interval of R+

0 (which
guarantees the absence of Zeno behaviors);

• F = {f1, . . . , fm} is a collection of vector fields
indexed by P .

For all p ∈ P , we denote by Σp the continuous subsystem
of Σ defined by the differential equation:

ẋ(t) = fp(x(t)). (1)

We make the assumption that the vector field fp is locally
Lipschtiz and forward complete, so that solutions of (1) are
uniquely defined for all t ∈ R+

0 . Necessary and sufficient
conditions for a system to be forward complete can be
found in Angeli and Sontag (1999).

A switching signal of Σ is a function p ∈ P, the discon-
tinuities of p are called switching times. A piecewise C1
function x : R+

0 → Rn is said to be a trajectory of Σ if it is



continuous and there exists a switching signal p ∈ P such
that, at each t ∈ R+

0 where the function p is continuous,
x is continuously differentiable and satisfies:

ẋ(t) = fp(t)(x(t)).

We will denote x(t, x,p) the point reached at time t ∈ R+
0

from the initial condition x under the switching signal p.
We will denote x(t, x, p) the point reached by Σ at time
t ∈ R+

0 from the initial condition x under the constant
switching signal p(t) = p, for all t ∈ R+

0 . For all p, we have
x(t, x, p) = φpt (x) where φpt is the flow associated to the
vector field fp.

The construction of the approximately bisimilar symbolic
models of switched systems are generally based on the no-
tion of incremental stability. In Angeli (2002), incremental
global asymptotic stability (δ-GAS) is characterized using
Lyapunov functions for nonlinear systems. An extension of
this result to the class of switched systems was presented
in Girard et al. (2010).

Definition 4. A switched system Σ is incrementally glob-
ally uniformly asymptotically stable (δ-GUAS) if there
exists a KL function β such that for all t ∈ R+

0 , for all
x, y ∈ Rn and for all switching signal p ∈ P, the following
condition is satisfied:

‖x(t, x,p)− x(t, y,p)‖ ≤ β(‖x− y‖, t).
Intuitively, incremental stability means that all trajecto-
ries associated to the same switching signal converge to the
same trajectory, independently of their initial conditions.
The notion of incremental stability for switched systems
can also be proved using dissipation inequalities as follows:

Definition 5. : A smooth function V : Rn × Rn → R+
0 is

a common δ-GUAS Lyapunov function for Σ if there exist
K∞ functions α, α and κ ∈ R+ such that for all x, y ∈ Rn,
for all p ∈ P ,

α(‖x− y‖) ≤ V (x, y) ≤ α(‖x− y‖); (2)

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y). (3)

Theorem 1. (Girard et al. (2010)). Consider a switched sys-
tem Σ = (Rn, P,P, F ) with a common δ-GUAS Lyapunov
function, then Σ is δ-GUAS.

In the following, and in order to construct symbolic models
for the switched systems, we shall make the sumplemen-
tary assumption that there exists a K∞ function γ such
that:

∀x, y, z ∈ Rn, |V (x, y)− V (x, z)| ≤ γ(‖y − z‖). (4)

Remark 1. In Girard et al. (2010), it is shown that this
assumption is verified, if we are interested in the dynamics
of the switched system on a compact set C ⊆ Rn and V is
C1 on C. Then, we have for all x, y, z ∈ C,

|V (x, y)−V (x, z)| ≤ cγ‖y−z‖ with cγ = max
x,y∈C

∥∥∥∥∂V∂y (x, y)

∥∥∥∥ .
Then, (4) holds for the linear K∞ function given by
γ(r) = cγr, regardless of the linear or nonlinear nature
of the system dynamics.

Remark 2. For all x ∈ Rn we have V (x, x) = 0, then for
all x, y ∈ Rn we have:

V (x, y) ≤ |V (x, y)− V (x, x)| ≤ γ(‖x− y‖)

Then, there is no loss of generality in assuming that the
second inequality in (2) holds with α = γ.

3. MULTIRATE SYMBOLIC MODELS

3.1 Multirate sampling of switched systems

In this paper we focus on switched systems Σ =
(Rn, P,P, F ) for which the switching is periodically con-
trolled with control period τ ∈ R+ (i.e. P is the set of
switching signals whose switching times occur at multi-
ples of the period τ). Given a switched system Σ and a
control period τ , we define the transition system Tτ (Σ) =
(X,U, Y,∆τ , X

0) as follows:

• The set of states is X = Rn;
• The set of inputs is U = P ;
• The set of outputs Y = Rn;
• The transition relation is given for x, x′ ∈ X, u ∈ U ,
y ∈ Y , by (x′, y) ∈ ∆τ (x, u) if and only if

x′ = φuτ (x) and y = x;

• the set of initial states X0 = Rn.

Tτ (Σ) is deterministic, non-blocking and metric when the
set of outputs Y is equipped with Euclidean metric given
by d(y, y′) = ‖y − y′‖.
In the previous transition system, the period of transitions
coincides with the control period τ . In this paper, we deal
with more general multirate sampling where the period of
transitions is a multiple rτ of the control period τ where
the sampling ratio r ∈ N+. We thus define the multirate
transition system Tτ,r(Σ) = (X,Ur, Yr,∆τ,r, X

0) where:

• The set of states is X = Rn;
• The set of inputs is Ur = P r;
• The set of outputs Yr = Rn×r;
• The transition relation is given for x, x′ ∈ X, u ∈ Ur

with u = (p1, . . . , pr), y ∈ Yr, by (x′, y) ∈ ∆τ,r(x, u)
if and only if

x′ = φprτ ◦ φpr−1
τ ◦ . . . ◦ φp1τ (x) and

y =
(
x, φp1τ (x), . . . , φpr−1

τ ◦ . . . ◦ φp1τ (x)
)
;

• the set of initial states X0 = Rn.

Tτ,r(Σ) is deterministic, non-blocking and metric when the
set of outputs Yr is equipped with the following metric dr:

∀y = (y1, . . . , yr), y
′ = (y′1, . . . , y

′
r) ∈ Yr,

dr(y, y
′) = max

i∈{1,...,r}
‖yi − y′i‖. (5)

Let us remark that for r = 1, Tτ,r(Σ) coincides with Tτ (Σ).
When r 6= 1, the following result shows that Tτ (Σ) and
Tτ,r(Σ) produce equivalent output behaviors.

Proposition 1. For any output behavior (y0, y1, y2, . . . ) of
Tτ (Σ), there exists an output behavior (y0r , y

1
r , y

2
r , . . . ) of

Tτ,r(Σ) with yir = (zir,1, . . . , z
i
r,r) for i ≥ 0 such that

∀i ≥ 0, j = 1, . . . , r, zir,j = yir+j−1. (6)

Conversely, for any output behavior (y0r , y
1
r , y

2
r , . . . ) of

Tτ,r(Σ) with yir = (zir,1, . . . , z
i
r,r) for i ≥ 0, there exists

an output behavior (y0, y1, y2, . . . ) of Tτ (Σ) such that (6)
holds.



Proof. Consider a trajectory σ = (x0, u0, y0)(x1, u1, y1)
(x2, u2, y2) . . . of Tτ (Σ) and let us consider the trajectory
σr = (x0r, u

0
r, y

0
r)(x1r, u

1
r, y

1
r) (x2r, u

2
r, y

2
r) . . . of Tτ,r(Σ) with

x0r = x0 and uir = (uir, . . . , uir+r−1) for i ≥ 0. Then by
construction of Tτ (Σ) and Tτ,r(Σ) , we have that (6) holds.
The proof of the converse result comes similarly. 2

Remark 3. Using Tτ (Σ) or Tτ,r(Σ) for the purpose of
synthesis provides identical guarantees on the sampled
behavior (with period τ) of the switched system, since the
output behaviors of both transition systems are equivalent.
However, it leads to different implementations of switching
controllers. For controllers synthesized using Tτ,r(Σ), the
sensing and actuation period are equal to τ ; while for
controllers synthesized using Tτ,r(Σ), the actuation period
remains equal to τ when the sensing period is equal to
rτ . In the latter case, at sensing instants, the controller
selects a sequence of r modes, each of which is actuated
for a duration τ .

3.2 Construction of symbolic models

For an incrementally stable switched system Σ, a construc-
tion of symbolic models that are approximately bisimilar
to Tτ (Σ) has been proposed in Girard et al. (2010), based
on a discretization of the state-space Rn. Theorem 4.1
in that paper, shows that symbolic models of arbitrary
precision can be computed by using a sufficiently fine
discretization of the state-space. However, this usually
results in symbolic models that have a very large number
of transitions, especially when the control period τ is small.

In this section, we establish a similar result for the multi-
rate transition system Tτ,r(Σ). This idea is inspired by the
work presented in Majumdar and Zamani (2012), in which
symbolic models are computed for digital control systems
using multirate sampling. Our results can be seen as an
extension to the class of switched systems. In addition, in
the following section, we will provide a theoretical analysis
allowing us to choose the optimal sampling ratio r, min-
imizing the number of transitions in the symbolic model,
which is not available in Majumdar and Zamani (2012).

y1 = q

q′ = Qη(φ
p3
τ ◦ φp2τ ◦ φp1τ (q))

y2 = φp1τ (q)

y3 = φp2τ ◦ φp1τ (q)

Fig. 1. A transition (q′, y) ∈ ∆η
τ,r(q, u) of the multirate

symbolic model T ητ,r(Σ) with r = 3, u = (p1, p2, p3)
and y = (y1, y2, y3).

Let η ∈ R+ be a space sampling parameter, the set of
states Rn is approximated by the lattice:

[Rn]η =
2η√
n
Zn.

We associate a quantizer Qη : Rn −→ [Rn]η given by
Qη(x) = q if and only if

∀i = 1, . . . , n, q[i]− η√
n
≤ x[i] < q[i] +

η√
n
.

We can easily show that for all x ∈ Rn, ‖Qη(x)− x‖ ≤ η.

Let us then define the transition system T ητ,r(Σ) =

(Xη, Ur, Yr,∆
η
τ,r, X

η,0) as follows:

• The set of states is Xη = [Rn]η;
• The set of inputs is Ur = P r;
• The set of outputs Yr = Rn×r;
• The transition relation is given for q, q′ ∈ Xη, u ∈ Ur

with u = (p1, . . . , pr), y ∈ Yr, by (q′, y) ∈ ∆η
τ,r(q, u)

if and only if

q′ = Qη
(
φprτ ◦ φpr−1

τ ◦ . . . ◦ φp1τ (q)
)

and
y =

(
q, φp1τ (q), . . . , φpr−1

τ ◦ . . . ◦ φp1τ (q)
)
;

• the set of initial states Xη,0 = [Rn]η.

T ητ,r(Σ) is symbolic, deterministic, non-blocking and met-
ric when the set of outputs Yr is equipped with the metric
dr given by (5). The construction of the symbolic transi-
tion relation is illustrated in Figure 1. We can now state
the following approximation result:

Theorem 2. Consider a switched system Σ, and let us
assume that there exists a common δ-GUAS Lyapunov
function V for Σ such that (4) holds for some K∞ function
γ. Let time and space sampling parameters τ, η ∈ R+,
sampling ratio r ∈ N+ and precision ε ∈ R+ satisfy:

η ≤ γ−1
(
(1− e−rκτ )α(ε)

)
(7)

then, the transition systems Tτ,r(Σ) and T ητ,r(Σ) are ε-
approximately bisimilar.

Proof. We start by proving that the relation R defined
by:

R = {(x, q) ∈ X ×Xη| V (x, q) ≤ α(ε)}
is an ε-approximate bisimulation relation between Tτ,r(Σ)
and T ητ,r(Σ).

Let (x, q) ∈ R, u ∈ Ur with u = (p1, . . . , pr), and
(x′, y) ∈ ∆τ,r(x, u), then x′ = φprτ ◦ . . . ◦ φp1τ (x). Let
(q′, z) ∈ ∆η

τ,r(q, u), then ‖φprτ ◦ . . . ◦ φp1τ (q) − q′‖ ≤ η.
It follows from equation (4) that

|V (x′, q′)− V (x′, φprτ ◦ . . . ◦ φp1τ (q))| ≤ γ(η).

It follows that

V (x′, q′)≤ V (x′, φprτ ◦ . . . ◦ φp1τ (q)) + γ(η)

≤ V (φprτ ◦ . . . ◦ φp1τ (x), φprτ ◦ . . . ◦ φp1τ (q)) + γ(η)

≤ e−rκτV (x, q) + γ(η)

≤ e−rκτα(ε) + γ(η)

≤ α(ε)

where the third inequality comes from (3), the fourth
inequality comes from the fact that (x, q) ∈ R and the
fifth inequality comes from (7). Thus, (x′, q′) ∈ R.

In addition, we have by definition of the transition rela-
tions that



y =
(
x, φp1τ (x), . . . , φpr−1

τ ◦ . . . ◦ φp1τ (x)
)
,

z =
(
q, φp1τ (q), . . . , φpr−1

τ ◦ . . . ◦ φp1τ (q)
)
.

Then, by (2) and since (x, q) ∈ R, we have

‖x− q‖ ≤ α−1
(
V (x, q)

)
≤ ε.

Moreover, for i = 1, . . . , r − 1, by (2), (3) and since
(x, q) ∈ R, we have

‖φpiτ ◦ . . . ◦ φp1τ (x)− φpiτ ◦ . . . ◦ φp1τ (q)‖
≤ α−1

(
V (φpiτ ◦ . . . ◦ φp1τ (x), φpiτ ◦ . . . ◦ φp1τ (q))

)
≤ α−1

(
V (x, q)

)
≤ ε.

It follows that dr(y, z) ≤ ε and the first condition of the
definition (2) holds.

In a similar way, we can prove that for all (q′, z) ∈
∆η
τ,r(q, u) there exists (x′, y) ∈ ∆τ,r(x, u) such that

(x′, q′) ∈ R and dr(y, z) ≤ ε. Therefore, R is an ε-
approximate bisimulation relation between Tτ,r(Σ) and
T ητ,r(Σ).

Now, let x ∈ X0 = Rn, and q ∈ Xη,0 = [Rn]η, given by
q = Qη(x), then ‖x − q‖ ≤ η. Following Remark 2, we
assume the second inequality of (2) holds with α = γ. It
follows that

V (x, q) ≤ γ(‖x− q‖) ≤ γ(η) ≤ α(ε)

where the last inequality comes from (7). Hence (x, q) ∈ R.
Conversely, for all q ∈ Xη,0 = [Rn]η, let x ∈ X0 = Rn,
given by x = q, then V (x, q) = 0 and (x, q) ∈ R. Therefore,
Tτ,r(Σ) and T ητ,r(Σ) are ε-approximately bisimilar. 2

Remark 4. From the previous Theorem and using the fact
that α = γ, we can recover when r = 1, the original
approximation result given in Theorem 4.1 of Girard et al.
(2010).

Some remarks regarding the size of the symbolic models
are in order. It appears from (7) that using larger sampling
ratio r ∈ N+ allows us to use larger values of η ∈ R+

and thus coarser discretizations of the state space. This
results in symbolic models with fewer symbolic states.
However, the number of transitions initiating from a
symbolic state is mr and thus grows exponentially with the
sampling ratio. Hence, the advantage of using multirate
symbolic models in terms of number of transitions in the
symbolic model is yet unclear. This issue is addressed
in the following section, where we determine the optimal
value of the sampling ratio.

4. OPTIMAL SAMPLING RATIO

In the following, we consider multirate symbolic models
T ητ,r(Σ), where we restrict the set of states to some compact
set C ⊆ Rn with nonempty interior. The number of
symbolic states in Xη ∩ C is then accurately estimated
by vC

ηn , where vC ∈ R+ is a positive constant proportional

to the volume of C. Then, the total number of symbolic
transitions initiating from states in Xη ∩ C is vC

mr

ηn . We

assume in the following that the number of modes m ≥ 2.

4.1 Problem formulation

In this section, given a desired precision ε ∈ R+, and a
control period τ ∈ R+, we establish the optimal values

r∗ ∈ N+ and η∗ ∈ R+, which minimizes the number
of symbolic transitions while satisfying (7). Since, C is
a compact set, following Remark 1, we assume that (4)
holds for a linear K∞ function γ given by γ(r) = cγr
where cγ ∈ R+. Thus, we aim at solving the following
mixed integer nonlinear program:

Minimize vC
mr

ηn

over r ∈ N+, η ∈ R+

under η ≤ (1− e−rκτ )
α(ε)

cγ

(8)

Let us first remark that for a given r ∈ N+, the optimal

value η ∈ R+ is obviously obtained as η = (1−e−rκτ )
α(ε)
cγ

.

It follows that (8) is equivalent to the following integer
program:

Minimize vC
cnγ

(α(ε))n
mr

(1− e−rκτ )n

over r ∈ N+
(9)

The value vC
cnγ

(α(ε))n ∈ R+ does not depend on r and thus

does not affect the solution of (9), which can finally be
equivalently formulated as:

Minimize g(r) =
mr

(1− e−rκτ )n

over r ∈ N+
(10)

A first interesting information that comes from (10) is that
the optimal sampling ratio only depends on the control
period τ ∈ R+, the dimension of the state-space n ∈ N+,
the number of modes m ∈ N+ and the decay rate κ ∈ R+

of the δ-GUAS Lyapunov function. In particular, it is
noteworthy that it is independent of the desired precision
ε ∈ R+ and of the compact set C.

4.2 Explicit solution

In this section, we show that the previous optimization
problems can be solved explicitly. We first consider the
relaxation of the integer program (10) over the positive
real numbers:

Lemma 1. Let g : R+ → R+ be given as in (10). Then, g
has a unique minimizer r̃∗ ∈ R+ given by

r̃∗ =
1

κτ
ln

(
1 +

nκτ

ln(m)

)
. (11)

Moreover, g is strictly decreasing on (0, r̃∗] and strictly
increasing on [r̃∗,+∞).

Proof. Let us compute the first order derivative of g:

g′(r) =
1

(1− e−rκτ )2n

(
ln(m)mr(1− e−rκτ )n

−mrnκτe−rκτ (1− e−rκτ )n−1
)

=
mr

(1− e−rκτ )n+1

(
ln(m)(1− e−rκτ )− nκτe−rκτ

)
=

ln(m)mr

(1− e−rκτ )n+1

(
1− e−rκτ

(
1 +

nκτ

ln(m)

))
.

By remarking that ln(m)mr

(1−e−rκτ )n+1 > 0 for all r ∈ R+, it is

easy to see that 1 − e−rκτ
(
1 + nκτ

ln(m)

)
and thus g′(r) is



negative on (0, r̃∗), zero at r̃∗ and positive on (r̃∗,+∞).
The result stated in Lemma 1 follows immediately. 2

We can now state our main result:

Theorem 3. For any desired precision ε ∈ R+, and any
control period τ ∈ R+, the optimal parameters r∗ ∈ N+

and η∗ ∈ R+, solutions of (8), which minimize the number
of symbolic transitions of T ητ,r(Σ), initiating from states in
Xη ∩ C, while satisfying (7), are given by

r∗ = br̃∗c or r∗ = br̃∗c+ 1 (12)

and η∗ = (1− e−r∗κτ )
α(ε)

cγ
(13)

where r̃∗ is given by (11).

Proof. From Lemma 1, it follows that

∀r ∈ N+, with r < br̃∗c, g(r) > g(br̃∗c)
and

∀r ∈ N+, with r > br̃∗c+ 1, g(r) > g(br̃∗c+ 1).

Then, it folllows that the minimal value of g over N+ is
obtained for r∗ = br̃∗c or r∗ = br̃∗c + 1. Then, from the
discussions in Section 4.1, it follows that the solution of

(8) is given by r∗ and η∗ = (1− e−r∗κτ )
α(ε)
cγ

. 2

In practice, we compute the optimal parameters of the
multirate symbolic models by evaluating the function g at
br̃∗c and br̃∗c+ 1. We then pick the one out of two values
r∗, which minimizes g and compute η∗ using (9).

We would like to point out that the previous result can
be applied to either linear or nonlinear switched systems.
The only requirement is that we restrict the analysis to a
compact subset of Rn. Finally, it is interesting to remark
that for small values of the control period τ ∈ R+, the
optimal sampling ratio r∗ is mainly determined by the
state space dimension and the number of modes.

Corollary 1. There exists τ ∈ R+, such that for any
desired precision ε ∈ R+, and any control period τ ∈ (0, τ ],
the optimal parameters r∗ ∈ N+ and η∗ ∈ R+, solutions of
(8), which minimize the number of symbolic transitions of
T ητ,r(Σ), initiating from states in Xη ∩ C, while satisfying
(7), are given by

r∗ =

⌊
n

ln(m)

⌋
or r∗ =

⌊
n

ln(m)

⌋
+ 1

and η∗ = (1− e−r∗κτ )
α(ε)

cγ
.

Proof. Let τ be given by

τ =
2 ln(m)

nκ

1−

⌊
n

ln(m)

⌋
n

ln(m)

 . (14)

From Theorem 2.2 in Baker (1990), we have that for all
n,m ∈ N+ with m ≥ 2, n

ln(m) ∈ R+ \ N+. Then, it follows

that b n
ln(m)c < n

ln(m) and that τ > 0.

Now, let us remark that for all θ ∈ R+, we have that
θ(1− θ

2 ) ≤ ln(1 + θ) ≤ θ. Let r̃∗ be given by (11), then it
follows from the previous inequalities that for all τ ∈ R+.

n

ln(m)

(
1− nκτ

2 ln(m)

)
≤ r̃∗ ≤ n

ln(m)
.

Then, using (14), it follows that for all τ ∈ (0, τ ],⌊
n

ln(m)

⌋
≤ r̃∗ ≤ n

ln(m)

which implies that br̃∗c = b n
ln(m)c. The stated result is

then a consequence of Theorem 3. 2

5. ILLUSTRATING EXAMPLE

As an illustration, we consider a boost DC-DC converter
described by a two-dimensional switched affine system
with two modes (i.e. n = 2, m = 2) and given by

ẋ(t) = Ap(t)x(t) + b

with x(t) = [il(t) vc(t)]
T , b = [vsxl 0]T , and

A1 =

[
− rlxl 0

0 − 1
xc

1
r0+rc

]
, A2 =

[
− 1
xl

(rl+
r0rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

]
.

In the following, we use the numerical values from Beccuti
et al. (2005), expressed in the per-unit system: xc = 70,
xl = 3, rc = 0.005, rl = 0.05, r0 = 1 and vs = 1. For a bet-
ter numerical conditioning, we rescaled the second variable
of the system, the new state becomes x(t) = [il(t) 5vc(t)]

T ;
(the matrices A1, A2 and vector b are modified accord-
ingly). It has been shown in Girard et al. (2010) that this
switched systems admits a common δ-GUAS Lyapunov
function of the form V (x, y) =

√
((x− y)TP (x− y)) with

P = [ 1.0224 0.0084
0.0084 1.0031 ] .

Then, equations (2), (3) and (4) hold with α(s) = s,
α(s) = 1.0127s, κ = 0.014 and γ(s) = 1.0127s.

We compute multirate symbolic models using the ap-
proach described in Section 3. We set the control pe-
riod τ = 0.5 and the desired precision ε = 0.025. We
restrict the dynamics to a compact subset of R2 given
by C = [1.3, 1.5] × [5.65, 5.75]. We compute the symbolic
models for several sampling ratios r = 1, . . . , 10, the space

sampling parameter is then chosen as η = (1− e−rκτ )
α(ε)
cγ

.

Figure 2 shows the number of symbolic transitions as a
function of r and we can see that this number is minimal
for r = 3.

Using (14), we compute τ = 15.19. Thus, τ ∈ (0, τ ] and
the assumptions of Corollary 1 hold. In particular, since

Fig. 2. Number of symbolic transitions in the multirate
symbolic models for different values of the sampling
ratio r.



Fig. 3. Computation times in seconds for generating
the multirate symbolic models and synthesizing con-
trollers for different values of the sampling ratio r (Im-
plementation in MATLAB, Processor 2.7 GHz Intel
Core i5, Memory 8 GB 1867 MHz DDR3).

Fig. 4. Trajectory of the switched system controlled with
the symbolic controller for the initial state x0 =
[1.48 5.66]T . The control period is τ = 0.5 while the
transition period is 3τ = 1.5 (instants of transitions
are indicated with circles).

n
ln(m) = 2.89, the optimal sampling ratio is either 2 or 3.

We can then check numerically that g(3) < g(2) where g is
given by (10). This provides us with the optimal sampling
ratio r∗ = 3, which is consistent with the experimental
data.

We now synthesize safety controllers (see e.g. Tabuada
(2009)), which keep the output of the symbolic models
inside the compact region C. Figure 3 reports the com-
putation times for generating symbolic models and syn-
thesizing controllers for r = 1, . . . , 10. We can check that
using the optimal sampling ratio r = 3 allows us to reduce
the computation times by more than 50% in comparison
to the classical approach corresponding to r = 1. For
r = 3, Figure 4 shows a trajectory of the switched system
controlled with the symbolic controller for the initial state
x0 = [1.48 5.66]T .

6. CONCLUSION

In this paper, we have proposed the use of multirate
sampling for the computation of symbolic abstractions for
incrementally stable switched systems, and show that our
technique allows us to produce symbolic models with fewer
transitions than the existing approaches. The optimal
sampling ratio has been determined theoretically and
validated experimentally on the boost DC-DC converter
example, which shows that multirate symbolic models
enables controller synthesis at a reduced computational
cost. In a future work, we will extend this approach to
the class of switched systems with multiple Lyapunov
functions and a dwell time.

REFERENCES

Angeli, D. (2002). A Lyapunov approach to incremental
stability properties. IEEE Transactions on Automatic
Control, 47(3), 410–421.

Angeli, D. and Sontag, E. (1999). Forward completeness,
unboundedness observability, and their Lyapunov char-
acterizations. Systems and Control Letters, 38(4), 209–
217.

Baker, A. (1990). Transcendental number theory. Cam-
bridge University Press.

Beccuti, A.G., Papafotiou, G., and Morari, M. (2005).
Optimal control of the boost DC-DC converter. In IEEE
Conf. on Decision and Control, 4457–4462.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and
Sa’ar, Y. (2012). Synthesis of reactive (1) designs.
Journal of Computer and System Sciences, 78(3), 911–
938.

Cassandras, C.G. and Lafortune, S. (2009). Introduction
to discrete event systems. Springer Science & Business
Media.

Girard, A. and Pappas, G. (2007). Approximation metrics
for discrete and continuous systems. IEEE Transactions
on Automatic Control, 52(5), 782–798.
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