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ABSTRACT
Timing contracts for embedded controller implementation
specify the constraints on the time instants at which cer-
tain operations are performed such as sampling, actuation,
computation, etc. Several previous works have focused on
stability analysis of embedded control systems under such
timing contracts. In this paper, we consider the schedul-
ing of embedded controllers on a shared computational plat-
form. Given a set of controllers, each of which is subject to a
timing contract, we synthesize a dynamic scheduling policy,
which guarantees that each timing contract is satisfied and
that the shared computational resource is allocated to at
most one embedded controller at any time. The approach is
based on a timed game formulation whose solution provides
a suitable scheduling policy. In the second part of the pa-
per, we consider the problem of synthesizing a set of timing
contracts that guarantee at the same time the schedulability
and the stability of the embedded controllers.

Keywords
Embedded control; Sampled-data systems; Scheduling; Timed
automata; Stability

1. INTRODUCTION
Cyber-physical systems (CPS) consisting of integration of

computing devices with physical processes are to become
ubiquitous in modern societies (autonomous vehicles, smart
buildings, robots, etc.) and will practically impact the life of
citizens in all their aspects (housing, transportation, health,
industry, assistance to the elderly, etc.). Therefore, high-
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confidence tools for the analysis and design of CPS, being
able to cope with the tight interactions between cyber and
physical components are urgently needed.

Design of complex CPS can be tackled by decomposing the
global design problem into smaller sub-problems. This ap-
proach can be formally implemented using contract based de-
sign [32, 8, 7]. For instance, for embedded controller imple-
mentation, [17] proposed the use of timing contracts, which
specify the constraints on the time instants at which cer-
tain operations are performed such as sampling, actuation
or computation. Under such contracts, the control engi-
neers are responsible for designing a control law that is ro-
bust to all possible timing variation specified in the contract
while the software engineers can focus on implementing the
proposed control law so as to satisfy the timing contract.
Several previous works have taken the point of view of con-
trol engineers, by developing techniques for robust stabil-
ity analysis of embedded control systems under such timing
contracts (see e.g. [13, 18, 5, 2]).

In the first part of this paper, we adopt the point of view
of the software engineer who has to implement several con-
trollers, each subject to a timing contract, on a shared com-
putational platform. Given best and worst case execution
times for each control task, we synthesize a dynamic schedul-
ing policy, which guarantees that each timing contract is
satisfied and that the shared computational resource is allo-
cated to at most one controller at any time. Our approach
is based on the use of timed game automata [30, 11] and
we show that the scheduling problem can be formulated
as a timed safety game, which can be solved by the tool
UPPAAL-TIGA [6], and whose solution provides a suitable
scheduling policy.

In the second part of the paper, we address the require-
ment engineering problem, which consists in synthesizing a
set of timing contracts that guarantee at the same time the
schedulability and the stability of the embedded controllers.
We use a re-parametrization of contracts, which provides
some monotonicity property to the problem and allows us
to develop an effective synthesis method based on guided
sampling of the timing contract parameter space.

The paper is organized as follows. The problem setting is
given in Section 2, where we introduce the considered classes
of systems and timing contracts and where we formulate the
stability verification, schedulability verification and timing
contract synthesis problems. Section 3 provides a solution



to the schedulability verification problem based on timed
games. Then, the timing contract synthesis problem is ad-
dressed in Section 4. Section 5 shows an application of our
approach using an illustrative example.

Notations. Let R, R+
0 , R+, R−0 , R−, N, N+ denote the sets

of reals, non-negative reals, positive reals, non-positive reals,
negative reals, non-negative integers and positive integers,
respectively. For I ⊆ R+

0 , let NI = N ∩ I. Given a vector
p ∈ Rn, its i-th element is denoted by pi. Given two vectors
p, p′ ∈ Rn, the inequality p ≤ p′ is interpreted conponent-
wise. For a set S, we denote the set of all subsets of S by
2S .

2. PROBLEM FORMULATION

2.1 Sampled-data systems
In this work, we consider sampled-data systems that take

into account the sequences of sampling and actuation in-
stants (tsk)k∈N and (tak)k∈N:

ẋ(t) = Ax(t) +Bu(t), ∀t ∈ R+
0 (1)

u(t) = Kx(tsk), tak < t ≤ tak+1 (2)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is
the control input, the matrices A ∈ Rn×n, B ∈ Rn×m, K ∈
Rm×n and k ∈ N. In addition, it is assumed that for all
t ∈ [0, ta0 ], u(t) = 0.

We assume that the sequence of sampling and actuation
instants (tsk) and (tak) satisfy a timing contract θ(τ , τ , h, h)
given by

0 ≤ ts0,
tsk ≤ tak ≤ tsk+1, ∀k ∈ N
τk = tak − tsk ∈ [τ , τ ], ∀k ∈ N
hk = tsk+1 − tsk ∈ [h, h], ∀k ∈ N

(3)

where τ ∈ R+
0 , τ ∈ R+

0 , h ∈ R+ and h ∈ R+ provide
bounds on the sampling-to-actuation delays (which includes
time for computation of the control law) and sampling pe-
riods provided that tsk ≤ tak ≤ tsk+1 for all k ∈ N. Note that
we impose h 6= 0 to prevent Zeno behavior. Moreover, these
parameters must belong to the following set so that the time
intervals given in (3) are always non-empty and it is always
possible to choose tsk+1 ≥ tak:

C =
{

(τ , τ , h, h) ∈ R+
0 × R+

0 × R+ × R+ : τ ≤ τ ≤ h, h ≤ h
}
.

2.2 Stability verification
We consider the notion of stability in the following sense:

Definition 1. The system S = (A,B,K) is globally uni-
formly exponentially stable (GUES) under timing contract
θ(τ , τ , h, h) if there exist λ ∈ R+ and C ∈ R+ such that, for
all sequences (tsk)k∈N and (tak)k∈N verifying (3), the solutions
of (1-2) verify

‖x(t)‖ ≤ Ce−λ(t−t
s
0) ‖x(ts0)‖ , ∀t ≥ ts0.

We then define the stability verification problem as fol-
lows:

Problem 1 (Stability verification). Given a sys-
tem S = (A,B,K) and a timing contract θ(τ , τ , h, h) verify
that S is GUES under timing contract θ(τ , τ , h, h).

Several approaches are presented in the literature to solve
instances of Problem 1. A non-exhaustive list is given in
Table 1. From the modeling perspective, the problem can
be tackled using difference inclusions, time-delay systems or
hybrid systems. On the computational side, the approaches
are based on semi-definite programming (Linear Matrix In-
equalities (LMI) or Sum Of Squares (SOS) formulations),
invariant sets or reachability analysis. Let us remark that
approaches [13, 18, 5, 2] appear to be able to address all
instances of Problem 1.

2.3 Scheduling
We consider a collection of N ∈ N+ sampled-data sys-

tems {S1, . . . ,SN} of the form (1-2) where each system Si =

(Ai, Bi,Ki), is subject to a timing contract θ(τ i, τ i, hi, h
i
) of

the form (3), with parameters (τ i, τ i, hi, h
i
) ∈ C, i ∈ N[1,N ].

In addition, we assume that these systems share a sin-
gle processor to compute the value of their control inputs
given by (2). The time required to compute these inputs
is assumed to belong to some known interval [ci, ci], with
0 ≤ ci ≤ ci, where ci and ci denote the best and worst
case execution time to compute the input of systems Si,
i ∈ N[1,N ].

The timing of events in the k-th control cycle of system
Si starts at instant tsik when sampling occurs. Then, sys-
tem Si gains access to the computational resource at in-
stant tbik , at which computation of the control input value
begins. The computational resource is released at instant
teik , at which computation of the control input value ends.
After that, actuation occurs at instant taik . Formally, the se-

quences (tsik )k∈N, (tbik )k∈N, (teik )k∈N, and (taik )k∈N satisfy the
following constraints for all i ∈ N[1,N ]:

0 ≤ tsi0
tsik ≤ t

bi
k ≤ t

ei
k ≤ t

ai
k ≤ t

si
k+1, ∀k ∈ N

cik = teik − t
bi
k ∈ [ci, ci], ∀k ∈ N

τ ik = taik − t
si
k ∈ [τ i, τ i], ∀k ∈ N

hik = tsik+1 − t
si
k ∈ [hi, h

i
], ∀k ∈ N

(4)

In addition, a conflict arises if several systems request ac-
cess to the computational resource at the same time. Let us
define the following property, for i ∈ N[1,N ]:

Com(Si, t) ≡
∨
k∈N

(
t ∈ [tbik , t

ei
k )
)
.

Com(Si, t) is true if and only if the computational resource is
used by system Si at time t. Then, in order to prevent con-
flicting accesses to the computational resource the following
property must hold:

∀t ∈ R+
0 , ∀(i, j) ∈ N2

[1,N ] with i 6= j,

Com(Si, t) ∧ Com(Sj , t) ≡ False. (5)

Remark 1. It is straightforward to verify that for any se-
quences (tsik )k∈N, (tbik )k∈N, (teik )k∈N, and (taik )k∈N satisfying
(4-5), the sequences (tsik )k∈N and (taik )k∈N satisfy the timing

contract θ(τ i, τ i, hi, h
i
).

We aim at synthesizing a dynamic scheduling policy, gen-
erating sequences of timing events satisfying (4-5). The
scheduler has control over the sampling and actuation in-
stants (tsik )k∈N, (taik )k∈N and over the instants (tbik )k∈N when
computation begins. However, the execution time (cik)k∈N



Table 1: Methods that can solve instances of Problem 1 with description of the modeling, computational
approaches, and list of restrictions.

Models Algorithm Restrictions
[13] difference inclusion LMI −
[18] LMI −
[24] LMI τ = τ = 0
[25] LMI τ = τ = 0
[33] SOS τ = τ = 0
[20] Invariant sets τ = τ = 0
[1] Reachability analysis τ = τ = 0
[2] Reachability analysis −
[28] time-delay systems LMI h = 0

[22] LMI h = h, τ = 0
[29] LMI τ = τ = 0
[21] LMI h = τ = τ = 0
[5] hybrid systems SOS −
[23] LMI τ = 0, h = 0

and thus the instants when computation ends (teik )k∈N is de-
termined by the environment and are thus uncontrollable
from the point of view of the scheduler. Then, we consider
the following schedulability property:

Definition 2. The set of control tasks T =
{(c1, c1), . . . , (cN , cN )} is schedulable under timing contracts

Θ = {θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}, if for all

sequences (cik)k∈N with cik ∈ [ci, ci], for all k ∈ N and

i ∈ N[1,N ], there exist sequences (tsik )k∈N, (tbik )k∈N, (teik )k∈N,
and (taik )k∈N satisfying (4-5), for all i ∈ N[1,N ].

Then, we define the scheduling problem as follows:

Problem 2 (Schedulability verification). Given
a set of control tasks T = {(c1, c1), . . . , (cN , cN )} and timing

contracts Θ = {θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)},

verify that T is schedulable under timing contracts Θ.

In Section 3, we will provide a solution to the schedu-
lability verification problem. In addition, our approach will
allow us to synthesize a dynamic scheduling policy for gener-
ating the sequences (tsik )k∈N, (tbik )k∈N, (teik )k∈N, and (taik )k∈N
satisfying (4-5), for all i ∈ N[1,N ].

Related work. In real-time scheduling of multiple tasks on
a single processor, the objective is to obtain a calculation
model related to concurrent execution of a given number of
tasks [12, 14, 10]. In case some of the tasks are control tasks,
scheduling and controller co-design problems are studied
for periodic [4, 31], event-triggered [34], and self-triggered
[15, 26] real-time implementations of the controller. Unlike
these approaches, we decouple the controller stability prob-
lem and the scheduling design, using timing contracts, in
order to synthesize conflict-free schedules using timed game
automata. In fact, scheduling with timed automata are ex-
amined in literature [16, 19, 26] where in [19] an application
on a steel plant is studied.

The closest approach to our work is that depicted in [26]
were the scheduling problem is reformulated in terms of
timed game automata [11]. Although, therein the approach
has the advantage of employing event-triggered controllers
and eventually improves the resource utilization over the

network, however it can only solve instances of our problem
where tsik = tbik , teik = taik and τ = τ = ci = ci = c ∈ R+ for
all k ∈ N and i ∈ N[1,N ].

2.4 Timing contract synthesis
In Section 4, we will consider the problem of synthesizing

a set of timing contracts that guarantee at the same time
the stability of the systems and the schedulability of control
tasks.

Given the bounds on the parameters 0 ≤ τ imin ≤ τ imax,
0 < himin ≤ himax, with τ imin ≤ himin, τ imax ≤ himax, let

Di = [τ imin, τ
i
max]2 × [himin, h

i
max]2, i ∈ N[1,N ], (6)

with N ∈ N+, the timing contract synthesis problem is for-
malized as follows:

Problem 3 (Timing contract synthesis). Given a
collection of systems {S1, . . . ,SN}, where Si = (Ai, Bi,Ki)
with Ai ∈ Rni×ni , Bi ∈ Rni×mi , and Ki ∈ Rmi×ni , i ∈
N[1,N ], a set of control tasks T = {(c1, c1), . . . , (cN , cN )}
with 0 ≤ ci ≤ ci, i ∈ N[1,N ], and parameter sets Di, i ∈
N[1,N ], synthesize a set P∗ ⊆ (CN ) ∩ (D1 × · · · × DN ) such

that for all (τ1, τ1, h1, h
1
, . . . , τN , τN , hN , h

N
) ∈ P∗:

1. System Si = (Ai, Bi,Ki) is GUES under timing con-
tract θ(τ i, τ i, hi, hi), for all i ∈ N[1,N ].

2. The set of control tasks T = {(c1, c1), . . . , (cN , cN )}
is schedulable under timing contracts Θ =

{θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}.

3. SCHEDULING
In this section, we provide a solution to Problem 2. Our

approach is based on timed automata [3] and timed game
automata [30], which we briefly introduce in the following.

3.1 Timed and timed game automata
Let C be a finite set of real-valued variables called clocks.

We denote by B(C) the set of conjunctions of clock con-
straints of the form c ∼ α where α ∈ R+

0 , c ∈ C and



∼∈ {<,≤,=, >,≥}. We define a timed automaton (TA) and
a timed game automaton (TGA) as in [11]:

Definition 3. A timed automaton is a sextuple
(L, l0, Act, C,E, I) where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Act is a set of actions;

• C is a finite set of real-valued clocks;

• E ⊆ L× B(C)×Act× 2C × L is the set of edges;

• Inv : L → B(C) is a function that assigns invariants
to locations.

Definition 4. A timed game automaton is a septu-
ple (L, l0, Actc, Actu, C,E, I) such that (L, l0, Actc ∪
Actu, C,E, I) is a timed automaton and Actc ∩ Actu = ∅,
where Actc defines a set of controllable actions and Actu
defines a set of uncontrollable actions.

Formal semantics of TA and TGA are given in [11]. Infor-
mally, semantics of a TA is described by a transition system
whose state consists of the current location and value of the
clocks. Then, the execution of a TA can be described by
two types of transitions defined as follows:

• time progress: the current location l ∈ L is main-
tained and the value of the clocks grow at unitary rate;
these transitions are enabled as long as the value of the
clocks satisfies Inv(l).

• discrete transition: an instantaneous transition from
the current location l ∈ L to a new location l′ ∈ L
labelled by an action a ∈ Act is triggered; these transi-
tions are enabled if there is an edge (l, G, a, C′, l′) ∈ E,
such that the value of the clocks satisfies G; in that
case, the value of the clocks belonging to C′ resets to
zero.

The semantics of TGA is similar to that of TA with the
specificity that discrete transitions labelled by a controllable
action (i.e. a ∈ Actc) are triggered by a controller, while
discrete transitions labelled by an uncontrollable action (i.e.
a ∈ Actu) are triggered by the environment/opponent.

In the following, we consider safety games (see e.g. [11])
defined by a set of unsafe locations Lu ⊆ L. A solution to the
safety game is given by a winning strategy for the controller
such that under any behavior of the environment/opponent,
the set of unsafe locations is avoided by all executions of the
TGA.

3.2 Scheduling using TGA
In this section, we propose a solution to Problem 2 based

on a reformulation using timed game automata.

Definition 5. Let i ∈ N[1,N ], the timed game automa-

ton generated by control task (ci, ci) and timing contract

θ(τ i, τ i, hi, h
i
) is displayed in Figure 1 and is formally de-

fined by TGAi = (Li, li0, Act
i
c, Act

i
u, C

i, Ei, Invi) where

• Li = {Initi, P resami, P recompi, Compi, P reaci};

• li0 = Initi;

• Actic = {samplei, begini, actuatei};

• Actiu = {endi, ini};

• Ci = {ci, ki};

• Ei = {(Initi, ci ≥ 0, ini, {ci}, P resami),
(Presami, ci ≥ hi, samplei, {ci}, P recompi),
(Precompi, ci ≥ 0, begini, {ki}, Compi),
(Compi, ki ≥ ci, endi, ∅, P reaci),
(Preaci, ci ≥ τ i, actuatei, ∅, P resami)};

• Invi(Initi) = {ci ≥ 0},
Invi(Presami) = {ci ≤ hi},
Invi(Precompi) = {ci ≤ τ i − ci},
Invi(Compi) = {ki ≤ ci},
Invi(Preaci) = {ci ≤ τ i}.

Let the sequences (tsik ), (taik ), (tbik ) and (teik ) be given by
the instants of the discrete transitions labelled by actions
samplei, actuatei, begini and endi, respectively. It is easy
to see that these sequences satisfy the constraints given by
(4). Conversely, one can check that all sequences satisfying
(4) can be generated by executions of TGAi.

Moreover, let us remark that the controllable actions are
samplei, actuatei, begini which means that the controller
determines the instants when sampling and actuation occur
and when computation begins. However, endi is uncontrol-
lable, which means that the execution time, and thus the
instant at which computation ends is determined by the en-
vironment. This is consistent with the problem formulation
in Section 2.

Finally, the computational resource is used by system Si if
the current location of TGAi is Compi. To take into account
the constraint given by (5), stating that two systems can-
not access the computational resource at the same time, we
need to define the composition of the timed game automata
defined above:

Initi
Presami

Precompi

Compi

Preaci

ci ≤ h
i

ci ≤ τ i − ci

ki ≤ ci

ci ≤ τ i

ci := 0

ci ≥ τ i ci ≥ hi

ki ≥ ci

ci := 0

ki := 0

sampleiactuatei

beginiendi

ini

ci ≥ 0

ci ≥ 0

ci ≥ 0

Figure 1: TGAi where plain edges correspond to con-
trollable actions while dashed edges correspond to
uncontrollable actions.



Definition 6. The timed game automaton generated by
the set of control tasks T = {(c1, c1), . . . , (cN , cN )} and tim-

ing contracts Θ = {θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}

is given by TGA = (L, l0, Actc, Actu, C,E, Inv) where

• L = L1 × · · · × LN , thus l = (l1, . . . , lN ) ∈ L denotes
the location of TGA;

• l0 = (Init1, . . . , InitN );

• Actc =
⋃N
i=1Act

i
c;

• Actu =
⋃N
i=1Act

i
u;

• C =
⋃N
i=1 C

i;

• E = {(lm, λ, act, C′, ln) ∈ L×B(C)×(Actc∪Actu)×L :
∃i ∈ N[1,N ], l

j
m = ljn ∀j 6= i and (lim, λ, act, C

′, lin) ∈
Ei};

• Inv(l) =
∧N
i=1 Inv

i(li), i ∈ N[1,N ].

TGA describes the parallel evolution of the
TGA1, . . . ,TGAN . Then, the set of locations corre-
sponding to conflicting accesses to the computational
resources is Lu ⊆ L defined by:

Lu = {l ∈ L : ∃(i, j) ∈ N2
[1,N ], i 6= j,

(li = Compi) ∧ (lj = Compj)}.
(7)

From the previous discussions, it follows that T is schedu-
lable under timing contracts Θ if there is a winning strategy
to the safety game defined by the timed game automaton
TGA and the set of unsafe locations Lu. From the practical
point of view, the safety game can be solved using the tool
UPPAAL-TIGA [6]. The tool synthesizes a winning strategy
when it exists, which provides us with a dynamic schedul-
ing policy for generating the sequences (tsik )k∈N, (tbik )k∈N,
(teik )k∈N, and (taik )k∈N satisfying (4-5), for all i ∈ N[1,N ].

4. TIMING CONTRACT SYNTHESIS
In this section, we propose a solution to Problem 3. Given

a collection of systems {S1, . . . ,SN}, a set of control tasks
T = {(c1, c1), . . . , (cN , cN )} with 0 ≤ ci ≤ ci, i ∈ N[1,N ],
and parameter sets D1, . . . ,DN , we use a previous result [2]
and a monotonicity property to design an algorithm that
synthesizes a set of timing contracts ensuring stability of
each system Si and schedulability of T .

4.1 Guarantee on stability
For i ∈ N[1,N ], we consider each of the systems Si =

(Ai, Bi,Ki) and the set Di given by (9), i ∈ N[1,N ]. We
use Algorithm 2 in [2] to synthesize a set C∗i ⊆ C ∩ Di such

that for all (τ i, τ i, hi, h
i
) ∈ C∗i , Si is GUES under timing

contract θ(τ i, τ i, hi, hi).
Then, defining the set Pst = C∗1 × · · · × C∗N , it fol-

lows that for all (τ1, τ1, h1, h
1
, . . . , τN , τN , hN , h

N
) ∈ Pst,

system Si = (Ai, Bi,Ki) is GUES under timing contract
θ(τ i, τ i, hi, hi), for all i ∈ N[1,N ].

4.2 Guarantee on schedulability
In this section, given the set Pst, defined in the previous

section, we solve Problem 3 by synthesizing a set P∗ ⊆ Pst
such that for all (τ1, τ1, h1, h

1
, . . . , τN , τN , hN , h

N
) ∈ P∗,

the set of control tasks T is schedulable under timing con-

tracts Θ = {θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}.

The timing contract parameters are given by the vector

p = (τ1, τ1, h1, h
1
, . . . , τN , τN , hN , h

N
). We then define the

following Boolean function for p ∈ CN ∩ (D1 × · · · × DN ):

Sched(p) ≡ T is schedulable under timing contracts Θ.

In order to solve Problem 3 we need to compute (a subset
of) the set P0 defined by

P0 = {p ∈ CN ∩ (D1 × · · · × DN ) : Sched(p)}.

Re-parametrization
We define a new parameter p′ ∈ D′1 × · · · × D′N with

D′i = [τ imin, τ
i
max]× [−τ imax,−τ imin]× [himin, h

i
max]× (8)

[−himax,−himin], i ∈ N[1,N ],

such that p′ = (β1
1 , β

1
2 , β

1
3 , β

1
4 , . . . , β

N
1 , β

N
2 , β

N
3 , β

N
4 ). We fur-

ther define the map f : (D′1 × · · · ×D′N )→ (D1 × · · · ×DN )

such that f(p′) = p = (τ1, τ1, h1, h
1
, . . . , τN , τN , hN , h

N
),

where for all i ∈ N[1,N ]

τ i = βi1, τ
i = min(−βi2,−βi4), hi = βi3, h

i
= −βi4.

We associate to the parameter p′ a constraint set (C′)N
where

C′ =

{
β ∈ R+

0 × R−0 × R+ × R− :
β1 ≤ min(−β2,−β4)
β3 ≤ −β4

}
.

Last we define the set P ′o by :

P ′o =
{
p′ ∈ D′1 × · · · × D′N : ((p′ ∈ (C′)N ) ∧ Sched(f(p′)))

}
.

One can check that the following relation holds:

P ′o = f(Po). (9)

We can then show that P ′o satisfies the following monotonic-
ity property:

Proposition 1. For all p′1, p
′
2 ∈ D′1 × · · · × D′N , the fol-

lowing implications hold:(
(p′2 ≤ p′1) ∧ (p′1 ∈ P ′o)

)
=⇒ p′2 ∈ P ′o.(

(p′2 ≤ p′1) ∧ (p′2 /∈ P ′o)
)

=⇒ p′1 /∈ P ′o.

Proof. Let p′1 = (β1
1 , β

1
2 , β

1
3 , β

1
4 , . . . , β

N
1 , β

N
2 , β

N
3 , β

N
4 )

and p′2 = (α1
1, α

1
2, α

1
3, α

1
4, . . . , α

N
1 , α

N
2 , α

N
3 , α

N
4 ). We assume

p′2 ≤ p′1 and p′1 ∈ P ′o. Then p′1 ∈ (C′)N which im-
plies αi1 ≤ βi1 ≤ −βi2 ≤ αi2, αi1 ≤ βi1 ≤ −βi4 ≤ −αi4,
and αi3 ≤ βi3 ≤ −βi4 ≤ −αi4 for all i ∈ N[1,N ]. Thus

p′2 ∈ (C′)N . We also have Sched(f(p′1)). In this case,

p1 = f(p′1) = (τ11, τ
1
1, h

1
1, h

1
1, . . . , τ

N
1 , τ

N
1 , h

N
1 , h

N
1 ) and p2 =

f(p′2) = (τ12, τ
1
2, h

1
2, h

1
2, . . . , τ

N
2 , τ

N
2 , h

N
2 , h

N
2 ) satisfy p1 ∈ CN ,

p2 ∈ CN and for all i ∈ N[1,N ]

τ i2 ≤ τ
i
1, τ

i
2 ≥ τ i1, hi2 ≤ h

i
1, h

i
2 ≥ h

i
1. (10)

It is easy to check that if T is schedulable under timing

contracts Θ1 = {θ(τ11, τ
1
1, h

1
1, h

1
1), . . . , θ(τN1 , τ

N
1 , h

N
1 , h

N
1 )}

then T is schedulable under timing contracts Θ2 =



{θ(τ12, τ
1
2, h

1
2, h

1
2), . . . , θ(τN2 , τ

N
2 , h

N
2 , h

N
2 )} for all p2 ∈ C sat-

isfying (10). Thus, Sched(f(p′2)) holds and p′2 ∈ P ′o.
This proves the first implication. For the second implica-

tion, it is sufficient to check that(
(p′2 ≤ p′1) ∧ (p′1 ∈ P ′o)

)
=⇒ p′2 ∈ P ′o

≡ ¬(p′2 ≤ p′1) ∨ (p′1 /∈ P ′o) ∨ (p′2 ∈ P ′o)
≡

(
(p′2 ≤ p′1) ∧ (p′2 /∈ P ′o)

)
=⇒ p′1 /∈ P ′o.

Now using the Property 1 and the set Pst obtained in Sec-
tion 4.1 we can sample the parameter space to solve Prob-
lem 3.

Theorem 1. Let p1, . . . , pM1 ∈ P ′o, and p1, . . . , pM2 ∈
D′1 × · · · × D′N \ P ′o and let

P ′ =

M1⋃
j=1

{p′ ∈ D′1 × · · · × D′N : pj ≥ p′},

P ′ = (D′1 × · · · × D′N ) \
M2⋃
j=1

{p′ ∈ D′1 × · · · × D′N : p′ ≥ pj}.

Then, P ′ ⊆ P ′o ⊆ P
′
. Moreover, P∗ = f (P ′) ∩ Pst is a

solution to Problem 3

Proof. P ′ ⊆ P ′o ⊆ P
′

is a direct consequence of Propo-
sition 1. Then, it follows that P∗ is a solution to Prob-
lem 3.

4.3 Algorithm for timing contract synthesis
Theorem 1 shows that it is possible to compute under and

over-approximations of the set P ′o by sampling the parame-
ter space D′1 × · · · × D′N . In this section, given the set Pst
from Section 4.1, we use this property to design a synthe-
sis algorithm. Similar algorithms have been used in [27, 35]
for computing an approximation of the Pareto front of a
monotone multi-criteria optimization problem. Indeed, this
latter problem can be tackled by computing an under and
over-approximation of a set satisfying a monotonicity prop-
erty similar to that of Proposition 1.

Algorithm 1. Timing contract synthesis

function TC Synth(T ,{D1, . . . ,DN},Pst)
input: T , Di = [τ imin, τ

i
max]2 × [himin, h

i
max]2, i ∈ N[1,N ],

Pst ⊆ CN ∩ (D1 × · · · × DN ),
output: P∗ ⊆ CN ∩ (D1 × · · · × DN )
parameter: ε ∈ R+

1: if p′max ∈ P ′o then
2: return (D1 × · · · × DN ) ∩ Pst;
3: else P ′ := (D′1 × · · · × D′N ) \ {p′max};
4: end if
5: if p′min /∈ P ′o then
6: return ∅;
7: else P ′ := {p′min};
8: end if

9: while d(P ′,P ′) > ε do . main loop

10: Pick p′ ∈ P ′ \ P ′; . select next sample
11: if p′ ∈ P ′o then
12: P ′ := P ′ ∪ {p′∗ ∈ (D′1 × · · · × D′N ) : p′∗ ≤ p′};
13: else P ′ := P ′ \ {p′∗ ∈ (D′1 × · · · × D′N ) : p′ ≤ p′∗};
14: end if

15: end while
16: return f (P ′) ∩ Pst;

Algorithm 1 computes an under-approximation P ′ and an

over-approximation P ′ of the set P ′o by sampling iteratively
the parameter space D′1 × · · · × D′N .

Lines 1 to 8 initialize these approximations by testing both
the lower bound p′min = (τ1min,−τ1max, h1

min,−h1
max, . . . ,

τNmin,−τNmax, hNmin,−hNmax) and the upper bound p′max =
(τ1max,−τ1min, h1

max,−h1
min, . . . , τ

N
max,−τNmin, hNmax,−hNmin)

of the set D′1 × · · · ×D′N . If p′max ∈ P ′o, then by Theorem 1,
f(D′1 × · · · × D′N ) ∩ Pst = (D1 × · · · × DN ) ∩ Pst is a
solution to Problem 3. Note that in that case, all timing-

contract parameters, (τ11, τ
1
1, h

1
1, h

1
1, . . . , τ

N
1 , τ

N
1 , h

N
1 , h

N
1 ) ∈

D1×· · ·×DN guarantee the schedulability of T under timing

contracts Θ = {θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}.

If pmax /∈ P ′o, then (D′1 × · · · × D′N ) \ {p′max} is an
over-approximation of P ′o. Similarly, if p′min /∈ P ′o, then
by Theorem 1, P ′o = ∅. Note that in that case, no
timing-contracts can guarantee the schedulability of T . If
p′min ∈ P ′o, then {p′min} is an under-approximation of P ′o.

Lines 9 to 14 describe the main loop of the timing con-
tract synthesis algorithm. At any time of the execution,

P ′ ⊆ P ′o ⊆ P
′

holds. We pick a sample p′ ∈ P ′ \ P ′
which is the unexplored parameter region lying in the over-
approximation of P ′o but not in its under-approximation.
If p′ ∈ P ′o (or if p′ /∈ P ′o), then we update the under-

approximation P ′ (or the over-approximation P ′) according
to Theorem 1. The algorithm stops when the Hausdorff dis-

tance between the P ′ and P ′ becomes smaller than ε. One

crucial issue is that the choice of the sample p′ ∈ P ′ \ P ′,
at line 10, is crucial for the efficiency of the algorithm. In
our implementation of the algorithm, we use the selection
criteria proposed in [27] which consists in choosing the sam-
ple that will produce the fastest decrease of the Hausdorff

distance d(P ′,P ′). In [35] an alternative selection criteria
based on multiscale grid exploration was proposed.

Finally, it is important to note that Algorithm 1 needs
testing if the samples p′ ∈ P ′o, which require checking the
condition Sched(f(p′)). In our implementation, this is done
using the method proposed in Section 3, which assures us
that the set f(P ′) tends to P0 as ε → 0, where P0 is

the set of all solutions (τ1, τ1, h1, h
1
, . . . , τN , τN , hN , h

N
)

such that T is schedulable under timing contracts Θ =

{θ(τ1, τ1, h1, h
1
), . . . , θ(τN , τN , hN , h

N
)}.

5. ILLUSTRATIVE EXAMPLE
In this section, we verify the stability and the schedulabil-

ity of two systems sharing a common computational resource
under given timing contracts. Then, we show an application
of the timing contract synthesis algorithm.

We implemented the scheduling approach presented in
Section 3 in UPPAAL-TIGA [6] and Algorithm 1 in Matlab.
All reported experiments are realized on a desktop with i7
4790 processor of frequency 3.6 GHz and a 8 GB RAM.

We consider two systems S1 = (A1, B1,K1) and S2 =
(A2, B2,K2), taken from [9], given by the following matrices:

A1 =

(
0 1
0 −0.1

)
, B1 =

(
0

0.1

)
, K1 =

(
−3.75 −11.5

)
.

(11)



A2 =

(
0 1
−2 0.1

)
, B2 =

(
0
1

)
, K2 =

(
1 0

)
. (12)

Furthermore, we set the best and worst case execution times
for each task as c1 = 0.12, c1 = 0.35, c2 = 0.04, and c2 =
0.12.

5.1 Stability verification
Using Algorithm 1 in [2] we could verify that sys-

tems S1 and S2 are GUES under timing contracts
θ(0.1, 0.35, 0.3, 0.85) and θ(0.2, 0.6, 0.8, 1.15) respectively.
The computation times required for stability verification are
1.96 seconds and 1.5 seconds, respectively.

5.2 Scheduling
Now, we consider the set of control tasks T =
{(c1, c1), (c2, c2)} and the same timing contracts Θ =
{θ(0.1, 0.35, 0.3, 0.85), θ(0.2, 0.6, 0.8, 1.15)} as in the previ-
ous section.

In order to solve the scheduling problem, we associate
to T the timed game automaton TGA as given in Defini-
tion 6. Following the approach in Section 3, we solve the
safety game on TGA to find a strategy (if it exists) for
the triggering of controllable actions that occur at (tsik )k∈N,

(tbik )k∈N, and (taik )k∈N, with i ∈ N[1,2], guaranteeing that the

set of bad states Lu of the system, given by (13), is never
reached regardless of when uncontrollable actions occurring
at (teik )k∈N, i ∈ N[1,2], are exactly taken.

Using UPPAAL-TIGA, we successfully prove that T is
schedulable under timing contracts Θ, and thus a scheduling
policy was found. The computation time required to solve
the game was 1.37 seconds.

Figure 2 shows the timing of events resulting from
this scheduling policy. The first and second plots
show that the timing contracts θ(0.1, 0.35, 0.3, 0.85) and
θ(0.2, 0.6, 0.8, 1.15) are respected for both systems S1 and
S2 respectively. The third plot shows that only one of the
two systems gains access to the shared processor at a time
since it appear clearly that

for all t ∈ R+
0 ,Com(S1, t) ∧ Com(S2, t) ≡ False.

One can notice that in the third and eighth control cycles
of S1, the beginning of the computation has to be delayed
until the computational resource is released by S2.

Using this scheduling policy, Figure 3 shows results of
simulating S1 and S2, when they share a single processor
to compute the value of their control inputs, for the initial
states x10 = ( 2

3 ) and x20 = ( 2
3 ) with ts10 = 0.4 and ts20 = 0.9.

As shown, trajectories of both systems converge to zero and
therefore the scheduling policy in this case guarantees the
exponential stability of each system.

5.3 Timing contract synthesis
We now consider the timing contract synthesis problem

for systems S1 and S2 and the set of control tasks T =
{(c1, c1), (c2, c2)}. We fix τ1 = 0.1, h1 = 0.3, τ2 = 0.2, and
h2 = 0.8 and consider the following bounds on parameters
D1 = [0.1, 0.1]× [0.1, 0.76]× [0.3, 0.3]× [0.3, 1.72] and D2 =
[0.2, 0.2]× [0.2, 1.16]× [0.8, 0.8]× [0.8, 2.02] .

Using Algorithm 2 in [2], we synthesize the set
Pst = C∗1 × C∗2 ⊆ C2 ∩ (D1 × D2) such that for all

(τ1, τ1, h1, h
1
, τ2, τ2, h2, h

2
) ∈ Pst, system Si = (Ai, Bi,Ki)

is GUES under timing contract θ(τ i, τ i, hi, hi), for all i ∈
N[1,2]. The sets C∗1 and C∗2 , in the (τ1, h

1
) plane and (τ2, h

2
)

plane respectively, are shown by Figure 4.
Then, we search for a set P∗ ⊆ Pst such that for

all (τ1, τ1, h1, h
1
, τ2, τ2, h2, h

2
) ∈ P∗, the set of con-

trol tasks T is schedulable under timing contracts Θ =

{θ(τ1, τ1, h1, h
1
), θ(τ2, τ2, h2, h

2
)}. We set the parameter

ε = 0.04, and apply Algorithm 1 to compute the set P∗.
The algorithm tested 944 parameter samples and the com-
putation time was 43.4 minutes. A section of the sets f(P ′)
and P∗ in the (0.1, τ1, 0.3, h

1
, 0.6, 0.6, 1.15, 1.15) domain is

shown in Figure 5.

6. CONCLUSION
In this work, we proposed useful tools for contract-based

design of embedded control systems under the form of a
scheduling approach and an algorithm for timing contract
synthesis. These tools can be used by control and software
engineers to derive requirements that must be met by the
real-time implementation of a control law. The validity of
our approach has been shown on examples. As future work,
it would be interesting to handle the problem of controller
synthesis given a timing contract, and to co-synthesize the
controller and the timing contracts guaranteeing the schedu-
lability of the latter and the stability of each of the systems.
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