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We discuss a possible link between the recently observed macroscopic ordering of ultracold dipolar excitons
(MOES) and the phenomenon of supersolidity. In the dilute limit we predict a stable supersolid state for a
quasi-one-dimensional system of bosonic dipoles characterized by two- and three-body contact repulsion. We
phenomenologically extend our theory to the strongly-correlated regime and find a critical value of the contact
interaction parameter at which the supersolid exhibits a quantum phase transition to a fragmented state. The
wavelength of the fragmented-condensate solid is defined by the balance between the quantum pressure and
the entropy due to fluctuations of the relative phases between the fragments. Our model appears to be in good
agreement with the relevant experimental data, including the very recent results on commensurability effect and
wavelength of the MOES.

I. INTRODUCTION

Quest for supersolids (“coherent crystals”) in Bose-Einstein
condensed systems is a subject with long history dating back
to the general argument by Gross [1] in 1957 and the 1971
theoretical proposal by Kirzhnits and Nepomnyashchii [2].
Provided that the effective two-body interaction between the
particles is designed in such a way, that it has sufficiently large
negative Fourier components in the vicinity of some finite mo-
mentum transfer k0, the ground state of the system can exhibit
crystalline order. Particular interest represent long-wavelength
structures, with unit cells containing macroscopically large
amount of particles. Despite numerous theoretical proposals
[3–17], no convincing evidence of existence of such structures
in nature has been reported.

Following significant advances in creation of ultracold
polar molecules [18], a possibility of a supersolid with
dipolar gases tightly confined to two dimensions (2D) and
having dipole moments oriented perpendicular to the plane of
their translational motion has been theoretically considered
[7,13]. These studies were triggered by prediction of the
heliumlike roton-maxon instability [19] and are now focused
on the properties of possible quantum phases and transitions
between them. A model of a stable supersolid of dipolar
bosons has been proposed in the dilute limit at absolute zero
temperature [17]. The T = 0 requirement is indispensable
in reduced dimensionality to guarantee the extension of the
phase coherence over multiple periods of the structure. Thus
conceived state of matter combines the crystalline order with
the properties of a superfluid: It is commensurate, but its period
can be tuned by varying the density or the velocity of the
system.

Recently, quantum degenerate gases of dipolar excitons
have been realized in semiconductor quantum wells [20].
Large binding energy of 2D excitons makes it possible to
create dense and strongly-correlated ensembles [21], whereas
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the small effective mass raises the ultracold limit temperatures
to the range of a few degrees Kelvin. Powerful methods of
semiconductor optical spectroscopy can be applied to excitonic
gases in order to study their properties [22]. For instance,
photoluminescense (PL) measurements provide access to
the exciton density [23], spin [24] and energy distribution
[25]. Shift interferometry of the exciton PL offers a unique
possibility for systematic investigation of coherence properties
of a gas without perturbing its (quasi)equilibrium configuration
(this is in contrast with time-of-flight [26], Bragg spectroscopy
[27], and “momentum focusing” [28] techniques employed for
atomic systems).

One of the most intriguing features observed in the exper-
iments on ultracold excitons is the macroscopically ordered
exciton state (MOES) [29]. Below some temperature (up to
4 K) the external ring in the PL pattern of indirect excitons frag-
ments into a chain of regularly spaced aggregates (“beads”)
having macroscopic sizes. Local exciton energy follows the
density distribution, so that the aggregates are characterized
by strong repulsive interaction [30]. The periodical density
modulation is accompanied by a buildup of the off-diagonal
long range order (ODLRO) at the edges of each bead. The
coherence of the PL collected from the cores of the beads
remains partially suppressed even at the lowest temperatures
achieved in the experiment. The coherence length at the edges
is comparable with the size of one bead and much less than
the circumference of the ring [31]. Along with the emergence
of extended coherence and spatial periodicity, the dependence
of the exciton energy on temperature changes derivative [30].
The corresponding critical point Tc is remarkably robust to
disorder: independent segments of the ring isolated by defects
(current filaments) and having strongly different lengths and
widths fragment at the same temperature.

Several theoretical models were proposed to describe
the MOES [32–37]. An explanation of the aforementioned
experimental facts starting from a single principle was given
in a series of papers [38–40]. The microscopic mechanism
underlying the phenomenon as proposed in this latter model
is reminiscent of the roton instability in dipolar superfluids.
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It is clear, however, that the MOES cannot be regarded as a
conventional supersolid at least because it has a very different
coherence regime. An attempt to put the physics of the exciton
density wave in the context of supersolidity in dipolar gases
is the subject of this paper. Our main conclusion is that the
MOES may be described as a fragmented-condensate solid:
a supersolid where the global coherence is destroyed by the
quantum fluctuations of the relative phases between the adja-
cent lattice sites. This picture proves to be consistent not only
with the earlier experimental results mentioned above, but is
further supported by the recently observed commensurability
of the MOES and dependence of its wavelength on the exciton
density [41].

The paper is organized as follows. In Sec. II we present
our theory. We introduce a minimal model describing a quasi-
one-dimensional gas of dipolar excitons (which corresponds
to a segment of the ring in the experiments). We also point
out a possible realization of such a model with ultracold polar
molecules. By using a mean field approach we discuss emer-
gence of supersolidity in the system for two different regimes:
a one-dimensional mean field and a 2D Thomas-Fermi cigar.
We suggest that a stable dipolar supersolid can be described
as a chain of self-trapped Bose-Einstein condensates. For
sufficiently strong repulsive interaction between the particles
the chain undergoes a quantum phase transition to a number-
squeezed fragmented configuration, akin to the fragmented
BEC in an optical lattice [42]. We estimate the critical value
of the relevant parameter and obtain an expression for the
wavelength λ of the fragmented-condensate solid. All results
of the theory have transparent analytical form.

In Sec. III we compare our results with the experiments.
Previously, we have already demonstrated consistency of our
formula for the MOES wavelength in the regime where the
ring is allowed to expand when changing the laser excitation
power (fixed gate voltage) [38]. Here we use the same equation
to fit the recently observed dependence of λ on the gate voltage
in the regime where the ring radius is maintained fixed. In this
latter case λ was found to increase when increasing the exciton
density (the gate voltage) [41]. This is in contrast to what
would be expected for conventional supersolids. Our formula
captures this experimental result as well. We conclude Sec. III
by explaining the observed commensurability of the exciton
density wave.

In Sec. IV we list main results and conclusions. Being
an effective field theory, our spinless model can be obtained
from more realistic multicomponent systems by tracing out the
corresponding degree of freedom. In some cases, this may offer
one a possibility to independently tune the short- and long-
range parts of the effective interaction. We point out important
examples of such systems in excitons and polar molecules.
The underlying principle is a 2D analogy of the Feshbach
resonance in atomic gases [43], and it should allow one to test
the predictions of the theory in a controllable fashion.

II. THEORETICAL MODEL

We consider a spinless gas of purely 2D bosonic particles
having dipole moments oriented perpendicularly to the plane
of their center-of-mass translational motion (xy plane). In
order to model a segment of the ring we introduce harmonic

confinement in one direction (y axis). The Hamiltonian of the
system reads

Ĥ =
∫

�̂†(ρ)

(
− h̄2

2m
� + mω2

yy
2

2

)
�̂(ρ)dρ

+ 1

2

∫
�̂†(ρ)�̂†(ρ ′)V (ρ − ρ ′)�̂(ρ ′)�̂(ρ)dρdρ ′, (1)

where ρ = (x,y), m is the particle mass, and ωy is the
confinement oscillator frequency. For our purposes it will be
convenient to recast the particle field operator in the form

�̂(x,y) = ψ̂(x)
ϕ(y)√

ay

, (2)

and to expand its second-quantized part ψ̂(x) in terms of the
plane waves

ψ̂(x) = 1√
L

∑
kx

ĉkx
eikxx, (3)

with kx = {0,±2π/L,±4π/L,...}. Here ay = (h̄/mωy)1/2 and
L is the length of the segment. At distances much larger than
the transverse size of the system the two-body interaction
potential V (ρ − ρ ′) behaves as

V (ρ − ρ ′) ≈ V∗(x − x ′) = h̄2

m

x∗
|x − x ′|3 , (4)

where x∗ = me2d2/4πh̄2εε0 is the characteristic dipole-dipole
distance. In what follows we shall assume ay � x∗.

At zero temperature one can expect a range of parameters
(to be specified below) in which the system can be described by
the uniform (along x) order parameter �(y) = √

n1ϕ(y)/
√

ay

with n1 = N/L being the 1D density. In the lowest-order
approximation

V (ρ − ρ ′) = V0δ(ρ − ρ ′), (5)

where V0 is the q = 0 value of the momentum-dependent
pseudopotential [44], and the function ϕ(ỹ) can be found by
solving the Gross-Pitaevskii equation(

− ∂2

∂ỹ2
+ ỹ2

2
+ mV0

h̄2 n1ayϕ
2

)
ϕ = μ

h̄ωy

ϕ, (6)

where ỹ = y/ay . The chemical potential μ is defined by the
normalization condition∫

ϕ2(ỹ)dỹ = 1. (7)

The dimensionless form (6) allows one to identify two
important regimes of the mean field approximation. The first
one, hereafter called the 1D mean field, corresponds to the
range of densities where

mV0

h̄2 � n1ay � h̄2

mV0
, (8)

and interactions are weak (mV0/h̄
2 < 1). In this case the

solution of (6) approaches the Gaussian ground state of the
transverse harmonic trap. The chemical potential is given by

μ = h̄ωy

2
+ V 1D

0 n1, (9)
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where we have introduced the 1D coupling constant

V 1D
0 = V0/

√
2πay. (10)

Strictly speaking, there is no true condensate in 1D even at zero
temperature. The one-body density matrix behaves as [45]

n(1)(s) ∝ (ξ/s)ν (11)

at large distances s = |x − x ′|, with ξ = h̄/

√
2mV 1D

0 n1 being
the healing length and

ν = mc1/2πh̄n1. (12)

Thus, the ODLRO does not extend to infinity as in higher
dimensions. However, in the limit (8) one has ν � 1 [this can
be easily seen by substituting Eq. (23) for c1 into (12)], so that
the order extends up to macroscopic distances much larger
than ξ (and, hence, spreads over a large amount of the lattice
sites in the dilute supersolid phase, see Sec. II B). This justifies
the use of the mean-field approach [46].

In the opposite limit, where

n1ay � h̄2

mV0
, (13)

one enters the transverse Thomas-Fermi regime, which we
shall refer to as the 2D cigar. In this regime the system locally
retains its 2D origin. By imposing the normalization condition
(7) on f one obtains

μ = h̄ωy

2

(
3

2

mV0

h̄2 n1ay

)2/3

. (14)

By using the relationship

mc2
1 = n1

∂μ

∂n1
(15)

and Eq. (12), one finds

ν =
(

3mV0

2h̄2n2
1a

2
y

)1/3

(16)

for the power of the characteristic decay law (11). Again, one
has ν � 1, provided that the condition (13) is satisfied. The
Thomas-Fermi half-width of the cigar is defined in the usual
way as a classical turning point and it reads

Rc = ay

(
3

2

mV0

h̄2 n1ay

)1/3

. (17)

The structure of Eq. (14) implies that the thermodynamic limit
for such a quasi-1D system can be achieved by letting simulta-
neously N → ∞, L → ∞, and ωy → 0, while keeping fixed
the combination Nωy/L. According to (17) the width of the
cigar in this limit becomes increasingly large. Throughout the
paper, however, we shall always assume Rc � L, so that the
system looks one dimensional from the geometrical point of
view.

For strong interactions (mV0/h̄
2 > 1) the Gross-Pitaevskii

picture discussed above becomes inadequate. In this case one
can distinguish between a Tonks-Girardeau gas of impenetra-
ble bosons [47] (dilute limit, n1ay < h̄2/mV0) and a dense
strongly correlated quasi-1D superfluid (n1ay � 1). The latter

scenario is of particular interest as it is relevant to the experi-
ments on MOES. The low energy properties of the system in
this regime can be described by using the hydrodynamic theory
of superfluids. Assuming a linear dependence of the local
chemical potential on the 2D density, one recovers the results
obtained in the Thomas-Fermi approximation, with the only
difference being the value of the coupling constant V0. Though
one still has ν � 1 for the power of the asymptotic in Eq. (11),
the healing length ξ itself is microscopically small, so that
there is no extended coherence in a uniform configuration.
We shall see that the spontaneous onset of ODLRO in this
regime becomes possible in the fragmented-condensate solid
phase, where the originally 1D system breaks into a sequence
of independent 2D harmonically trapped condensates.

A. One-dimensional mean field regime

In this regime the function ϕ takes the form

ϕ(y) = π−1/4e−y2/2a2
y . (18)

In the long-wavelength limit kxay � 1 the first perturbative
correction to the effective interaction (10) is provided by the
anomalous part of the off-shell scattering amplitude [40]

f (kx,k
′
x) = h̄2

mx∗
(|kx − k′

x |x∗)2 ln(|kx − k′
x |x∗). (19)

By plugging (19), (18), and (5) into the secondly-quantized
Hamiltonian (1) one obtains

Ĥ∗ =
∑
kx

(
Ekx

+ h̄ωy/2
)
ĉ
†
kx

ĉkx

+ V 1D
0

2L

∑
kx ,px ,qx

[1 + ζ (|px − qx |x∗)2 ln(|px − qx |x∗)]

× ĉ
†
kx+px

ĉ
†
kx−px

ĉkx+qx
ĉkx−qx

, (20)

where Ek = h̄2k2/2m and we have introduced a dimensionless
quantity

ζ = h̄2

mx∗V 1D
0

. (21)

The standard Bogoliubov approach then yields the elementary
excitation spectrum in the form

ε(k) =
√

E2
k + 2n1V

1D
0 Ek[1 + ζ (kx∗)2 ln(kx∗)]. (22)

A supplementary to (8) condition for the validity of the
mean-field result (22) is n1x∗ � 1. For small wave vectors
the excitations are sound waves ε(k) = h̄c1k with

c1 =
√

n1V
1D

0 /mh̄2 (23)

being the sound velocity. For the 1D density n1 larger than
nr ≡ [2x∗ ln(ζ/e3/2)]−1 the spectrum develops a roton-maxon
structure (Fig. 1). At the point

n1 = nc ≡ [2x∗ ln(ζ/2e)]−1 (24)

the roton minimum touches zero and the uniform condensate
becomes dynamically unstable. One would expect that at
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FIG. 1. Change of the shape of the elementary excitation spec-
trum of a dilute 1D dipolar condensate produced by the variation
of the density n1. We use Eq. (22) with ζ = 50. For n1 = nr ≡
[2x∗ ln(ζ/e3/2)]−1 the spectrum starts to develop a roton-maxon
structure (solid thick line). An increase of n1 pushes the roton
minimum towards zero, as is illustrated by the thin line taken
at n1 = (nr + 30nc)/31. At n1 = nc ≡ [2x∗ ln(ζ/2e)]−1 the roton
touches zero and for larger densities the uniform condensate becomes
dynamically unstable.

this point the system exhibits a second order quantum phase
transition [5,6] to a stripe state

ψ(x) = √
n1(cos θ +

√
2 sin θ cos krx) (25)

with θ � 1 being an increasing function of the density [the
corresponding equation can be obtained from (31) by putting
g1D

3 = 0] and

kr = x−1
∗ e−1/4n1x∗−1/2 (26)

corresponding to the position of the roton minimum. However,
in the frame of the model (1) the inverse compressibility κ−1 =
∂μ/∂n1 of the state (25) is negative, which implies a collapse.

B. Stable dilute quasi-1D supersolid

The collapse of the model (1) has already been observed for
dipolar supersolids in the planar 2D geometry [48]. It has been
shown that it is possible to stabilize the system by introducing
three-body repulsive forces [17]. One supplements the two-
body Hamiltonian (1) with the term

g3

α

∫
�̂(ρ)†�̂(ρ)†�̂(ρ)†�̂(ρ)�̂(ρ)�̂(ρ)dρ, (27)

where the combinatorial factor α is equal to 3! = 6 for a
spinless model. For the BCS-like model [43] (see also Sec. IV)
one should take α = 8, which corresponds to six possible ways
of composing an interaction of an exciton and an excitonic pair
(quasibiexciton) in the system of equally populated spin-up
and spin-down branches (a binary mixture).

Following the approach developed for 2D dipoles [17], we
substitute the ansatz (25) into the many-body Hamiltonian (1)
supplemented with the term (27) to obtain the energy density
of the system

E(k,θ ) =
(

Ekn1 + h̄2n2
1

mx∗
(kx∗)2D(k,θ )

)
sin2 θ

+V 1D
0 n2

1C(θ ) + g1D
3 n3

1T (θ ), (28)

where

C(θ ) = 1

32
(27 − 4 cos 2θ − 7 cos 4θ ) (29a)

D(k,θ ) = 2 cos2 θ ln(kx∗) + sin2 θ ln(2kx∗) (29b)

T (θ ) = 1

16α
(55 − 15 cos 2θ − 27 cos 4θ + 3 cos 6θ )

(29c)

and g1D
3 = g3/

√
3πa2

y . Minimization of E(k,θ ) with respect to
k yields

ln(k0x∗) = −2(n1x∗)−1 + 3 + 2(1 − cos 2θ) ln 2 + cos 2θ

2(3 + cos 2θ)
.

(30)

For θ = 0 this gives the above result (26), and for θ = π/2
one finds ln(2k0x∗) = −1/2n1x∗ − 1/2 in agreement with the
expression for the wave vector of a crystalline fluctuation of the
exciton order parameter close to the critical temperature [40].

Substituting (30) into the energy functional (28), expanding
the result up to the fourth power of θ and further minimizing
it with respect to θ one obtains

θ2 =
ζe−1/2n1x∗−1 − 2 − 12g1D

3

αV 1D
0

n1(
5
3 + ln 4 + 1

2n1x∗

)
ζe−1/2n1x∗−1 − 29

6 − 17g1D
3

αV 1D
0

n1

, (31)

where the condition

ζe−1/2n1x∗−1 � 2 + 12g1D
3

αV 1D
0

n1 (32)

should be satisfied. The latter can be regarded either as a
condition for the critical density n(1)

c [for g1D
3 = 0 one recovers

the result (24)] or for the critical value of the contact interaction
[43] at which the transition to a supersolid state is expected to
take place.

This transition is not, however, of the second (continuous)
type, as one would expect on the general grounds [49]. Indeed,
as one can see in Fig. 2, inclusion of the term (27) does
not save the situation for a purely 1D problem. At n1 = n(1)

c

the crystalline order parameter θ spontaneously increases and
the system transforms into a collapsing density wave (the
corresponding dependence of E on the density for the typical
values of the parameters is shown by the red line in the shaded
area). The period of the wave decreases [the formula (30)
with θ = π/2] until it becomes on the order of the transverse
oscillator length ay .

As k0 approaches a−1
y the two-dimensional origin of the

system becomes important. The result (19) for a purely 1D
scattering process does no longer provide a good description
of the interaction tail. Thus, for kay � 1 the anomalous
correction to the scattering amplitude would behave as [50]

f (k,k′) ∼ − h̄2

m
|k − k′|x∗, (33)

where k is now a two-dimensional vector.
To describe the dipolar interaction in the condensate density

wave in the crossover region k0ay � 1 we shall employ the
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FIG. 2. The dimensionless energy Ẽ = Ex2
∗/V 1D

0 of a quasi-one-
dimensional condensate of bosonic dipoles as a function of the density
ñ1 = n1x∗. The uniform state (U) ceases to be the ground state at
n1 = n(1)

c . At this point the system undergoes a first order quantum
phase transition to a supersolid state (S) via a collapse (shaded area)
accompanied by an increase of the instability magnitude θ and wave
vector k0. For small θ the corresponding dependence Ẽ(ñ1) is given
by (28) with the substitution (31) and is shown by the red line. As k0

approaches a−1
y , three-body repulsive forces become more efficient

and, eventually, stabilize the system in a supersolid phase (S). The
dependence of the energy of this phase on the density is given by (35)
and is shown by the blue line. The new stable point n(2)

c is defined by
the requirement μ(n(2)

c ) = μ(n(1)
c ), where μ = ∂E/∂n1 is the chemical

potential of the system. We take ζ = 104, x∗/ay = 0.1, and γ = 1/4
(for α = 8). We find ñ(1)

c = 0.12, ñ(2)
c = 0.49, and k0(n(2)

c ) = 0.48a−1
y .

following expression

f (kx,k
′
x) = 2

√
πh̄2

mx∗

(
x∗
ay

)2

U [−1/2,0,(|kx − k′
x |ay)2/2],

(34)

where U (a,b,x) is the Tricomi function. This expression can
be obtained by properly averaging the 2D result (33) over the
external confinement in the y direction. Using (34) instead of
(19) and putting θ = π/2 we obtain

E(k0) = Ek0n1 + 3

2
V 1D

0 n2
1 + 5

2α
g1D

3 n3
1

−
√

πh̄2n2
1

2mx∗

(
x∗
ay

)2

U [−1/2,0,2(k0ay)2], (35)

where k0 is the solution of the transcendental equation

ek2
0a2

y K0
(
k2

0a
2
y

) = (n1x∗)−1 (36)

with Kn(x) being the modified Bessel function of the second
kind.

For large k0 the equation (36) yields

k0 =
√

π

2

x∗
ay

n1, (37)

consistently with the analogous result for the 2D system
[17,51]. In the same limit the equation for the energy density

(35) takes the form

E = 3

4
V 1D

0 n2
1 + g1D

3 n3
1

(
5

2α
− γ

)
, (38)

where

γ =
√

3π2α

64

h̄2x2
∗

mg3
. (39)

One can see that for sufficiently small γ the compressibility
κ of the density wave becomes positive, which means
stabilization of the system. The lower bound for γ is defined
by the requirement for the supersolid energy (35) to be lower
than the energy of the uniform state (U). Thus, we obtain

3

2α
< γ <

5

2α
(40)

for the range of the parameter γ where a stable supersolid state
(S) may exist.

The characteristic dependence of the energy of the quasi-1D
supersolid on the density is shown in Fig. 2 by the blue line. We
take α = 8 and γ = 1/4. The shaded area corresponds to the
collapse. In practice, one may expect that at the critical point
n(1)

c defined by (32) (red point) there is a jump in the density
of the system from n(1)

c to some value n(2)
c (blue point), which

corresponds to the same chemical potential μ = ∂E/∂n1 (the
tilt of the green tangents), but now in the stable supersolid
phase. In other words, the U-S phase transition is of the first
order.

We now discuss possible realization of our model in
physical systems. For ultracold gases of nonreactive NaK
molecules the Hamiltonian (1) with the three-body term
(27) can be realized in the bilayer geometry with interlayer
tunneling [52]. The effective three-body repulsion appears as
a result of interaction of the third particle with a virtually
excited interlayer bound state when the tunneling amplitude
t approaches some critical value tc. In the same limit, the
two-body interaction V0 becomes proportional to t − tc. In
order to achieve the mean-field quasi-1D configuration for
reasonable values of x∗, we propose to use a superposition of
a standard 2D optical lattice and a 1D photonic crystal-based
subwavelength lattice [53]. The 2D optical lattice generates
an array of 1D tubes having an elliptic cross section with
the largest radius ay ∼ 100 nm (∼10 kHz). The 1D photonic
crystal with the period d ∼ 10 nm is then placed in the
immediate vicinity of one tube in such a way as to split the tube
into two stripes. The in-plane width of each stripe is 2ay and
their transverse width is on the order of d. The critical tunneling
between the stripes should reach 1 μK, which certainly would
be much larger than the chemical potential μ—the latter must
not exceed h̄ωy/2 ∼ 100 nK. For α = 6 the stability region
(40) corresponds to g3 ∼ 9

√
3π2h̄2x2

∗/32m. For vanishing
V0 this quantity defines the critical density nc of the first
order transition according to (32). Taking x∗ ∼ d one finds
ncx

2
∗ ∼ 0.01, which yields μ ∼ 1 nK. In the stable supersolid

phase the density would be about a factor of 5 larger. Then
at the temperature T ∼ 1 nK we would be well below the
corresponding Berezinskii-Kosterlitz-Thouless (BKT) point,
and at such temperature the system would form a quasiregular
1D array of beads, each containing about 60 molecules (in each
layer). By using the relationship (15) for the 1D sound velocity
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and Eq. (12), we obtain ν ∼ 3
√

πx∗/16ay for the exponent of
the characteristic power law (11) for the one-body density
matrix. For our configuration we find ν ∼ 0.03, so that the
coherence is extended over multiple periods of the structure.

Quasi-1D gases of dipolar excitons can be realized at the
interfaces between the electron and hole regions in GaAs
quantum wells [54,55] (see Sec. III). The two-body interaction
between the excitons can be reduced by using a resonance
in the channel where the two excitons have opposite spins
[43,56]. The effective three-body repulsive force may appear
due to interaction of the third exciton with a weakly-bound
exciton pair (biexciton) in the same limit where V0 becomes
vanishingly small. However, in contrast to the molecular
setting discussed above, nothing is presently known about
the dependence of this force on the detuning and its order
of magnitude. Analysis of this problem would constitute an
interesting subject for future work.

For equal populations of the exciton spin branches the
resonantly paired model is reduced to (1) and (27) with
α = 8. At the typical electron and hole densities one has
[54] h̄ωy ∼ 1 μeV, which corresponds to ay ∼ 600 nm. For
the exciton dipolar length x∗ ∼ 50 nm we are in the same
range of the dimensionless parameters as for polar molecules,
with nx2

∗ ∼ 0.01 being a good choice for the 2D density. In
the stability region (40) and at V0 = 0 the chemical potential
μ ∼ 0.1 μeV. The cells of the supersolid are ∼2 μm in the
longitudinal direction and contain about 90 particles. With the
existing experimental facilities [31] it would be possible, in
principle, to resolve such structure. However, cooling of the
system down to 0.1 μeV (in order to achieve large coherence
length in quasi-1D geometry) is challenging. The lowest bath
temperature achieved in the current experiments [31] is around
0.1 K.

C. 2D cigar

The transverse density profile of the cigar has the typical
form of an inverted parabola

ϕ2(y)/ay = (
μ − mω2

yy
2/2

)
/V0n1, (41)

where μ is given by (14). We omit the standard unit step
function cutoff on the r.h.s. for brevity. As before, we expect
the longitudinal density distribution to be somehow affected
by the long-range dipole-dipole interaction. However, the
perturbative method used in the dilute regime does not apply
here. Instead, one can use phenomenological arguments.

The result (19) suggests that the dipolar tail can give rise
to negative Fourier components V TF(k) of the effective 1D
interaction in some range of the momentum transfer. Hence,
we take V TF(k) in the form

V TF(k) = V TF
0 + V TF

∗ (k), (42)

where V TF
∗ (0) = 0 and V TF

∗ (k) < 0 for k > 0. The contact part

V TF
0 = 2

5

(
3

2

)2/3(
mV0

h̄2 n1ay

)−1/3
V0

ay

(43)

is obtained by substituting (41) into the Hamiltonian (1)
and integrating over y. In the spirit of the seminal work on
coherent crystals [2] one can then suppose that V TF(k) has a
minimum at some k = 2k0 such that k0 � √

n. We shall further

assume k−1
0 � 2Rc, which is consistent with the estimate of

the wavelength of a dilute supersolid made in the previous
subsection.

A natural choice for the ground state wave function would
be

ψ(x) =
√

2n1 cos(k0x), (44)

which formally corresponds to (25) at θ = π/2. In terms of ψ

the energy of the system can be written in the form

ETF[ψ] = V TF
0

2

∫
|ψ(x)|4dx + V TF

0 n1

4

∫
|ψ(x)|2dx

+ 1

2

∫
Vauto[ψ]|ψ(x)|2dx, (45)

where we have introduced

Vauto[ψ] ≡ 1

2π

∫∫
V TF

∗ (k)eik(x−x′)|ψ(x ′)|2dkdx ′

= n1V
TF
∗ (2k0) cos(2k0x).

(46)

The second term in (45) is due to the external trapping along y.
Equation (45) may be regarded as the energy of a crystalline

structure where the periodical lattice field (46) and the
periodical density distribution (44) maintain each other in
a self-consistent way. In the equilibrium the virial relation
should hold between the contact interaction energy, external
confinement, and the energy due to autolocalization. By
performing a scaling transformation

� ′(x,y) = (1 + υ)�[(1 + υ)x,(1 + υ)y]

and imposing that the variation of the total energy (45) vanishes
at first order in υ, one gets the identity

V TF
0

2

∫
|ψ(x)|4dx =

(
V TF

0 − 2V TF
∗

)
n1

4

∫
|ψ(x)|2dx. (47)

Substitution of (44) into (47) and integration over the lattice
period then yields

V TF
∗ (2k0) = −V TF

0 , (48)

which sets the equilibrium values of energy (45) and chemical
potential of the supersolid equal to those of the uniform
configuration.

Providing that the condition (48) of mechanical equilibrium
is satisfied, the function (44) formally corresponds to a solution
of the 1D Gross-Pitaevskii equation

V TF
0 ψ2(x) + V TF

0 n1/4 + Vauto(x) = μ, (49)

obtained by minimization of (45) with respect to ψ∗. It is
clear, however, that this picture becomes inadequate for the
depleted regions, where Vauto(x) + V TF

0 n1/4 approaches μ. In
these regions one should take into account the quantum kinetic
energy which we have neglected so far. A straightforward way
to do this we propose below is to approximate the lattice by a
chain of coupled harmonic potentials and then proceed from
the Thomas-Fermi solution of the problem [57].
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D. Inhomogeneous state of the cigar as a chain of 2D trapped
Bose-Einstein condensates

Turning back to the two-dimensional representation, we
replace the product of (44) and (41) by

�k(x,y,t) =
J∑

j=1

�j (x,y)eiθj (t), (50)

where J = Lk/π is the total number of periods in the
quantization length L and the functions �j (x,y) are given
by

|�j (x,y)|2 = μj − mω2
yy

2/2 − mω2
j (x − xj )2/2

Ṽ0
(51)

with the renormalized coupling constant Ṽ0 = V0/2 and satisfy
the normalization condition∫

|�j (x,y)|2dxdy = Nj . (52)

Here xj = ∑j

i=1 λi − λj/2 are the positions of the density
maxima along the chain, θj (t) are time-dependent phases of the
local order parameters, Nj are occupation numbers of different
sites, and μj are the corresponding chemical potentials. In the
equilibrium θj (t) = μj t and

μ1 = μ2 = ... = μ,

N1 = N2 = ... = N/J ≡ N0,
(53)

where μ is given by (14) and N0 will be specified below. The
quantities λi give the longitudinal sizes of the lattice sites. In
the absence of disorder

λ1 = λ2 = ... = λ0 (54)

with λ0 = π/k0 being the wavelength of the density wave in
the original model (see above).

The result (51) has been obtained by variation of the
energy functional (45) over �∗ ≡ ψ∗φ∗/√ay and has a simple
form of the Thomas-Fermi paraboloid. Renormalization of
the coupling constant physically reflects redistribution of the
dipolar interaction energy in the density wave: Half of this
energy transforms into the energy due to self-trapping in the
longitudinal direction.

In order to model the sites of the self-trapping potential
Vauto(x) we take parabolas which intersect the cosine profile
(46) at the bending points defined as ∂2Vauto(x)/∂x2 = 0. This
eventually proves to be a better approximation than just Taylor
expanding cos(x) function up to a quadratic term near its
minima. We obtain

ω2
j = 16μj/λ

2
jm (55)

with μj and λj given by Eqs. (53) and (54), respectively. By
definition of λj one has

J∑
j=1

√
16μ

mω2
j

= L, (56)

the sum on the l.h.s being just a sum of the sizes of the cells.
The requirement for the chemical potential of the chain

to be equal to that of the original model (i.e., to that of the
cigar) yields the average number of particles per unit cell

N0 ≈ 0.83n1λ0. Also the energy appears to be reduced by the
factor 1.1 with respect to the energy of the cigar. These minor
deficiencies of our approximate solution are, however, fully
recompensed by the usefulness of the Thomas-Fermi model
(51) we arrived at.

Indeed, the ansatz (50) is the generalization of the well
known double-well potential problem to the case of multiple
wells, which has been extensively studied in the context of
atomic BEC’s in optical lattices [57,58]. The role of the
lattice potential here is played by an effective mean-field
repulsive potential produced by the electrostatic interaction
of a condensate with the corresponding neighbor.

In the boundary region in between the adjacent condensates,
where the Thomas-Fermi approximation fails, the density
profile takes universal form which depends neither on the
actual shape of the self-trapping potential, nor on the parameter
Ṽ0 characterizing the contact part of the interaction [57].
These enter the expression for the characteristic length dx =
(2m|Fx |/h̄2)−1/3 [with Fx = −∂(mω2

j (x − xj )2/2)/∂x being
evaluated at the classical turning point defined by mω2

j (x −
xj )2/2 = μ]. We conveniently use dx as a unit of length in
Fig. 2, where we show two sites of the chain. Tiny overlap
between the order parameters �j+1 and �j locks the relative
phases �j = θj+1 − θj and, at the absolute zero temperature,
establishes the coherence over the distance x � λ0. The
stationary state of the chain corresponds to the symmetric
configuration with �j being equal to zero.

The dynamics of the chain can be described by 2(J − 1)
coupled equations of motion (Josephson equations) [57,59],

∂�j

∂t
= −EC

h̄
kj , (57)

for the relative phases and

h̄
∂kj

∂t
= EJ sin �j, (58)

for the relative numbers of particles kj = (Nj+1 − Nj )/2. Here

EJ = h̄2

m

∫
dy

(
�j+1

∂�j

∂x
− ∂�j+1

∂x
�j

)
x=0

(59)

is the amplitude of the oscillating particle currents due to
deviations of the local chemical potentials μj = ∂E/∂Nj from
their equilibrium value μ and

EC = 2
dμj

dNj

(60)

is the relevant interaction parameter of the problem. Both
quantities should be evaluated at Nj = N0 and, therefore, do
not depend on j . By using the Thomas-Fermi model (51) one
can obtain

EC = μ

N0
(61)

and

EJ ∼ N
−1/6
0 kBT 0

c e−S, (62)

where kBT 0
c = h̄(6/π2N0ωxωy)1/2 is the critical temperature

of BEC in an ideal harmonically trapped gas and S ∼ (H −
μ)/h̄(ωxωy)1/2 with H being the height of the barrier [60,61].
The latter, as one can see in Fig. 3, is twice the chemical
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FIG. 3. Inhomogeneous state of the 2D cigar as a chain of trapped
2D Bose-Einstein condensates. The maxima of the density wave
(44) [short dashed gray line] are approximated by the Thomas-Fermi
paraboloids (51) (red and blue solid lines). The oscillator frequencies
ωj are chosen such that the corresponding harmonic traps intersect the
cosine profile (46) at the bending points defined as ∂2Vauto(x)/∂x2 =
0. In the y direction the width of the condensates is equal to the width
of the cigar. In the boundary region in between the adjacent beads
the Thomas-Fermi approximation fails. In this region the density
profile takes universal form (blue and red dash-dot lines) which
does not depend neither on the actual shape of the autolocalizing
potential Vauto(x,y), nor on the parameter V0 characterizing the
contact part of the exciton-exciton interaction [57]. These enter
the expression for the characteristic length dx = (2m|Fx |/h̄2)−1/3

(which we conveniently use as a unit length), and the transformation
�j (x,y = 0) = √

π/12(ηdx)−1πk0 (x/dx) for the trial function. We
have taken dx = Rx/4 in order to better visualize the boundary region
in such specific scale. In practice, one expects dx � Rx .

potential. Taking into account this important property of our
model, one can estimate the ratio EC/EJ as

EC

EJ

∼ η exp(η
√

N0)

N
5/6
0

, (63)

where we have introduced

η = μ

kBT 0
c

=
√

π

6

mṼ0

h̄2 . (64)

The condition for applying the mean-field approach to describe
the chain of Josephson junctions reads

EC

EJ

� 1 (65)

and corresponds to the coherent regime where the number of
particles in each site Nj exhibits strong fluctuations 〈�N2

j 〉 �
1 around the equilibrium value 〈Nj 〉 ≡ N0. Provided that
typically N0 ∼ 103, one can see that the condition (65) is well
satisfied for η � 0.2.

Finally, let us note that the equations (57) and (58) can be
recast in the canonical form

∂�j

∂t
= ∂HJ

∂(h̄kj )

∂(h̄kj )

∂t
= −∂HJ

∂�j

,

(66)

where

HJ = EC

J∑
j=1

k2
j

2
− EJ

J∑
j=1

cos �j (67)

is the Josephson Hamiltonian. This form allows one to identify
�j and h̄kj as the natural canonically conjugated variables of
the problem.

E. Beyond mean field: Fragmentation of the supersolid

We shall now deepen our understanding of the dipolar
supersolid by proceeding from the “chain” model introduced
above. We have argued that this model provides adequate
description of the coherent density wave. Provided that the
condition (65) is satisfied, the excitons are delocalized, i.e.,
they share the same wave function (44). The coherence length
is governed by the long-wave quantum fluctuations of the
phase. Further insight can be gained by exploring what happens
when EC ∼ EJ and EC > EJ . To study this regime one should
go beyond the classical mean field description of the Josephson
effect.

The appearance of the depleted regions in the condensate
due to its dynamical instability brings about phase fluctuations
of entirely different nature than those usually considered for
uniform systems. These are the quantum fluctuations of the rel-
ative phases between the macroscopic domains, each of which
can be assumed to be fully coherent at T = 0. The fluctuations
of this type can be introduced into the problem by quantizing
the Josephson equations (66) describing the coupling between
the domains. The quantization can be achieved in the usual way
by replacing the conjugated variables kj = (Nj+1 − Nj )/2 and
�j = θj+1 − θj with operators satisfying the commutation
relation [62]

[�̂j ,k̂j ] = i.

As a result, the observables �̂j and k̂j obey the uncertainty
relation 〈

k̂2
j

〉 〈sin2 �̂j 〉 � 1
4 〈cos �̂j 〉2, (68)

which is analogous to the uncertainty relation for the angle and
angular momentum in the standard quantum mechanics [63].

In the case of strong tunneling EJ � EC the values of the
relative phases �j are localized around 0 and the uncertainty
relation (68) takes the usual form〈

k̂2
j

〉〈
�̂2

j

〉
� 1

4 .

One can see that the coherence assumed in our mean field
models manifests itself in the strong quantum fluctuations
of the number of particles in each site. The exciton order
parameter is spread out over multiple periods of the chain.

As one can see from Eq. (62), the tunneling amplitude EJ

can be tuned by changing the parameter η which characterizes
the contact part of the exciton-exciton interaction. An increase
of the parameter η leads to a decrease of the size of the
overlapping region and to a growth of the self-trapping
potential barrier. The adjacent condensates extrude each other,
approaching the ideal Thomas-Fermi density profiles (solid
lines in Fig. 2).
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It is known from the physics of granular superconductors
[64], that for T = 0 the Josephson Hamiltonian (67) exhibits a
quantum phase transition to a charge-ordered insulating state at
EC � 1.62EJ . By using the relation (63) and taking N0 ∼ 103

one finds

ηc ≈ 0.27 (69)

for the critical value of the interaction parameter η defined in
(64).

F. Topological transformation of the fragmented-condensate
solid conserving simultaneously the total number of particles,

the interaction energy, and the chemical potential

A peculiar property of the chain model (50) is that the
corresponding Thomas-Fermi energy (45) is invariant under
an arbitrary change of the values of the wavelengths (54) at
the fixed chemical potential μ. Namely, one can show that the
replacement

{ωj } → {ωi}∗, (70)

conserves simultaneously the total energy ETF and the number
of particles N . Here {ωi}∗ is a new set of oscillator frequencies,
i = 1,2...I , satisfying the continuity condition (56) with i

instead of j and I �= J . An example of such transformation is
schematically shown in Fig. 4.

A rigorous mathematical proof of this essentially topolog-
ical result is given in Appendix A. The following remarks are
in order here:

(1) In the absence of disorder, this property is inherited by
the system from the original model (44).

(2) The existence of an effective interaction of the type (42)
is not crucial. In fact, by evaluating the mean-field interaction
energy just of a chain consisting of J inverted paraboloids,

FIG. 4. Topological transformation of the fragmented-
condensate solid conserving simultaneously the total number of
particles N , the chemical potential μ, and the total energy of the
system E. In the Thomas-Fermi limit the density profile of each
bead |�j (x,y)|2 takes the form on an inverted paraboloid. The height
of the paraboloid is defined by the chemical potential according to
|�j (0,0)|2 = μ/Ṽ0. Providing that the condition (56) is satisfied, the
total energy and the number of particles in the green paraboloid is
the same as in a system of the two blue ones. We have used the same
units of length, density, and energy as in Fig. 3.

one can show that this energy is invariant under an arbitrary
variation of J and longitudinal sizes of the paraboloids,
providing that one fixes the effective chemical potential
(the height of the paraboloids) and the length of the chain
[38,39]. This can be especially relevant for driven-dissipative
systems, where a seed periodical structure can be formed by
an initial quench of V0 and then grown by shifting a dynamical
equilibrium with the reservoir.

(3) Instead of a paraboloid, one can take any function of
the type

z

h
=

(
x

Rx

)2p

+
(

y

Ry

)2p

(71)

for the condensate density profile. Here z � h and p is
a nonzero natural number. This provides a possibility of
a generalization of the theory accounting for the beyond
mean-field corrections in the equation of state.

(4) At zero temperature the presence of such degeneracy
implies that the lattice will tend to increase its average period λ

(reduce the number of sites) in order to minimize the quantum
kinetic energy due to boundaries. The equilibrium value of
λ will be defined by the balance between the kinetic energy
and an eventual change in the interaction energy ETF due to
violation of the condition (48).

(5) For λ sufficiently close to λ0 one can write

ETF(k) = ETF(k0) + dETF(k0)

dk
(k − k0)2, (72)

where k = π/λ and k0 = π/λ0 corresponds to the minimum
of the effective interaction (42). Analogous expansion for the
kinetic energy begins with the first power of (k − k0). Thus,
there is a useful range of λ, where the change of the total
energy of the supersolid is only due to variation of the kinetic
energy.

G. Fragmented-condensate solid at a finite temperature (we
assume T 0

c /N � T � T 0
c )

The difference between the coherent and Fock regimes
of the 1D chain becomes especially pronounced at a finite
temperature. Here, the long-wave fluctuations of the phase
would destroy the conventional supersolid, whereas the co-
herence length for the number-squeezed configuration would
remain as large as the average size of a bead λ. Another
important distinction is the dependence of λ on the density n1.
In contrast to the result (37) characteristic for a dilute system,
the wavelength of the fragmented-condensate solid turns out
to be an increasing function of n1.

At T > 0 the appropriate thermodynamic potential is the
free energy F . Assuming λ being on the order of λ0 we neglect
possible variation of the interaction energy (see the previous
subsection) and write the function F in the form

F = Ekin + F�, (73)

where

Ekin = h̄2

2m

∫
|∇�(ρ)|2dρ (74)

is the kinetic energy (quantum pressure) and F� is the part of
the free energy due to the phase fluctuations. In the Thomas-
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Fermi approximation one can write (see Appendix B).

Ekin = J
x

η
kBT 0

c , (75)

where J is the number of beads in the quantization length
L (it is related to the fragmented-condensate wavelength by
J = L/λ) and x is some dimensionless coefficient defined by
the topology of the fragmented-condensate density profile in
the depleted regions in between the beads. We assume x to be
not dependent on J .

The fluctuation part of the free energy F� can be calculated
starting from the Hamiltonian (67). In the Fock regime this
Hamiltonian reduces to

ĤJ = −1

2
EC

J∑
j=1

∂2

∂�2
j

. (76)

The corresponding eigenstates are plain waves

�{kj } ∼ exp

⎛
⎝i

J∑
j=1

kj�j

⎞
⎠ (77)

for a set of integer values {kj }, so that the ground state function
is a constant, revealing that the relative phases between the
beads are distributed in a random way. According to the
uncertainty relation (68) the variances 〈k2

j 〉 of the number of
particles Nj in each site are instead vanishingly small—the
fragments have a well-defined number of excitons.

As one can see from (77), the dynamics of the phase
corresponds to mechanical motion of a free particle in J-
dimensional space. Inserting a Josephson junction is thus
equivalent to adding a new degree of freedom to the system.
The partition function can be factorized and it takes the form

Z� =
∑
{kj }

e
−βE{kj } =

(∑
k

e−βEk

)J

, (78)

where Ek = ECk2/2 according to (76) and EC is given by
(61). Assuming βEC � 1 we obtain

F� = −kBT ln Z� = −JkBT

2
ln

(
2π

η

T

T 0
c

N

J

)
. (79)

Collecting both the kinetic energy and the fluctuation terms
we write

F = J
x

η
kBT 0

c − JkBT

2
ln

(
2π

η

T

T 0
c

N

J

)
(80)

for the free energy of the fragmented condensate. Considered
as a function of J , it has a minimum at the point

J = 2π

ηe

T

T 0
c

N exp

(
−2x

η

T 0
c

T

)
. (81)

Note that by virtue of the relation (64), the parameter T 0
c does

not depend on J . It can be conveniently expressed as kBT 0
c =

nV0/η, where n is the average 2D density of the system at
T = 0. By using the relation n1/n = Ry , we can rewrite the
result (81) in the useful form

λ(n,T ) = ηe

2π

V0

RykBT
exp

(
24x

π

h̄2n/m

kBT

)
. (82)

Note that though the 1/Ry prefactor decreases with n, the
exponential factor overweighs this contribution, so that λ

increases with n. This is in stark contrast with the result (37)
obtained in the dilute regime.

III. COMPARISON WITH THE EXPERIMENT

A convenient setting for experimental study of quasi-1D
quantum gases of dipolar excitons is the ring-shaped interface
between the electron- and the hole-rich regions in biased
semiconductor quantum wells (CW’s). The regions of opposite
charge may form under cw photoexcitation either in a single
[65,66] QW or two coupled [29,67] QW structures. The bias
voltage Vg applied in the transverse direction injects electrons
into the nearest to the positive lead QW layer. In the absence
of the photoexcitation these electrons fill uniformly the layer
plane. A focused laser is then used to excite electron-hole pairs
in the surrounding barriers. Holes are captured efficiently by
the QW layer close to the negative lead and form a lake of a pos-
itive charge around the excitation spot. The interface between
the hole lake and the outer unperturbed electron sea is seen as
a bright ring in the exciton photoluminescence (PL) [55].

Being remote from the hot photoexcitation spot the ring
represents a source of cold excitons. An in-plane electric field
induced at the interface due to the macroscopic separation of
charge confines the in-plane translational motion of excitons
in the radial direction [54]. At T > Tc the excitons are free to
move along the interface, in between the so-called localized
bright spots (LBS’s)—pointlike defects which pin the position
of the ring [41]. Thus, the PL ring consists of independent
segments, having different lengths and widths due to the
structural disorder. The segments are characterized by strong
repulsive interaction due to built-in dipole moments of the
excitons. The two-body repulsion ensures fast thermalization
of excitons and makes possible observation of a Bose-Einstein
condensed metastable state [69].

Below Tc (few degrees K) all the segments simultaneously
fragment into arrays of regularly spaced beads. This low-
temperature state of the ring has been dubbed the macroscop-
ically ordered exciton state [29] (MOES, see Introduction).
In our previous paper [38] we have demonstrated consistency
of the formula (82) for the MOES wavelength in the regime
where the ring is allowed to expand when increasing the laser
excitation power P (the gate voltage Vg is fixed). In that kind
of experiment both the average exciton density n and the width
of the ring 2Ry remain roughly constant with P . The formula
(82) then predicts a constant λ, which is what indeed has been
observed.

Here we compare our results with another regime, in which
the radius of the ring is kept fixed by simultaneously adjusting
Vg and P [41]. In this regime both the density and the width
of the MOES increase with Vg (and P ). The formula (82)
correctly describes the behavior of λ in these conditions as
well. As a complementary test, we propose to measure the
critical temperature Tc (the temperature at which the MOES
disappears) as a function of Vg .

A. The width of the MOES

In practice, the width of the MOES is determined by a
complex interplay between the reaction-diffusion processes
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FIG. 5. Dependence of the width (a), the wavelength (b), and
the critical temperature (c) of the MOES on the gate voltage Vg .
Squares are the experimental data [41]. In (a) the solid line is
the cubic function (83) with c3, c2, c1, and c0 being the fitting
parameters. We substitute thus obtained analytic equation for the
MOES width into Eq. (82). The formula (82) is then used to fit the
corresponding dependence of the wavelength in (b). We fix x = 4 and
V0 = 6.8 μeV × μm2, consistently with the earlier estimates [38,68].
The bath temperature is T = 1.6 K. The only adjustable parameters
are n(V ∗

g ) and dn(V ∗
g )/dVg , which enter the expansion (84) for the

exciton density n around V ∗
g = 1.17 V. The obtained dependence of

n on Vg is used to plot the values of the critical temperature [Eq. (85)]
at which the MOES is expected to disappear [solid line in (c)].

in the surrounding electron-hole plasma and the trapping
of excitons at the ring. For our purposes it is sufficient to
obtain a phenomenological fit of the experimentally measured
dependence of Ry on Vg , which we could then substitute
into Eq. (82), leaving a detailed discussion of the underlying
physics for future work. A straightforward choice is a
polynomial function. Good agreement with the experiment
is achieved by using the cubic formula

2Ry = c3V
3
g + c2V

2
g + c1Vg + c0. (83)

The result of the fitting procedure is shown in Fig. 5(a). Note
a pronounced bend of the curve at low voltages. At the same
voltages, there is also a bend in the corresponding plot of
the MOES wavelength presented in Fig. 5(b). However, the
direction of this bend is opposite to that observed for the MOES
width.

B. The wavelength and the critical temperature of the MOES

In order to compare the result (82) with the measured
dependence of the MOES wavelength on Vg we need to know
the corresponding dependence for the exciton density n. Since
the relative variation of Vg in the experiment is small, we can
write

n(Vg) = n(V ∗
g ) + dn(V ∗

g )

dVg

(Vg − V ∗
g ) (84)

where V ∗
g is some workpoint. The choice of V ∗

g is arbitrary
within the window used in the experiment and only slightly
affects the values of the expansion coefficients n(V ∗

g ) and

dn(V ∗
g )/dVg at which the best fit is achieved. We take

V ∗
g = 1.17 V. Note, that the expansion of the type (84) can

hardly be justified for the dependence of n on the excitation
power P —the latter varies over several orders of magnitude
in the experiment [41]. For this reason we do not consider the
dependence of λ on P at all.

Substituting the phenomenological expression (83) for Ry

with the coefficients ci determined in the previous subsection
and the expansion (84) for the exciton density into Eq. (82),
we fit the experimentally measured values of λ presented in
Fig. 5(b) by varying the values of n(V ∗

g ) and dn(V ∗
g )/dVg .

The bath temperature T = 1.6 K is fixed. We also fix the
parameters x and V0. We take V0 = 6.8 μeV × μm2 which is
4 times larger than the known estimate of this quantity [68].
This yields η = 2.3 according to Eq. (64). The reason for
such a choice of V0 is that we expect tightly bound excitonic
pairs (biexcitons) to form the supersolid media (see Sec. IV),
with their dipole moments being twice the dipole moment of
excitons. The dimensionless coefficient x [see Eq. (75) for the
quantum pressure] should be on the order of unity. We take
x = 4 consistently with our previous estimates [38].

The obtained values of the parameters n(V ∗
g ) and

dn(V ∗
g )/dVg can then be used to estimate the critical temper-

ature Tc at which the MOES disappears. By using the relation
(64) and assuming μ = nV0, one can recast the temperature of
a noninteracting BEC in a 2D harmonic trap as [70]

kBT 0
c = 12η

π

h̄2n

m
, (85)

where n depends on Vg according to (84). By substituting the
values of n(V ∗

g ) and dn(V ∗
g )/dVg found from the fitting of the

MOES wavelength, we obtain the linear dependence of T 0
c on

Vg shown in Fig. 5(c). The obtained values of T 0
c are on the

order of the quantum degeneracy temperature of an exciton
gas with n ∼ 1010 cm−2.

C. Commensurability of the MOES

We close this section by an explanation of the recently
observed commensurability of the MOES. As we have already
mentioned (see Introduction), commensurability is inherent for
supersolid states of matter. To see how this property is retained
in our thermodynamic model of the fragmented-condensate
solid, let us look at Eq. (80). The stable configuration of the
system is achieved when the minimum of the function (80)
coincides with some integer value J of Josephson junctions.
If, by varying the control parameters, we shift the position of
the minimum toward J + 1, we shall certainly encounter the
situation where the states with J and J + 1 junctions have the
same free energy. In this case the system will exhibit strong
fluctuations between these two states. In practice, this means
that a well-defined pattern of beads can only be observed for
some discrete values of the gate voltage.

IV. DISCUSSION

Our analysis of the effect of long-range dipolar repulsion
on the Bose-Einstein condensation of a quasi-1D exciton gas
can be sketched as follows. Consider what happens with the
system, when one slowly decreases the temperature down to
the temperature of quantum degeneracy. When approaching
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Tc from above coherent fluctuations of the exciton order
parameter � appear. In the fluctuation region the mean-
field component of the system is very dilute, and the main
conclusions drawn in Sec. II A can be applied. The predicted
roton instability here would reveal itself as a nonconventional
fluctuation of � having a crystalline structure [40]. Impor-
tantly, for such fluctuations to appear the contact part of the
effective interaction V0 must be anomalously small, i.e., the
gas must be almost ideal. Providing that the condition of the
type (24) is compatible with the diluteness criterion n1x∗ � 1,
the system condenses into a regular array of Bose-Einstein
condensates.

At T � Tc in the typical experimental conditions [29] the
condensates are dense and strongly correlated. The physics of
this state can be described by the phenomenological model
introduced in Sec. II D. It is presently unclear if such a
state can exist as a true ground state of the gas (in the
sense of a Bose-Einstein condensed metastable state), or it
results from a dynamical equilibrium between the localized
excitons and delocalized electron-hole plasma. Experiments
on ultracold polar molecules in the bilayer geometry could
enlighten this question. In particular, one could try to observe
a transition from the weakly-interacting supersolid to the
fragmented-condensate solid state first by going to the 2D cigar
regime by increasing the particle density and then increasing
the contact part of the two-body interaction.

In excitonic systems it should be possible to tune V0 by
exploiting the shape resonance in the pairwise interaction of
excitons having opposite spins [40,43]. The emergent physics
is a 2D analog of the Feshbach resonance in atomic gases [71].
Due to the Pauli exclusion of the electrons and holes, formation
of the three-body and larger excitonic complexes is prohibited,
which allows us to explore the whole range of the 2D scattering
lengths, including the unitary limit. At the many-body level,
this should allow us to observe a quantum phase transition from
an exciton condensate to a superfluid of tightly-bound exci-
tonic molecules (biexcitons). In the dilute regime, approaching
the transition from the excitonic side results in reduction of V0

and rotonization of the elementary excitation spectrum [43].
The presence of a resonance in the two-body interaction

of excitons thus may explain how the system characterized by
strong repulsion at T � Tc can crystallize, when T approaches
Tc from above. At T → Tc the chemical potential approaches
the scattering threshold (zero energy in the thermodynamic
limit). If the position of the resonance is sufficiently close to
the threshold, the average effective interaction V0 decreases
due to resonant attraction and pairing of excitons. On the other
hand, at T � Tc the chemical potential is large, and the system
is in the molecular phase, characterized by strong repulsive
interaction between the dipolar molecules.

An intriguing prediction of our theory is that it may be
possible to observe an abrupt extension of the coherence
length over multiple periods of the MOES by reducing the
exciton density and going to extremely low temperatures
(below 0.1 K, see the discussion in the end of Sec. II B,
theory). As the system becomes more dilute, the fraction of
the molecular superfluid in a bead decreases and contribution
of the unpaired excitonic component to the average interaction
becomes more important. As a result, one may expect to
reduce the dimensionless interaction parameter η down to the

critical value (69). However, the bath temperature T must be
sufficiently low (on the order of μ) in order to suppress the
long-wave fluctuations of the phase—otherwise, one would
merely destroy the crystal [72].

In conclusion, we have argued that the MOES may represent
a form of the supersolid state of matter. Our theory identifies
the MOES with a fragmented-condensate solid, akin to the
fragmented BEC in an optical lattice [42]. This state can
be obtained from the coherent density wave by increasing
repulsive interaction between the particles. The fragmented
state is characterized by a different dependence of the wave-
length λ on the particle density n. In contrast to the coherent
supersolid, the wavelength of the MOES increases with n. The
obtained formula is confirmed by the recent experiments. We
expect polar molecules in bilayer geometries to be particularly
promising for further investigation of the subject.
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APPENDIX A: TOPOLOGICAL TRANSFORMATION OF
THE FRAGMENTED CONDENSATE CONSERVING ITS

INTERACTION ENERGY

Let us calculate the volume V of the following object in
(x,y,z) space:

z

h
=

(
x

Rx

)2α

+
(

y

Ry

)2α

+ β

(
xy

RxRy

)α

, (A1)

where (α = 1,β = 0) or (α = 2,β = 2) and z � h0 � h. In
the case (α = 2,β = 2) evaluation of V formally corresponds
to evaluation of the Thomas-Fermi energy of one condensate
[see Eq. (45)]. The case (α = 1,β = 0) yields the number
of particles. The height h0 of the figure (71) physically
corresponds to the chemical potential μ (or, equivalently, the
maximum of the density).

By introducing cylindrical coordinates x = r cos θ and y =
r sin θ , we write the area S(z) of a cross section at the height
z in the form

S(z) =
∫ 2π

0

∫ r(z)

0
rdrdθ

=
( z

h

)1/α

RxRy

∫ +∞

−∞
(1 + x2α + βxα)−1/αdx (A2)

so that the volume reads as

V =
∫ h0

0
S(z)dz

= RxRyh
1/α+1
0

(1/α + 1)h1/α

∫ +∞

−∞
(1 + x2α + βxα)−1/αdx. (A3)
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One can see that the resulting expression is linear in Rx .
Consequently, the volume of our object can be decomposed
into a sum of volumes Vj of J similar objects (j = 1,2,...,J )
with the same height h0, the same transverse diameter of
the base ellipse Ry , and with the sum of Rx,j being equal
to Rx :

V = V1 + V2 + ... + VJ . (A4)

APPENDIX B: QUANTUM PRESSURE CORRECTION TO
THE SUPERSOLID ENERGY

By introducing cylindrical coordinates at each unit cell we
write Eq. (74) in the form

Ekin = E
(ρ)
kin + E

(θ )
kin, (B1)

where

E
(ρ)
kin = J h̄2

2m

∫ 2π

0

∫ +∞

0

∣∣∣∣∂�(ρ,θ )

∂ρ

∣∣∣∣
2

ρdρdθ (B2)

and

E
(θ )
kin = J h̄2

2m

∫ 2π

0

∫ +∞

0

1

ρ2

∣∣∣∣∂�(ρ,θ )

∂θ

∣∣∣∣
2

ρdρdθ (B3)

with J being the total number of unit cells and �(ρ,θ ) is the
Thomas-Fermi profile of one bead (we omit the index j for
brevity). The radial integrals can be divided into two parts:∫ +∞

0
dρ =

∫ R(θ )−ε

0
dρ +

∫ +∞

R(θ )−ε

dρ, (B4)

where

R(θ ) = Rx√
cos2 θ + σ 2 sin2 θ

(B5)

with

σ = Rx

Ry

(B6)

being the aspect ratio of a bead and the constant ε is chosen
such as d(θ ) � ε � R(θ ). The characteristic thickness of the
boundary d(θ ) is given by

d(θ ) =
(

2mF (θ )

h̄2

)−1/3

(B7)

with

F (θ ) =
√

2μmω2
x(cos2 θ + σ 2 sin2 θ ). (B8)

By introducing s = (ρ − R(θ ))/d(θ ) and performing the
transformation

�(ρ) =
√

h̄2

2mṼ0d2
�(s) (B9)

one can rewrite the Gross-Pitaevskii equation on �(ρ,θ ) close
to R(θ ) in the universal form [57]

φ′′ − (s + φ2)φ = 0. (B10)

This form can be conveniently used to evaluate the second
integral in (B4), whose main contribution comes from the
boundary region. Neglecting corrections vanishing as ε/R(θ )
and integrating over θ one finds

E
(ρ)
kin = J

π

2

h̄2

mṼ0
μ

(
ln

Rx

dx

− 5

3
ln

σ + 1

2
− 1 + 4C

)
, (B11)

where

C = −
∫ +∞

−∞
ln(

√
1 + s2 + s)

d

ds
[(φ′)2

√
1 + s2]ds = 0.176.

Expanding to the first order in powers of (σ − 1) yields

E
(ρ)
kin = J

π

2

h̄2

mṼ0
μ

(
ln

Rx

dx

− 1

6
+ 4C

)
, (B12)

where we have omitted the J -independent part. As regards the
angular contribution (B3), it can be shown to be proportional
to (σ − 1)2 and thus can be neglected for our purposes. By
using the relationship (64) one can finally write the equation
for the quantum pressure of the Thomas-Fermi supersolid in
the form

Ekin = J
x

η
kBT 0

c , (B13)

where we have introduced

x = π2

12

(
ln

Rx

dx

− 1

6
+ 4C

)
. (B14)

The dimensionless coefficient x is defined by the topology
of the supersolid density profile in the depleted regions in
between the beads. For the harmonic potential model (B8)
the ratio Rx/dx scales as ω

−1/3
x and, therefore, depends on J .

However, it is presently unclear to what extent the harmonic
trap can be used to model the actual crystalline mean-field
potential. For the sake of simplicity, it is reasonable to assume
that the effective boundary width dx scales as the size of a unit
cell Rx , which implies the parameter x to be a constant (not
dependent on J ).
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