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Abstract. Over the last decade, parallel SAT solving has been widely
studied from both theoretical and practical aspects. There are now
numerous solvers that differ by parallelization strategies, programming
languages, concurrent programming, involved libraries, etc.

Hence, comparing the efficiency of the theoretical approaches is a chal-
lenging task. Moreover, the introduction of a new approach needs either
a deep understanding of the existing solvers, or to start from scratch the
implementation of a new tool.

We present PaInleSS: a framework to build parallel SAT solvers for
many-core environments. Thanks to its genericity and modularity, it pro-
vides the implementation of basics for parallel SAT solving like clause
exchanges, Portfolio and Divide-and-Conquer strategies. It also enables
users to easily create their own parallel solvers based on new strategies.
Our experiments show that our framework compares well with some of
the best state-of-the-art solvers.

Keywords: Parallel · Satisfiability · Clause sharing · Portfolio · Cube
and conquer

1 Introduction

Boolean satisfiability (SAT) has been used successfully in many contexts such
as planning decision [19], hardware and software verification [6], cryptology [27]
and computational biology [22], etc. This is due to the capability of modern SAT
solvers to solve complex problems involving millions of variables and billions of
clauses.

Most SAT solvers have long been sequential and based on the well-known 
DPLL algorithm [8,9]. This initial algorithm has been dramatically enhanced by 
introducing sophisticated heuristics and optimizations: decision heuristics [21, 
29], clauses learning [25,32,35], aggressive cleaning [2], lazy data structures [29], 
preprocessing [11,23,24], etc. The development of these enhancements has been 
greatly simplified by the introduction of MiniSat [10], an extensible SAT solver 
easing the integration of these heuristics in an efficient sequential solver.



The emergence of many-core machines opens new possibilities in this domain.
Two classes of parallel techniques have been developed: competition-based
(a.k.a., Portfolio) and cooperation-based (a.k.a., Divide-and-Conquer). In the
Portfolio settings [14], many sequential SAT solvers compete for the solving of
the whole problem. The first one to find a solution, or proving the problem to
be unsatisfiable ends the computation. Divide-and-Conquer approaches use the
guiding path method [34] to decompose, recursively and dynamically, the origi-
nal problem in sub-problems that are solved separately by sequential solvers. In
both approaches, sequential solvers can dynamically share learnt information.
Many heuristics exist to improve this sharing by proposing trade-off between
gains and overhead.

While the multiplication of strategies and heuristics provides perspectives for
parallel SAT solving, it makes more complex development and evaluation of new
proposals. Thus, any new contribution faces three main problems:

Problem 1: concurrent programming requires specific skills (synchronization,
load balancing, data consistency, etc.). Hence, the theoretical efficiency of an
heuristic may be annihilated by implementation choices.

Problem 2: most of the contributions mainly target a specific component in
the solver while, to evaluate it, a complete one (either built from scratch
or an enhancement of an existing one) must be available. This makes the
implementation and evaluation of a contribution much harder.

Problem 3: an implementation, usually, only allows to test a single composition
policy. Hence, it becomes hard to evaluate a new heuristic with different
versions of the other mechanisms.

This paper presents PArallel INstantiabLE Sat Solver (PaInleSS)1, a frame-
work that simplifies the implementation and evaluation of new parallel SAT
solvers for many-core environments. The components of PaInleSS can be instan-
tiated independently to produce a new complete solver. The guiding principle is
to separate the technical components dedicated to some specific aspect of con-
current programming, from the components implementing heuristics and opti-
mizations embedded in a parallel SAT solver.

Our main contributions are the following:

– we propose a new modular and generic framework that can be used to imple-
ment new strategies with minimal effort and concurrent programming skills;

– we provide adaptors for some state-of-the-art sequential SAT solvers: gluco-
se [2], Lingeling [5], MiniSat [10], and MapleCOMSPS [21].

– we show that it is easy to implemented strategies in PaInleSS, and pro-
vide some that are present in the classical solvers of the state-of-the-art:
glucose-syrup [3], Treengeling [5], and Hordesat [4];

– we show the effectiveness of our modular design by instantiating, with a
minimal effort, new original parallel SAT solver (by mixing strategies);

1 painless.lrde.epita.fr.



– we evaluate our approach on the benchmark of the parallel track of the SAT
Race 2015. We compare the performance of solvers instantiated using the
framework with the original solvers. The results show that the genericity
provided by PaInleSS does not impact the performances of the generated
instances.

The rest of the paper is organized as follows: Sect. 2 introduces useful back-
ground to deal with sequential SAT solving. Section 3 is dedicated to parallel
SAT solving. Section 4 shows the architecture of PaInleSS. Section 5 presents
different solvers implemented using PaInleSS. Section 6 analyzes the results of
our experiments and Sect. 7 concludes and gives some perspectives work.

2 About Sequential SAT Solving

In this section, after some preliminary definitions and notations, we introduce
the most important features of modern sequential SAT solvers.

A propositional variable can have two possible values ⊤ (True) or ⊥ (False). A
literal l is a propositional variable (x) or its negation (¬x). A clause ω is a finite

disjunction of literals (noted ω =
∨

k

i=1 ℓi). A clause with a single literal is called
unit clause. A conjunctive normal form (CNF) formula ϕ is a finite conjunction

of clauses (noted ϕ =
∧k

i=1 ωi). For a given ϕ, the set of its variables is noted:
Vϕ. An assignment A of variables of ϕ, is a function A : Vϕ → {⊤,⊥}. A is total
(complete) when all elements of Vϕ have an image by A, otherwise it is partial.
For a given formula ϕ, and an assignment A, a clause of ϕ is satisfied when it
contains at least one literal evaluating to true, regarding A. The formula ϕ is
satisfied by A iff ∀ω ∈ ϕ,ω is satisfied. ϕ is said to be sat if there is at least one
assignment that makes it satisfiable. It is defined as unsat otherwise.

Conflict Driven Clause Leaning. The majority of the complete state-of-the-
art sequential SAT solvers are based on the Conflict Driven Clause Learning
(CDCL) algorithm [25,32,35], that is an enhancement of the DPLL algorithm
[8,9]. The main components of a CDCL are depicted in Algorithm1.

At each step of the main loop, unitPropagation2 (line 4) is applied on the
formula. In case of conflict (line 5), two situations can be observed: the conflict
is detected at decision level 0 (dl == 0), thus the formula is declared unsat

(lines 6–7); otherwise, a new asserting clause is derived by the conflict analysis
and the algorithm backjumps to the assertion level [25] (lines 8–10). If there is
no conflict (lines 11–13), a new decision literal is chosen (heuristically) and the
algorithm continues its progression (adding a new decision level: dl ← dl + 1).
When all variables are assigned (line 3), the formula is said to be sat.

2 The unitPropagation function implements the Boolean Constraint Propagation
(BCP) procedure that forces (in cascade) the values of the variables in asserting
clauses [8].



1 function CDCL()

2 dl ← 0 // Current decision level

3 while not all variables are assigned do

4 conflict ← unitPropagation()

5 if conflict then

6 if dl = 0 then

7 return ⊥ // ϕ is unsat

8 ω ← conflictAnalysis()

9 addLearntClause(ω)

10 dl ← backjump(ω)

11 else

12 assignDecisionLiteral()

13 dl ← dl + 1

14 return ⊤ // ϕ is sat

Algorithm 1. CDCL algorithm.

The Learning Mechanism. The effectiveness of the CDCL lies in the learning
mechanism. Each time a conflict is encountered, it is analyzed (conflictAnaly-
sis function in Algorithm1) in order to compute its reasons and to derive a
learnt clause. While present in the system, this clause will avoid the same mistake
to be made another time, and therefore allows faster deductions (conflicts/unit
propagations).

Since the number of conflicts is very huge (in avg. 5000/s [2]), controlling the
size of the database storing learnt clauses is a challenge. It can dramatically affect
performance of the unitPropagation function. Many strategies and heuristics
have been proposed to manage the cleaning of the stored clauses (e.g., the Literal
Block Distance (LBD) [2] measure).

With the two classical approaches used for parallel SAT solving: Portfolio and
Divide-and-Conquer (see Sect. 3), multiple sequential solvers are used in parallel
to solve the formula. With these paradigms sequential solvers can be seen as
black boxes providing solving and clause sharing functionalities.

3 About Parallel SAT Solving

The arrival of many-core machines leads to new possibilities for SAT solving.
Parallel SAT solving rely on two concepts: parallelization strategy and learnt
clause exchanges. Two main parallelization methods have been developed: Port-
folio and Divide-and-Conquer. We can also mention the hybrid approaches as
alternatives, that are combinations of the first two techniques. With these paral-
lelization strategies, it is possible to exchange learnt clauses, between the under-
ling sequential solvers.



3.1 Parallelization Strategies

Portfolio. The Portfolio scheme has been introduced by [14], in ManySat. The
main idea of this approach is to run sequential solvers working in parallel on
the entire formula, in a competitive way. This strategy aims at increasing the
probability of finding a solution using the diversification [12] (also known as
swarming in others contexts) principle.

The diversification can only concern the used heuristics: several solvers (work-
ers) with different heuristics are instantiated. They differ by their decision strate-
gies, learning schemes, the used random seed, etc.

Another type of diversification, introduced in HordeSat [4], uses the phase
of the variables: before starting the search each solver receives a special phase,
acting as a soft division of the search space. Solvers are invited to visit a certain
part of the search space but they can move out of this region during the search.

Another technique to ensure the diversification is the block branching [33]:
each worker focuses on a particular subset (or block) of variables. Hence, the
decision variables of a worker are chosen from the block it is in charge of.

Divide-and-Conquer. The Divide-and-Conquer approach is based on split-
ting the search space in disjoint parts. These parts are solved independently, in
parallel, by different workers. As the parts are disjunct, if one of the partitions
is proven to be sat then the initial formula is sat. The formula is unsat if all
the partitions are unsat. The challenging points of the this method are: dividing
the search space and balancing jobs between workers.

To divide the search space, the most used technique is based on the Shannon’s
decomposition, known as the guiding path [34]. The guiding path is a vector of
literals (a.k.a., cube) that are assumed by the worker when solving the formula.

Choosing the best division variables is a hard problem requiring heuristics.
If some parts are too easy this will lead to repeatedly divide the search space
and ask for a new job (phenomenon known as ping-pong effect). As all the
partitions do not require the same solving time, some workers may become idle
and a mechanism for load balancing is needed. Each time a solver proves that
its partition is unsat

3, it needs a new job. Another solver is chosen as target to
divide its search space (i.e., to extend its guiding path). The target will work on
one of the new partition and the idle worker on the other one. This mechanism
is often called work stealing.

Hybrid Approaches. As already presented, Portfolio and Divide-and-
Conquer, are the two main explored approaches to parallelize SAT solving.

The Portfolio scheme is simple to implement, and uses the principle of diversi-
fication to increase the probability of solving the problem. However, since workers
can overlap their search regions, the theoretical resulting speed-up is not as good
as the one of the Divide-and-Conquer approach [17]. Surprisingly, while giving

3 If the result is sat the global solving ends.



a better theoretical speed-up, the Divide-and-Conquer approach suffers from the
two challenging issues we mentioned: dividing the search space and balancing
jobs between workers.

Emerging techniques, called hybrid approaches, propose to use simultaneously
the two strategies, so that we benefit from the advantages of each, while trying
to avoid their drawbacks.

A basic manner to mix the two approaches is to compose them. There are two
possible strategies: Portfolio of Divide-and-Conquer (introduced by c-sat [30]),
and Divide-and-Conquer of Portfolios (e.g., ampharos [1] an adaptive Divide-
and-Conquer that allows multiple workers on the same sub-part of the search
space). Let us mention other more sophisticated ways to mix approaches like
scattering [16,18] or transition heuristics based strategies [1,7,26,31].

3.2 Clauses Sharing

In all these parallelization paradigms, sharing information between workers is
possible, the most important one being clauses learnt by each worker. Hence, the
main questions are: which clauses should be shared? And between which workers?
Indeed, sharing all clauses can have a bad impact on the overall behavior.

To answer the first question, many solvers rely on the standard measures,
defined for sequential solvers (i.e., activity, size, LBD): only clauses under a given
threshold for these measures are shared. One simple way to get the threshold is
to define it as constant it (e.g., clauses up to size 8 are shared in ManySat [14]).
More sophisticated approaches adapt thresholds dynamically in order to control
the flow of shared clauses during the solving [4,13].

A simple solution to the second question, adopted in almost all parallel SAT
solvers, is to share clauses between all workers. However, a finer (but more com-
plex) solution is to let each worker choose its emitters [20].

As a conclusion of this section, we can say that parallel SAT solving is based on
two distinct concepts. First, there exist numerous strategies to parallelize SAT
solving by organizing the workers search. Secondly, with all these strategies is it
possible to share clauses between the workers. This two concepts have been our
intuition sources for the design of the architecture of PaInleSS.

4 Architecture of the Framework

There exist numerous strategies to parallelize SAT solving, their performances
heavily relying on their implementation. The most difficult issues deal with con-
current programming. Languages and libraries provide abstractions to deal with
this difficulties, and according to these abstractions developers have more or less
control on mechanisms such as memory or threads management (e.g., Java vs
C++). This will affect directly the performance of the produced solver.

Therefore, it is difficult to compare the strategies without introducing tech-
nological bias. Indeed, it is difficult to integrate new strategies on top of existing



Fig. 1. Architecture of PaInleSS.

solvers, or to develop a new solver from scratch. Moreover, an implementation
usually offers the possibility to modify a particular component, it is then difficult
to test multiple combinations of components.

PaInleSS aims to be a solution to these problems. It is a generic, modular,
and efficient framework, developed in C++11, allowing an easy implementation of
parallel strategies. Taking black-boxed sequential solvers as input, it minimizes
the effort to encode new parallelization and sharing strategies, thus enabling the
implementation of complete SAT solvers at a reduced cost.

As mentioned earlier, a typical parallel SAT solver relies mainly on three core
concepts: sequential engine(s), parallelization, and sharing. These last form the
core of the PaInleSS architecture (see Fig. 1): the sequential engine is handled
by the SolverInterface component. The parallelization is implemented by the
WorkingStrategy and SequentialWorker components. Components Sharing-
Strategy and Sharer are in charge of the sharing.

Sequential Engine. SolverInterface is an adapter for the basic functions
expected from a sequential solver, it is divided in two subgroups: solving and
clauses export/import (respectively represented by arrows 1 and 2 in Fig. 1). Sub-
group 1 provides methods that interact with the solving process of the underling
solver. The most important methods of this interface are:

– SatResult solve(int[*] cube): tries to solve the formula, with the given
cube (that can be empty in case of Portfolio). This method returns sat,
unsat, or unknown.

– void setInterrupt(): stops the current search initiated using the solve

method.
– void setPhase(int var, bool value): set the phase of variable var to
value.

– void bumpVariableActivity(int var, int factor): bumps factor

times the activity of variable var.
– void diversify(): adjusts internal parameters of the solver, to diversify its

behaviour.



Subgroup 2 provides methods to add/fetch learnt clauses to/from the solver:

– void addClause(Clause cls): adds a permanent clause to the solver.
– void addLearntClause(Clause cls): adds a learnt clause to the solver.
– Clause getLearntClause(): gets the oldest produced learnt clause from the

solver.

The interface also provides methods to manipulate sets of clauses. The clauses
produced or to be consumed by the solver, are stored in local lockfree queues
(based on algorithm of [28]).

Technically, to integrate a new solver in PaInleSS, one needs to create
a new class inheriting from SolverInterface and implement the required
methods (i.e., wrapping the methods of the API offered by the underlying
solver). The framework currently provides some basic adaptors for Lingeling [5],
glucose [2], Minisat [10], and MapleCOMSPS [21].

Parallelization. Basic parallelization strategies, such as those introduced in
Sect. 3, must be implemented easily. We also aim at creating new strategies and
mixing them.

A tree-structured (of arbitrary depth) composition mechanism enables the
mix of strategies: internal nodes represent parallelization strategies, and leaves
solvers. As an example (see Fig. 2(a)), a Divide-and-Conquer of Portfolios is
represented by a tree of depth 3: the root corresponds to the Divide-and-Conquer
having children representing the Portfolios acting on several solvers (the leaves
of the tree).

Fig. 2. Example of a composed parallelization strategy.

PaInleSS implements nodes using the WorkingStrategy class, and leaves
with the SequentialWorker class. This last is a subclass of WorkingStrategy

that integrates an execution flow (a thread) operating the associated solver.
The overall solving workflow within this tree is user defined and guaranteed

by the two main methods of the WorkingStrategy (arrows 3 in Fig. 1):



– void solve(int[*] cube): according to the strategy implemented, this
method manages the organization of the search by giving orders to the chil-
dren strategies.

– void join(SatResult res, int[*] model): used to notify the parent
strategy of the solving end. If the result is sat, model will contain an assign-
ment that satisfies the sub-formula treated by this node.

It is worth noting that the workflow must start by a call to the root’s solve

method and eventually ends by a call to the root’s join method. The propagation
of solving orders from a parent to one of its child nodes, is done by a call to the
solve method of this last. The results are propagated back from a child to its
parent by a call to the join method of this last. The solving can not be effective
without a call to the leaves’ solve methods.

Back to the example of Fig. 2(a). Consider the execution represented in
Fig. 2(b). The solving order starts by a call to the root’s (DC node) solve method.
It is relayed trough the tree structure to the leaves (SW nodes). Here, once its
problem is found sat by one of the SW, it propagates back the result to its PF

node parent via a call to the join method. According to the strategy of the PF,
the DC’s join method is called and ends the global solving.

Hence, to develop its own parallelization strategy, the user should create one
or more subclass of WorkingStrategy and to build the tree structure.

Sharing. In parallel SAT solving, we must pay a particular attention to the
exchange of learnt clauses. Indeed, beside the theoretical aspects, a bad imple-
mentation of the sharing can dramatically impact the efficiency of the solver
(e.g., improper use of locks, synchronization problems). We now present how
sharing is organized in PaInleSS.

When a solver learns a clause, it can share it according to a filtering policy
such as the size or the LBD of the clause. To do so it puts the clause in a
special buffer (buff exp in Fig. 3). The sharing of the learnt clauses is realized by
dedicated thread(s): Sharer(s). Each one is in charge of a set of producers and
consumers (these are references to SolverInterface). Its behaviour reduces to

Fig. 3. Sharing mechanism implemented in PaInleSS.



a loop of sleeping and exchange phases. This last is done by calling the interface
of SharingStrategy class (arrow 4 in Fig. 1). The main method of this class is
the following:

– void doSharing(SolverInterface[*] producers, SolverInterface[*]

consumers): according to the underlying strategy, this method gets clauses
from the producers and add them to the consumers.

In the example of Fig. 3, the Sharer uses a given strategy, and all the solvers
(Si) are producers and consumers. The use of dedicated workflows (i.e., threads)
allows CPU greedy strategies to be run on a dedicated core, thus not interfering
with the solving workers. Moreover, sharing phase can be done manipulating
groups of clauses, allowing the use of more sophisticated heuristics. Finally, dur-
ing its search a solver can get clauses from its import buffer (buff imp in Fig. 3)
to integrate them in its local database.

To define a particular sharing strategy the user only needs to provide a
subclass of SharingStrategy. With our mechanism it is possible to have sev-
eral groups of sharing each one manage by a Sharer. Moreover, solvers can be
dynamically added/deleted from/to the producers and/or customers sets of a
Sharer.

Engine Instantiation. To create a particular instance of PaInleSS, the user
has to adapt the main function presented by Algorithm2. The role of this func-
tion is to instantiate and bind all the components correctly. This actions are
simplified by the use of parameters.

First, the concrete solver classes (inheriting from SolverInterface) are
instantiated (line 2). Then the WorkingStrategy (including SequentialWorker)
tree is implemented (line 3). This operation links SequentialWorker

to their SolverInterface. Finally, the Sharer(s) and their concrete
SharingStrategy(s) are created; the producers and consumers sets are initial-
ized (line 4).

1 function main-PaInleSS (args: the program arguments)

2 solvers ← Create SolverInterface

3 root ← Create WorkingStrategy tree (solvers)
4 sharers ← Create SharingStrategy and Sharer (solvers)
5 root.solve()

6 while timeout or stop do

7 sleep(...)

8 print(root.getResult() )

9 if root.getResult() == sat then

10 print(root.getModel() )

Algorithm 2. The main function of PaInleSS.



The solving starts by the call to the solve method of the root WorkingStra-
tegy tree. The main thread will execute a loop, where it sleeps for an amount
of time, and then checks if either the timeout has been reached or the solving
ended (lines 6–7). It prints the final result (line 8), plus the model in case of a
sat instance (lines 9–10).

5 Implementing and Combining Existing Strategies

To validate the generic aspect of our approach, we selected three efficient state-
of-the-art parallel SAT solvers: glucose-syrup [3], Treengeling [5], and Horde-

sat [4]. For each selected solver, we implemented a solver that mimics the original
one using PaInleSS. To show the modularity of PaInleSS, we used the already
developed components to instantiate two new original solvers that combine exist-
ing strategies.

Solver “à la Glucose-Syrup”. The glucose-syrup4 solver is the winner of
the parallel track of the SAT Race 2015. It is a Portfolio based on the sequen-
tial solver glucose [2]. The sharing strategy exchanges all the exported clauses
between all the workers. Beside, the workers have customized settings in order
to diversify their search.

Hence, implementing a solver “à la glucose-syrup”, namely
PaInleSS-breakglucose-syrup, required the following components: Glucose
an adaptor to use the glucose solver; Portfolio a simple WorkingStrategy

that implements a Portfolio strategy; SimpleSharing a SharingStrategy that
exchanges all the exported clauses from the producers to all the consumers with
no filtering.

The implementation of PaInleSS-glucose-syrup required 355 lines of code
(LoC) for the adaptor, 95 LoC for the Portfolio, and 44 LoC for the sharing
strategy.

Solver “à la Treengeling”. The Treengeling5 solver is the winner of the
parallel track of the SAT Competition 2016. It is based on the sequential engine
Lingeling [5]. Its parallelization strategy is a variant of Divide-and-Conquer
called Cube-and-Conquer [15]. The solving is organized in rounds. Some workers
search for a given number of conflicts. When the limit is reached, some are
selected to split their sub-spaces using a lookahead heuristic. The sharing is
restricted to the exchange of unit clauses from a special worker. This last is also
in charge of the solving of the whole formula during all the execution.

To implement a solver “à la Treengeling”, namely PaInleSS-treengeling,
we needed the following components: Lingeling, an adaptor of the sequen-
tial solver Lingeling; CubeAndConquer a WorkingStrategy, that implements a

4 www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz.
5 www.fmv.jku.at/lingeling/lingeling-bbc-9230380-160707.tar.gz.



Cube-and-Conquer [15]; SimpleSharing already used to define for the glucose-
syrup like solver. In this case, the underlying sequential solvers are parametrized
to export only unit clauses, and only the special worker is a producer.

For the CubeAndConquer we choose time to manage rounds because it allows,
once one worker has encountered an unsat situation, to restart the worker with
another guiding-path. In the original implementation, rounds are managed using
numbers of conflicts, this makes the reuse of idle CPU much harder.

The implementation of PaInleSS-treengeling needed 377 LoC for the
adaptor and 249 LoC for CubeAndConquer.

Solver “à la Hordesat”. Hordesat6 is a Portfolio-based solver with a modular
design. Hordesat uses as sequential engine either Minisat [10] or Lingeling. It
is a Portfolio where the sharing is realized by controlling the flow of exported
clauses. Every second, 1500 literals (i.e., sum of the size of the clauses) are
exported from each sequential engine. Moreover, we used the Lingeling solver
and the native diversification of Plingeling [5] (a Portfolio solver of Lingeling)
combined to the random sparse diversification (presented as the best combination
by [4]).

The solver “à la Hordesat”, namely PaInleSS-hordesat, required the fol-
lowing components: Lingeling and Portfolio that have been implemented
earlier; HordesatSharing a SharingStrategy that implements the Hordesat

sharing strategy. This last required only 148 LoC.

Combining Existing Strategies. Based on the implemented solvers, we
reused the obtained components to quickly build two new original solvers.

PaInleSS-treengeling-hordesat: it is a PaInleSS-treengeling-based
solver that shares clauses using the strategy of Hordesat. The implementation
of this solver reuses the Lingeling, CubeAndConquer, and HordesatSharing

classes. To instantiate this solver we only needed a special parametrization.
Beside, the modularity aspects, by this instantiation, we aimed to investi-
gate the impact of a different sharing strategy on the overall performances of
PaInleSS-treengeling.

PaInleSS-treengeling-glucose: it is a Portfolio solver that mixes Cube-and-
Conquer of Lingeling, and a Portfolio of Glucose solvers. Here, Glucose

workers export unit and glue clauses [2] (i.e., clauses with LBD equals to
2) to the other solvers. This last solver reuses the following components:
Lingeling, Glucose, Portfolio, CubeAndConquer, SimpleSharing. Only 15
LoC are required to build the parallelization strategy tree. By the instantia-
tion of this solver, we aimed to study the effect of mixing some parallelisation
strategies.

6 baldur.iti.kit.edu/hordesat/files/hordesat.zip.



6 Numerical Results

This section presents the results of experiments we realized using the
solvers described in Sect. 5: PaInleSS-glucose-syrup, PaInleSS-treengeling,
PaIn-leSS-hordesat, PaInleSS-treengeling-hordesat, and PaInleSS-

treenge-ling-glucose. The goal here is to show that the introduction of gener-
icity does not add an overhead w.r.t. the original solvers.

All the experiments have been executed on a parallel machine with 40 proces-
sors Intel Xeon CPU E7- 2860 @ 2.27 GHz, and 500 Go of memory. We used the
100 instances of the parallel track of the SAT Race 20157. All experiments have
been conducted using the following parametrisations: each solver has been run
once on each instance, with a time-out of 5000 s (as in the SAT Race). We limited
the number of involved CPUs to 36.

Table 1. Results of the different solvers. The different columns represent: the number of
unsat solved instances, sat solved instances, total solved instances, and the cumulative
time spent solving the instances solved by the two solvers.

Solver UNSAT SAT Total Cum. Time Inter.

glucose-syrup 30 41 71 15 h37

PaInleSS-glucose 32 46 78 13 h18

Treengeling 32 50 82 20 h55

PaInleSS-treengeling 32 50 82 14 h12

Hordesat 31 44 75 15 h05

PaInleSS-hordesat 31 43 74 14 h19

The number of solved instances per solver are reported in Table 1. Globally,
these primary results show that our solvers compare well to the studied state-
of-the-art solvers. We can deduce that the genericity offered by PaInleSS does
not impact the global performances. Moreover, on instances solved by both, the
original solver and our implementation, the cumulative solving time is in our
favor (see column Cum. Time. Inter. in Table 1). A more detailed analysis is
given for each solver in the rest of the section.

PaInleSS-glucose-syrup vs. glucose-syrup. Our implementation of the
glucose-syrup parallelization strategy was able to solve 7 more instances com-
pared to glucose-syrup. This concerns both sat and unsat instances as shown
in the scatter plot of Fig. 4(a) and, in the cactus plots of Figs. 5(a) and 6(b).
This gain is due to our careful design of the sharing mechanism that is decen-
tralized and uses lock-free buffers. Indeed in glucose-syrup a global buffer is
used to exchange clauses, which requires import/export to use a unique lock,
thus introducing a bottleneck. The absence of bottleneck in our implementation
increases the parallel all over the execution, explaining our better performances.

7 baldur.iti.kit.edu/sat-race-2015/downloads/sr15bench-hard.zip.



(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 4. Scatter plots of PaInleSS’s solvers against state-of-the-art ones.

(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 5. Cactus plots of sat instances of PaInleSS’s solvers against state-of-the-art
ones.

(a) glucose-syrup (b) Treengeling (c) Hordesat

Fig. 6. Cactus plots of unsat instances of PaInleSS’s solvers against state-of-the-art
ones.

PaInleSS-treengeling vs. Treengeling. Concerning Treengeling, our imple-
mentation has comparable results. Figure 4(b) shows that the average solving
time of sat instances is quite similar, while for the unsat instances, our imple-
mentation is in average faster. This is corroborated by the cactus plot depicted
in Fig. 6(b). This speed up is due to our fine implementation of the Cube-and-
Conquer strategy, thus increasing the real parallelism all over the execution and
explaining our better performances on unsat instances.



PaInleSS-hordesat vs. Hordesat. Although Hordesat was able to solve 1
more instance than our tool, results are comparable. Moreover scatter plot of
Fig. 4(c), and cactus plots of Figs. 5(c) and 6(c) exhibit quit similar results for
the two tools. For instances solved by both tools, our tool was a beat faster
and used almost 3000 seconds less as pointed out in Table 1. As the sharing
strategy of Hordesat is mainly based on two parameters, namely the number of
exchanged literals per round, and the sleeping time of sharer by round, we think
that a finer tuning of this couple of parameters for our implementation could
improve the performances of our tool.

(a) treengeling-hordesat (b) treengeling-glucose

Fig. 7. Scatter plots of the composed solvers against PaInleSS-treengeling.

Results of the Composed Solvers. PaInleSS-treengeling-hordesat

solved 81 instances (49 sat and 32 unsat), and PaInleSS-treengeling-

glucose solved 81 instances (48 sat and 33 unsat). The scatter plot of the
two strategies (Fig. 7), show that these strategies are almost equivalent w.r.t.
the original ones. These results allow us to conclude that the introduced strate-
gies do not add any value to the original one.

7 Conclusion

Testing and implementing new strategies for parallel SAT solving has become
a challenging issue. Any new contribution in the domain faces the following
problems: concurrent programming requires specific skills, testing new strategies
required a prohibitive development of a complete solver (either built from scratch
or an enhancement of an existing one), an implementation often allows to test
only a single composition policy and avoids the evaluation of a new heuristic
with different versions of the other mechanisms.

To tackle these problems we proposed PaInleSS, a modular, generic and
efficient framework for parallel SAT solving. We claimed that its modularity



and genericity allow the implementation of basic strategies, as well as new onces
and their combination with a minimal effort and concurrent programming skills.

We have proven our claims, first, by the implementation of strategies present
in some state-of-the-art solvers: glucose-syrup, Treengeling, and Hordesat.
Second, we reused the developed complements to derive, easily, new solvers that
mix strategies. We also show that the instantiated solvers are as efficient as the
original one (and even better), by conducting a set experiments using bench-
marks of the SAT Race 2015.

As perspectives, we plan to adapt our framework for mutli-machine environ-
ments. We also would like to enhance PaInleSS with helpful tools to monitor
algorithm metrics (e.g., number of shared clauses), system metrics (e.g., synchro-
nization time, load balancing), and to facilitate the debugging work. Another
interesting point is the simplification of the instantiation mechanism by provid-
ing a domain specific language (DSL).
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16. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT
in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435.
Springer, Heidelberg (2006). doi:10.1007/11814948 39

17. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning search spaces of a ran-
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