

SCCS OPINION ON Basic Blue 99 (C059)

Ulrike Bernauer, Laurent Bodin, Leonardo Celleno, Qasim Mohammad Chaudhry, Pieter-Jan Coenraads, Maria Dusinska, Janine Ezendam, Eric Gaffet, Lodovico Corrado Galli, Berit Granum, et al.

▶ To cite this version:

Ulrike Bernauer, Laurent Bodin, Leonardo Celleno, Qasim Mohammad Chaudhry, Pieter-Jan Coenraads, et al.. SCCS OPINION ON Basic Blue 99 (C059). 2017. hal-01540637

HAL Id: hal-01540637 https://hal.science/hal-01540637

Submitted on 16 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Scientific Committee on Consumer Safety

SCCS

OPINION ON Basic Blue 99 (C059)

The SCCS adopted this Opinion on 6 June 2017

About the Scientific Committees

Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems that may pose an actual or potential threat.

These Committees are the Scientific Committee on Consumer Safety (SCCS) and the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) and they are made up of scientists appointed in their personal capacity.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

SCCS

The Committee shall provide Opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).

Scientific Committee members

Bernauer Ulrike, Bodin Laurent, Celleno Leonardo, Chaudhry Mohammad Qasim, Coenraads Pieter-Jan, Dusinska Maria, Ezendam Janine, Gaffet Eric, Galli Corrado Lodovico, Granum Berit, Panteri Eirini, Rogiers Vera, Rousselle Christophe, Stępnik Maciej, Vanhaecke Tamara, Wijnhoven Susan

<u>Contact</u> European Commission Health and Food Safety Directorate C: Public Health, Country Knowledge, Crisis Management Unit C2 – Country Knowledge and Scientific Committees L-2920 Luxembourg <u>SANTE-C2-SCCS@ec.europa.eu</u>

[©] European Union, 2017

ISSN	ISBN
Doi:	ND-

The Opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The Opinions are published by the European Commission in their original language only.

http://ec.europa.eu/health/scientific_committees/index_en.htm

ACKNOWLEDGMENTS

SCCS members listed below are acknowledged for their valuable contribution to this Opinion.

SCCS Members

Dr U. Bernauer Dr L. Bodin Dr L. Celleno Prof. Q. Chaudhry Prof. P.J. Coenraads (Chairperson) Prof. M. Dusinska Dr J. Ezendam Prof. C. L. Galli Dr B. Granum Prof. E. Panteri (Rapporteur) Prof. V. Rogiers Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven

Former Member: Prof. J. Duus-Johansen

All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm

Keywords: SCCS, scientific opinion, hair dye, Basic Blue 99 (C059), Regulation 1223/2009, CAS: 68123-13-7, EC: 268-544-3

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Opinion on Basic Blue 99 (C059), 7 March 2017, SCCS/1585/17

This opinion has been subject to a commenting period of 9 weeks (from 12 March 2017 to 14 May 2017) after its initial publication.

There were no comments received and the final version of the opinion remained unchanged compared to the preliminary one.

TABLE OF CONTENTS

1.	BACKGROUND	
2.	TERMS OF REF	ERENCE 5
3.	OPINION	
	3.1 Chemica	and Physical Specifications 6
	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.2 Function	Chemical identity.6Physical form6Molecular weight7Purity, composition and substance codes7Impurities / accompanying contaminants.7Solubility7Partition coefficient (Log Pow)7Additional physical and chemical specifications7Homogeneity and Stability7and uses12
	3.3 Toxicolog	jical Evaluation12
4.	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 3.3.11 3.3.12 3.3.13 3.3.14 CONCLUSION	Acute toxicity12Irritation and corrosivity13Skin sensitisation13Dermal / percutaneous absorption13Repeated dose toxicity13Mutagenicity / Genotoxicity13Carcinogenicity13Reproductive toxicity13Toxicokinetics14Photo-induced toxicity14Special investigations14Safety evaluation (including calculation of the MoS)14Identification14Mutagenicity14
5.	MINORITY OPI	NION14
6.	REFERENCES .	15
7.	ANNEX	

1. BACKGROUND

The substance Basic Blue 99 (INCI) (CAS 68123-13-7) (COLIPA No C059) with the chemical name 3-[(4-amino-6-bromo-5,8-dihydro-1-hydroxy-8-imino-5-oxo-2-naphthalenyl)amino]-N,N,N-trimethyl benzenaminium chloride is a direct hair dye substance in hair dye formulations with a concentration on-head of maximum 1.0%.

Submission I and II for the hair dye Basic Blue 99 were transmitted in August 1992 and March 2006 respectively by COLIPA. Following Submission II, in September 2011 the Scientific Committee for Consumer Safety (SCCS) expressed concerns regarding the highly variable composition of Basic Blue of the analysed batches that made it impossible to conclude on the safety of the substance (SCCS/1437/11).

In reply to these scientific concerns, in July 2014 EFfCI provided new analytical data (Submission III) on the batches presented by COLIPA in the previous submissions and on other more recent batches. In September 2014, the SCCS concluded that:

"Basic Blue 99 is a mixture of up to 40 substances of varying concentrations as demonstrated by the HPLC analysis of six batches (See Figures 1-3 and Tables 2, 3 and 5).

Due to the highly variable composition of Basic Blue 99 in six batches, the safety of Basic Blue 99 cannot be evaluated." (SCCS/1537/14).

In April 2016, EFfCI submitted another dossier (Submission IV) containing new information on composition in an update of the analytical description of market quality and other data.

2. TERMS OF REFERENCE

- (1) In light of the new data provided, does the SCCS consider Basic Blue 99 (C059) safe as direct hair dye substance in hair dye formulations with a concentration on-head up to a maximum of 1.0%?
- (2) Does the SCCS have any further scientific concerns with regard to the use of Basic Blue 99 (C059) in cosmetic products?

3. OPINION

3.1 Chemical and Physical Specifications

3.1.1 Chemical identity

3.1.1.1 Primary name and/or INCI name

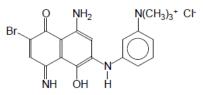
Basic Blue 99

3.1.1.2 Chemical names

Benzenaminium, 3-[(4-amino-6-bromo-5,8-dihydro-1-hydroxy-8-imino-5-oxo-2-naphthalenyl)amino]- N,N,N-trimethyl-, chloride (9CI)

3-[(4-amino-6-bromo-5,8-dihydro-1-hydroxy-8-imino-5-oxo-2-naphtyl)amino]-N,N,N – trimethylanilinium chloride (main component),

3.1.1.3 Trade names and abbreviations


C059

Arianor Steel Blue Jarocol Steel Blue Basic Blue 99 C.I. 56059

3.1.1.4 CAS / EC number

CAS: 68123-13-7 EC: 268-544-3

3.1.1.5 Structural formula

3-[(4-amino-6-bromo-1-hydroxy-8-imino-5-oxo-5,8-dihydronaphthalen-2-yl)aminol-N,N,N-trimethylbenzenaminium chloride

3.1.1.6 Empirical formula

Formula: C19H20BrN4O2+ x Cl- (main component)

3.1.2 Physical form

Blue black, fine powder

3.1.3 Molecular weight

Molecular weight: 451.8 (as chloride), 416.3 (as cation)

3.1.4 Purity, composition and substance codes

See General comments to physico-chemical characterisation (below)

3.1.5 Impurities / accompanying contaminants

See General comments to physico-chemical characterisation (below)

3.1.6 Solubility

Water 10-100 g/L room temperature Ethanol 1-10 g/L room temperature DMSO 1-10 g/L room temperature

3.1.7 Partition coefficient (Log Pow)

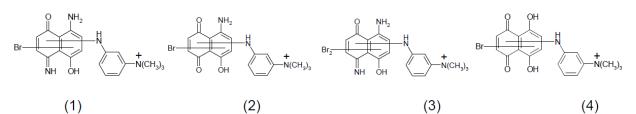
Log Pow: 1.88 (calculated with Syracuse)

3.1.8 Additional physical and chemical specifications

Melting point: > 200 °C (thermal decomposition) Boiling point: / Flash point: / Vapour pressure: / Density: / Viscosity: / pKa: / Refractive index: / UV_Vis spectrum (200-800 nm): /

3.1.9 Homogeneity and Stability

A freshly prepared sample of Basic Blue 99 batch 0107664 at 0.05 mg/ml in water was compared by HPLC-DAD with a sample stored 3 days at autosampler conditions (4°C). According to the main peak area, the sample was stable within a period of 3 days at 4°C, as a recovery of 99.6 % was found under the study conditions.


General Comments to the physicochemical part

The provided data and the SCCS comments according to Submissions I, II and III are summarised in Annexes I and II

Information on purity (and impurity) of Basic Blue 99, according to Submission IV, 2016

Purity

According to the applicant, the product is a mixture of the following defined structures:

(1) = 3-[(Bromo-8-amino-5-hydroxy-4-imino-1-oxo-1,4-dihydronaphthalenyl)amino]-N,N,N trimethylbenzeneaminium chloride

(2) = 3-[(Bromo-8-amino-5-hydroxy-1,4-dioxo-1,4-dihydronaphthalenyl)amino]-

N,N,Ntrimethylbenzeneaminium chloride

(3) = 3-[(Dibromo-8-amino-5-hydroxy-4-imino-1-oxo-1,4-dihydronaphthalenyl)amino]-N,N,Ntrimethylbenzeneaminium chloride

(4) = 3-[(Bromo-5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalenyl)amino]-N,N,N trimethylbenzeneaminium chloride

The purity of Basic Blue 99, based on major components (\geq 5% HPLC peak area) linked to batch 74/75 used in toxicity studies and to updated representative market materials, is described in Table 1 (HPLC results).

ID	MW (as cation)	74/75	106106	201501121	Range
Main	415/417	62.8	64.1	61.3	58.0-70.0
А	337	1.7	1.7	2.8	1.0-4.0
В	418	1.8	3.8	0.8	0.0-4.0
С	338	0.4	0.2	1.4	0.0-2.0
E	493/ 495/ 497	11.8	7.4	6.1	6.0-12.0
F	416/418	8.4	7.0	12.5	7.0-14.0
G	494/ 496/ 498	2.1	2.7	1.8	1.0-3.0
J	417/419	4.1	5.4	3.5	3.0-6.0
к	430/432	0.9	0.0	0.8	0.0-2.0
L	423/429	2.6	4.4	3.0	2.0-5.0
М	495/497	0.9	0.0	0.6	0.0-1.0
N	496/498	0.7	0.0	0.7	0.0-1.0
0	417	1.0	0.0	1.3	0.0-2.0
P	451	0.0	0.6	0.0	0.0-1.0
Q	352	0.2	0.2	0.3	0.0-1.0

Based on these results, the applicant narrowed Basic Blue 99 composition definition (see Table 2).

8

Basic Blue 99 components	MW (as cation)	% HPLC peak area (range)
Br H OH H N(CH ₃) ₃	416.3	58.0 – 70.0
$Br \xrightarrow{O \\ O \\ O \\ OH \\ (F)} + (CH_3)_3$	417.3	7.0 – 14.0
Br ₂ NH OH (E)	495.2	6.0 – 12.0
$(J) \qquad \qquad$	418.3	3.0 – 6.0

Table 2: Composition	definition	of Basic	Blue 00
Table 2: Composition	demilition	UI DASIC	Diue 99

Impurity

Inorganic impurities:

Pb <20 ppm ; Sb and Ni <10 ppm; As and Cd <5 ppm; Hg <1 ppm Organic impurities: Subsidiary colours (HPLC peak area below 5% and above 1%) and impurities (HPLC peak area below 1%) are summarised in Table 3:

Table 3: Organic impurities based on HPLC data (HPLC peak area below 5% and above 1%) and impurities (HPLC peak area below 1%)

Basic Blue 99 subsidiary colors	MW (as cation)	% HPLC peak area (range)
Br ₃ (L)	425.9	2.0 - 5.0
(A)	337.4	1.0 – 4.0
Br ₂ (G)	496.2	1.0 - 3.0
H03S H03S H12 H03S H12 (B)	418.5	0.0 - 4.0
HO ₂ S HH ₂ HO ₂ S H OH ₃ S (O)	417.5	0.0 - 2.0
(C)	338.4	0.0 - 2.0

Br H2 NH OH (K)	431.3	0.0 - 2.0
(N)	497.4	< 1.0
$(M) \overset{H_2}{\underset{NH OH}{\overset{H_2}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	496.4	< 1.0
	338.4	< 1.0
$(P) \overset{NH_2}{\overset{H_2}{\overset{H_3}}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}}{\overset{H_3}{\overset{H_3}{\overset{H_3}{\overset{H_3}}{\overset{H_3}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}{\overset{H_3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	451.9	< 1.0

Isomer composition

Compounds identified in Hair Dye C059 are summarised in table 4.

Table 4: Compounds identified in Hair Dye C059

ID	Chemical name	General structure	Role	N° of isomers	Expected main isomer	MW	λ max(nm)	Molecular formula
Main	3-[(Bromo-8-amino-5- hydroxy-4-imino-1-oxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N</i> - trimethylbenzeneaminium chloride	Br H ₂ H OH + N(CH ₃) ₃	Main component	3	Br. Hr. NH NH OH H,G CH, H,G CH,	415/417	625, 580	C19H20BrN4O2
A	3-[(8-Amino-5-hydroxy-4- imino-1-oxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N</i> - trimethylbenzeneaminium chloride	NH ₂ H OH CH ₃	Subsidiary colour	2	$\begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	337	603, 561	C19H21N4O2
В	3-[(Sulpho-8-amino-5- hydroxy-1,4-dioxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N</i> - trimethylbenzeneaminium chloride	HO ₃ S HH2 HO ₃ S HH2 HH2 HH2 HH2 HH2 HH2 HH2 HH2 HH2 HH2	Subsidiary colour	1	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	418	593 (sh), 557	C19H20N3O6S
с	3-[(8-Amino-5-hydroxy-1,4- dioxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N</i> - trimethylbenzeneaminium chloride		Subsidiary colour	1	H, C CH, CH,	338	512	C19H20N3O3
E	3-[(Dibromo-8-amino-5- hydroxy-4-imino-1-oxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N</i> - trimethylbenzeneaminium chloride	Br ₂ NH-2 NH-CH NH-CH N(CH ₃) ₃	Main component	3	Br H H H H H H CH	493/ 495/ 497	623, 574	C19H19Br2N4O2

ID	Chemical name	General structure	Role	N° of isomers	Expected main isomer	MW	λ max(nm)	Molecular formula
F	3-[(Bromo-8-amino-5- hydroxy-1,4-dioxo-1,4- dihydronaphthalenyl)amino] - <i>N,N,N-</i> trimethylbenzeneaminium chloride	Br H2 OH H2 +N(CH3)3	Main component	6	Br, Hg OH, Hg HgC CHg	416/418	595, 557	C19H19BrN3O3
G	3-[(Dibromo-8-amino-5- hydroxy-1,4-dioxo-1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride	Br ₂ H O OH H H H H H H H H H H H H H H H H	Subsidiary colour	3	Br H, C H, C H, S	494/496 /498	<mark>628, 585</mark>	C19H18Br2N3O3
L	3-[(Bromo-5,8-dihydroxy- 1,4-dioxo-1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride		Main component	1	Br H H H H H H H H H H H H H H H H H H H	417/419	623, 574	C19H18BrN2O4
к	3-[(Bromo-8-amino-5- hydroxy-4-imino-1-oxo-1,4- dihydro- naphthalenyl)amino]-3- methyl-N,N,N- trimethylbenzeneaminium chloride	Br H2 NH OH	Impurity	1	Br HN O OH H,C CH,	430/432		C20H21BrN3O3

ID	Chemical name	General structure	Role	N° of isomers	Expected main isomer	MW	λ max(nm)	Molecular formula
L	Tribromo-8-amino-5- hydroxy-1,4- naphthoquinone	Br3 OH	Subsidiary colour	2	Br H ₀ Br Br Br	423/429	628, 585	C10H4Br3NO3
м	3-[(Bromo-sulpho-8-amino- 5-hydroxy-4-imino-1-oxo- 1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride		Impurity	1	Br H G B OH	495/497	634,590 (sh)	C19H20BrN4O5S
N	3-[(Bromo-sulpho-8-amino- 5-hydroxy-1,4-dioxo-1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride		Impurity	1	Br HisogoH O H NH O OH H ₃ C [*] CH ₃	496/498	568	C19H19BrN3O6S
0	3-[(Sulpho-8-amino-5- hydroxy-4-imino-1-oxo-1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride	HO,5 NH,2 H	Subsidiary colour	1	NH OH H, CC CH ₃	417	634, 590 (sh)	C19H21N4O5S
Р	3-[(Chloro-sulpho-8-amino- 5-hydroxy-4-imino-1-oxo- 1,4- dihydronaphthalenyl)amino] -N,N,N- trimethylbenzeneaminium chloride		Impurity	1	CI, HI, O, OH NH, OH, HI, NH, OH, HI, H,C, OH,	451	574	C19H20CIN4O5S

SCCS comment

Based on the provided chemical structures for the compounds 1 to 4, compounds 1, 2 and 3 have three isomers, while compound 4 has 6 isomers.

It is obvious from Table 2 that the composition of Basic Blue 99 varies from 58 to 70% from batch to batch. In addition, when compared with the previous batches, purity data for the batches RS 2798801 (50.2%), 125 (48.2%) and 140 (57.3%) and 107664 (67.8%) have been excluded from this Table by the Applicant.

The physicochemical properties and the biological activity of a chemical mixture will depend upon the composition of the mixture. The data on chemical analysis of six batches of Basic Blue 99 has demonstrated a highly variable composition of the material and has shown that it can be a mixture of up to 40 chemical analogues as well as several isomeric forms of some of them. Safety assessment will need toxicological data that are representative of the batch-to-batch variability.

3.2 Function and uses

Basic Blue 99 is used as a direct hair dye substance in hair dye formulations with a maximum on-head concentration of 1.0%.

3.3 Toxicological Evaluation

3.3.1 Acute toxicity

3.3.1.1 Acute oral toxicity

3.3.1.2 Acute dermal toxicity

3.3.1.3 Acute inhalation toxicity

3.3.2 Irritation and corrosivity

3.3.2.1 Skin irritation

3.3.2.2 Mucous membrane irritation / Eye irritation

3.3.3 Skin sensitisation

3.3.4 Dermal / percutaneous absorption

3.3.5 Repeated dose toxicity

3.3.5.1 Repeated Dose (14 days) oral toxicity

3.3.5.2 Sub-chronic (90 days) toxicity (oral)

3.3.5.3 Chronic (> 12 months) toxicity

3.3.6 Mutagenicity / Genotoxicity

3.3.6.1 Mutagenicity / Genotoxicity in vitro

3.3.6.2 Mutagenicity / Genotoxicity in vivo

3.3.7 Carcinogenicity

3.3.8 Reproductive toxicity

3.3.8.1 Two-generation reproduction toxicity

3.3.8.2 Other data on fertility and reproduction toxicity

3.3.8.3 Developmental Toxicity

3.3.9 Toxicokinetics

3.3.10 Photo-induced toxicity

3.3.11 Human data

3.3.12 Special investigations

3.3.13 Safety evaluation (including calculation of the MoS)

3.3.14 Discussion

The data provided as part of the submission has indicated that the material is not composed of a single substance, but of different substances and isomers. Analysis of different batches has shown that there is a large variation in the composition of the material intended for commercial use. Also, the toxicological data provided in the previous submission do not relate to the material specifications provided for the current assessment.

4. CONCLUSION

1. In light of the new data provided, does the SCCS consider Basic Blue 99 (C059) safe as direct hair dye substance in hair dye formulations with a concentration on-head up to a maximum of 1.0%?

The SCCS cannot conclude on the safety of Basic Blue 99 (C059) because it is composed of several substances and isomeric forms, with a large variability between the composition of different batches. Also, the toxicological data provided in the previous submission do not relate to the material specifications provided for the current assessment. The safety assessment of Basic Blue 99 will require a clear well-defined set of specifications for the composition of the material intended to be used in cosmetic products as well as supporting toxicological data relating to a representative composition.

2. Does the SCCS have any further scientific concerns with regard to the use of Basic Blue 99 (C059) in cosmetic products?

/

5. MINORITY OPINION

/

6. **REFERENCES**

- 1. Meinigke, B. (2006). Raw Material Specification C 059. Henkel KGaA, Düsseldorf, Report No. R 0600026
- Kynoch, S.R. (1986). Acute Oral Toxicity to Rats of Arianor Steel Blue. Huntingdon Research Centre Ltd., Cambridgeshire/UK, internal study code: 85131D/WLH 4/AC. Archive code at Henkel KGaA, Düsseldorf, Report No. R 9501207
- Arcelin G. (2004). C 059: Primary Skin Irritation Study in Rabbits (4-Hour Semi-Occlusive Application). RCC Ltd, Itingen, Switzerland, internal study code: 853986. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0400811
- Arcelin, G. (2004). C 059: Primary Eye Irritation Study in Rabbits. RCC Ltd, Itingen,Switzerland, internal study code: 853987. Archive code at Henkel KGaA, Düsseldorf,Report No. R 0400801
- Ullmann, W. (2001). Arianor Steel Blue: Local Lymph Node Assay (LLNA) in Mice (Identification of Contact Allergens). RCC Ltd, Itingen, Switzerland, internal study code: 795363. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0100254
- Ward, R.J. (2002). In vitro penetration of Basic Blue 99 through pig skin from a vehicle and a standard formulation. Central Toxicology Laboratory, Cheshire, UK, internal Study No. JV1718. Archive code at Henkel KGaA, Düsseldorf, Report No. R0300002
- Bachmann, M., Flade, D. and Krinke, G. (2006). C 059 90-Day Oral (Gavage) Toxicity Study in Wistar Rats Followed by a 4 Week Recovery Period. RCC Ltd, Itingen, Switzerland, internal study number: A16470. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0600019(Vol. I and II)
- Gerspach, R. and Flade, D. (2006). C 059 Prenatal Developmental Toxicity Study in the Han Wistar Rat. Research Toxicology Centre (RTC) Rom/I, RCC Ltd, Itingen, Switzerland, internal study number: A16481. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0600021
- Krätzer, F. (2005). Bacterial Reverse Mutation Test (Ames Test) with C 059.GenPharmTox BioTech AG Cell Culture & Toxicology, Martinsried, Germany, internal study code 100128. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0500198
- Wollny, H.-E. (2005). Cell Mutation Assay at the Thymidine Kinase Locus (TK+/-) in Mouse Lymphoma L5178Y Cells with C 059, CCC Cytotest Cell Research GmbH, Rossdorf, Germany, internal study code 897002, Archive code at Henkel KGaA, Report No. R 0500401
- Krätzer, F. (2005). In vitro micronucleus test with C 059, GenPharmTox BioTech AG, Martinsried, Germany, internal study code 100135. Archive code at Henkel KGaA, Report No. R 0500310

- Honarvar, N. (2005). Micronucleus Assay in Bone Marrow Cells of the Mouse with C059. RCC Cytotest Cell Research GmbH, Rossdorf, Germany, internal study code 909502. Archive code at Henkel KGaA, Düsseldorf, Report No. R 0500437
- Honarvar, N. (2003). In vivo/in vitro Unscheduled DNA synthesis in rat hepatocytes with Basic Blue 99 (C 059). RCC Cytotest Cell Research GmbH, Rossdorf, Germany, internal study code 792600. Archive code at Henkel KGaA, Düsseldorf, Report No. R0300571

7. ANNEX

ry of the provided data on t Table 1: The composition						
Batch No	HPLC-PI	DA data				
	Detector F	PDA L-2450				
Batch RS2798801	1: 250 nm,	4 nm				
Batch K32/90001	Results Pk #	Name	Retention Time	Area	Area Percent	
	1 2	A1 A2	2,807 3,387	76469 373216	0,109 0,530	
	3 4	M1 M2	17,573 20,060	62093 493322	0,088 0,701	
	5	D2 D3	20,787 21,327	845987 25809798	1,201 36,655	
	7	T2 D5	21,640	223205	0,317	
	8	M2	21,867 22,200	213419 716968	0,303 1,018	
	10 11	D5 T2	22,747 22,960	362206 2940571	0,514 4,176	
	12 13	D4 T3	23,347 23,547	2846759 1259885	4,043 1,789	
	14	T3	24,247	2926186	4,156	
	15 16	T2 D5	24,787 25,047	930366 2140861	1,321 3,040	
	17 18	D4	25,620 26,767	10849541 2139409	15,408 3,038	
	19 20	D4	27,307 27,647	4702229 812561	6,678 1,154	
	21	T5	28,140	1275192	1,811	
	22 23		28,373 28,760	53318 444057	0,076 0,631	
	24 25	T5 N1	29,313 29,740	4458174 1580425	6,331 2,244	
	26 27	T6 T7	30,693	56413	0,080 0,973	
	28	T5	31,813 32,700	684980 429202	0,610	
	29 30		33,200 33,973	399826 139394	0,568 0,198	
	31 32		37,713 38,680	84265 83027	0,120 0,118	
	Totals		- 4,000		0,110	
	Totals			70413324	100,000	
Batch 74/75	1: 250 nm, 4	nm				
Batch / 4/ / 5	Results Pk #	Name	Retention Time	Area	Area Percent	
	1	A1	2,700	561285	0,393	-
	2 3	A2 A3	3,460 4,860	2776670 1607192	1,945 1,126	
	4 5	D1 A4	8,447 9,820	1407895 388356	0,986 0,272	
	6		12,467	491966	0,345	
	7 8	M1 M2	17,773 18,553	3403664 386585	2,384 0,271	
	9 10	M2 D2	20,180 20,740	453992	0,318 4,652	
	11	D3	21,260	6641408 70402380	49,316	
	12 13	T1 M2	21,887 22,067	1654799 1408617	1,159 0,987	
	14	T2	22,233	2336724	1,637	
	15 16	T3	22,907 23,347	222682 2506664	0,156 1,756	
	17 18	T4 T3	23,560 24,073	1521554 15483505	1,066 10,846	
	19	D4	25,187	3635854	2,547	
	20 21	D5 D4	25,967 26,733	1778877 15574076	1,246 10,910	
	22 23	T5 N1	28,893 31,727	1942774 3601472	1,361 2,523	
	24		35,900	266817	0,187	
	25 26		41,313 45,253	1383596 344468	0,969 0,241	
	27		49,700	572388	0,401	_
	Totals			142756260	100,000]
*HPLC peaks of Basic Bl. composition of Basic Blue isomers) (Ref. 2, 3).						

	Batch RS27	98801	Batch 74/75						
Component/ Name	Peak No. of all isomers	Area percent of all isomers	Component/ Name	Peak No. of all isomers	Area percent of all isomers				
D3	6	36.7%	D3	11	49.3%				
D4	12, 17, 19	4.0+15.4+6.7= 26.1%	D4	19, 21	2.6+10.9 = 13.5%				
D5	8, 10, 16	0.3 + 0.5 + 3.0 = 3.8%	D5	20	1.3%				
T2	7, 11, 15	0.3+4.2+1.3 = 5.8%	T2	14	1.6%				
T3	13, 14	1.8 + 4.2 = 6.0%	T3	16, 18	1.8 + 10.9 = 12.7%				
T5	21, 24, 28	1.2+6.3+0.6 = 8.1%	T5	22	1.4%				

SCCS general comments on Purity: Basic Blue 99 is a mixture of 23-32 substances of varying concentrations as demonstrated by the HPLC analysis of two batches RS2798801 and 74/75 (Table 1). The SCCS is not convinced that all components of Basic Blue 99 (batches RS2798801 and 74/75) are adequately characterised by NMR and IR. The SCCS considers that the chemical characterisation of individual components of Basic Blue 99 (batches RS2798801 and 74/75) based on LC/MS analysis (UV-Vis spectrum and 1-4 molecular ions) is a poor chemical characterisation. The HPLC peak area of the major component of Basic Blue 99 in the two batches (batches RS2798801 and 74/75) 36% and 49% (Tables 1 & 2), is significantly different from each other. The HPLC peak areas of other components of Basic Blue 99, characterised by the study authors, are also very different (Tables 1&2) in the two batches. In addition, the LC/MS characterisation of the Basic Blue 99 according to the study authors revealed that the isomeric composition of individual components of the two batches is also different (Tables 1 & 2).

				ic Blue 99 Su				(20	14): S	Sumn	nary	on tl	he phy	ysico-c	hemi	cal
				vided data and SO	CCS c	omm	ents)									
Provide Basic B				um of 3 isomers v	with 3	-[(/-:	amino-	6-bro	$m_{0} = 5.8$	diby	dro-1	-hvd	r0VV-8	-iminc	-5-0	×0-
				,N,N trimethylani												
				(Table 1)	man	cino	nue u	5 mai		.,	corai	ing co				()0
															1	
	Та	ble	1: An	alytical description of	of Batc	hes us	sed in T	oxicit	y studies	or ac	tual m	arket	materi	als		
		ID		Structure		Peak no.	Range (area%)	74/75 (area- %)	RS2798810 (area-%)	01 125 (are %)		rea- (07664 area-		
		Main				10,	>48	62.8	50.2	48				7.8		
			вr—Į	Ĥ.		13, 14										
				M OH $(CH_3)_3$												
								L								
				Subsidiary Col												
				than 1.0% at 5							contr	ibute	to the	e desir	ed bl	ue
colorati	on			ve been classified		ubsid	iary Co	lours	(Table)	2)						
		⊢		2: Subsidiary colour Structure	rs MW	Peak	Range	74/75	RS27988101	125	140	106106	107664			
				onocure		no.	(area%)	(area- %)	(area-%)	(area- %)	(area- %)	(area- %)	(area- %)			
			F	O NH, u	416/ 418	15, 16,	<u><</u> 26.5	8.4	16.9	26.0	19.6	7.0	7.3			
				Br H +	410	23, 24,										
				8 он «>-мкн	ele .	25,										
						26, 27,										
			E	O NH.	493	28	<u><</u> 15	11.8	14.6	4.4	5.5	7.4	10.8			
					1	20	215	11.0	14.0	4.4	0.0	1.4	10.0			
						22										
			A	Q NH2	497	1.5	<u><</u> 9.5	1.7		9.3	3.7	1.6	0.9			
						.,										
				NH OH -N(CH ₃),												
			J	Î. Î.	417	30	<u><</u> 6.0	4.1	4.8	2.0	3.4	5.4	5.8			
				₽ ₩ ,	419											
				J CH O-NCH	_											
			L		423-	39. 40	≤5.0	2.60	1.3	1.7	1.5	4.4	4.3			
				Bra												
			P	0 NH.	440	4	<10	1.80	20	2.8	2.2	3.9				
			B		418	4, 11	≤4.0	1.80	2.0	2.8	2.2	3.8				
					9,											
			G	O NH,	494	31.	≤3.0	2.10	2.8	1.2	0.8	2.7	2.0			
				Brz	/ 496	32, 34										
				I Ін 🖉 — Тісн), / 498											
			0	NH, H	417	3	≤3.0	1.0		2.0	2.6					
			N	NH òн _/_мол, о №,	496	12	<u><</u> 2.5	0.7	2.1	0.3						
				HUB THE T	/ 498	1										
				Т дн 🖉-тасн												
			X		449	21	<u>≤</u> 1.7		1.7							
					451											
				Тин Тин 🖉 — түсн	0. / 453											
			м	0 NH,	495	7	≤1.6	0.9			1.3					
				HOJS CONTRACTOR	497											
				ин он 🖉 — Мося	432											

Identity was verified for each batch by UV and IR spectroscopy. Before marketing of Basic Blue 99, sodium chloride and/or saccharose are usually added to the neat dye in order to adjust the colour strength to a certain predefined value.

	3: Organic impurities	s of Bas	c Blue	99						
ID	Structure	MW	Peak no.	Range (area %)	74/75 (area- %)	RS27988101 (area-%)	125 (area- %)	140 (area- %)	106106 (area-%)	107664 (area-%
P		451	6	<u>≺</u> 1.3			1.3	0.2	0.6	
с		338	8	<u><</u> 1.2	0.4	0.6		1.2	0.2	0.5
к	Br H OH	430 / 432 H ₂) ₂	29	<u><</u> 0.9	0.9			0.4		
Q	NH2 NH2 NH2 N(CH2)3	352	17	<u>≺</u> 0.5	0.2	0.5	0.1		0.2	
	Not known Not known	? -	38 37	<u>≤</u> 1.4 <u><</u> 0.9	1.4 	 0.9			0.6 0.3	0.5
mpu sed D pea Tabl	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl	- Sb and nents: orted a ue 99 (r	Ni <1 Ni <1 The s des main c	≤0.9 .0 ppm; purity cribed ompone	As ar of E in Ta ent +	0.9 nd Cd <5 p Basic Blue ble 4. subsidiary	e 99 colour	lg <1 basec	0.3 ppm d on n	
mpui sed D pea Tabl	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl sic Blue 99 component	Sb and nents orted a ue 99 (r No. of	Ni <1 The is des main c	≤0.9 .0 ppm; purity cribed ompone	 As ar of E in Ta ent + %HPL (0.9 nd Cd <5 p Basic Blue ble 4. subsidiary C peak area Range)	e 99 colour	lg <1 based s)	0.3 ppm d on n lsomer npositior	najor
mpui sed pea Tabl	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl	Sb and nents: orted a ue 99 (r No. of	Ni <1 Ni <1 The s des main c	≤0.9 .0 ppm; purity cribed ompone	 x of E in Ta ent + %HPL (48	0.9 nd Cd <5 p Basic Blue ble 4. subsidiary .C peak area	e 99 colour	Ig <1 based rs) con	0.3 ppm d on n Isomer	najor
mpur sed Dea Tabl	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl sic Blue 99 component	Sb and nents: orted a ue 99 (r	Ni <1 The s des nain c isomer	≤0.9 .0 ppm; purity cribed ompone	 2 As ar 2 of E in Ta ent + %HPL (48 7	0.9 nd Cd <5 p Basic Blue ble 4. subsidiary C peak area Range) 3.0 - 67.8	e 99 colour	lg <1 based rs) con No	0.3 ppm d on n Isomer npositior ot knowr	najor
 sed C pea Tabl Ba Ma	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl sic Blue 99 component	Sb and nents: orted a ue 99 (r	Ni <1 The s des main c isomer 3	≤0.9 .0 ppm; purity cribed ompone	 <u>As ar</u> <u>in Ta</u> <u>ent +</u> %HPL (48 7. 4.	0.9 nd Cd <5 p Basic Blue ble 4. subsidiary C peak area Range) 3.0 - 67.8 .0 - 26.5	e 99 colour	ig <1 based s) con No No	0.3 ppm d on n lsomer npositior ot knowr ot knowr	najor
mpui sed C pea Tabl Ba Ma F E	Not known rities : Pb <20 ppm ; on major compo ak area) can be rep e 4 Purity of Basic Bl sic Blue 99 component	Sb and nents: orted a ue 99 (r No. of	Ni <1 The s des nain c isomer 3 8 3	≤0.9 .0 ppm; purity cribed ompone	 <u>As ar</u> <u>of E</u> <u>in Ta</u> <u>ent +</u> %HPL (48 7. 4. 0	0.9 hd Cd <5 p Basic Blue ble 4. subsidiary .C peak area Range) 3.0 - 67.8 .0 - 26.5 4 - 15.0	e 99 colour	 Ig <1 based rs) con No No No	0.3 ppm d on n lsomer npositior bt knowr bt knowr bt knowr	najor

from batch to batch.

The physico-chemical properties as well as biological activity of a mixture will depend upon the composition of the mixture. As the six batches of Basic Blue 99 were demonstrated to be a mixture of up to 40 substances of varying composition (and varying isomeric composition), the safety of such a mixture cannot be assessed.