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We present a study of the hydrodynamics of an active particle a model squirmer in an environment
with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic
calculations, we show that the hydrodynamic coupling between the squirmer flow field and liquid
crystalline director can lead to reorientation of the swimmers. The preferred orientation depends on the
exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the
nematic director while pullers swim perpendicular to the nematic director. This behavior arises solely from
hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our
results suggest that an anisotropic swimming medium can be used to characterize and guide spherical
microswimmers in the bulk.

Active materials use internal energy resources to
propel themselves and have recently emerged as a topical
research area within physics [1,2]. A natural example
of an active system is provided by swimming bacteria,
while artificial microswimmers can be realized by self-
propelling Janus particles [3–10]. One big challenge is
to control and direct the swimmers at the microscale.
Success here could allow one to harness swimmers to do
work, and it could lead to significant technological
possibilities, for example, the direct microengineering of
new materials.
Various possibilities have been explored in order to guide

active particles. The most obvious one is to use confining
walls, as both bacteria [11,12] and artificial swimmers
[4,10,13–16] are known to be attracted to surfaces, and
swim near them. Motion along predefined pathways can be
obtained by topographical patterns [17] or chemical func-
tionalization [18] of the surface. Force-free localization and
steering of laser-powered Janus particles have been
achieved by dynamical feedback [19] or by spatial modu-
lation of the laser beam [20], which exerts a torque on the
moving particle [21].
An alternative route to control the swimmers in the bulk

is to use an anisotropic swimming medium [22], e.g., a
liquid crystal [23]. Recent experiments with colloidal
particles have demonstrated electrophoretic propulsion of
spherical colloids in nematic liquid crystals (LCs) [23,24],
whereas rodlike bacteria are observed to swim along
the direction set by the nematic director n̂ [25–27].
Experimental applications include the self-assembly of
bacteria dispersed in a nematic LC [28], transport of
colloidal cargo [29], and the accumulation of the bacteria
following topological patterns [30,31]. Theoretical predic-
tions include anomalous diffusion [32] and even backward

swimming was predicted by theoretical calculations of
Taylor sheets in nematic LCs [33,34].
In the case of rodlike swimmers (e.g., typical bacteria)

the alignment is dominated by an elastic energy, which is
minimized when the rods align their long axis along n̂ [25];
thus, rodlike swimmers are always expected to swim
following the nematic director. For isotropic swimmers
(e.g., spherical bacteria or artificial Janus swimmers) this is
not the case: in the limit of spherical particles the elastic
torque vanishes.
In this Letter, we study the dynamics of fully resolved

spherical microswimmers in a nematic liquid crystal, by
means of lattice Boltzmann simulations and analytical
calculations, using a squirmer model [35]. Our simulations
show that the steady state swimming direction depends of
the nature of the swimming mechanism. Spherical pushers
undergo stable swimming following the direction set by the
nematic director. Strikingly, a puller swims in steady state
in a direction orthogonal to the far-field n̂. Using analytical
calculations we show that the reorientation is due to a
hydrodynamic torque, arising from the coupling between
the squirmer flow field and anisotropy of the liquid
crystalline viscosities [36]. Further, we show the reorien-
tation rate scales linearly with the power of the squirmer
flow field. Our results provide a robust and easy way to
manipulate self-propelling organisms directly at the micro-
scale, allowing, for example, the sorting of the swimmers
based on their hydrodynamic nature.
Squirmer model.—To simulate the dynamics of an active

particle in a liquid crystal we employ a lattice Boltzmann
(LB) method [37]. We treat the self-propelling particle in
the terms of a squirmer model [35]. The tangential (slip)
velocity profile at the particle surface leading to the
squirmer motions is given by [38]

1



uðθÞ ¼ v0 sinðθÞð1þ β cos θÞ; ð1Þ
where v0 is a constant, β is the squirmer parameter, and θ is
the polar angle with respect to the particle axis [13].
In the LB method a no-slip boundary condition at the

fluid-solid interface can be achieved by using a standard
method of bounce back on links [39,40]. When the
boundary is moving (e.g., a colloidal particle) the bounce
back on links condition needs to be modified to take into
account particle motion [41]. These local rules can include
additional terms, such as a surface slip velocity [Eq. (1)]
leading to LB simulations of squirming motion [42,43].

Liquid crystal model.—The nematic host fluid is
described by a Landau–de Gennes free energy whose
density can be expressed in terms of a symmetric and
traceless order parameter tensor Q as F ¼ FðQαβÞ þ
K=2ð∂βQαβÞ2 with

FðQαβÞ ¼ A0

�
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where the Greek indices denote Cartesian coordinates and
summation over repeated indices is implied. A0 is a free
energy scale, γ is a temperaturelike control parameter
giving an order-disorder transition at γ ∼ 2.7, and K is
an elastic constant. The anchoring at the particle surface is
modeled by fs ¼ WðQαβ −Q0

αβÞ2, where W is the anchor-
ing strength and Q0

αβ is the preferred alignment of the
nematic director at the particle surface.
The hydrodynamic equation for the evolution of Q is

[44] ð∂t þ uν∂νÞQαβ − Sαβ ¼ ΓHαβ, where the first part
describes the advection and Sαβ describes the possible
rotation or stretching of Q by the flow [44]. Γ is the
rotational diffusion constant and the molecular field is

Hαβ ¼ −δF=δQαβ þ ðδαβ=3ÞTrðδF=δQαβÞ: ð3Þ
The fluid velocity obeys ∂αuα ¼ 0 and the Navier-Stokes
equation, which is coupled to the LC via a stress tensor.
We employ a 3D lattice Boltzmann algorithm to solve
the equations of motion (for further details see, e.g.,
Refs. [45,46]).
Simulation parameters.—We consider both pushers

(β < 0) and pullers (β > 0). We fix v0 ¼ 0.0015, giving
the particle velocity u0 ≡ 2

3
v0 ¼ 10 3 in lattice units, but

vary the squirmer parameter in the range β ∈ ½−5;þ5�. We
fix the fluid viscosity η ¼ 0.1 and the swimmer radius R ¼
4.0 in lattice units [Fig. 1(a)]. To model the nematic liquid
crystal we use A0 ¼ 1.0, γ ¼ 3.0, K ¼ 0.01, ξ ¼ 0.7,
Γ ¼ 0.3, and a rotational viscosity γ1 ¼ 2q2=Γ ¼ 5

3
. The

physics of our system is governed by the Reynolds (Re) and
Ericksen (Er) numbers, which give the ratio of the inertial
and viscous forces, as well as the ratio of the viscous and
elastic force, respectively. Using the parameters above, we
recover the following upper limits Re≡ u0R=η ≈ 0.04 and

Er≡ γ1u0R=K ≈ 0.68. Simulations are carried out in a
64 × 64 × 64 rectangular simulation box with periodic
boundary conditions.
Results.—First, we consider the case where the particle

surface does not impose an alignment of the nematic
director (W ¼ 0). We place a single swimmer into a
nematic liquid crystal with an initial angle ϕ0 ¼ 45°
between the squirmer orientation and n̂ [Fig. 1(a)]. For a
puller (β ¼ þ0.2), the hydrodynamically induced torque
rotates the particle away from the nematic director leading
to a curved trajectory towards a direction perpendicular to n̂
[Figs. 1(b) and 1(c), solid lines]. A β ¼ −0.2 pusher instead
starts to turn in the opposite direction, leading to swimming
in the direction set by the nematic director [Fig. 1(b),
dashed line], reaching a steady state orientation ϕ ≈ 0
[Fig. 1(c), dashed line]. (See also Ref. [47] for additional
movies of the puller and pusher).
The alignment of a pusher resembles the observation of

bacterial swimmers in nematic LCs [25–29], which are
known to be rodlike pushers. However, for rodlike
swimmers there exists an elastic energy penalty of realign-
ment that depends on the orientation ϕ with respect
to n̂ and it is minimized when they align along n̂. The
resulting elastic torque has been estimated as Telastic ∼
4πKϕL lnð2L=RÞ ∼ 105ϕpNnm [25], which is consider-
ably larger than that typically generated by the bacteria
themselves ∼103 pNnm [25,50]. Thus, rodlike swimmers
are expected to always align along n̂ independently of their
swimming mechanism. On the contrary, for spherical
swimmers Telastic ¼ 0; thus, any torque must arise solely
from hydrodynamic interactions.

FIG. 1. (a) A cartoon showing the squirmer in a nematic liquid
crystal, defining the angle ϕ used in the text, between the particle
swimming direction u0 and the nematic director n̂. Examples of
(b) the trajectory in the x z plane and (c) ϕðtÞ observed in
simulations of a puller (β ¼ þ0.2) and of a pusher (β ¼ −0.2),
with an initial orientation ϕ0 ¼ 45°.
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To analyze the underlying physical mechanism, we
discuss how the squirmer’s flow field vðrÞ interacts with
a liquid crystal in terms of the nematohydrodynamic
equations [47]. We study the torque exerted on the moving
particle,

T ¼
I

r × σ · dS; ð4Þ

where the integral runs over the particle surface having an
oriented surface element dS. A squirmer moving in an
isotropic fluid with a viscosity ηiso has a flow field visoðrÞ.
The viscous stress is defined as a linear function of velocity
derivatives, σiso ¼ ηiso∇viso, and for a spherical particle one
has T ¼ 0. In a liquid crystal, the viscosity is an anisotropic
fourth-rank tensor η, and the stress is a rather intricate
function of the strain∇v and the order parameter n. There is
no analytical result for the squirmer velocity field vðrÞ in
LCs [51]. We resort to a simple approximation that consists
in evaluating the stress with the anisotropic viscosity η
(given by the Leslie coefficients αi for nematic LCs
[47,52]) but using the velocity field viso [53], in the limit
of small Reynolds and Ericksen numbers.
From the velocity field of a moving squirmer viso, we

readily obtain the stress and the nematohydrodynamic
torque exerted on the particle (for a detailed calculation
see the Supplemental Material [47]). The anisotropic part of
the viscous stress is dominated by σ − σiso ∝ βηn̂ðn̂ × ωÞ,
whereω ¼ ∇ × viso is the vorticity of the flow field and η is
the viscosity tensor. Inserting the known velocity field of a
squirmer, we obtain the torque [47]

TN ¼ −8πβη̂v0R2ðn̂ · ûÞn̂ × û; ð5Þ
where û is the particle axis. The effective viscosity
coefficient η̂ ¼ α1=35þ ðα2 þ α3Þ=2þ ðα5 þ α6Þ=20 is
expressed in terms of the Leslie parameters αi of a nematic
liquid crystal [47] and is dominated by the coefficients α2;3
related to the rotational viscosities, while α1;5;6 corresponds
to shear viscosities [47,52]. When βη̂ > 0, the torque aligns
the particle axis on the order parameter. Throughout this
Letter we assume η̂ < 0, which corresponds to measured
values for common nematic LCs, e.g., pentylcyanobiphenyl
(5CB) and p-methoxybenzylidene-p-butylaniline (MBBA),
and to the simulations [47]. Then, Eq. (5) predicts that
the stable orientation of pullers (β > 0) is perpendicular to
the nematic order, whereas pushers (β < 0) move in the
parallel direction. To test this predictions, we carried out
simulations for a β ¼ þ5 puller and a β ¼ −5 pusher, and
initialized the system close to the unstable orientation.
Figure 2(a) shows for the evolution of ϕðtÞ an S-shaped
trajectory, towards the stable positions given by Eq. (5).

To determine the angular velocityΩ, we match the torque
TN with the friction induced by the particle’s rotation,
TN − 8πη̂ΩR3Ω ¼ 0, with the viscosity η̂Ω of the rotational
Stokes drag [47]. Noting that the scalar and vector products
in Eq. (5) result in a factor cosϕ sinϕ ¼ 1

2
sinð2ϕÞ, we find

Ω ¼ −
1

2
β sinð2ϕÞ η̂

η̂Ω

v0
R
: ð6Þ

The scale is given by v0=R, and Ω is proportional to
the squirmer parameter β and varies with the angle ϕ. In
Fig. 2(b), this is compared with the numerical deri-
vative ΩðϕÞ ¼ dϕ=dt from the simulation data for the
β ¼ þ5 puller. The data show very good agreement between
theory and numerics. Starting from the initial position
ϕ ¼ 0, the simulated velocity increases linearly with ϕ,
then reaches a maximum at ϕ ≈ 45°, and finally slows down
when approaching the stable orientation ϕ ¼ 90°.
Modifying the squirmer parameter β keeps the swim-

ming speed constant, but changes the power of the squirmer
flow field [4]. This far we have established that the sign of β
defines the stable swimming direction with respect to the
nematic axis. To understand how the magnitude of the
hydrodynamically induced torques depend on the power of
the squirmer flow field, we initialize the simulations with
ϕ0 ¼ 45°, and systematically vary β between −5 and þ5.
We evaluate ΩðβÞ from a linear fit to early times on ϕðtÞ
data [see, e.g., early times in Fig. 1(c)]. ΩðβÞ from
simulations shows a linear dependence for all the values
of β considered (Fig. 3) and indeed the theory predicts
ΩðβÞ ∼ β for a fixed ϕ [see, e.g. Eq. (6)].
Interestingly, our numerical simulation results show that

the reorientation dynamics for pullers is slightly more rapid
than for pushers [see Fig. 1(c) and the inset in Fig. 3 for
β ¼ �0.2). Also the angular velocity shown in Fig. 3 does
not vanish at β ¼ 0 (inset of Fig. 3) but in a steady state a
neutral squirmer swims perpendicular to n̂ [see the
Supplemental Material [47] for ϕðtÞ for β ¼ 0]. This
behavior is not captured by our analytics. In our theoretical
treatment we replace vðrÞ with the velocity field calculated
in an isotropic liquid visoðrÞ. The analytical results agree
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FIG. 2. (a) ϕðtÞ exhibits an S shaped evolution, with a stable
configuration ϕ ≈ 90° (ϕ ≈ 0°) for a puller (pusher). (b) The
rotational velocity ΩðϕÞ is symmetric around ϕ ¼ 45° and
vanishes for ϕ → 0 and 90°, in agreement with theoretical
arguments (see text for details).
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remarkably well with the (more precise) numerical simu-
lations, concerning the dependencies of Ω on the squirmer
parameter β and the orientational angle ϕ [see, e.g.,
Fig. 2(b) and Fig. 3]. This is in line with a previous study
of anisotropic diffusion of colloids, where this approxima-
tion was shown to compare favorably with numerically
exact results [53]. The reorientation of a β ¼ 0 swimmer
could probably be reproduced when using the exact
velocity field vðrÞ, which depends itself on the viscosity
anisotropy η.
In all the examples above, we have considered a case

where there is no anchoring at the nematic director at the
surface of the colloidal particle (W ¼ 0). Typically, in
experiments the particle surface interacts with the nematic
director (W > 0). The case of homeotropic anchoring can
lead to the formation of a Saturn ring defect near the
particle surface [see, e.g., the inset in Fig. 4(a)]. In the case
of degenerate planar anchoring, two boojums are observed
at both poles of the particle [inset of Fig. 4(b)]. We still
observe the reorientation of the squirmers when a reason-
ably strong surface anchoring is included (WR=K ¼ 4), as
shown in Fig. 4 for a β ¼ þ5 puller and a β ¼ −5 pusher.
This provides further evidence that the reorientation is due
to the hydrodynamic coupling between the squirmer flow
field and the anisotropic viscosities of the LC, as opposed
to short range elastic interactions.
Our main finding is that a nematic liquid crystal exerts a

torque on a spherical microswimmer. This should be easily
observable in experiments. Using typical values for the LC
viscosities [47,52], and for microswimmers (R ∼ 1 μm and
v0 ∼ 1–10 μm=s), we can estimate the magnitude of the
torque (5) T ∼ 4β × ð102–103Þ pNnm, and Ω ∼ βðrad=sÞ,
which is comparable to the recently observed rotation
induced by a laser intensity gradient on a thermally
powered Janus particle [20,21]. Further, the reorientation
rate Ω is much faster than typical rotational diffusion.
These, combined with the observation that the steady state
behavior is retained for WR=K > 0, suggest that our
prediction should be testable in the laboratory, for example,

by dispersing artificial swimmers, e.g., Refs. [3–10,20] into
standard nematic liquid crystals, e.g., 5CB or MBBA.
Conclusions.—We have presented a combined simulation

and analytical calculation study of the steady state swim-
ming of a spherical squirmer in a nematic liquid crystal. In a
steady state a pusher will swim along the nematic director
while a puller will be moving perpendicular to the direction
set by the far-field n̂. We show via analytic calculations
that the reorientation of the swimmers arises from the
hydrodynamic coupling between the squirmer flow field
and the anisotropicity of the liquid crystalline viscosities.
For a passive spherical colloidal particle moving slowly in a
thermotropic nematic LC a ratio of viscosities parallel (jj)
and perpendicular (⊥) to n̂ has been observed, η⊥=ηjj ≈ 2,
experimentally [54,55], and by both theoretical calculations
and simulations [46,51]. Our calculations show that the
anisotropy of the liquid crystal viscosities [36] gives rise
to a hydrodynamic torque on the squirmer, leading to the
observed steady state behavior. Finally, the steady state
behavior persists even when a strong anchoring of the LC
director at the particle surface is included, rendering it
directly experimentally relevant. The predictions should be
valid for spherical microswimmers.
A good candidate for an experimental realization of the

predictions would be to consider a lyotropic nematic liquid
crystal [53], for both artificial or bacterial swimmers. Here,
recent experiments of a diffusion of colloidal particles
showed a viscosity ratio η⊥=ηjj ∼ 4 [53], which is a larger
anisotropy than considered here. Using thermotropic (oil-
based) LCs would require particles capable of swimming in
oil. The predictions presented here could also be valid for a
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wider class of materials that exhibit anisotropic viscosities,
e.g., lyotropic lamellar phases could an interesting host
material for future studies. Our results suggest that aniso-
tropic materials could offer an exciting, yet easy-to-use,
platform to guide microswimmers in the bulk. This could
allow, for example, directed transport, or the sorting of
swimmers based on their hydrodynamic signature, by
simply dispersing them into an environment with a broken
symmetry (e.g., a nematic liquid crystal).
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