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Padova, 35131 PD, Italy

We study the compression and extension dynamics of a DNA-like polymer interacting with non-DNA 
binding and DNA-binding proteins, by means of computer simulations. The geometry we consider is 
inspired by recent experiments probing the compressional elasticity of the bacterial nucleoid (DNA 
plus associated proteins), where DNA is confined into a cylindrical container and subjected to the 
action of a “piston”—a spherical bead to which an external force is applied. We quantify the effect of 
steric interactions (excluded volume) on the force-extension curves as the polymer is compressed. We 
find that non-DNA-binding proteins, even at low densities, exert an osmotic force which can be a lot 
larger than the entropic force exerted by the compressed DNA. The trends we observe are qualitatively 
robust with respect to changes in protein sizes and are similar for neutral and charged proteins (and 
DNA). We also quantify the dynamics of DNA expansion following removal of the “piston”: while 
the expansion is well fitted by power laws, the apparent exponent depends on protein concentration 
and protein-DNA interaction in a significant way. We further highlight an interesting kinetic process 
which we observe during the expansion of DNA interacting with DNA-binding proteins when the 
interaction strength is intermediate: the proteins bind while the DNA is packaged by the compression 
force, but they “pop-off” one-by-one as the force is removed, leading to a slow unzipping kinetics. 
Finally, we quantify the importance of supercoiling, which is an important feature of bacterial DNA 
in vivo.

I. INTRODUCTION

The genome of living organisms, from bacteria to humans,
is under remarkable confinement in physiological condi-
tions.1,2 For instance, the circular chromosome of E. coli would
be over 1 mm long if stretched out, yet it needs to fit within the
bacterial cell which is a 2×1×1 µm ellipsoid. Likewise, there
is about 2 m of DNA in a single human nucleus, whose typical
size is only about 10 µm. Another useful way to quantify the
degree of confinement of the bacterial DNA is to estimate its
gyration radius, Rg, at equilibrium, which is about 5 µm; since
this is larger than the bacterial cell, the bacterial genome is in
the “semi-dilute” regime of polymer physics.3

There are at least four mechanisms through which the
bacterial chromosome is compacted within the cell.1,4 First,
and most obviously, it is confined within the cell wall; note
however that the chromosome does not occupy the entire cell
so it must be compacted further. Second, there is a depletion
attraction between genome segments induced by the crowding
of non-DNA-binding macromolecules.5 Third, the genome is
associated with a number of architectural or nucleoid asso-
ciated proteins (NAPs)6,7 which can bind the DNA at more
than one point, creating effective DNA-DNA attractive inter-
actions which help to reduce the space occupied by the chro-
mosome. Fourth, the bacterial chromosome is a supercoiled

loop, i.e., the helical pitch is different from the one favoured
thermodynamically—10.5 base pairs (bps) for B-DNA.1 In
practice, bacterial DNA is negatively supercoiled,8 so the helix
is slightly underwound. The degree of negatively supercoiling
is about 5%, which means that in a length of DNA, which
would have 20 turns at thermodynamic equilibrium, there are
only 19 turns. The twist deficit can be converted into nega-
tive writhe, which creates a local folding of the DNA, again
favouring compaction.

As a first approximation, one may consider only the first of
these compaction mechanisms and view the bacterial chromo-
some as a biopolymer under tight confinement.9 According to
this model, there is a large decrease in entropy when the DNA
is within the cell, and one expects this to create an entropic
pressure, or force, on the confining walls.10–13 This naturally
explains why the bacterial chromosome tends to expand when
the confining cell wall is removed. The entropic force exerted
by the DNA was measured in an interesting experiment by Pel-
letier et al.10 In that work, single bacterial cells were trapped
in an array of cylindrical cavities, with the diameter just larger
than the width of the bacteria and the height much larger than
its length. After the cells were trapped, their walls were lysed
so that the enclosed DNA was free to expand and to increase
its conformational entropy. The DNA was found to reach a
height about ten times larger than that of the bacterium. The
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entropic force exerted by the expanding chromosome on a
colloidal bead placed in the channel on top of the DNA was
measured by means of optical tweezers, and it was found that
this force was much larger than expected on the basis of a sim-
ple theory (reviewed in Sec. III) for Gaussian, i.e., infinitely
thin, polymers, with the known persistence length of DNA,
50 nm.

In this work, we present a simulation study of a situa-
tion closely related to the experiment discussed above.10 With
respect to previous theoretical work on the bacterial chromo-
some based on polymer physics,11–21 the main novelty here
is that we include in our simulations the effects of bacterial
proteins, whether binding to DNA or not, and we quantify
their effect on the compression elasticity of DNA and its
dynamics.

More specifically, we analyse the entropic compression
elasticity and expansion dynamics of a model bacterial DNA
confined in a thin cylinder and subject to the action of a “pis-
ton,” a colloidal bead under the influence of an external force.
This setup allows us to measure the force experienced by the
piston as a function of DNA compression. We find that steric
effects and the presence of proteins strongly affect both the
entropic elasticity of the DNA under compression and also the
dynamics of its extension once the piston is removed. In par-
ticular, non-DNA-binding proteins exert an osmotic pressure
which can be at least as large as the entropic force exerted
by the DNA; the macromolecular crowding they introduce is
also important in determining the polymer dynamics. DNA-
binding proteins can further lead to interesting “popping-off”
kinetics, when the thermodynamic interactions with the DNA
are tuned such that it leads to stable binding in confine-
ment but not in solution. Finally, we find that supercoiling
and DNA topology have a relatively little effect on force-
extension curves but can affect the compression dynamics
significantly.

Our results complement the simulations of Refs. 19 and
20 which study the compaction of a confined bacterial DNA
due to non-DNA-binding proteins and quantify how the poly-
mer collapse depends on crowder size, concentration, and
polydispersity—here we additionally quantify how crowding
affects the out-of-equilibrium expansion dynamics. Other rel-
evant, yet distinct, studies are those of Refs. 4, 5, and 21 which
quantified the extent to which H-NS and other DNA-binding
proteins compactifies DNA.

II. MATERIALS AND METHODS
A. Model: Setup and potentials used

The system we consider consists of a bacterial DNA
molecule confined in a cylindrical pore that is compressed
by a piston in the absence or presence of proteins. DNA is
modeled as a linear (Secs. IV B-IV E) or circular (Sec. IV F)
self-avoiding polymer composed of spherical beads with diam-
eter σ. Our coarse grained model and force fields are similar
to those used to study bacterial DNA or DNA-protein systems
in Refs. 11, 19, 22, and 23.

The interaction potential between monomers is defined
by three contributions. First, two neighbouring monomers are
bound via a finitely extensible non-linear elastic (FENE) spring

given by the potential

UFENE(ri,i+1) = −
KFENEr2

0

2
ln


1 −

(
ri,i+1

r0

)2
, (1)

where ri ,i+1 is the distance between the ith bead and its nearest
neighbour [the (i + 1)th] along the chain, r0 = 1.6σ is the max-
imal extent of the bond, and KFENE = 30kBT/σ2 is the bond
energy. Second, there is a steric (excluded volume) interaction
between all beads that is set by the Weeks-Chandler-Andersen
(WCA) potential as follows:

UWCA(rij) = 4kBT


(
dij

rij

)12

−

(
dij

rij

)6
+ kBT , (2)

for rij < 21/6dij, and UWCA(rij) = 0 otherwise. Here kBT is
the thermal energy (kB is the Boltzmann constant and T is the
temperature), rij is the distance between the ith and jth beads,
and dij is the mean of the diameters of the two interacting
beads, i.e., dij = σ. (Note that under this choice of FENE
and WCA potentials, the DNA bond length is approximately
equal to σ.) Third, the bending rigidity of the polymer is intro-
duced by a Kratky-Porod potential for every three adjacent
monomers,

UBEND(θ) = KBEND(1 + cos(θ)), (3)

where θ is the angle between the three consecutive monomers
and KBEND is the bending energy. KBEND sets the flexibility of
the polymer, since it determines the persistence length lp (in
units of σ): lp = KBEND/kBT. We use the well characterised
persistence length for naked double-stranded DNA lp = 20σ
= 50 nm.

In the simulations where supercoiling is included, a cir-
cular polymer has to be considered and three more interaction
potentials are taken into account. DNA supercoiling results
from over- or under-twisting the helical DNA (positive or neg-
ative supercoiling, respectively) relatively to its relaxed state.
In a DNA loop, the number of times the double strands wrap
around each other is fixed. So, in order to alleviate the tor-
sional strain, caused by over- or under-winding, the DNA
writhes up on itself. Supercoiling can be modeled by con-
sidering twisting rigidity potentials that can be defined by
assigning an orientation to each one of the DNA polymer
beads. One way of doing this is to decorate the surface of
each bead with three patchy particles, as in the model of
Ref. 24. The positions of the patches are such that they estab-
lish three orthogonal unit vectors, which define the bead’s
reference frame. With this it is possible to define three angles
that give the orientation of a bead with respect to its neigh-
bour: one angle ζ that gives the orientation of the bead with
respect to the polymer backbone and two dihedral angles φ1

and φ2 that set the degree of twisting in the plane perpendic-
ular to the backbone. Therefore, the orientation of the bead
is kept aligned with the polymer backbone by defining the
potential

UBB(ζ) = KBB(1 + cos(ζ)), (4)

and the twisting rigidity of the polymer is modeled by
assigning to both dihedral angles φ1,2 the energy

UTW(φ) = KTW(1 + cos(φ + φ0)), (5)
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where φ0 is a phase related to the twist. More precisely, φ0

determines the number of beads involved in half a turn of the
ribbon—φ0 = π+ 2π

p , where p is the pitch, i.e., the length scale
corresponding to one full twist in equilibrium.

Proteins are also modeled, for simplicity, as spheres of
diameter equal to σ so that all beads in the simulation have the
same size; in Sec. V, we also present selected results where
we have considered a protein diameter of 2σ which matches
more closely the size of a typical bacterial protein.25 In the
simulations, proteins interact sterically with each other via
the WCA potential in Eq. (2). In this study, we consider two
kinds of proteins: non-DNA-binding and DNA-binding. The
interaction between non-DNA-binding proteins and the DNA
is purely repulsive and, again, is described by the potential in
Eq. (2). For the DNA-binding proteins, we assume that they
are non-specifically DNA-binding and so can bind to any DNA
bead. The attractive interaction is set by a Lennard-Jones (LJ)
potential

ULJshift(rij) =

{
ULJ(rij) − ULJ(rthr), rij < rthr,

0, otherwise,
(6)

where ULJ(r) = 4ε


(
dij

r

)12

−

(
dij

r

)6
. (7)

The parameter ε controls the magnitude of the protein-DNA
interaction, dij = σ, and rthr is the range of the interaction.
For the simulations where both kinds of proteins are present,
rthr = 3.0σ and ε = 2.5kBT , leading to a weak-moderate
attractive protein-DNA interaction. For the simulations where
only DNA-binding proteins are present, rthr = 1.5σ and we
choose values for ε in the range [2.0, 4.0].

Note that we do not explicitly consider electrostatic inter-
actions between proteins and/or DNA beads, again for simplic-
ity, although these are charged in reality. This approximation is
motivated by the fact that for a physiological 150 mM concen-
tration of a monovalent salt, the Debye length is around 1 nm,26

which is below the size of the proteins so that electrostatic
interactions are heavily screened in practice. We performed
some simulations where we did consider charged particles (see
Appendix B) and the results confirm that one can rely on this
simplification.

The piston is modeled as a rigid sphere whose diameter is
slightly larger than the confining cylindrical pore’s diameter,
in order to prevent particles from escaping around the sides.
The interaction between the piston and the confined particles
is purely repulsive and again described by the WCA poten-
tial [Eq. (2)]. The piston moves under a uniform externally
applied force, compressing the DNA and the proteins against
the cylinder walls (see Fig. 1).

We simulate the system by using Brownian dynamics
(BD) via the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) code in the BD mode. In other
words, we use a molecular dynamics (MD) algorithm with a
stochastic thermostat, which models the thermal fluctuations
and viscosity of an implicit solvent. The system’s temperature
is kept constant at a value T = 1.0 ≡ 300 K. Each parti-
cle (DNA beads, proteins, and piston) obeys the Langevin

FIG. 1. Sketch of our model for a DNA molecule, confined in a cylindri-
cal channel, being compressed by a piston subjected to an external force of
20kbT/σ. The DNA extension is measured as the largest distance between two
DNA beads, along the confining cylinder’s axis. To build our force-extension
curves, we recorded the DNA extension after equilibration, for each value of
the force (an example is given in the snapshot in the bottom picture). The two
top pictures correspond to transient configurations during compression.

equation

m
d2ri

dt2
= −∇iV − γ

dri

dt
+

√
2kBTγηi(t), (8)

where ri is the position of the centre of mass of the particle
with mass m = 1, γi is the friction due to the solvent (typically
γ = 2), and ηi(t) is a vector representing random uncorrelated
noise, such that

〈ηiα(t)〉 = 0,

〈ηiα(t)ηjβ(t ′)〉 = δαβδ(t − t ′)δij, (9)

where α and β indicate the Cartesian components, δij and δαβ
denote Kronecker’s delta, and δ(t − t ′) denotes Dirac’s delta
function. Equation (8) is integrated with a constant time step
∆t = 0.01τ, where τ is the simulation time unit, for a total of
3 × 106 time steps or more.

B. Mapping between simulation and physical units

In our simulations, we use energy units of kBT (where
T = 300 K), length units of σ = 2.5 nm (the size of a DNA
bead that corresponds to the hydrated thickness of B-DNA),
and mass units of mDNA, where the mass of a DNA bead
mDNA = 1. With this choice, there is a natural simulation
time unit τ = σ

√
m/kBT . Therefore, in our coarse-grained

model, each DNA monomer represents ∼7.4 bp of B-DNA
(for which the distance between consecutive base pairs is
0.34 nm).

In our system, there are two further time scales with
an intuitive physical meaning. First, there is an inertial time
scale, τin = m/γ, where m is the mass of a DNA or protein
bead and γ is its friction. This quantity gives the time after
which the velocity of the beads becomes uncorrelated. The
second is the Brownian time, τB = σ

2/Ddiff , which gives the
(order of magnitude of the) time taken for a bead to diffuse
across its own diameter, σ. The diffusion coefficient Ddiff is
set by the friction γ through Einstein’s formula Ddiff = kBT/γ.
We use γ = 2m/τ, which leads to a Brownian time scale
τB = 2τ = 4τin (simulation units). Since we are interested in
long time behaviours, i.e., of the order of several ms, and not in
resolving fine details of the inertial collisions (which play no
role in our overdamped system), we map the time from simu-
lation to physical units by considering the Brownian time scale

3



τB.27 For a sphere of diameter 2.5 nm in an aqueous fluid (vis-
cosity 1 cP), τB ≈ 35.6 ns (for completeness, we note that τB

corresponds to 200 elementary Brownian dynamics time steps
in our simulations). Note that our choice of time scales means
that we do not correctly describe the inertial dynamics before
τB, but this is not an issue for our purposes, as we are inter-
ested in time scales much exceeding this. At the same time, our
choice of τB = 2τ = 4τin ensures that the dynamics in our sim-
ulations is overdamped, which is the physically relevant case
for our system. We finally note that, with our choice of units,
τB =

√
τin τB.

By using the mapping given above for energy, length, and
time, we can map all of the other physical quantities we mea-
sure. For instance, for the force, one simulation force unit is
kBT/σ, which corresponds to 1.64 pN.

As detailed above, the system studied here is composed of
three types of beads: DNA monomers, non-DNA-binding pro-
teins (crowders), and DNA-binding proteins. The number of
beads is chosen so that the ratio of the number of proteins to the
number of DNA beads is that found in vivo: The chromosome
of E. coli consists of ∼4.6 × 106 bp, which in our model cor-
responds to a polymer with ∼5 × 105 beads. In bacterial cells,
the estimated total number of proteins is M ∼ 106, from which
∼3% are DNA-binding. This corresponds to a protein-DNA
bead ratio of 2 : 1. Since the computational cost associated with
a 5×105 bead polymer is extremely high, we instead consider
a smaller system with N = 1000 beads. We then explore the
influence of proteins in the system, by varying the protein num-
ber up to M = 2000, which represents the true protein-DNA
ratio. For simulations where both crowders and DNA-binding
proteins are present, the number of DNA-binding proteins is
0.03M.

III. SUMMARY OF SCALING THEORY FOR
CYLINDRICALLY CONFINED POLYMERS
A. A review of the entropic spring theory

According to the well-known blob scaling concept in
polymer physics, a self-avoiding polymer confined in a cylin-
drical pore can be seen as a linear chain of blobs.28 In Ref. 12,
this blob-scaling approach is used to derive an expression for
the force required to compress a polymer confined in a cylin-
drical nanopore, assuming that it behaves like an entropic
spring. In the regime of weak deformations, the “renormal-
ized” free energy F for a confined polymer of N beads is given
by

βF(R, D) = A
R2

(N/g)D2
+ B

D(N/g)2

R
, (10)

where R is the extension of the polymer along the axis of
the cylindrical pore (see Fig. 1), D is the confining cylinder’s
width, β = 1/kBT , A and B are constants, and g is the num-
ber of polymer beads inside a compression blob of diameter
D, i.e., at equilibrium. Therefore N /g is the number of com-
pression blobs of diameter D and DN /g = R0, the extension of
the polymer at equilibrium (zero force). From this, a universal
scaling relation for the (external) force-extension relation can

be derived,

Dβf = D
∂

∂R
(βF) = 2A

(
R
R0

)
− B

(
R
R0

)−2

. (11)

The imposition of the equilibrium condition f (R = R0) = 0
reveals the relation 2A = B. By redefining B ≡ k, Eq. (11)
reduces to10

f =
k (kBT )

D



(
R
R0

)
−

(
R
R0

)−2
, (12)

where k is the dimensionless polymer spring constant.
In the regime of strong compression (R/R0 � 1), the

above form of the free energy no longer holds. The cor-
rect form of free energy12 leads to a new force-extension
relation,

f ∼ −
kBT
D

(
R
R0

)−9/4

. (13)

B. A scaling theory for the polymer
expansion dynamics

We now review a simple scaling theory which we use to
guide the interpretation of our simulation results in what fol-
lows. The simplified theory we use follows the approach used
in Ref. 18 and works in the adiabatic limit where the polymer
goes through quasi-equilibrium states, i.e., for slow dynam-
ics. This is sufficient for our purposes, as we focus on the
dynamics of the polymer whilst it relaxes after the initial abrupt
expansion. More sophisticated theories of polymer compres-
sion and expansion within nanochannels, which account for
non-equilibrium effects, were recently presented in Refs. 29
and 30.

Taking F to be the confinement-deformation free energy,
the polymer deformation force f is given by −∂F/∂R. The
equation of motion for the polymer extension R is18

f +
1
2
γ

dR
dt
= 0, (14)

where γ is the polymer friction coefficient. This equation can
be solved given the initial condition R(t = 0)—the extension
of the compressed polymer just before it starts expanding. An
explicit form for f depends on the physical problem at hand.
Following the approach in Ref. 12, we use the force-extension
relations in Eqs. (12) and (13). Taking Eq. (12) for the weak
compression regime and substituting it into Eq. (14), one
gets

dR
dt
= −

2
γ

k (kBT )
D




(
R
R0

)
−

(
R
R0

)−2


. (15)

By defining R̃ = R/R0 and A = (2k(kBT )) / (R0γD), this
becomes

dR̃
dt
= −A

(
R̃ − R̃−2

)
⇔

R̃2

R̃3 − 1

dR̃
dt
= −A. (16)

Taking into account that during the polymer expansion R̃ < 1,
the integral of this equation leads to the solution

ln(1 − R̃3) = −3At + c

⇔ R̃(t) =
R(t)
R0
=

(
1 − c̃e−3At

)1/3
, (17)
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where c̃ = ec and c are constants that are defined by the initial
offset R̃(t = 0): c̃ = 1 − R̃3(t = 0).

According to the solution R(t)=R0

(
1− c̃e−3At

)1/3
, there

is an initial offset R(t 0) corresponding to the extension of
the polymer after being compressed by the piston. For inter-
mediate times (corresponding in our simulations to 0.01 ms
. t . 0.1 ms or 103 τB . t . 104 τB, see below), one can expand
the solution about zero to get R(t)≈R0(1− c̃ + 3Ac̃t)1/3, which
reveals the scaling R(t)∼ t1/3. For late times, the polymer
relaxes completely reaching a saturation regime where the
extension corresponds to the value at equilibrium in the
absence of a compression force: R(t→∞) = R0.

In the strong compression regime [Eq. (13)], the
extension-time scaling relation for intermediate times becomes
R ∼ t4/13.

These scaling relations are derived for a polymer con-
fined in a cylindrical pore in the absence of other particles.
However, the bacterial cellular environment is rich in pro-
teins and so one can ask how the scaling would change in
the presence of proteins either non-DNA-binding (crowders)
or DNA-binding. Crowders have been shown to increase the
viscosity of the medium,31 which slows the polymer diffu-
sion and hence the polymer expansion dynamics. Therefore
one might expect a scaling relation for intermediate times
R ∼ tα where the exponent α is smaller than that derived
above in the absence of crowders. DNA-binding proteins with
more than one binding site (such as the ones considered in
the present study) bridge together DNA segments, reducing
the polymer gyration radius and the extension of the confined
polymer. This bridging effect increases the local polymer stiff-
ness, reducing the effective polymer elasticity. Therefore, one
may also expect a slow-down effect of the polymer expansion
in the presence of such proteins and a further decrease of the
exponent α.

IV. RESULTS
A. Setup of the simulation

First, we discuss our simulation geometry and setup (see
Fig. 1). We considered two cases: DNA-only simulations
(Fig. 1) and a DNA molecule interacting with proteins (both
DNA-binding and non-DNA-binding, Figs. 2(a) and 2(b),
respectively). Note that the two top pictures in Fig. 1 cor-
respond to transient configurations during compression of the
DNA molecule, depicting the time evolution of the simula-
tion. The bottom picture corresponds to the fully equilibrated
system.

To simulate DNA, we considered a model linear DNA
molecule of N = 1000 beads, within cylinders of two different
diameters (D = 40σ and D = 20σ, the latter case is shown in
Fig. 1). Results for the two diameters are very similar, hence
we show below only those for D = 40σ. For each configu-
ration, we measure the DNA extension along the longitudinal
direction of the cylinder, defined as the maximum distance
between any two beads in the chain—we denote this quantity
as R. We then take the average of R over 10 configurations. The
radius of gyration of the unconfined DNA (in the absence of the
cylinder) was estimated to be Rg ∼ 62.2σ, while its extension

FIG. 2. Sketch of our model for a DNA molecule in the presence of (a)
non-DNA-binding proteins (green spheres) and (b) DNA-binding proteins
(magenta spheres). The DNA-binding protein cluster, inducing a local tubular
folding of DNA (see the inset).

within the cylinder in the absence of the piston was measured
as R0 ∼ 152.2σ. Therefore, we work in the semi-dilute regime
which is realistic for the bacterial chromosome. Although in
E. coli the DNA is circular, the scaling theory and previous
work suggest that the main contribution is given by polymer
confinement (entropy and free energy loss). Hence we expect
the polymer topology to be not too important—the simulations
with circular DNA described in Sec. IV F further support this
view.

For the DNA-protein simulations, we considered two sit-
uations. In the first [Fig. 2(a)], we only included non-DNA-
binding proteins [green spheres in Fig. 2(a)], which are the
majority in vivo: for instance, in E. coli there are about 106

proteins, of which only 3% are estimated to be DNA-binding.
As the bacterial cell volume of E. coli is about 6 µm3, and
the average diameter of a bacterial protein is 5 nm,25 the vol-
ume fraction occupied by all bacterial proteins is a few %,
which is larger than the volume occupied by DNA. In our
simulations, we typically considered M = 2000 proteins, mod-
eled as spheres (matching the ratio found in vivo between
the number of proteins and the number of “DNA beads”). In
the second situation, we included a fraction of DNA-binding
proteins [magenta spheres in Fig. 2(b)]; we simulated non-
specific binding, as is the case, to a first approximation, for
the histone-like bacterial H-NS protein,32 or for the DNA-
binding protein from starved cells (DPS).33 While we include
no direct protein-protein attractive interaction, DNA-binding
proteins naturally cluster, through the so-called “bridging-
induced attraction” described previously in Refs. 22 and 34.
This attraction is associated with a simple positive feedback
loop: proteins bind to the DNA in multiple places forming
bridges, this increases the local concentration of DNA, which
in turn recruits further proteins, etc., ultimately resulting, for
the protein size considered here, in the formation of elon-
gated protein clusters associated with a local tubular folding
of DNA where the protein-associated segments are parallel
to each other. Reference 22 shows that larger proteins lead
to DNA wrapping around them. However this is not realistic
for H-NS which is thought to form linear clusters,22,32 as in
Fig. 2.
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Figures 1 and 2 show examples of compression simula-
tions, where different forces were applied to the piston, and the
resulting DNA conformations were analysed. We have also
performed further simulations, as follows. First, we consid-
ered compression simulations with modified protein density.
Second, we simulated the dynamics of entropic expansion,
by first compressing the DNA with a large force, allowing
the system to reach equilibrium, and subsequently removing
the piston. Third, we have varied the strength of the inter-
action between DNA-binding proteins and DNA. Finally, we
have also considered the compression of supercoiled DNA
loops (as opposed to the linear DNA shown in Figs. 1
and 2).

B. Excluded volume effects lead to quantitative
deviations from the predicted entropic spring
response in DNA-only simulations

We begin by studying the entropic compression in DNA-
only simulations [see Fig. 3(a)]. Plotted are the results from
simulations (blue circles) and the entropic spring theory (full
line). The latter is obtained by fitting Eq. (12) to the numerical
results, through the spring constant k, in the weak compres-
sion regime. We find two regimes. First, for R/R0 > 0.1, the
entropic spring theory revised in Sec. III A (which is also
the theory used in Ref. 10) works well, and we observe a
very sensitive dependence of the extension on compression
force: the extension reduces to 10% of its free value, R0, for
a force of just ∼3 simulation units (corresponding to about
5 pN—see mapping in Sec. II B). Second, for R/R0 < 0.1,
we find a sharp deviation from the theory: our numerical esti-
mate of the entropic force is more than an order of magnitude
larger than that predicted. The origin of this deviation is in
the assumption in the scaling theory of an infinitesimally thin
polymer: clearly, this is not applicable to the tightly confined
regime which we reach by the end of our simulation, where
the DNA segments are forced into close contact so that steric
interactions dominate. Figure 3(b) further suggests that close
packing and many body interactions are the main contribu-
tions to this strong steric repulsion in the tightly confined
regime, as it can be seen from the fact that the volume frac-

tion reaches a large value (∼0.3) for the largest compression
force.

This result suggests that steric repulsion is an important
factor to consider when estimating the entropic force resist-
ing compression. At the same time, we note that the effect
found here (a 10-fold increase) is an overestimate of the cor-
rection needed for a real bacterial chromosome. This is due
to the scaled down dimensions of the DNA we use: the same
value of R/R0 corresponds to a much denser volume fraction
of DNA in our simulations with respect to the experiments in
Ref. 10.

C. Non-DNA-binding proteins greatly increase
the entropic force and pressure exerted on the piston

Next, we analyse the effect of bacterial proteins on the
entropic elasticity of the system. The osmotic pressure of pro-
teins in the cytosol can be estimated as MkBT /V, where M is
the number of proteins and V is the confinement volume; for
the case of E. coli, this is ∼0.01 atm, which is larger than,
or at least of the same order of, the pressures recorded in the
experiment in Ref. 10.

We show in Fig. 4(a) how the presence of (non-DNA-
binding) proteins (modeled as spheres which interact both
with each other and with the DNA solely via excluded vol-
ume) affects the force-extension curves. We find that proteins
make an important contribution, especially for moderate com-
pression (relatively large values of R): in this regime, the force
required for a given extension is orders of magnitude larger
than in the case where the proteins are not included. More
specifically, the force is approximately linear in the number
of proteins M, as expected for an osmotic contribution [see
Fig. 4(a), inset 1]. Interestingly, for intermediate forces, we
find that the extension recorded at a given force also depends
linearly on M [Fig. 4(a), inset 2].

Figure 4(b) compares our numerical results for M = 2000
with the force resulting from an ideal gas of 2000 proteins
(and no polymer, dashed line). There is overall a reasonable
agreement, which quantitatively confirms that the compression
curves are dominated by the osmotic pressure of proteins. The
agreement improves when correcting for the finite volume of

FIG. 3. (a) Comparison of the results for the compression force as a function of the normalized DNA extension in the absence of proteins, from the entropic
spring theory of Ref. 10 (full line) and our numerical model (blue circles). Parameters were as specified in Sec. II, apart from D = 40σ. For R/R0 > 0.1, the
theory agrees with the model in that there is a strong dependence of the DNA extension on the compression force. For R/R0 < 0.1, the theory deviates from our
numerical estimate of the entropic force, suggesting that, in the high compression regime, the assumption done in the theory of an infinitesimally thin polymer,
where excluded volume effects can be disregarded, breaks down. The inset shows the results for the “Force” axis in logarithmic scale. Error bars are shown for
three different points. (b) Compression force as a function of the DNA volume fraction. As the DNA volume fraction increases, an increasing force is needed
to further compress the DNA. The fact that the volume fraction reaches almost 0.3 for the tightest compression suggests that close packing and many body
interactions are the most relevant contributions to the divergence of our numerical estimates from the theory in the high compression regime observed in plot (a).
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FIG. 4. (a) Quantification of the effect of non-DNA binding proteins on the
numerical results for the compression force as a function of the DNA exten-
sion. Blue circles correspond to DNA only (the solid line corresponds to the
entropic spring theory for DNA only), while other symbols corresponds to
system with a variable number M of non-DNA binding proteins; we exam-
ined systems with M = 500 (magenta squares), M = 1000 (green triangles),
M = 1500 (yellow diamonds), and M = 2000 (orange inverted triangles).
The protein osmotic contribution leads to a large increase in the compres-
sion force, sometimes of several orders of magnitude. For a given value of
R, the protein contribution is linear in the number of proteins (inset 1)—fit:
f = 0.0160M + 0.2933. For a given compression force, the DNA extension
also increases linearly with the increasing number of proteins (inset 2)—fit:
f = 0.0195M + 10.4113. (b) Comparison between numerical results (orange
inverted triangles) and predictions from the theory for an ideal gas of 2000
non-DNA-binding proteins (dashed line), and from a theory accounting for
the volume of the protein through the van der Waals equation of state (solid
line). Pressures from the theory are converted into forces along the cylinder
axis via multiplication by the cross section of the cylinder.

proteins by using a pressure given by the van der Waals equa-
tion of state (solid line). The remaining discrepancy in the high
compression regime may be due to the presence of the polymer
or excluded volume effects not captured correctly by the van
der Waals formula.

We next address the role of DNA-binding proteins. These
tend to compact the DNA and should lead to a change in the
extensional elasticity. Mobile cross-links, or slip-links, have
previously been shown to strongly modify the force-extension
curves of polymers in stretching experiments;35 for this rea-
son, DNA-binding proteins were proposed in Ref. 10 as a
possible explanation for the quantitative significant discrep-
ancy between the experiments and the entropic spring theory in

compression experiments. Therefore we ask to what extent the
presence of DNA-associating proteins affect our results. Fig-
ure 5 shows that these effects are minor in the simulations. This
is consistent with our previous finding that osmotic forces from
non-DNA-binding proteins are more important quantitatively
than DNA entropic forces: DNA-binding proteins only affect
the polymer response and hence do not have much bearing on
the overall curve. We should stress here that the DNA-binding
proteins we consider form clusters, as could be the case for
H-NS,22,32 or DPS;33 while the dynamic cross-links invoked
in Ref. 10 will in practice interact entropically (see Ref. 36),
their collective behaviour may be different.

In summary, we find that non-DNA-binding proteins exert
a significant osmotic pressure on the piston, and this is much
larger than the force exerted by the DNA. Furthermore, any
reduction in the force exerted by the DNA due to DNA-
binding proteins is dwarfed by the contribution of the non-
DNA-binding proteins. Our estimates suggest that even in the
experimental situation the presence of non-DNA-binding pro-
teins could significantly affect the force measured via the setup
used in Ref. 10; therefore, it would be of interest to compare
in more detail those experiments with in vitro compression
experiments with different size DNAs and different protein
environments.

D. The expansion dynamics of DNA depends
on macromolecular crowding and DNA-protein
interactions

We next examine the dynamical behaviour of a DNA
molecule (with or without proteins), where the DNA is first
compressed under a strong force and then let free to expand
after the piston is removed. Figure 6 shows how the extension
R increases in time following the piston removal. We note that
the curves for a single realisation are very noisy, underscoring
the highly stochastic nature of the expansion dynamics. There-
fore, in Fig. 6, each curve (or point) corresponds to an average
over 10 independent runs.

First, for the DNA-only case, one may expect a scal-
ing behaviour for R with t4/13 (for self-avoiding chains, see
Sec. III B and Ref. 18). Our results typically show a simi-
lar, but on average slightly smaller, exponent: the values are

FIG. 5. Compression force as a function of the DNA extension for DNA-only
simulations (blue circles), simulations in the presence of non-DNA-binding
proteins (green squares), and simulations in the presence of both types of
proteins (orange triangles): 3% of the proteins are DNA-binding. The DNA-
binding proteins lead to the formation of DNA clusters, hence compacting
the DNA, which yields a decrease in the compression force. The effect in the
osmotic pressure due to DNA-binding proteins is, however, small.
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FIG. 6. Measured dynamical exponents during DNA expansion (in all cases, curves correspond to averages over 10 runs). (a) Comparison of the exponents
measured for DNA-only simulations for different initial compression forces: f = 20 ε/σ (blue triangles) and f = 40 ε/σ (orange circles). The bigger the
compression force, and hence the more compressed the initial DNA configuration, the bigger the apparent value of the exponent. (b) Comparison of the
exponents measured for DNA-only simulations (blue triangles) and simulations in the presence of 1000 non-DNA-binding proteins (green circles). The protein
crowding leads to a decrease in the exponent. (c) Comparison of the exponents measured for simulations in the presence of 1000 non-DNA-binding proteins (green
circles) and in the presence of 970 non-DNA-binding and 30 DNA-binding proteins (magenta triangles). The exponent decreases in the presence of DNA-binding
proteins, suggesting that the formation of protein-induced DNA clusters slows down the DNA expansion. (d) Measured exponents for simulations with DNA
and 100 DNA-binding proteins, but no non-DNA-binding proteins, as a function of the DNA-protein binding strength. The exponents show a weak tendency to
decrease with increasing interaction strength, supporting the observation that DNA clustering slows down DNA expansion. All simulations started from an initial
DNA configuration obtained for a compression force of 20, except for the case in the top-left plot. The ranges of times, for which the expansion curves were fit, were
chosen to take into account the intermediate expansion regime (103τB–104τB or 0.01 ms–0.1 ms), which corresponds to a power law behaviour for all forces we
considered.

also consistent with those found numerically in Ref. 18. Our
simulations show a different apparent exponent for different
compression force [Fig. 6(a)]: this may either point to some
dependence on the initial condition or to a wide variability
of the exponent [which is apparent from Fig. 6(d) and further
discussed below].

Second, we consider the case with proteins. The expan-
sion dynamics is much slower [i.e., the apparent exponent
is smaller, Fig. 6(b)] in the presence of non-DNA-binding
proteins: this is because the proteins create a crowded envi-
ronment which hampers DNA unfolding. At the same time,
the DNA extension is larger at t = 0, for the same initial
force, because of the osmotic pressure of the proteins which
opposes the compression force from the piston; as a result,
the value of R(t) is always larger when proteins are present
in our simulations. For later times, the proteins diffuse away
from the DNA and become dilute, so the effect of crowd-
ing diminishes. Hence for large t the apparent exponents for
our curves with and without proteins become approximately
equal.

DNA-binding proteins lead to even slower progress in the
DNA expansion [Fig. 6(c)], especially at early times. There-
fore, DNA-binding proteins have a much more detectable
signature in the expansion dynamics, with respect to the minor
contribution noted in the force-extension curves in Fig. 5
where DNA-binding proteins were absent. To characterise this
effect more in detail, we performed simulations with only
DNA-binding proteins [Fig. 6(d)]: the exponents found in
this case should then be compared with those for DNA-only

simulations [Fig. 6(a)]. These results confirm that when pro-
teins bind to the DNA, they may reduce the apparent exponent;
however, the effect is subtle, and there is a large stochastic
element in the dynamical curves [as each of the values in
Fig. 6(d) is computed by averaging 10 different expansion
runs].

E. “Popping-off” dynamics with DNA-binding proteins

In Fig. 6 (bottom two panels), we analysed the effect of
DNA-binding proteins on the dynamics of DNA expansion.37

By examining the trajectories of the system as a function of
DNA-protein interaction strength, we observed some further
interesting phenomena in the kinetics of the system, which we
now describe.

If the DNA-protein interaction is weak (ε = 2kBT ), pro-
teins only transiently bind to DNA. Since increased concentra-
tion favours the bound state (the entropy loss upon binding is
smaller), more proteins bind upon compression; however, they
detach immediately after the piston is released (see Fig. 7, left
column, and Fig. 7, blue line in bottom panel). As a result, the
DNA responds elastically as a protein-free polymer—this is
consistent with our finding that the apparent exponent mea-
sured for a low DNA-protein interaction strength ε , in the
simulations with only DNA-binding proteins, is comparable
with the exponent measured for the DNA-only simulations
(see Fig. 6).

Some interesting dynamics occur if we choose a larger
DNA-protein interaction strength, so as to promote more
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FIG. 7. Protein popping-off during DNA free expansion, for simulations with
DNA and 100 DNA-binding proteins only. The bottom plot shows the overall
pair energy of the system as a function of time. This quantity is negative and
approximately proportional to the number of proteins bound to the DNA at a
given time. For low DNA-protein interaction strength (ε = 2.0), the proteins
do not stick to the DNA, as confirmed in the energy-time plot: the pair energy
remains zero over time. For large DNA-protein interaction strength (ε = 5.0),
the proteins remain permanently bound to the DNA during expansion, and the
pair energy remains approximately constant over time. For an intermediate
interaction strength (ε = 3.5), after removing the piston some proteins remain
bound to the DNA, but eventually pop off. The pair energy first decreases
linearly in time and then tends to zero asymptotically.

long-lived binding (see Fig. 7, middle column). In this sit-
uation, the interaction strength is such that it favours long-
lived binding under compression—in this case, essentially
all proteins are bound at all times, and they locally com-
pact the DNA into a toroidal structure, resembling that of
DNA within bacteriophages.38 When the piston is removed,
the translational entropy of the proteins in the unbound state

increases dramatically—as they could now occupy any region
of the cylindrical domain; however, the bound state is still
metastable, and it takes a relatively long time for the proteins
to detach. Over time, proteins “pop-off,” typically one-by-
one, from the collapsed DNA, and the total energy of the
polymer-and-protein system (which is approximately propor-
tional to the number of bound proteins) decreases in mag-
nitude linearly with time. Therefore, the “popping-off” time
should increase linearly with the number of DNA-binding
proteins in the system and so could easily be observable
in experiments with bacterial DNA (recall that there are an
estimated 3 × 104 DNA-binding proteins in the bacterial
nucleoid). Intriguingly, while the protein kinetics are comp-
letely different, the popping-off leaves little detectable signa-
ture in the apparent exponents recorded in Fig. 6. Finally, the
popping-off requires tuning of the interaction because if this
becomes too large, proteins bind to the DNA permanently (at
least within our simulation time), and the popping-off kinet-
ics can no longer be observed—the energy now does not
appreciably depend on time (see Fig. 7, bottom panel, green
curve).

F. Compression curves and dynamics
for supercoiled DNA

Thus far, as previously highlighted, we have described
the results obtained for linear DNA. Within bacteria, DNA is
circular and negatively supercoiled (see Sec. I); it is therefore
of interest to ask what the effect of supercoiling is on our
results.

In order to address this issue, we consider the model intro-
duced in Ref. 24 and described in Sec. II A. We consider here
the same bending persistence length used previously in this
work—∼50 nm, appropriate for B-DNA. For the twisting rigid-
ity, we consider ∼75 nm, which is in line with recent experi-
mental and simulation values39 (see Refs. 40 and 41). In DNA,
there is a complete twist every 10.4 base pairs (corresponding
to approximately 3.5 nm). To set these parameters, we chose a
bead size σ = 3.4 nm, KBEND = 15.2ε , KTW = 10ε , and KBB

= 90ε . We considered two situations. In the first case, the dihe-
dral phase φ0 is equal to π giving a ribbon with no additional
twist (p = ∞). In the second case, φ0 = π + 2π

10 giving a ribbon
that is undertwisted by a full turn every 20 beads, i.e., every
208 base pairs. This second case corresponds to supercoiled
DNA, with a supercoiling density of �0.05 (note that in our
model there is symmetry between negative and positive super-
coilings because DNA denaturation is disallowed). In both

FIG. 8. Compression dynamics under a
force (a) f = 10 and (b) f = 60. The ratio
R/R0 is reported as a function of time for
both the torsionally relaxed (full line)
and the supercoiled (dashed line) DNA.
Green and blue curves refer to the case
in which M = 1000 non-binding proteins
are, respectively, present or absent in the
system.
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cases, and as previously for the linear DNA, we considered a
chain with N = 1000 backbone beads (each with its associated
patches).

The chain was first relaxed within a cylinder of radius
R = 20σ and length 400σ, verifying that the linking num-
ber of the circular ribbon was constant and approximately
equal to 0 and 50 (in absolute value) for the case of tor-
sionally relaxed and supercoiled DNA, respectively (data not
shown).

In Fig. 8(b), we report the time evolution of the lon-
gitudinal extension of the DNA, R, relative to its value R0

in the relaxed state—the compression was performed in the
presence of M = 1000 non-binding proteins and by apply-
ing a constant force f = 60 (in simulation units). For this
value of f, the DNA-protein system is already strongly com-
pressed (R/R0 ∼ 0.1) independently on the degree of twisting.
While the final value of R is very similar for the torsion-
ally relaxed and the supercoiled DNA, the dynamics is, quite
intriguingly, rather different, as the supercoiled DNA shows a
softer response to compression. For mild compression (f = 10)
[see Fig. 8(a)], the situation is similar although, as expected, the
final state is less compressed than the f = 60 case (R/R0 > 0.3).
These conclusions also hold in the absence of non-binding
proteins [blue curves in Fig. 8(a)]; however, in that case,
the final value of R is significantly lower (R/R0 ∼ 0.07): as
found previously with linear DNA, non-binding proteins con-
tribute significantly to the force opposing compression by the
piston.

By considering different values of the force and look-
ing at the equilibrium compressed state, we further computed
the compression force as a function of the ratio R/R0, for the
torsionally relaxed and supercoiled DNA with M = 1000 non-
binding proteins. The results are reported in Fig. 9: both curves
are quite similar, and, remarkably, relatively close to the linear
case as well.

Supercoiling or, in other words, the local writhing of
the DNA polymer has an effect similar to that of DNA-
binding proteins (described in Secs. IV C and IV D)—it leads
to a change in the extensional elasticity and hence a softer
response to compression. Like in the case of DNA-binding
proteins, the effect of supercoiling in the force-compression
curves is very small, being more detectable in the dynamics
curves.

FIG. 9. Compression force as a function of the extension ratio R/R0 for tor-
sionally relaxed (green circles) and supercoiled (dark-green squares) DNA.
The curves with hollow and full points refer to the case of linear and circu-
lar DNA, respectively. The compression has been performed in presence of
M = 1000 non-binding proteins.

V. DISCUSSION AND CONCLUSIONS

In summary, in this work we have presented Brown-
ian dynamics simulations of the compression and expansion
dynamics of a DNA molecule, modeled as a self-avoiding
linear or looped polymer, interacting with an ensemble of
non-DNA-binding and DNA-binding proteins. Previous work
(see, among other, Refs. 4, 5, 19, 20, and 22) had clearly
demonstrated the importance of proteins on the thermody-
namic conformations of bacterial DNA: non-DNA-binding
proteins create macromolecular crowding which can promote
global collapse of the bacterial chromosomes, while DNA-
binding proteins such as H-NS provide local compaction.
The novelty of our current work is that, by addressing a
setup which is directly relevant to single molecule experi-
ments probing the entropic elasticity of bacterial DNA, we
establish that the inclusion of proteins further leads to impor-
tant effects on the force-extension curves recorded upon
compression and also on the expansion dynamics of the
polymer.

First, we presented some DNA-only simulations, where
there are no proteins as a reference case. We have shown
that for weak to intermediate compression, our results con-
firm the entropic spring theory of Ref. 10, which predicts an
abrupt decrease in elongation with compression. For large
compression (R/R0 < 0.1 in our simulations), however,
excluded volume interaction create a strong deviation from the
theory.

Second, we have found that the osmotic pressure of non-
DNA-binding proteins can dwarf the entropic pressure of
the spring-like polymer during compression. In our simula-
tions, we have considered N = 1000 polymer “beads” and
up to M = 2000 non-DNA-binding protein “beads”; although
these numbers are comparable, the effect of proteins can be
orders of magnitude larger in the compression curves. With
respect to these thermodynamic curves, DNA-binding pro-
teins affect the DNA elasticity, hence only have a minor effect
overall.

It is interesting to ask whether osmotic pressure from
unbound proteins can account for the high force (∼100 pN)
observed experimentally in the compression curves in Ref. 10.
As mentioned by the authors, while the curve overall can be fit-
ted with the entropic spring theory, the numerical value which
is expected of a self-avoiding polymer would be significantly
smaller than observed: we note that even a small fraction of
proteins could lead to an osmotic force which might account
for this.

Third, we have explored the impact of proteins (again,
non-DNA-binding and DNA-binding), on the expansion
dynamics starting from a compressed DNA-and-protein sys-
tem and following the removal of the force exerted by the
piston. We found that the DNA-only simulations lead to a
scaling behaviour for the extension R as a function of time
which is consistent with previous work in the literature.18

The crowding introduced by non-DNA-binding proteins leads
to a much slower dynamics and to a much decreased appar-
ent exponent. An interesting observation is that, when sim-
ulating DNA with DNA-binding-proteins only, tuning of the
DNA-protein interaction leads to a popping-off kinetics during
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DNA expansion, where proteins are metastably bound to the
DNA and detach one-by-one after the volume at their disposal
increases.

Fourth, we have also performed more realistic simulations
for bacterial DNA, where we considered circular polymers,
with or without supercoiling. Quite remarkably, the torsionally
relaxed and the supercoiled model DNA lead to a very similar
force compression curve, which is also not far from the one
we found for linear DNA. On the other hand, the dynamic
response is significantly different and markedly dependent on
supercoiling.

While the results presented in this work focus on the
case of proteins which are not charged and are the same size
as the DNA beads (a choice made for simplicity), we have
also performed simulations taking into account the fact that
the size of a typical bacterial protein is larger, and about
twice the thickness of DNA25 (Appendix A), and that pro-
teins may have a non-negligible charge (Appendix B). The
size results are shown in Appendix A, Figs. 10–12: these cor-
respond to Figs. 4–6 and were obtained with a protein size
of 2σ. The charge results are shown in Appendix B, Figs.
13–15: these correspond to Figs. 3–5. In all cases, the trends
are qualitatively identical and confirm our conclusions above.
There are quantitative differences for the size simulations when
the volume fraction is high: this is expected as, under those
situations, it is the volume fraction, rather than number den-
sity, which determines the compression pressure and force.
It is interesting that the effective exponent for DNA expan-
sion slightly decreases for larger proteins, due to the increased
crowding.

Overall, our results provide a generic framework within
which to analyse experiments such as those in Ref. 10; they also
provide further testable predictions for future experiments,
e.g., probing the dynamics of bacterial DNA or of supercoiled
plasmids in vitro.
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APPENDIX A: EFFECT OF PROTEIN SIZE

Here we show results corresponding to Figs. 4–6 in the
main text but with a protein size of 2σ.

Figure 10 shows the compression force versus extension
curve: comparison between these results and those of Fig. 4
shows a very similar trend. The quantitative values are very
close together for large enough R and start to deviate sig-
nificantly below R ∼ 60–70, where the volume fraction is
non-negligible, and excluded volume effects are larger for the
larger proteins.

The comparison between Figs. 11 and 5 leads to the same
conclusion—the slightly larger gap between cases with and

FIG. 10. Same as Fig. 4, but for simulations with proteins of diameter 2σ.
Compression force as a function of the DNA extension for a varying number
M of non-DNA-binding proteins: DNA-only simulations (blue circles), M
= 500 (magenta squares), M = 1000 (green triangles), M = 1500 (yellow
diamonds), and M = 2000 (orange inverted triangles). As for the simulations
presented in Fig. 4, the protein osmotic contribution leads to a large increase
in the compression force, sometimes of several orders of magnitude. For a
given value of R, the protein contribution is linear in the number of proteins
(inset 1)—fit: f = 0.0271M � 5.8389. For a given compression force, the
DNA extension also increases linearly with the increasing number of proteins
(inset 2)—fit: f = 0.0290M + 9.8640.

without DNA-binding proteins is due to the fact that larger
DNA-binding proteins lead to multiple binding to the DNA;
hence the DNA becomes more compact. Thus the observed
effect might not just be due to protein size, as bacterial DNA-
binding proteins such as H-NS only have two DNA-binding
sites (they are better represented in our model by the smaller
proteins considered in the main text).

The effect of the larger protein size on the expansion
dynamics is analysed in Fig. 12, which shows a slower

FIG. 11. Same as Fig. 5, but for simulations with proteins of diameter 2σ.
Compression force as a function of the DNA extension for simulations in
the absence of proteins (blue circles), in the presence of non-DNA-binding
proteins (green squares), and in the presence of both binding and non-binding
proteins (orange triangles: 3% of the proteins are DNA-binding). Like in
the simulations presented in Fig. 5, the DNA-binding proteins lead to the
formation of DNA clusters, hence compacting the DNA, giving a decrease
in the compression force. However, since here the proteins are larger, there
is multiple binding to DNA, which leads to a more compact DNA, hence
the slightly larger gap between the curves for the cases with and without
DNA-binding proteins.
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FIG. 12. Same as Fig. 6, but for simulations with proteins of diameter 2σ. Measured dynamical exponents during DNA expansion (in all cases, curves correspond
to averages over 10 runs). (a) Comparison of the exponents measured for simulations without proteins (blue triangles) and with 1000 non-DNA-binding proteins
(green circles). Like in the simulations presented in Fig. 6, the protein crowding leads to a lower exponent; however, here the exponent decrease is larger. This
is due to the increased effective friction generated by larger proteins. (b) Comparison of the exponents measured for simulations in the presence of 1000 non-
DNA-binding proteins (green circles) and in the presence of 970 non-DNA-binding and 30 DNA-binding proteins (magenta triangles). The exponent decreases
in the presence of DNA-binding proteins, like in the case of Fig. 6; however, here large proteins lead to a more marked decrease of the exponent. This is due
to the fact that larger proteins allow multiple binding to DNA, which further decreases the DNA extensional elasticity. All simulations started from an initial
DNA configuration obtained for a compression force of 20. The range of times, for which the expansion curves were fit, were chosen to take into account the
intermediate expansion regime (103τB–104τB or 0.01 ms – 0.1 ms).

expansion dynamics. This is because the larger spheres cre-
ate larger effective friction (as the friction or viscosity of a
hard sphere suspension is proportional to its volume frac-
tion). The effective exponent we find is accordingly smaller,
although this should be seen as a measure of the speed
of the dynamics rather than a true dynamical exponent,
which would require the study of different chain lengths.
The decrease in the effective exponent is more marked in
the case with DNA-binding proteins: again, this is due to
the fact that these proteins can form multiple contacts with
DNA.

APPENDIX B: EFFECT OF CHARGE

Here we present the results corresponding to Figs. 3–5 in
the main text but for charged DNA beads and proteins.

The electrostatic interaction between particles is modeled
by considering the Debye-Hückel potential,42,43 in addition to
the potentials already described in Sec. II A,

UDH(ri,i+1) = C
qiqj

ε r

eka

1 + ka
e−kri,i+1

ri,i+1
, (B1)

where C = 1/4πε0kBT , qi is the charge of particle i, ε r is the
dimensionless dielectric constant (we consider ε r = ε r, water

= 80), k is the inverse Debye length, and a is the radius of the
particle.

We consider k�1 = 1 nm, which is the Debye length in the
cell interior. More explicitly, k =

√
8πlBNA103cS , where lB

= 0.71 is the Bjerrum length in water and cS ∼ 150 mM is the
salt concentration inside cells.26

Regarding the charge of the particles, DNA is known to
carry two negative charges (�2e) per base-pair, due to the neg-
atively charged phosphate group. As detailed in Sec. II B,
1 DNA bead corresponds to 7.4 bp in our model. There-
fore, there are 7.4 phosphate groups per DNA bead. However,
counterion (or salt) condensation leads to a neutralisation of
80%–100% of the phosphate groups.44 So, in fact, each DNA
bead will only carry a charge of 0.2 × −14.8e = −2.96e. The
choice of the value of the proteins’ charge is not as straight
forward since it depends on the protein residues. We opted
to consider the value of the charge of an average protein
and use that value for negatively and positively charged pro-
teins in our model. In Ref. 45, the average of protein charges
in bacteria was measured to lie in the range [�10e, +15e].

FIG. 13. Same as Fig. 3, but for simulations with charged proteins and polymer beads. Compression force as a function of the normalized DNA extension in
the absence of proteins. (a) Comparison of the force-extension curve obtained from the entropic spring theory of Ref. 10 (full line) and our numerical model
(blue circles). Like in the simulations presented in Fig. 3, the theory of an infinitesimally thin polymer agrees with the model for R/R0 > 0.1 but breaks
down for R/R0 < 0.1, where excluded volume effects become significant. The inset shows the results for the “Force” axis in logarithmic scale. Error bars are
shown for three different points. (b) Comparison of the force-extension curves obtained from the model with (blue circles) and without (black dots) electrostatic
interactions. The inset shows the force axis in logarithmic scale. For f > 10, both models lead to similar force-extension relations (for very large forces, the case
with electrostatic interactions is slightly smaller. However this only holds for a single realisation). For f < 10, the extension of the polymer in the presence of
electrostatic interactions for a given force is larger than for the case without electrostatics, which was expected since there is an additional long-range repulsion
between DNA beads.
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For simplification, we consider the proteins’ charge to be
equal in magnitude to the DNA beads’ charge—14.8e—which
corresponds to an effective charge ���qprot

��� = 2.96e due to neu-
tralisation emerging from counterion condensation. There-
fore, non-DNA-binding proteins are modeled as beads with
charge q = �2.96e and DNA-binding proteins with charge
q = +2.96e.

Figure 13 shows the compression force versus extension
in the absence of proteins. Figure 13(a) shows that, like in
Fig. 3, the entropic spring theory of Ref. 10 agrees with the
model for R/R0 > 0.1 but breaks down for R/R0 < 0.1.
Figure 13(b) shows that, for f > 10, the DNA beads’ charge
does not play a significant role in the elastic response of the
DNA polymer but that for weak compression forces (f < 10)
the effect of long-range electrostatic interactions is more
noticeable: for a given force, the DNA extension for the
charged polymer is larger than for the neutral polymer.

Figure 14 for charged particles and Fig. 4 for neutral par-
ticles are remarkably similar. The comparison between inset
2 in both figures shows, however, that the presence of electro-
static interactions leads to a slightly higher DNA extension for
a moderate force, as seen before.

Again, Figs. 15 and 5 lead to the same conclusions.
In both cases, the DNA-binding proteins lead to the forma-
tion of DNA clusters, hence compacting the DNA, giving
a decrease in the compression force. The striking similar-
ity between the results arising from the charged and neutral
models further suggests that the electrostatic interactions do
not play a significant role in the overall elastic response of
DNA.

FIG. 14. Same as Fig. 4, but for simulations with charged proteins and poly-
mer beads. Compression force as a function of the DNA extension for a varying
number M of non-DNA-binding proteins: DNA-only simulations (blue cir-
cles), M = 500 (magenta squares), M = 1000 (green triangles), M = 1500
(yellow diamonds), and M = 2000 (orange inverted triangles). The force-
extension curves are remarkably similar to the ones in Fig. 4. The linear
relations force—M (inset 1—fit: f = 0.0156M + 1.4513) and DNA extension—
M (inset 2—fit: f = 0.0212M � 9.3741) are also recovered. The comparison
between inset 2 and the one in Fig. 4 shows that the presence of electrostatic
interactions leads to a slightly higher DNA extension for a moderate force, as
seen in Fig. 13.

FIG. 15. Same as Fig. 5, but for simulations with charged proteins and
polymer beads. Compression force as a function of the DNA extension for
simulations in the absence of proteins (blue circles), in the presence of non-
DNA-binding proteins (green squares), and in the presence of both binding and
non-binding proteins (orange triangles: 3% of the proteins are DNA-binding).
Like in the simulations presented in Fig. 5, the DNA-binding proteins lead to
the formation of DNA clusters, hence compacting the DNA, giving a decrease
in the compression force. Again we point out the striking similarity between
these curves and the ones in Fig. 5. This suggests that, indeed, the electro-
static interactions do not play a significant role in the overall elastic response
of DNA.
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14I. Junier, F. Boccard, and O. Espéli, Nucleic Acids Res. 42, 1461 (2014).
15T. B. K. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub, Science 342, 731

(2013).
16V. G. Benza, B. Bassetti, K. D. Dorfman, V. F. Scolari, K. Bromek, P. Cicuta,

and M. C. Lagomarsino, Rep. Prog. Phys. 75, 076602 (2012).
17V. F. Scolari and M. C. Lagomarsino, Soft Matter 11, 1677 (2015).
18Y. Jung, C. Jeon, M. Ha, and B.-Y. Ha, Europhys. Lett. 104, 68003 (2013).
19J. Kim, C. Jeon, H. Jeong, Y. Jung, and B.-Y. Ha, Soft Matter 11, 1877

(2015).
20T. N. Shendruk, M. Bertrand, H. W. de Haan, J. L. Harden, and G. W. Slater,

Biophys. J. 108, 810 (2015).
21A. S. Wegner, K. Wintraecken, R. Spurio, C. L. Woldringh, R. de Vries, and

T. Odijk, J. Struct. Biol. 194, 129 (2016).
22C. A. Brackley, S. Taylor, A. Papantonis, P. R. Cook, and D. Marenduzzo,

Proc. Natl. Acad. Sci. U. S. A. 110, E3605 (2013).
23G. L. Treut, F. Kepes, and H. Orland, Biophys. J. 110, 51 (2016).
24C. A. Brackley, A. N. Morozov, and D. Marenduzzo, J. Chem. Phys. 140,

135103 (2014).
25R. Phillips, J. Kondev, J. Theriot, and H. Garcia, Physical Biology of the

Cell (Garland Science, New York, 2013).
26T. Ando and J. Skolnick, Proc. Natl. Acad. Sci. U. S. A. 107, 18457 (2010).
27C. A. Brackley, J. Allan, D. Keszenman-Pereyra, and D. Marenduzzo,

Nucleic Acids Res. 43, 63 (2015).
28F. Brochard and P. G. de Gennes, J. Chem. Phys. 67, 52 (1977).
29A. Khorshid, P. Zimny, D. T.-L. Roche, G. Massarelli, T. Sakaue, and

W. Reisner, Phys. Rev. Lett. 113, 268104 (2014).

13



30A. Khorshid, S. Amin, Z. Zhang, T. Sakaue, and W. W. Reisner, Macro-
molecules 49, 1933 (2016).

31N. M. Toan, D. Marenduzzo, P. R. Cook, and C. Micheletti, Phys. Rev. Lett.
97, 178302 (2006).

32R. T. Dame, M. C. Noom, and G. J. L. Wuite, Nature 444, 387 (2006).
33S. G. Wolf, D. Frenkiel, T. Arad, S. Finkel, R. Kolter, and A. Minsky, Nature

400, 83 (1999).
34C. A. Brackley, J. Johnson, S. Kelly, P. R. Cook, and D. Marenduzzo, Nucleic

Acids Res. 44, 3503 (2016).
35R. Metzler, Y. Kantor, and M. Kardar, Phys Rev E 66, 022102 (2002).
36R. Metzler, A. Hanke, P. G. Dommersnes, Y. Kantor, and M. Kardar, Phys.

Rev. Lett. 65, 061103 (2002).
37Note that these results correspond to proteins which bind non-specifically

to DNA. It would be of interest to ask what the effect of specific binding,
which is known to promote the formation of clusters with a well-defined
size.34

38In a real bacterial DNA, proteins like H-NS would not bind the whole
genome, so the 3D structure would likely be different upon compression;
however, we expect similar dynamics to occur there as well.

39We note that the considered value corresponds to the effective twisting rigid-
ity and not the intrinsic one (∼110 nm41,46,47). This is because there is a
coupling between twisting and bending40 arising from the groove asymme-
try in the DNA base-pairs,41 i.e., the polymer can relax and convert extra
twist into bending. This leads to an effective softer polymer upon twisting.
Our coarse grained model does not explicitly consider this coupling, but,
since here the DNA is not under tension, a realistic twisting rigidity can still
be achieved by using the effective rigidity value.

40S. K. Nomidis, F. Kriegel, W. Vanderlinden, J. Lipfert, and E. Carlon, Phys.
Rev. Lett. 118, 217801 (2017).

41E. Skoruppa, M. Laleman, S. K. Nomidis, and E. Carlon, J. Chem. Phys.
146, 214902 (2017).

42J. D. Dwyer and V. A. Bloomfield, Biophys. Chem. 57, 55 (1995).
43K. K. Kunze and R. R. Netz, Phys. Rev. Lett. 85, 4389 (2000).
44C. Forrey and M. Muthukumar, Biophys. J. 91, 25 (2006).
45K. Runcong and S. Mitaku, Genome Inf. 12, 364 (2001).
46J. D. Moroz and P. Nelson, Proc. Natl. Acad. Sci. U. S. A. 94, 14418 (1997).
47J. Lipfert, J. W. J. Kerssemakers, T. Jager, and N. H. Dekker, Nat. Methods

7, 977 (2010).

14




