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Abstract

We propose a generic Bayesian mixed-effects model to estimate the temporal progression of
a biological phenomenon from observations obtained at multiple time points for a group of
individuals. The progression is modeled by continuous trajectories in the space of measure-
ments. Individual trajectories of progression result from spatiotemporal transformations
of an average trajectory. These transformations allow for the quantification of changes
in direction and pace at which the trajectories are followed. The framework of Rieman-
nian geometry allows the model to be used with any kind of measurements with smooth
constraints. A stochastic version of the Expectation-Maximization algorithm is used to
produce maximum a posteriori estimates of the parameters. We evaluated our method
using a series of neuropsychological test scores from patients with mild cognitive impair-
ments, later diagnosed with Alzheimer’s disease, and simulated evolutions of symmetric
positive definite matrices. The data-driven model of impairment of cognitive functions il-
lustrated the variability in the ordering and timing of the decline of these functions in the
population. We showed that the estimated spatiotemporal transformations effectively put
into correspondence significant events in the progression of individuals.

Keywords: longitudinal model, spatiotemporal analysis, Riemannian geometry, stochas-
tic expectation-maximization algorithm

1. Introduction

The study of the temporal progression of a biological or natural phenomenon is central
to several scientific fields. For instance, the study of progressive diseases plays a crucial
role in the diagnosis and prognosis of patients. In computer vision, the dynamics of facial
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expressions in video sequences may be important in automatic detection and characterization
of emotions.

For a given individual or object, the evolution of the observed phenomenon can be
measured by several characteristics or features, which describe the state of the individual at
a given time point. In medicine, these features may be blood markers, height, or weight, but
also structured multivariate data such as medical images. The shape of a human face may
be described by the position of characteristic points on the nose, mouth or brows. These
features may be represented, at a given time point, by a point in a high-dimensional space.
The temporal evolution of these features may be modeled therefore as a smooth parametric
curve in the space of measurements, i.e. a spatiotemporal trajectory. These trajectories vary
across individuals in two possible ways. Firstly, the position and direction of the trajectory
differ because the measurements have intrinsically different values and different trajectory
of changes for different individuals. Secondly, the pace at which the trajectory is followed
(i.e. the way the curve is parametrized) varies because some individuals may follow the same
progression pattern but at a different age and possibly at a different speed. We refer to the
first type of variability as a spatial variability, and the second type as a temporal variability,
leading together to the concept of spatiotemporal variability.

The goal of this paper is to automatically estimate the typical trajectory of changes
and its spatiotemporal variability within a group of individuals. We aim to infer such
spatiotemporal patterns from longitudinal data sets, which consist of repeated observations
of the same biological phenomenon at several time points for a group of individuals. The
time points and their number may vary for different individuals.

In the literature, mixed-effects models (Eisenhart, 1947; Laird and Ware, 1982) and
(Verbeke and Molenberghs, 2009) appear as a popular method for the analysis of longitu-
dinal data. These statistical models include fixed and random effects which provide these
models with a hierarchical structure, where fixed effects described the data at the population
(or group) level, and the random effects at the individual level. By fitting a mixed-effects
model, one can learn an average trajectory as well as individual-specific trajectories. More-
over, mixed-effects models enforce conditions on the distribution of the random effects, thus
opening up the possibility to learn a distribution of trajectories in the space of observations.

Linear Mixed Effects (LME) models are the most simple mixed-effects models introduced
in Laird and Ware (1982). A particular, but yet informative case of the LME models for
analysing longitudinal data is the random slope and intercept model. This model writes:
yi;j = (ti;j�t0)(A+Ai)+(B+Bi)+"i;j , where t0 2 R and (ti;j)1�j�ki denotes the time points
at which the observations yi;j 2 Rn of the ith individual were obtained. The population
parameters (or fixed effects) of the model are the slope A and the intercept B. The random
effects are the subject-specific slopes (Ai)1�i�p and intercepts (Bi)1�i�p, which are assumed
to be normally distributed and independent of each other. This random slope and intercept
model estimates an average trajectory D(t) = (t � t0)A + B. The random effects of the
model allows us to estimate individual trajectories Di(t) = (t � t0)(A + Ai) + (B + Bi),
which are obtained by adjusting the slope and intercept of the average trajectory. This
model is essentially built on the idea of regressing the measurements against time. The
parameter t0 can be understood as a reference time. If the longitudinal dataset arises from
animal breeding studies, developmental studies or pharmacological studies, the reference
time t0 may be chosen to be the date of birth or the time at which a drug was administered.
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However, there are many situations in which there is no obvious reference time t0 at which
observations may be compared. In ageing, for instance, different individuals of the same
age may be at different stages of ageing, or stages of disease progression. Therefore, it does
not make sense to regress the measurements against age, or, in other words, to statistically
compare measurements at a given age. In video sequences, there is no obvious way to find
the frames corresponding to the same event in two different sequences. By contrast, we
would like this temporal alignment of the trajectories to be automatically estimated from
the data. Adding the reference time t0 as a new parameter of the model is not a solution
as the model becomes non-identifiable: an infinite number of triplets (A;B; t0) parametrize
the same trajectory.

In Yang et al. (2011) and Delor et al. (2013), the authors addressed this problem by
introducing time shifts in their statistical analysis. In Durrleman et al. (2009, 2013), time
reparametrizations called time warps (smooth monotonic transformations of the real line) are
considered to address this point in the context of longitudinal shape analysis, and parameters
were estimated by optimizing an uncontrolled approximation of the likelihood. In Hong et al.
(2014), the authors used parametric time warps with a regression model for shape analysis.
In Lorenzi et al. (2015), the authors used Riemannian manifold techniques to estimate a
model of normal brain ageing from MR images. The model was used to compute a time
shift, called morphological age shift, which corresponds to the actual anatomical age of
the subject with respect to an estimated reference age. In (Fonteijn et al., 2012; Young
et al., 2015), the authors developed a statistical model called the Event-Based Model, which
estimates an ordering of categorical variables. The model is used to estimate the progression
of a series of events. However, these models do not allow for the estimation of the relative
timing between two consecutive events. In Jedynak et al. (2012), the authors modeled the
progression of biomarkers using a nonlinear mixed-effects model for univariate observations.
This model estimates individual trajectories which are defined using individual-specific time
reparametrizations of an average trajectory. However, the proposed model is not identifiable
unless some conditions are imposed on the parameters of the model. Therefore, generalizing
the model to multivariate observations is not straightforward. Also, the model is specific to
univariate observations whereas our generic model, presented below, allows analysing any
kind of observations defined by smooth constraints. This work offers pragmatic solutions to
include the idea of time raparametrization in the estimation of trajectories of changes for
some specific applications. Nevertheless, we are still lacking a principle and generic approach
to deal with the estimation of spatiotemporal variability in longitudinal data sets.

Structured multivariate data such as images, graphs, shapes, or positive definite matrices
add further difficulty as these data do not lie in Euclidean spaces. Algebraic operations
such as addition or scaling are not defined or do not yield an output of the same type.
The spaces in which they live are defined by smooth constraints and may be considered
in general as Riemannian manifolds. There is no natural extension of LME models on
Riemannian manifolds. In Fletcher (2011), the authors proposed an extension of linear
regression for Riemannian manifolds, which was later extended for longitudinal data in a
group of diffeomorphisms (Singh et al., 2013, 2014). Nevertheless, this longitudinal model
strongly depends on a choice of reference time-point to define random effects, therefore
making difficult its coupling with time raparametrization. In Su et al. (2014), trajectories
are defined by the quotient with a time raparametrization group. This approach allowed
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for the definition of statistics in the quotient space, but as a consequence did not yield any
estimate of the temporal variability.

This paper proposes a Bayesian mixed-effects model, called generic spatiotemporal model,
defined for any longitudinal observations on a Riemannian manifold. The fixed effects of
the model are used to define an average trajectory and the random effects are used to define
individual-specific trajectories. In order to define such individual trajectories, we introduce
the notion of “exp-parallelization” of a curve on a Riemannian manifold, based on the idea of
“variations of a curve”. This construction allows the definition of random effects to account
for the spatial variability, the distribution of which (up to an isometric transform) does
not depend on a reference time-point. It allows us, therefore, to easily include random time
raparametrization to account for the temporal variability in the model. All in one, the model
defines distributions of spatiotemporal trajectories for data on any Riemannian manifolds.
It gives a systematic way to derive specific nonlinear mixed-effects models for a large variety
of observations and Riemannian manifolds.

These models need to then be fitted to given longitudinal data sets. Given their strong
non-linear nature, we propose to use a stochastic version of the Expectation-Maximization
(EM) (Dempster et al., 1977) algorithm, called the Monte Carlo Markov Chain Stochastic
Approximation EM (MCMC-SAEM) algorithm. Theoretical results regarding the conver-
gence of the MCMC-SAEM have been proven in Kuhn and Lavielle (2004),
Allassonnière et al. (2010) and ensure that the algorithm maximizes the observed likelihood.
This technique allows us to propose a generic algorithm for the estimation of the model pa-
rameters. We will instantiate this method for a set of multivariate bounded measurements
and for positive definite matrices.

The paper is organized as follows: in Section 2, we give the key mathematical tools and
define the generic mixed-effects model with spatiotemporal transformations for manifold-
valued measurements. Particular cases of the generic model are given and discussed in
Section 3. Section 4 is focused on the MCMC-SAEM which is used to estimate the param-
eters of the statistical model. Finally, Sections 5.2 and 5 are dedicated to empirical and
experimental validations of our generic model.

2. A Bayesian Mixed-Effects Model for Longitudinal Observations on a
Riemannian Manifold

This section aims at introducing a notion of Riemannian geometry called “exp-parallelization”.
Given a group-average trajectory on a Riemannian manifold, the notion of exp-parallelization
is used to define individual trajectories. For a comprehensive review of basic concepts of
Riemannian geometry, see Do Carmo Valero (1992); Petersen (2006). In this section, we
assume that M is an open subset of RN equipped with a Riemannian metric gM.

2.1 Exp-parallelization on a Riemannian Manifold

This section introduces the notion of “exp-parallelization” of a curve on a Riemannian man-
ifold (M; gM). The notion of “variation of a differentiable curve” on a manifold is defined
in Do Carmo Valero (1992) (Chapter 9). It allows defining neighbouring curves to a given
curve c. In the next section, this construction will be used to define individual trajecto-
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ries. Let (M; gM) denotes a geodesically complete Riemannian manifold equipped with its
Levi-Civita connection rM.

Definition 1 Let c : I � R ! M a differentiable curve on M, t0 2 I and w 2 Tc(t0)M a
tangent vector to M at c(t0). An exp-parallelization of c in the direction of w is a curve
�w(c; �) : I !M defined by:

8t 2 I; �w(c; t) = ExpM
c(t)

�
Pc;t0;t(w)

�
: (1)

This construction is illustrated in Fig. 1. Given t 2 I, parallel transport carries the tangent
vector w from Tc(t0)M to Tc(t)M along the curve c. At the point c(t), a new point on M is
obtained by taking the Riemannian exponential of the tangent vector Pc;t0;t(w). This new
point is denoted by �w(c; t). As t varies, one describes a curve �w(c; �) on M, which can
be understood as a “parallel” to the curve c. Note that if M is the Euclidean space RN , an
exp-parallelization of a curve c, in the direction of a tangent vector wi, is the translation of
c by the vector wi.

Figure 1: Exp-parallelization on a schematic manifold. Left: a non-zero vector wi is chosen
in Tc(t0)M. Middle: the tangent vector wi is transported continuously along the
curve c. Then, a point �wi(c; s) is constructed at time s by use of the Rieman-
nian exponential. Right: The curve �wi(c; �) is the “parallel” resulting from the
construction.

2.2 Hierarchical Structure of the Model

In this section, we consider a longitudinal dataset (yi;j)1�i�p; 1�j�ki . The observations are
obtained for a group of p individuals. For the ith individual, the observations (yi;j)1�j�ki
are obtained at times ti;1 < : : : < ti;ki . The number ki of observations may vary from one
individual to another.

The generic spatiotemporal model is a nonlinear mixed-effects model. As emphasized in
the introduction, mixed-effects models include fixed and random effects. The fixed-effects
are parameters which are shared by all the individuals and allow for the description of the
model at the population level. Random effects are individual-specific random variable which
describe the model at the individual level. These two types of effects provide the model with
a hierarchical structure. The generic spatiotemporal model is constructed as follows. To
begin with, a group-average trajectory 0 is defined on the manifold M. Given the aver-
age trajectory, subject-specific trajectories are obtained by spatiotemporal transformations,
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which consist of exp-parallelizations of the average trajectory 0 and time reparametrization.
The data points yi;j are seen as samples along these individual trajectories. If i denotes
the trajectory of the ith individual, the model writes: yi;j = i(ti;j) + "i;j , where "i;j is a
Gaussian noise. The observation yi;j is therefore considered as a small perturbation of a
quantity which lies in a Riemannian manifold.

The group-average trajectory 0 is chosen to be the unique geodesic 0 = p0;t0;v0
of

M which goes through the point p0 2 M at time t0 and with velocity v0 2 Tp0M. Let i 2
f1; : : : ; pg denote the ith individual. The subject-specific trajectory i is defined in two steps.
The first step consists in constructing the curve �wi(0; �), which is an exp-parallelization
of the average trajectory 0 in the direction of a tangent vector wi 2 Tp0M. This tangent
vector is chosen orthogonal, for the inner product gM

p0
, to ̇0(t0) = v0. The tangent vectors

(wi)1�i�p are random effects of the model, called space shifts. The orthogonality condition
on the space shifts is discussed below. The second step consists of reparametrizing in time
the exp-parallelization �wi(0; �). We consider a subject-specific affine mapping  i of the
form  i(t) = �i(t� t0 � �i) + t0, where �i > 0 and �i 2 R are random effects of our model.
The trajectory i of the ith individual is i(t) = �wi(0;  i(t)). The mapping  i is called
time reparametrization and the random effects �i (respectively �i) are called acceleration
factor (respectively time shift).

2.3 Definition of the Space Shifts

As mentioned above, the space shifts (wi)1�i�p are required to be orthogonal to ̇0(t0) = v0

for the inner product gM
p0

induced by the Riemannian metric on M. This section discusses
different methods which allow to impose this orthogonality condition on the space shifts into
a statistical model. The methodological challenge raised by this section consists of defining
a (nonlinear) mixed-effects model with smooth constraints on some random effect of the
model.

In order to ensure the interpretability of the space shifts, we consider an Independent
Component Analysis (ICA) (Hyvärinen et al., 2004) decomposition of each tangent vector
wi as a linear combination of Ns < N statistically independent tangent vectors (Al)1�l�Ns
which are called independent components or independent directions. As a consequence, the
space shifts (wi)1�i�p are defined as follows: 8i 2 f1; : : : ; pg; wi = Asi =

PNs
l=1 sl;iAl

where A = (Al)1�l�Ns is such that each Ai is a vector in T _0(t0)M. In this definition, the
weights (sl;i)1�l�Ns are random effects of the model called sources. By defining the space
shifts this way, the generic spatiotemporal model will estimate an ICA decomposition of
the space shifts. However, this definition does not ensure the orthogonality of the space
shifts. A possible solution to make the vectors wi orthogonal to v0 = ̇0(t0) consists of
decomposing each vector (Al)1�l�Ns in an orthonormal basis of Span

�
̇0(t0)

�? � Tp0M.
Indeed, if (Bk)1�k�(N�1)Ns is an orthonormal basis of Span

�
̇0(t0)

�?, we assume that: 8l 2
f1; : : : ; Nsg; Al =

P(N�1)Ns
k=1 �l;kBk. By construction, each independent component Al

(1 � l � Ns) is orthogonal, for the inner product gM
p0
, to v0. Therefore, each space shift

(wi)1�i�p is orthogonal to v0 since we assumed that it writes as a linear combination of
these independent components. In the following, the orthonormal basis is computed using
the Gram-Schmidt algorithm or the Householder method (Coleman and Sorensen, 1984).
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Moreover, it is important to note that the choice of the form of the distribution of
the space-shifts does not depend on the reference time-point t0. Indeed, the wi = Asi
are defined in the tangent space of the curve at point p0 = 0(t0). At another point
p00 = 0(t00), space-shifts become w0i = P0;t0;t

0
0
wi, where P0;t0;t

0
0
is an orthogonal matrix.

They are therefore distributed according to w0i = P0;t0;tAsi : the distribution of the sources
si does not change and the independent components (i.e. the columns of A) are adjusted to
the new position on the average trajectory. In particular, the variance of the w0i is invariant.
This property holds for isometric invariant distributions. For instance, if wi � N (0;�),
then w0i � N (0;P0;t0;t

0
0
� P>0;t0;t

0
0
).

2.4 The Statistical Model

The generic spatiotemporal model assumes that the jth observation of the ith individual
derives from:

yi;j = �wi(0;  i(ti;j)) + "i;j : (2)

With the notations introduced above, let zpop = (p0; t0;v0; (�l;k)l;k) denote the population
variables and (zi)1�i�p denote the set of individual variables with: zi = (�i; �i; (sl;i)l;i). Both
zpop and (zi)1�i�p are latent (or random) variables assumed independent of each other and
distributed as follows:

p0 � N (p0; �
2
p0

); t0 � N (t0; �
2
t0);

v0 � N (v0; �
2
v0

); �l;k
i:i:d:� N (�l;k; �

2
�);

(3)

and  i(t) = �i(t� t0 � �i) + t0 with �i = exp(�i) and :

�i
i:i:d:� N (0; �2

� ); �i
i:i:d:� N (0; �2

� ); sl;i
i:i:d:� N (0; 1): (4)

where �2
p0
, �2

t0 , �
2
v0

and �2
� are fixed variance parameters. The noise variables ("i;j)i;j are

assumed independent of the other random variables and identically distributed:

"i;j
i:i:d:� N (0; �2): (5)

Let �var = (�2
� ; �

2
� ; �

2) denote the variance parameters which are not fixed and
� =

�
p0; t0;v0; (�l;k);�var

�
be the parameters of the model. The domain of � is denoted by

Θ and defined by:

Θ =
�
� =(p0;v0; t0; (�l;k)l;k;�var)

�
(p0;v0) 2 TM;

t0 2 R; (�l;k)l;k 2 R(N�1)Ns ; �var 2]0;+1[3
	
:

(6)
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Figure 2: Graphical representation of the generic spatiotemporal model. Round shapes in-
dicate latent variables of the model. Boxes with indexes in the upper left corner
indicate a repetition. Shaded boxes indicate that the quantity is observed. This
figure illustrates the dependence between the variables of the generic spatiotem-
poral model.

2.4.1 Discussion

The additive, or extrinsic, noise model in Eq. (2) makes sense because we assumed that M
is a subset of the Euclidean space RN . The term �wi(0;  i(ti;j)) belongs to the manifold
M while the noise term "i;j is added in the underlying Euclidean space. However, the noise
model is not intrinsic in the sense that the noise term "i;j is not added on the manifold.
In Fletcher (2011), the author have considered an intrinsic noise model which would write:
yi;j = Exp�wi (0; i(ti;j))

("i;j): This noise model allows for it to remain on the manifold. Still,
obtaining maximum a posteriori estimates of the parameters with this intrinsic noise model
is more difficult as the model likelihood might not be available in closed-form.

We assume a centred log-normal distribution for the acceleration factors �i. Indeed,
this choice of probability distribution ensures the positiveness of the acceleration factors.
With this assumption, the individual time reparametrizations do not reverse time. Other
probability distributions, such as the exponential distribution, could have been considered.
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3. Particular Cases of the Generic Spatiotemporal Model

The generic spatiotemporal model, introduced in the previous section, is a statistical tool
which allows, given a Riemannian manifold M equipped with a Riemannian metric gM,
to instantiate a large variety of nonlinear mixed-effects models. This section aims at de-
scribing the generic spatiotemporal model for classical Riemannian manifolds. The models
for one-dimensional geodesically complete Riemannian manifolds given in Section 3.1 were
introduced in Schiratti et al. (2015c). The progression models, given in Section 3.3 were
introduced in Schiratti et al. (2015b).

3.1 The case of One-Dimensional Geodesically Complete Riemannian
Manifolds

Let M be an open interval of R equipped with a Riemannian metric gM , for which it is
geodesically complete. The case of one dimensional manifolds is particular because, for
all p0 2 M , TpM ’ R and given v0 2 Tp0M , there is only one tangent vector w at p0

which is orthogonal (for the inner product gMp0
) to v0 : w = 0. As a result, if 0 is a

geodesic of M , t0 2 R and w = 0, then for all s 2 R, �w(0; s) = 0(s). Therefore, the
generic spatiotemporal model writes: yi;j = 0

�
 i(ti;j)

�
+ "i;j , with, for all i 2 f1; : : : ; pg,

 i(t) = �i(t� t0 � �i) + t0 and �i = exp(�i).

We show that, in this one-dimensional framework, a different presentation of the generic
spatiotemporal model is possible. This presentation provides a different insight on the role
of the latent variables (�i; �i)1�i�p. Let p0 2M , t0 2 R and v0 2 Tp0M ’ R. Let 0 be the
group-average trajectory defined as the geodesic which goes through the point p0 at time
t0 and with velocity v0. Let 1 � i � p. The trajectory i of the ith individual is defined
as the geodesic i which goes through the point p0 at time t0 + �i and with velocity �iv0.
Having defined individual trajectories of progression, the observations are seen as random
samples along these trajectories: yi;j = i(ti;j) + "i;j . In this definition, the acceleration
factor �i allows characterizing whether the ith individual is progressing faster (�i > 1) or
slower (�i < 1) than the average trajectory. The time shift �i allows determining whether
the ith individual is evolving ahead (�i < 0) or behind (�i > 0) the average trajectory.
Moreover, it follows from a unicity property of the geodesics that, for all i 2 f1; : : : ; pg,
i(t) = 0

�
 i(t)

�
. This result legitimises the choice of affine time reparametrizations of the

form  i : t 7! �i(t� t0 � �i) + t0.

3.1.1 The “Straight Lines Model”

Unbounded observations can be considered as points on the real line. The real line M = R
equipped with its canonical metric is a geodesically complete one-dimensional Riemannian
manifold. For the canonical metric, the geodesics are of the form t 2 R 7! at + b with
(a; b) 2 R2. The generic spatiotemporal model writes: yi;j = p0 + �iv0(ti;j � t0 � �i) + "i;j :
This model is referred to as the univariate straight lines model. Note that, even though
the average and individual trajectories are straight lines, the model is not linear due to the
multiplication between the random effects �i and �i.
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We propose to compare the nonlinear straight lines model to the random slope and
intercept model, discussed in the introduction. This linear mixed-effects model writes: yi;j =
(a+ai)(ti;j�t0)+(b+bi)+"i;j , where (Ai; Bi)1�i�p are random effects of the model which are
assumed to be independent of each other and normally distributed with mean 0 and variance-
covariance matrix D. The fixed effects of this model are (a; b; t0). This linear model analyzes
the distribution of the observations at a fixed reference time t0. In comparison, the straight
lines model analyzes the distribution of the times at which the observations reach a given
value of the measurements. The two models illustrated in Fig. 3 are not equivalent because
the observations generated by these two models are different. Indeed, the random slope and
intercept model generates straight lines whose slope a+ ai and intercept b+ bi � t0(a+ ai)
both follow Gaussian distributions. With the straight lines model, only the slope aai follows
a Gaussian distribution. The intercept b� (t0 + �i)aai actually does not follow a Gaussian
distribution. It is the sum of two random variables, one following a Gaussian distribution,
and the other one being the product of two independent Gaussian random variables, ai and
�i. The distribution of ai�i is that of a (weighted) sum of two chi-square random variables
(which are, in general, not independent).

y

timet0

y

timet0

�U�Ü�á�ÝL $�=E�=�Ü �P�Ü�á�ÝF �P�4 E�:$�>E�>�Ü�; E�Ý�Ü�á�Ý �U�Ü�á�ÝL $�=�=�Ü�P�Ü�á�ÝF �P�4 F �ì�Ü E $�>E�Ý�Ü�á�Ý

Figure 3: Schematic example of a random slope and intercept linear mixed-effects model
(left) and straight lines model (right).

3.2 The “Logistic Curves Model”

If the observations are bounded, such as percentages or scores to a test, the measurements
can be normalized to produce new observations in the open interval M =]0; 1[. We consider
that this open interval of the real line is equipped with the Riemannian metric g = (gp)p2]0;1[

where : 8p 2M =]0; 1[; 8(u; v) 2 TpM� TpM; gp(u; v) = uM(p)v, where M(p) = 1=
�
p2(1�

p)2
�
. This Riemannian metric on ]0; 1[ is obtained as the push-forward of the Euclidean

metric on R by the logit transform. In Schiratti et al. (2015c), it is proven that M =]0; 1[
is a geodesically complete Riemannian manifold and that the generic spatiotemporal model

10
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writes:

yi;j =

 
1 +

� 1

p0
� 1
�

exp
�
� v0�i(ti;j � t0 � �i)

p0(1� p0)

�!�1

+ "i;j : (7)

In this framework, the Riemannian logarithm at p = 1=2, which corresponds to the
inflexion point of the logistics, is given by: 8q 2]0; 1[; Log1=2(q) = (1=4)logit(q). However,
in (7), the point p0 is not fixed to 1=2, but is estimated as a fixed effect. The model estimates
the p0, and therefore the best tangent space, which best describes the observations. Further-
more, even if one fixes p = 1=2, the model lifted up on the tangent space remains nonlinear
due to the multiplication between the random effects �i and �i. Therefore, the logistic curves
model is not equivalent to a linear model on the logit transform of the observations.

3.3 A Progression Model

The generic spatiotemporal model can be used to study the temporal progression of a family
of features which characterize the evolution of a biological phenomenon. We assume that
each feature is described by repeated univariate observations, which are random pertur-
bations of quantities lying in a one-dimensional geodesically complete Riemannian mani-
fold (M; gM ), open subset of R. For each individual, at each time point, the observations
(yi;j)1�i�p; 1�j�ki consist of a N -dimensional vector of univariate features. Hence, for this
progression model, the observations (yi;j)1�i�p; 1�j�ki are considered as random perturba-
tions of quantities which belong to the product manifold M = M � : : : �M = MN . Since
each Riemannian manifold (M; gM ) is geodesically complete, M equipped with the product
metric is also geodesically complete.

On the product manifold M = MN , equipped with the product metric, a geodesic is
of the form t 7!

�
1(t); : : : ; N (t)

�
, where 1; : : : ; N are geodesics of the one-dimensional

Riemannian manifold M . Because we would like to model the joint temporal progression of
N features, we propose to choose the group-average trajectory among a parametric family
of geodesics of M. This family is of the form:�

0;� : t 2 R 7!
�
0(t); 0(t+ �1); : : : ; 0(t+ �N�1)

��
; (8)

with � = (0; �1; : : : ; �N�1)>, �i 2 R and 0 denotes a geodesic of the one-dimensional
Riemannian manifold gM which goes through a point p0 2 M at time t0 with velocity
v0. The relative delay between two consecutive biomarkers is given by the parameters �i
(1 � i � N � 1). The vector � is to be estimated as a fixed effect of the model. The first
component of the vector � is chosen to be equal to zero in order to ensure the identifiability
of the model. Note that assuming that the group average belongs to this parametric family
of geodesics is equivalent to assuming that the progression of each feature is described by
trajectories which have the same shape but are shifted in time.

Lemma 2 Let  be a geodesic of the product manifold M = MN and let t0 2 R. If �w(; �)
denotes an exp-parallelization of the geodesic  using w = (w1; : : : ; wN

�
2 T(t0)M and with

(t) = (1(t); : : : ; N (t)), we have �w(; s) =
�
1

�
w1

_1(t0) + s
�
; : : : ; N

�
wN

_N (t0) + s
��
; s 2 R:

11
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In this framework, an exp-parallelization of the group-average trajectory 0;� can be
computed using the result given in Lemma 2. Indeed, it follows from Lemma 2 that the
generic spatiotemporal model 2 writes :

yi;j;k = 0

 
wi;k

̇0(t0 + �k�1)
+  i(ti;j) + �k�1

!
+ "i;j;k; (9)

where, for all k 2 f1; : : : ; Ng, (yi;j)k denotes the kth component of yi;j . In other words,
(yi;j)k is the observation associated to the kth biomarker, for the ith individual, at the
jth time point. Similarly, (wi)k denotes the kth component of the space shift wi. For all
i 2 f1; : : : ; pg,  i(t) = �i(t� t0 � �i) + t0 is the individual specific time reparametrization.
This model is referred to as the progression model. For this model, the latent variables are:
zpop =

�
p0; t0; v0; (�k)1�k�N�1; (�l;k)l;k

�
and, for all i 2 f1; : : : ; pg, zi =

�
�i; �i; (sl;i)l;i

�
. The

definition of the individual latent variables (zi)1�i�p remains unchanged. For the population
latent variables zpop, the variables (�k)1�k�N�1 are added. We assume that the latent
variables zpop are distributed as follows:

p0 � N (p0; �
2
p0

); t0 � N (t0; �
2
t0); v0 � N (v0; �

2
v0

); (10)

and
�l;k

i:i:d:� N (�l;k; �
2
�); �k

i:i:d:� N (�k; �
2
� ); (11)

where �2
p0
, �2

t0 , �
2
v0

and �2
� are fixed variance parameters. Similarly to the generic spatiotem-

poral model, the latent variables are assumed independent of each other and independent
of the noise variables "i;j

i:i:d:� N (0; �2IN ).

3.4 The Symmetric Positive Definite (SPD) Matrices Model

In this section, we describe how the generic spatiotemporal model can be used to analyze
longitudinal datasets of symmetric positive definite matrices. Such datasets may arise in
Diffusion Tensor Imaging (DTI) or when observing the temporal evolution of covariance
matrices.

The space of 3 � 3 symmetric positive definite matrices is usually denoted by SDP(3),
which is an open subset of the vector space of (3; 3) symmetric real matrices, denoted by
Sym(3). By identifying Sym(3) with R6, M = SDP(3) can be considered as an open sub-
manifold of R6. Indeed, M can be equipped with a Riemannian metric. In Pennec et al.
(2006), the authors defined an affine-invariant Riemannian metric on SPD(3). Equipped
with this metric, the space of symmetric positive definite matrices is a geodesically complete
Riemannian manifold, without boundaries (matrices with null eigenvalues are at infinity).
The results presented below are obtained with the affine-invariant metric on SPD(3).

If � 2 SDP(3), �1=2 denotes the unique symmetric positive definite matrix S such that
: S2 = � and ��1=2 denotes its inverse. Let T�M denote the tangent space to M at
the point �. T�M can be identified with Sym(3) and is equipped with the inner product
h�; �i� defined by : 8(W1;W2) 2 T�M, hW1;W2i� = tr

�
��1=2W>

1 ��1W2�
�1=2

�
. In

order to describe exp-parallelization in the Riemannian manifold SPD(n) equipped with

12



A mixed-effects model for repeated manifold-valued data

the affine invariant metric, we give a closed-form expression of the parallel transport. The
result given in Lemma 3 is based in the work of Lenglet et al. (2006). For P0 2 SPD(n),
t0 2 R, V0 2 TP0SPD(n) ’ SYM(n), the geodesic 0, defined by 0(t) = ExpP0;t0(V0)(t)

for all t 2 R, is given by : 0(t) = P
1=2
0 exp

�
tP
�1=2
0 V0P

�1=2
0

�
P

1=2
0 , where P

1=2
0 (respectively

P
�1=2
0 ) denotes the unique symmetric positive definite square root of P0 (respectively its

inverse). The proof of Lemma 3 can be adapted to obtain the expression of the geodesics.
One can also obtain this expression by noting that the geodesic starting at In with velocity
V 2 SYM(n) is given by exp(tV) and use the invariance of the affine-invariant metric under
congruent transformations. Finally, the expression of the parallel transport along such a
geodesic is given by the following lemma.

Lemma 3 Let P0 2 SPD(n), t0 2 R and V0 2 TP0SPD(n) ’ SYM(n). Let 0 be the
geodesic defined as above. If W is a tangent vector in TP0SPD(n), the parallel transport
P0;t0;t(W) is given by:

8t 2 R; P0;t0;t(W) = exp
� t� t0

2
V0P

�1
0

�
W exp

� t� t0
2

P�1
0 V0

�
: (12)

The proof of Lemma 3 is given in Appendix A.2. It follows from this lemma that the generic
spatiotemporal model writes :

Yi;j = Pi(ti;j)
1=2 exp

�
Pi(ti;j)

�1=2Vi(ti;j)Pi(ti;j)
�1=2

�
Pi(t)

1=2 + "i;j ; (13)

with, for all t 2 R,

Pi(t) = P
1=2
0 exp

�
�i(t� t0 � �i)P�1=2

0 V0P
�1=2
0

�
P

1=2
0 ; (14)

and:
Vi(t) = exp

��i(t� t0 � �i)
2

V0P
�1
0

�
Wi exp

��i(t� t0 � �i)
2

P�1
0 V0

�
: (15)

The prior distribution for the matrices P0, V0 and ("i;j)i;j are defined as follows: P0 �
SN (P0; �

2
P0

), V0 � SN (V0; �
2
V0

) and "i;j
i:i:d:� SN (0; �2), where SN denotes the Gaus-

sian distribution on the vector space Sym(n). Given M 2 SYM(n), the probability dis-
tribution SN (M; �2) on Sym(n) is defined by the density function q such that: q(M) =

1
(2�)m=2�m

exp
�
� 1

2�2 tr
�
(M�M)2

��
with M 2 Sym(n) and with m = n(n+1)=2. The “stan-

dard” distribution SN (0; 1) is used in physics and in the theory of random matrices. It is
sometimes called Gaussian Orthogonal Ensemble. The probability distribution of the other
random effects of the model are defined as in Section 2.2. This model will be referred to as
the symmetric positive definite matrices model or SPD(n) matrices model. In Arsigny et al.
(2006), the authors considered the space SPD(n) equipped with the log-Euclidean metric.
This metric provides the space of symmetric positive definite matrices with a structure of
Riemannian manifold. Unlike with the affine-invariant metric, the space SPD(n) endowed
with the Log-Euclidean metric is a flat Riemannian manifold, meaning that its sectional cur-
vature is null everywhere. By contrast, the space SPD(n) equipped with the affine-invariant
metric is a Riemannian manifold of non-positive curvature (Skovgaard, 1984; Moakher and
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Zéraï, 2011) with no cut-locus. Within the Log-Euclidean framework, the geodesics are of
the form: exp(V1 + tV2) with V1;V2 2 SYM(n). As expected, the geodesics are the image
of a straight line in SYM(n) by the matrix exponential map. Future developments should
include comparisons with the log-euclidean metric on the space SPD(3).

50 60 70 80

Averagetrajectory

Parallel�ß�Ð�Ô�:�½�á�P�;

Reparametrized
parallel

�ß�Ð�Ô �½�á�ð�Ü�P

Time (Years)

Observations 

Figure 4: Simulated evolutions of diffusion tensors. First row : average trajectory from
a highly anisotropic diffusion tensor to a sphere. Second row : a parallel to
the average trajectory obtained using a random space shift Wi. Third row :
the reparametrization of the exp-parallelization with �i = 0:7 and �i = �4
(years). Fourth row : the observations are samples from the reparametrized
exp-parallelization. Each diffusion tensor is colored according to its fractional
anisotropy (red for a highly anisotropic tensors, yellow for a sphere).

4. Parameters Estimation

The generic spatiotemporal model (Eq. (2)) is a nonlinear mixed-effects model for which the
observed likelihood is not available in closed-form. Indeed, it writes as an intractable integral
which could only be approximated. In order to produce maximum likelihood estimates, we
could use the Expectation Maximization (EM) algorithm (Dempster et al., 1977). The first
step of the EM algorithm, usually called “E-step”, requires us to compute the expectation
of the log-complete likelihood (the likelihood of the observations y = (yi;j)1�i�p; 1�j�ki and
the latent variables z) with respect to the conditional distribution of the latent variables
knowing the observations and the current values of the parameters. In the case of our model,
this expectation cannot be computed in closed-form.

Therefore, we choose to estimate the parameters of the generic spatiotemporal model by
using a stochastic version of the EM algorithm, in which this step is replaced by a stochastic
approximation. This algorithm is the Monte Carlo Markov Chains (MCMC) Stochastic
Approximation EM (MCMC-SAEM) algorithm (Allassonnière et al., 2010). The MCMC-
SAEM iterates, until convergence, between three steps: simulation, stochastic approximation
and maximization.
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4.1 Simulation Step

Algorithm 1 The Block Metropolis-Hastings-within-Gibbs sampler

Require: Set of latent variables z(k�1) =
�
z

(k�1)
pop ; (z

(k�1)
i )1�i�p

�
, current estimate of the

parameters �(k�1), variance-covariance matrices Dpop and (Di)1�i�p and �hyper

Ensure: Set of latent variables z(k)

1: Block z
(k)
pop of population latent variables:

2: Draw a candidate z�pop � N
�
z

(k�1)
pop ;Dpop

�
3: Compute the acceptance ratio �(z

(k�1)
pop ; z�pop) defined by:

�(z(k�1)
pop ; z�pop) =

q(y j z�pop; (z
(k�1)
i )1�i�p;�

(k�1))qpop(z�pop j �(k�1))

q(y j z(k�1)
pop ; (z

(k�1)
i )1�i�p;�

(k�1))qpop(z
(k�1)
pop j �(k�1))

^ 1:

4: Draw U � Uniform
�
[0; 1]

�
5: Set: z

(k)
pop = z�pop if U � �(z

(k�1)
pop ; z�pop) and z

(k)
pop = z

(k�1)
pop otherwise.

6: for i = 1 : : : p do
7: Blocks (z

(k)
i )1�i�p of individual latent variables:

8: Draw a candidate z�i � N
�
z

(k�1)
i ;Dindiv

�
9: Compute the acceptance ratio �(z

(k�1)
i ; z�i ) defined by:

�(z
(k�1)
i ; z�i ) =

q(y j z(k)
pop; z

(k�1);(k)
�i ; z�i ;�

(k�1))qi(z
�
i j �

(k�1))

q(y j z(k)
pop; z

(k�1);(k)
�i ; z

(k�1)
i ;�(k�1))qi(z

(k�1)
i j �(k�1))

^ 1:

10: Draw U � Uniform([0; 1])

11: Set: z
(k)
i = z�i if U � �(z

(k�1)
i ; z�i ) or z

(k)
i = z

(k�1)
i otherwise.

12: end for
13: Return: z(k) =

�
z

(k)
pop; (z

(k)
i )1�i�p

�
:

If �̃
(k�1)

denotes the current estimate of �̃ at the beginning of the kth iteration of the
MCMC-SAEM, the simulation step consists of drawing a sample z(k) from the transition
kernel ��(k�1);y(z(k�1);�) of an ergodic Markov chain whose stationary distribution is the con-

ditional distribution q(z j y; �̃(k�1)
), the distribution of the latent variables z knowing the ob-

servations y and �̃
(k�1)

. This step is achieved using a Monte Carlo Markov Chain (MCMC)
sampler. We chose to use a Block Metropolis-Hastings-within-Gibbs (Block MHwG) sampler
for the sampling step of the MCMC-SAEM. Each Metropolis-Hastings step of the algorithm
consists in a multivariate symmetric random walk. The Block MHwG sampler updates si-
multaneously block (or sets) of latent variables then, at each iteration, each block is updated
conditionally on the others. Even though the latent variables can be grouped in several ways,
we chose to group the latent variables as follows: fzpopg and fzig1�i�p. This grouping being
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given by the hierarchical structure of the model. Note that the latent variables also could
have been grouped as follows: fp0; t0;v0g, f(�l;k)l;kg and fzig1�i�p. In the case of the
progression models, the delay variables (�k)1�k�N�1 were grouped with zpop, although they
could also be considered as a block in itself.

For each block, the proposal in the Metropolis-Hastings step is chosen to be a mul-
tivariate Gaussian distribution centred at the current state of the block. Each variance-
covariance matrix of a proposal distribution is chosen to be diagonal matrix: Dpop =
Diag

�
�2
p0

IN ; �
2
t0 ; �

2
v0

IN ; �
2
�I(N�1)Ns

�
for the proposal distribution associated to zpop and

Dindiv = Diag
�
�2
� ; �

2
� ; �

2
s

�
for the proposal distribution associated to zi (1 � i � p). The

variances parameters �2
p0
; �2
t0 ; �

2
v0
; �2

� and �2
� ; �

2
� are adjusted by hand to ensure an average

acceptance rate for each block around 23% (Roberts et al., 1997). The Block MHwG sampler
is described in Algorithm 1.

Let �hyper = (�2
p0
; �2

t0 ; �
2
v0
; �2

�) denote the fixed hyperparameters which appear in the
probability distribution of the latent variables in zpop. Let i 2 f1; : : : ; pg and qpop

�
� j �

�
(respectively qi(� j �) denote the density function of the joint distribution of the latent
variables zpop (respectively zi) as specified in the generative model (equations (3) and (4)):

qpop(zpop j �) / exp
�
� 1

2�2
p0

kp0 � p0k2
�

exp
�
� 1

2�2
t0

(t0 � t0)2
�

exp
�
� 1

2�2
v0

kv0 � v0k2
�

exp
�
� 1

2�2
�

k� � �k2
�
;

(16)

and
qi(zi j �) / exp

�
� 1

2�2
�

�2
i

�
exp

�
� 1

2�2
�

�2
i

�
exp

�
� 1

2
ksik2

�
; (17)

with: � = [�l;k]1�l�Ns; 1�k�N�1 and for all i 2 f1; : : : ; pg, si = [sl;i]1�l�Ns . The probabil-
ity distributions qpop and qi (1 � i � p) are given up to a constant. Indeed, the normalizing
constant of qpop or qi (1 � i � p) depends only on the parameters �. Therefore, these
constants can be omitted for the computation of the acceptance ratio in Algorithm 1.

4.1.1 Discussion

In order to avoid tuning by hand the parameters �2
p0
, �2

t0 , �
2
v0

and �2
� of the proposal dis-

tribution in the Block MHwG sampler, a possible solution would consist of using an adap-
tive (Atchadé, 2006) version of the Block MHwG sampler, where the algorithm automatically
adjusts these variance parameters.

4.2 Stochastic Approximation

The convergence of the MCMC-SAEM was proven in Kuhn and Lavielle (2004) (for bounded
latent variables) and in Allassonnière et al. (2010) (for unbounded latent variables) for
statistical models which belong to the curved exponential family. That is to say, models
for which the log complete likelihood q(y; z;�) writes: 8� 2 Θ; log q(y; z;�) = �Φ(�) +
hS(y; z);Ψ(�)i, where Φ;Ψ are smooth functions of the parameters, S(y; z) is a measurable
function of the observations and latent variables called sufficient statistic of the model and
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h�; �i is an inner product on a product space. The generic spatiotemporal model belongs to
the curved exponential family.

Because the generic spatiotemporal model belongs to the curved exponential family, the
stochastic approximation can be done on the sufficient statistics of the model. At the kth
iteration of the MCMC-SAEM, we have: Sk = Sk�1 + "k

�
S(y; z(k))� Sk�1

�
, where ("k)k�1

is a sequence of positive step sizes such that
P

k "k = +1 and
P

k "
2
k < +1. If "k = 1, then

Sk does not depend on Sk�1. Intuitively, the sequence (Sk)k�0 has “no memory” as long as
"k = 1 and the MCMC-SAEM freely explores the parameters space during this period. In
practice, we choose "k = 1 as long as k � Nb and "k = (k �Nb)

�0:65 if k > Nb.

4.2.1 Maximization Step

The maximization step consists of solving the following optimization problem : �(k) =
argmax

�2�

�
�Φ(�) + hSk;Ψ(�)i

�
, where Sk denotes the stochastic approximation on the suffi-

cient statistics of the model, obtained in the “stochastic approximation step” of the algorithm.
For the generic spatiotemporal model, this optimization problem is solved in closed-form.

4.3 Computational Aspects

For the progression model (9), the MCMC-SAEM would have to estimate the following
parameters : � = (p0; t0; v0; �1; : : : ; �N�1; �1; : : : ; �(N�1)Ns ; ��; �� ; �). In this example, we
see that the number of parameters to estimate is 6 + (N � 1)(Ns + 1). As the dimension
N of the manifold M increases, the number of parameters increases linearly. Moreover, as
N increases, the number Ns of independent sources has a greater impact on the number of
parameters to estimate.

The number p of individuals also impacts on the runtime of the MCMC-SAEM. As the
number p of individuals increases, the cost of a single computation of the observed likelihood
increases. This step is the most expensive step of the MCMC-SAEM algorithm. The overall
runtime of the MCMC-SAEM could be improved by sampling the blocks (zi)1�i�p (in the
Block MHwG sampler) in parallel.

5. Experiments

The section on numerical experiments begins with a comparison of our implementation of the
MCMC-SAEM algorithm with other state-of-the-art algorithms. It is followed by a section
entitled “Validation Procedure” which presents an evaluation criteria designed to quantify
how well the time reparametrizations of the generic spatiotemporal model allowed to tem-
porally align the progression of individuals. Finally, results obtained on a synthetic dataset
of Symmetric Positive Definite (SPD) matrices and on a real dataset of neuropsychological
tests scores are given. These datasets are analyzed using the particular cases of the generic
spatiotemporal model described in Section 3.

5.1 Convergence of the Algorithm

In this section, we aim to compare our implementation of the MCMC-SAEM with state-of-
the-art algorithms. Our algorithm, implemented in MATLAB, is compared with STAN and
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Table 1: Relative error on the parameters estimated with the different algorithms. First
row: results obtained with our implementation of the MCMC-SAEM. Second row:
results obtained with STAN. Third row: results obtained with MONOLIX.

j bp0 � p�0j=p�0 jbt0 � t�0j=t�0 j bv0 � v�0j=v�0 j b�� � ��� j=��� jc�� � ��� j=��� jb� � ��j=��
0:0150 0:0050 0:0176 0:0600 0:0545 0:010

0:0917 0:0191 0:1088 0:0600 0:0386 0:010

0:0417 0:0086 0:0412 0:0400 0:0286 0:008

MONOLIX. STAN is a R/C++ library which implements an adaptive Hamiltonian Monte
Carlo sampler called “the No U-Turns Sampler” (NUTS, Hoffman and Gelman (2014)).
MONOLIX is a software developed by Marc Lavielle and the Lixoft company. It imple-
ments the MCMC-SAEM algorithm with some technical improvements (such as a simulated
annealing scheme). Note that our implementation of the MCMC-SAEM algorithm differs
from MONOLIX in the sense that it can be used with any particular case of the generic
spatiotemporal model presented in Section 3. In particular, our implementation can be
used to analyze univariate, as well as multivariate (such as covariance matrices), longitudi-
nal observations. In its current version (2016R1), MONOLIX does not allow observations
to be passed as matrices or vectors, which is not convenient for the analysis multivariate
longitudinal observations.

In order to compare these algorithms, we consider a synthetic longitudinal dataset of
observations in ]0; 1[. The open set ]0; 1[ is equipped with the Riemannian metric defined in
Section 3.2, which generates logistic shaped geodesics. This dataset is generated for p = 250
individuals, with an average of 5 time points per individual. Each algorithm is run with the
same initialization and the logistic curves model (7) was used to generate the data.

The experimental results given in Table 1 consist in relative errors on the parameters
estimated with the different algorithms. The runtime and number of iteration needed for
each method to converge are reported in Table 2. The results presented in the first table
show that all the different methods succeeded in estimating the parameters which were
used to generate the data. The corresponding number of iterations show that STAN is, by
far, the most computationally intensive method. Even though our implementation of the
MCMC-SAEM requires more iterations to converge than MONOLIX, the overall runtime
is similar. The fact that MONOLIX requires fewer iterations to converge can be explained
by the fact that the MCMC-SAEM is coupled with a simulated annealing procedure Lavielle
and Mentré (2007), which allows for a better and faster exploration of the parameters space.

The results presented in these tables show that the performance of our implementation
of the MCMC-SAEM is similar to the one of state-of-the-art methods. Still, the number of
iterations needed to converge could be further reduced, for example, by combining several
MCMC samplers in the sampling step of the MCMC-SAEM.
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Table 2: Number of iterations and runtime corresponding to the experimental results given
in Table 1. First row: results obtained with our implementation of the MCMC-
SAEM. Second row: results obtained with STAN. Third row: results obtained with
MONOLIX.

Iterations Runtime (for 1000 iterations) Overall runtime
3500 30 s 90 s
15000 15 min ’ 3; 75 h
400 110 s 45 s

5.2 Validation Procedure

The idea is to assess how well the estimated individual time reparametrizations put in corre-
spondence the progression of the individuals. To this end, we will use additional information
which is not used in the model: the time at which a particular event occurs in the life of an
individual. For example, the event could be the time at which a disease is diagnosed, or at
which a metabolic change occurred for instance. Such an event occurs at a different time
point (or age) for each individual.

Average 
timeline 

Timeline of 
individual 1 

Timeline of 
individual 2 

�P�5
�Û 

�P�6
�Û 

�ð�5
�?�5 

�ð�6
�?�5 

�P�m�n�r 

�ð�5
�?�5 �–�m�n�r 

�ð�6
�?�5 �–�m�n�r 

Figure 5: The average time of event topt is mapped to the individual timelines using  �1
i .

The individual time reparametrization  i are supposed to put into correspondence the
time at which similar spatiotemporal patterns are found in the individual data. To assess
how well this is achieved, we will test whether the time at which a particular event occur
in the life of the individuals are mapped to the same time-point in the average trajectory of
the model.

For the ith individual,  i maps the timeline of this individual to the “average timeline”,
namely the one of the average trajectory. Let t�i be the time point at which the event occurs
in the timeline of the ith individual. We estimate the time-point topt that corresponds to

19



J.-B. Schiratti et al.

the occurrence of the event in the average trajectory 0 by minimizing the sum of errors
E(t) =

P
i jt�i �  

�1
i (t)j. Note that topt can be interpreted as a median of the normalized

ages ( i(t
�
i ))i, and could therefore not be unique. Then we map topt back to the individual

timelines by using the mappings  �1
i , as illustrated in Fig. 5. The value  �1

i (topt) may
be thought of as a prediction of the model of the time-point (or age) at which the event
occurred for the ith individual. Without errors, this time-point would be exactly t�i . In
practice, the difference jt�i �  

�1
i (topt)j allows quantifying how well the events the timeline

of the ith individual and the average timeline have been put into correspondence.
In the following experiments, the median topt of

�
 i(t

�
i )
�

1�i�p is computed unambigu-
ously. To assess how well the individual trajectories and the average trajectory are put into
correspondence, we plot an histogram of the errors

�
jt�i �  

�1
i (topt)j

�
1�i�p.

5.3 Tensors : a Synthetic Dataset

We start by presenting the synthetic dataset of SPD matrices used for this experiment and
then present the results obtained with the particular case of the generic spatiotemporal
model for SPD matrices (see Section 3.4).

5.3.1 Data

We consider a synthetic dataset, in which we simulate repeated observations of a a symmetric
definite positive matrix (also called a diffusion tensor in medical imaging) for one hundred
individuals. The observations were not generated from the model. The observations were
obtained instead by prescribing an ad hoc hierarchical model on the eigenvalues of the
diffusion tensors. At the level of the population, the eigenvalues of the diffusion tensors follow
a decreasing piecewise linear evolution with a change point at 50 years old. Observations
for a given individual were simulated by randomly shifting the change point (time at which
a change occurs in the speed at which eigenvalues decrease) and randomly increasing or
decreasing the slopes of each eigenvalue (see Fig.6, left). In this synthetic dataset, the
individuals have, on average, five time points.

5.3.2 Results

The results presented below were obtained with Ns = 1 source. A greater number of
independent sources would have been possible but many more iterations would have been
necessary for the MCMC-SAEM to converge. The Bayesian tensor model with the MCMC-
SAEM allows estimating an average trajectory of progression in the space SDP(3). This
average trajectory is the geodesic which goes through the point P0, at time t0, with velocity
V0, given by :

P0 =

0@11:30 0:96 0:68
0:96 9:53 1:21
0:68 1:21 10:19

1A ; t0 = 53:83 years;

and

V0 =

0@�0:99 �0:17 �0:20
�0:17 �0:75 �0:27
�0:20 �0:27 �0:85

1A unit per year:
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The evolution of the eigenvalues of the average trajectory, plotted in Fig. 6, is similar
to the model used to generate the observations. However, the MCMC-SAEM tends to
underestimate the first eigenvalue and overestimate the third eigenvalue. The variability
in speed and delay of progression is captured by the estimated parameters �� = 0:07 and
�� = 0:5 year. Fig. 6 (left) shows that the eigenvalues of each individual decrease at a
similar pace before and after the change point. This may explain why the model captured
small variations in speed of progression. The standard deviation �� on the parameter t0
is much smaller. The individual acceleration factor, time shift and space shift allow fitting
the average trajectory to the observations of an individual. As shown in Fig. 6 (right), the
estimated individual trajectory is well-adjusted to the observations of the individual.

Figure 6: Left : In solid bold line, the average model of eigenvalues evolution for the syn-
thetic dataset of tensors. In solid lines, the evolution of the eigenvalues for all
the individuals in the dataset. In dotted line, the evolution of the eigenvalues
of the average trajectory, given by the MCMC-SAEM. Right : the evolution of
the eigenvalues of an individual. In dotted line, the eigenvalues of the average
trajectory estimated by the MCMC-SAEM. With square markers, the eigenvalues
of the observations for this individual. With round markers, the eigenvalues of
the estimated individual trajectory.

The eigenvalues of the average estimated trajectory are smooth functions of time. There-
fore, it would not have been possible to obtain a piecewise-linear progression of the eigen-
values for the average trajectory. Nevertheless, we can still validate the ability of the tensor
model to put into correspondence the dynamic of each individual following Sec. 5.2 by using
the individual change point t�i . For this dataset, the sum of errors

P
i jt�i �  

�1
i (t)j has a

unique minimum at topt = 49:73 years. This minimum topt is close to 50 years, the time
at which the change point occurs in the average model used to generate the data. Fig. 7
shows that the model made an error of less than 2 years for almost 60% of the population
by predicting the individual change point with  �1

i (topt), and less than 4 years for 90% of
the population. The change point was generated using a Gaussian distribution centred at
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50 years with a standard deviation of 2 years. Therefore, the error is of the same order as
the standard deviation of the change point.

0 1 2 3 4 5 6 7

Years

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 in

di
vi

du
al

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Figure 7: Histogram of
�
jt�i �  

�1
i (topt)j

�
1�i�100

superimposed with the cumulative distri-
bution of this error. Here, t�i represents the age of the change point for the ith
individual.

5.4 Neuropsychological Tests

This section starts by presenting the real dataset of neuropsychological tests scores from
the ADNI database. Then, we present results obtained using the progression model (see
Eq. (9)) with logistic curves.

5.4.1 Data

The dataset consists of scores to the modified “ADAS-Cog” test (Mohs et al., 1997) obtained
from the ADNI1, ADNIGO and ADNI2 cohorts of the Alzheimer’s Disease Neuroimaging
Initiative. The 13 items were grouped into 4 categories according to the cognitive function
they assess: memory, language, concentration and praxis. For each cognitive function,
the scores were added and normalized by the maximum possible value therefore producing
measurements in ]0; 1[. As a consequence, each observation is a point on the manifold
M =]0; 1[4 (note that results without item pooling are presented in Schiratti et al. (2015a)).
We use 248 individuals who were included in the study as mild cognitive impaired (MCI)
subjects and later converted to Alzheimer’s disease (AD). Each individual was observed on
average 6 times.

5.4.2 Results

This data set was analyzed using the progression model given in Eq. (9) with logistic curves.
The number of independent components could be either 1; 2 or 3, as the manifold is of di-
mension 4. The model with one independent component estimated a residual noise variance
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�2 = 0:012 and explained 79% of the total variance. The model with two (resp. three)
independent components estimated a noise variance �2 = 0:008 (resp. �2 = 0:0084) and
explained 84% (resp. 85%) of the total variance. Because the results obtained with three
independent components are similar to the results obtained with two independent compo-
nents, we choose, for the sake of clarity, to report the results obtained with two components
(Ns = 2).

Figure 8: The estimated average trajec-
tory. The estimated parame-
ters p0 (resp. t0) are repre-
sented by an horizontal (resp.
vertical line) at p0 = 0:3 (resp.
t0 = 72 years).
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super-
imposed with the cumulative
distribution of this error.

The average trajectory estimated by the progression model, plotted in Fig. 8, is char-
acterized by the fixed effects p0 = 0:3, t0 = 72 years, v0 = 0:04 unit per year and
� = [0;�15;�13;�5] years. The first biomarker (memory) reaches the value p0 = 0:3
at 72 years on average, the second one (concentration), at t0 + 5 = 77 years, followed by
praxis and language. The fixed effects provide an ordering of the biomarkers and the relative
delay between them. The random effects characterize the spatiotemporal variability of the
average trajectory among the population. The estimated standard deviation of the time-
shift is �� = 7:5 years, meaning that age of disease onset ranges between 72� 7:5 years for
95% of the individuals. A positive (resp. negative) time-shift means that the individual is
evolving behind (resp. ahead) the average trajectory. The estimated standard deviation of
the acceleration factors is �� = 0:9. As a consequence, most of the individuals are progress-
ing between e�� ’ 2:4 times faster or e��� ’ 0:4 times slower than the average trajectory
(see Fig. 11, first row). Estimates of the individual time-shits and log-acceleration factors
are plotted in Fig. 10. This figure shows a clear correspondence between the time shifts and
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the estimated age at which individuals were diagnosed with the disease. This fact shows that
the normalized age  i(t) is a better temporal marker of disease progression than age. This
is confirmed by our validation procedure (Fig. 9), which shows an error in the prediction of
age at diagnosis of less than 2:5 years in 50% of the cases.

Figure 10: Plot of t0 +�i with respect to the log-acceleration factor �i. Each point is colored
with respect to the estimated age of conversion to AD.

In this multivariate setting, random effects also include space shifts, which are a com-
bination of two independent components denoted here c1(A) and c2(A). As shown in
lemma 2, these space-shifts perturb the relative delay and the ordering in the progression
of biomarkers. Fig. 11 shows that individuals with a space shift of the form wi = �sic1(A)
have memory and concentration impaired at nearly the same time, while the language and
praxis remains nearly constant. In the opposite direction, impairment in language and praxis
nearly coincide for individuals with a space-shift of the form wi = ��sic1(A). The second
independent component almost does not change memory and concentration but changes the
delay and the ordering between language and praxis. These results show that the biomarkers
tend to evolve in pairs : memory & concentration, language & praxis. Space shifts capture
here the variability in the profile of cognitive decline at the individual level during the onset
of the disease.

5.5 Body Mass Index in Adolescent Girls

We analyzed a longitudinal dataset of body fat percentages from 162 adolescent girls. This
dataset is taken from the MIT Growth and Development Study Bandini et al. (2002); Phillips
et al. (2003). The data is analyzed using the univariate logistic model (see supplementary
material for the details and results). The analysis of this data in
Fitzmaurice et al. (2012) requires the use of the time at menarche to temporally align the
data across individuals before the statistical analysis. By contrast, our approach is able
to include such an alignment as a random effect of the model. The estimated parameters
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produced an error of less than one year for 50% of the individuals in the alignment of the
age at which the menarche occurred.

Acceleration factor Independent direction Independent direction Time shift 

+�P

-�P

Figure 11: Variability of the average trajectory � in terms of space shift, time shift and
acceleration factor. The solid lines represent the average trajectory, while the
dotted lines represent the variability of this average trajectory among the popu-
lation.

6. Conclusion

We proposed a mixed-effects model for the spatiotemporal analysis of manifold-valued mea-
surements. This generic model can be used to automatically learn the temporal progression
of a biological phenomenon from repeated observations of several samples. The model ac-
counts for the fact that each sample has a different appearance, has different trajectory of
changes and different pace of changes. This is enabled by the introduction of a hierarchical
statistical model whose fixed effects define a group-average trajectory in the space of mea-
surements and random effects account for the spatiotemporal variability of the trajectories
of changes at the individual level.

Building the model in the framework of Riemannian geometry allowed us to identify the
key orthogonality condition to uniquely decompose temporal and spatial variability across
trajectories of changes. Our particular use of parallel transport ensures the invariance of the
form of the distribution of spatial random effects in time. Finally, it allows the instantiation
of the model for a large variety of data types, as shown by our experiments with univariate
and multivariate bounded measurements, as well as symmetric definite positive matrices.
This framework is also well suited for analysing data with smooth constraints or highly
structured data such as images, networks( Koval et al. (2017)), or shapes for instance.

25



J.-B. Schiratti et al.

We rely on the stochastic approximation of the Expectation-Maximization algorithm to
estimate model parameters. This algorithm is proven to converge asymptotically, and our
experiments confirmed this convergence in several practical situations. This algorithm is very
generic and allows a modular implementation of the method which eases its instantiation
for any kind of manifold-valued observations. Note, nevertheless, that specific optimizations
were needed to match, and even outperform state-of-the-art implementations for real-valued
measurements.

The model is particularly useful to analyze biological phenomenon, for which there is
no obvious way to temporally align individual data time series. Temporal realignment in-
troduced as random-effect allowed us to automatically predict the age at which patients
were diagnosed with Alzheimer’s disease or at which menarche occurred in adolescent girls.
Although the model assumed a monotonic progression of body fat with age, this hypothesis
could be relaxed by replacing the distribution of the acceleration factors and space shifts
with a mixture of Gaussian distributions. This could also be achieved by considering non-
affine time reparametrizations of the average trajectory. Improvements in prediction and
goodness of fit might result from extensions of the model, for instance by introducing mix-
ture models to identify population clusters or by adding a drift in the parallel transport so
that individual trajectories do not always remains parallel to the average trajectory.
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Appendix A. Proof of Lemma 2 and Lemma 3

In this appendix, we will first give a proof of Lemma 2 and we shall then give a proof of
Lemma 3.

A.1 Proof of Lemma 2

The definitions and properties given above are useful to prove the result given in 2. Before
proving this result, we recall its context. We consider a product manifold M = MN where
M � R is an open interval. M is equipped with a Riemannian metric g and is geodesically
complete. The product manifold M is equipped with the product metric.
Proof Let t0 2 R,  = (1; : : : ; N ) be a geodesic of M and w = (w1; : : : ; wN ) 2 T(t0)M.
Using the previous proposition on product manifolds, the computation of �w(; t) boils
down to the computation of Expi(t)

�
Pi;t0;t(wi)

�
. This term is computed in three steps.

Let i 2 f1; : : : ; Ng. The parallel transport Pi;t0;t(wi) is computed as follows. First, note
thatM is an open interval of R. Therefore, for all p 2M , TpM ’ R. The Riemannian met-
ric g of M is necessarily of the form p 2 M 7! gp with : 8(u; v) 2 TpM; gp(u; v) = uvf(p)
where f : M ! ]0;+1[ is a smooth function.

It follows from the definition of parallel transport along the curve t 7! i that
: 8t; Pi;t0;t(wi) 2 Ti(t)M . Since, for all t, Ti(t)M is a one-dimensional vector space, the
tangent vector ̇i(t) 6= 0 spans this space. As a consequence, there exist a smooth function
�i : R ! R such that : 8t 2 R; Pi;t0;t(wi) = �i(t)̇i(t). Because the parallel transport is
an isometry and because i is a geodesic, we have :

8t 2 R; gi(t)
�
Pi;t0;t(wi); ̇i(t)

�
= gi(t0)(wi; ̇i(t0)): (18)

The bilinearity of gi(t) gives :

gi(t)
�
Pi;t0;t(wi); ̇i(t)

�
= gi(t)

�
�i(t)̇i(t); ̇i(t)

�
= �i(t)gi(t)

�
̇i(t); ̇i(t)

�
:

(19)

Using that ̇i is parallel along i, we have :

8t 2 R; gi(t)
�
̇i(t); ̇i(t)

�
= gi(t0)

�
̇i(t0); ̇i(t0)

�
: (20)

As a consequence, (18), (19) and (20) give :

8t 2 R; �i(t)gi(t0)

�
̇i(t0); ̇i(t0)

�
= gi(t0)

�
wi; ̇i(t0)

�
: (21)

Using the form of the metric on M , (21) writes :

8t 2 R; �i(t)
�
̇i(t0)

�2
f
�
i(t0)

�
= wi̇i(t0)f

�
i(t0)

�
: (22)

This last equation gives : 8t; �i(t) = wi= ˙i(t0). Finally,

8i 2 f1; : : : ; Ng; 8t 2 R; Pi;t0;t(wi) =
wi

̇i(t0)
̇i(t): (23)
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The last step consist in computing Expi(t)
�
Pi;t0;t(wi)

�
with t 2 R fixed. This is done

by introducing the curves

c : s 2 [0; 1] 7! Expi(t)
�
sPi;t0;t(wi)

�
;

and
c̃ : s 2 [0; 1] 7! i

�
t+ s

wi
̇i(t0)

�
:

Both curves c and c̃ are geodesics of M which satisfy to : c(0) = c̃(0) = i(t) and ċ(0) =
˙̃c(0) = wi

_i(t0) ̇i(t). By unicity, the two curves are equal. As a consequence, for all i 2
f1; : : : ; Ng and all t 2 R,

Expi(t)
�
Pi;t0;t(wi)

�
= i

�
t+

wi
̇i(t0)

�
: (24)

This last equation completes the proof of the lemma.

A.2 Proof of Lemma 3

First, some notations need to be introduced. Letm = n(n+1)=2 denote the dimension of the
linear space SYM(n), (Ei)1�i�m be the canonical basis of SYM(n) and (E�i )1�i�m its dual
basis. The matrices are indexed by a single index, which corresponds to an enumeration
of the pairs of integers f(k; l); 1 � k; l � n; k � lg. A matrix V in SYM(n) will be
identified to the vector (v1; : : : ; vm) of its coefficients from the upper triangular part. Using
the expression of the Christoffel symbols in terms of the canonical basis of SYM(n) and its
dual basis, Lenglet and collaborators prove that if t 7! �(t) = (�1(t); : : : ; �m(t)) is a smooth
curve in SPD(n) and t 7! V(t) = (v1(t); : : : ; vm(t)) a vector field along Σ, the covariant
derivative of V along � is given by the expression:

DV=dt =

mX
i

dvi
dt

(t)Ei +

mX
i;j=1

vi(t)
d�j
dt

(t)rEiEj : (25)

Taking the Frobenius inner product of the previous equality (on both sides) with E�k (1 �
k � m), together with the expression of the Christoffel symbols (see Lenglet et al. (2006),
Eq.(3) and Eq.(4)), one gets that the vector field V is parallel along the curve � if and only
if:

dV

dt
(t)� 1

2
V(t)�(t)�1d�

dt
(t)� 1

2

d�(t)

dt
(t)�(t)�1V(t) = 0: (26)

We can now give the proof of Lemma 3.
Proof With the expression of the geodesic 0, given in Section 3.4, one can easily see that:

8t 2 R;
d0(t)

dt
�1

0 (t) = V0P
�1
0 : (27)

Let t 7! V(t) be a vector field parallel along 0. Eq. (26) is equivalent to:

dV(t)

dt
=

1

2
V(t)P�1

0 V0 �
1

2
V0P

�1
0 V(t): (28)
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Note that Eq. (28) is a differential Lyapunov equation. It can be solved by considering the
matrix-valued function t 7! exp(�tM>)R(t) exp(�tM), with M = �(1=2)P�1

0 V0 and R,
any differentiable matrix-valued function. Given that V(t0) = W, one has that the parallel
transport in SPD(n) is given by:

V(t) = exp
� t� t0

2
V0P

�1
0

�
W exp

� t� t0
2

P�1
0 V0

�
: (29)
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