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Abstract

We propose a generic Bayesian mixed-effects model to estimate the temporal progression of

a biological phenomenon from observations obtained at multiple time points for a group of

individuals. The progression is modelled by continuous trajectories in the space of measure-

ments. Individual trajectories of progression result from spatiotemporal transformations

of an average trajectory. These transformations allow for the quantification of changes

in direction and pace at which the trajectories are followed. The framework of Rieman-

nian geometry allows the model to be used with any kind of measurements with smooth

constraints. A stochastic version of the Expectation-Maximization algorithm was used to

produce maximum a posteriori estimates of the parameters. We evaluated our method

using a series of neuropsychological test scores from patients with mild cognitive impair-

ments, later diagnosed with Alzheimer’s disease, and simulated evolutions of symmetric

positive definite matrices. The data-driven model of impairment of cognitive functions

showed the variability in the ordering and timing of the decline of these functions in the

population. We also showed that the estimated spatiotemporal transformations effectively

put into correspondence significant events in the progression of individuals.

Keywords: longitudinal model, spatiotemporal analysis, Riemannian geometry, stochas-

tic expectation-maximization algorithm

1. Introduction

The study of the temporal progression of a biological or natural phenomenon is central to
several scientific fields. For instance, the study of progressive diseases plays a crucial role
in the diagnosis and prognosis of patients. In computer vision, the dynamics of facial ex-
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pressions in video sequences may be important in automatically detecting and charaterizing
emotions.

For a given individual or object, the evolution of the observed phenomenon can be
measured by several characteristics or features, which describe the state of the individual at
a given time point. In medicine, these features may be blood markers, height, or weight, but
also structured multivariate data such as medical images. The shape of a human face may
be described by the position of characteristic points in the nose, mouth or brows. These
features may be represented, at a given time point, as a point in a high-dimensional space.
The temporal evolution of these features may be modelled therefore as a smooth parametric
curve in the space of measurements, i.e. a spatiotemporal trajectory. These trajectories vary
across individuals in two possible ways. Firstly, the position and direction of the trajectory
differ because the measurements have intrinsically different values and different trajectory of
changes for different individuals. Secondly, the pace at which the trajectory is followed (i.e.
the way the curve is parameterized) varies because some individuals may follow the same
progression pattern but at a different age and possibly at a different speed. We refer to the
first type of variability as a spatial variability, and the second type as a temporal variability,
leading together to the concept of spatiotemporal variability.

The goal of this paper was to automatically estimate the typical trajectory of changes
and its spatiotemporal variability within a group of individuals. We aimed to infer such spa-
tiotemporal patterns from longitudinal data sets, which consisted of repeated observations
of the same biological phenomenon at several time points for a group of individuals. The
time points and their number may have varied for different individuals.

In the literature, mixed-effects models (Eisenhart, 1947; Laird and Ware, 1982) and
(Verbeke and Molenberghs, 2009) appear as a popular method for the analysis of longitu-
dinal data. These statistical models include fixed and random effects which provide these
models with a hierarchical structure, where fixed effects described the data at the population
(or group) level, and the random effects at the individual level. By fitting a mixed-effects
model, one can discern an average trajectory as well as individual-specific trajectories. More-
over, mixed-effects models enforce conditions on the distribution of the random effects, thus
opening up the possibility to discern a distribution of trajectories in the space of observa-
tions.

Linear Mixed Effects (LME) models are the most simple mixed-effects models introduced
in Laird and Ware (1982). A particular, but yet informative case of the LME models for
analyzing longitudinal data is the random slope and intercept model. This model is written:
yi,j = (ti,j−t0)(A+Ai)+(B+Bi)+εi,j , where t0 ∈ R and (ti,j)1≤j≤ki denotes the time points
at which the observations yi,j ∈ R

n of the ith individual were obtained. The population
parameters (or fixed effects) of the model are the slope A and the intercept B. The random
effects are the subject-specific slopes (Ai)1≤i≤p and intercepts (Bi)1≤i≤p, which are assumed
to be normally distributed and independent of each other. This random slope and intercept
model estimates an average trajectory D(t) = (t − t0)A + B. The random effects of the
model allows us to also estimate individual trajectories Di(t) = (t− t0)(A+Ai)+(B+Bi),
which are obtained by adjusting the slope and intercept of the average trajectory. This
model is essentially built on the idea of regressing the measurements against time. The
parameter t0 can be understood as a reference time. If the longitudinal dataset arises from
animal breeding studies, developmental studies or pharmacological studies, the reference
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time t0 may be chosen to be the date of birth or the time at which a drug was administered.
However, there are many situations in which there is no obvious reference time t0 at which
observations may be compared. In ageing, for instance, different individuals of the same
age may be at different stages of ageing, or stages of disease progression. Therefore, it does
not make sense to regress the measurements against age, or, in other words, to statistically
compare measurements at a given age. In video sequences, there is no obvious way to find
the frames corresponding to the same event in two different sequences. By contrast, we
would like this temporal alignment of the trajectories to be automatically estimated from
the data. Adding the reference time t0 as a new parameter of the model is not a solution as
the model becomes non-identifiable: an infinite number of triplets (A,B, t0) parameterize
the same trajectory.

In Yang et al. (2011) and Delor et al. (2013), the authors addressed this problem by in-
troducing time shifts in their statistical analysis. In Durrleman et al. (2009, 2013), time
reparametrizations called time warps (smooth monotonic transformations of the real line)
are considered to address this point in the context of longitudinal shape analysis, and pa-
rameters were estimated by optimizing an uncontrolled approximation of the likelihood.
In Hong et al. (2014), the authors used parametric time warps with a regression model for
shape analysis. In Lorenzi et al. (2015), the authors used Riemannian manifold techniques
to estimate a model of normal brain ageing from MR images. The model was used to com-
pute a time shift, called morphological age shift, which corresponded to the actual anatom-
ical age of the subject with respect to an estimated reference age. In (Fonteijn et al., 2012;
Young et al., 2015), the authors developed a statistical model called the Event-Based Model,
which estimated an ordering of categorical variables. The model was used to estimate the
progression of a series of events. However, these models do not allow estimation of the rela-
tive timing between two consecutive events. In Jedynak et al. (2012), the authors modelled
the progression of biomarkers using a nonlinear mixed-effects model for univariate obser-
vations. This model estimated individual trajectories which are defined using individual-
specific time reparametrizations of an average trajectory. However, the proposed model
was not identifiable unless some conditions were imposed on the parameters of the model.
Therefore, generalizing the model to multivariate observations is not straightforward. Also,
the model was specific to univariate observations whereas our generic model, presented be-
low, allows analysis of any kind of observations defined by smooth constraints. This work
offers pragmatic solutions to include the idea of time reparameterization in the estimation
of trajectories of changes for some specific applications. Nevertheless, we are still lacking a
principle and generic approach to deal with the estimation of spatiotemporal variability in
longitudinal data sets.

Structured multivariate data such as images, graphs, shapes, or positive definite matrices
add further difficulty as these data do not lie in Euclidean spaces. Algebraic operations
such as addition or scaling are not defined or do not yield an output of the same type.
The spaces in which they live are defined by smooth constraints and may be considered
in general as Riemannian manifolds. There is no natural extension of LME models on
Riemannian manifolds. In Fletcher (2011), the authors proposed an extension of linear
regression for Riemannian manifolds, which was later extended for longitudinal data in a
group of diffeomorphisms (Singh et al., 2013, 2014). Nevertheless, this longitudinal model
strongly depends on a choice of reference time-point to define random effects, therefore
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making difficult its coupling with time reparameterization. In Su et al. (2014), trajectories
were defined by the quotient with a time reparameterization group. This approach allowed
the definition of statistics in the quotient space, but as a consequence did not yield any
estimate of the temporal variability.

This paper proposes a Bayesian mixed-effects model, called generic spatiotemporal model,
defined for any longitudinal observations on a Riemannian manifold. The fixed effects of the
model were used to define an average trajectory and the random effects were used to define
individual-specific trajectories. In order to define such individual trajectories, we introduced
the notion of “exp-parallelization” of a curve on a Riemannian manifold, based on the idea
of “variations of a curve”. This construction allowed the definition of random effects to
account for the spatial variability, the distribution of which (up to an isometric transform)
does not depend on a reference time-point. It allowed us, therefore, to easily include random
time re-parameterization to account for the temporal variability in the model. All in one,
the model defines distributions of spatiotemporal trajectories for data on any Riemannian
manifolds. It gives a systematic way to derive specific nonlinear mixed-effects models for a
large variety of observations and Riemannian manifolds.

These models needed to then be fitted to given longitudinal data sets. Given their strong
non-linear nature, we proposed to use a stochastic version of the Expectation-Maximization
(EM) (Dempster et al., 1977) algorithm, called the Monte Carlo Markov Chain Stochastic
Approximation EM (MCMC-SAEM) algorithm. Theoretical results regarding the conver-
gence of the MCMC-SAEM have been proven in Kuhn and Lavielle (2004),
Allassonnière et al. (2010) and ensure that the algorithm maximizes the observed likelihood.
This technique allowed us to propose a generic algorithm for the estimation of the model
parameters. We will instantiate this method for a set of multivariate bounded measurements
and for positive definite matrices.

The paper was organized as follows: in Section 2, we gave the key mathematical tools and
defined the generic mixed-effects model with spatiotemporal transformations for manifold-
valued measurements. Particular cases of the generic model were given and discussed in
Section 3. Section 4 was focused on the MCMC-SAEM which was used to estimate the
parameters of the statistical model. Finally, Sections 5.2 and 5 were dedicated to empirical
and experimental validations of our generic model.

2. A Bayesian Mixed-Effects Model for Longitudinal Observations on a

Riemannian Manifold

This section is aimed at introducing a notion of Riemannian geometry called “exp-parallelization”.
Given a group-average trajectory on a Riemannian manifold, the notion of exp-parallelization
an be used to define individual trajectories. For a comprehensive review of basic concepts
of Riemannian geometry, see Do Carmo Valero (1992); Petersen (2006). In this section, we
assumed that M is an open subset of RN equipped with a Riemannian metric gM.

2.1 Exp-parallelization on a Riemannian Manifold

This section introduces the notion of “exp-parallelization” of a curve on a Riemannian man-
ifold (M, gM). The notion of “variation of a differentiable curve” on a manifold is defined
in Do Carmo Valero (1992) (Chapter 9). It allowed us to define neighbouring curves to a
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given curve c. In the next section, this construction will be used to define individual trajec-
tories. Let (M, gM) denotes a geodesically complete Riemannian manifold equipped with its
Levi-Civita connection ∇M.

Definition 1 Let c : I ⊂ R → M a differentiable curve on M, t0 ∈ I and w ∈ Tc(t0)M a
tangent vector to M at c(t0). An exp-parallelization of c in the direction of w is a curve
ηw(c, ·) : I → M defined by:

∀t ∈ I, ηw(c, t) = ExpMc(t)
(
Pc,t0,t(w)

)
. (1)

This construction is illustrated in Fig. 1. Given t ∈ I, parallel transport carries the tangent
vector w from Tc(t0)M to Tc(t)M along the curve c. At the point c(t), a new point on M is
obtained by taking the Riemannian exponential of the tangent vector Pc,t0,t(w). This new
point is denoted by ηw(c, t). As t varies, one describes a curve ηw(c, ·) on M, which can
be understood as a “parallel” to the curve c. Note that if M is the Euclidean space R

N , an
exp-parallelization of a curve c, in the direction of a tangent vector wi, is the translation of
c by the vector wi.

Figure 1: Exp-parallelization on a schematic manifold. Left: a non-zero vector wi is chosen
in Tc(t0)M. Middle: the tangent vector wi is transported continuously along the
curve c. Then, a point ηwi(c, s) is constructed at time s by use of the Rieman-
nian exponential. Right: The curve ηwi(c, ·) is the “parallel” resulting from the
construction.

2.2 Hierarchical Structure of the Model

In this section, we considered a longitudinal dataset (yi,j)1≤i≤p, 1≤j≤ki . The observations
were obtained for a group of p individuals. For the ith individual, the observations (yi,j)1≤j≤ki
were obtained at times ti,1 < . . . < ti,ki . The number ki of observations may have varied
from one individual to another.

The generic spatiotemporal model is a nonlinear mixed-effects model. As emphasized in
the introduction, mixed-effects models include fixed and random effects. The fixed-effects are
parameters which are shared by all the individuals and allowed us to describe the model at
the population level. Random effects are individual-specific random variable which describe
the model at the individual level. These two types of effects provided the model with a
hierarchical structure. The generic spatiotemporal model was constructed as follows. To
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begin with, a group-average trajectory γ0 was defined on the manifold M. Given the average
trajectory, subject-specific trajectories were obtained by spatiotemporal transformations,
which consisted exp-parallelizations of the average trajectory γ0 and time reparametrization.
The data points yi,j were seen as samples along these individual trajectories. If γi denoted
the trajectory of the ith individual, the model wrote: yi,j = γi(ti,j) + εi,j , where εi,j is
Gaussian noise. The observation yi,j was therefore considered as a small perturbation of a
quantity which lies in a Riemannian manifold.

The group-average trajectory γ0 was chosen to be the unique geodesic γ0 = γp0,t0,v0

of M which goes through the point p0 ∈ M at time t0 and with velocity v0 ∈ Tp0M. Let
i ∈ {1, . . . , p} denote the ith individual. The subject-specific trajectory γi was defined in
two steps. The first step consisted of constructing the curve ηwi(γ0, ·), which is an exp-
parallelization of the average trajectory γ0 in the direction of a tangent vector wi ∈ Tp0M.
This tangent vector was chosen to be orthogonal, for the inner product gMp0

, to γ̇0(t0) = v0.
The tangent vectors (wi)1≤i≤p are random effects of the model, called space shifts. The
orthogonality condition on the space shifts is discussed below. The second step consisted of
reparametrizing in time the exp-parallelization ηwi(γ0, ·). We considered a subject-specific
affine mapping ψi of the form ψi(t) = αi(t−t0−τi)+t0, where αi > 0 and τi ∈ R are random
effects of our model. The trajectory γi of the ith individual is γi(t) = ηwi(γ0, ψi(t)). The
mapping ψi was called time reparametrization and the random effects αi (respectively τi)
were called acceleration factor (respectively time shift).

2.3 Definition of the Space Shifts

As mentioned above, the space shifts (wi)1≤i≤p were required to be orthogonal to γ̇0(t0) = v0

for the inner product gMp0
induced by the Riemannian metric on M. This section discusses

different methods which allowed the inclusion of this orthogonality condition on the space
shifts into a statistical model. The methodological challenge raised by this section consisted
of defining a (nonlinear) mixed-effects model with smooth constraints on some of the random
effect of the model.

In order to ensure the interpretability of the space shifts, we considered an Independent
Component Analysis (ICA) (Hyvärinen et al., 2004) decomposition of each tangent vector
wi as a linear combination of Ns < N statistically independent tangent vectors (Al)1≤l≤Ns

which are called independent components or independent directions. As a consequence, the
space shifts (wi)1≤i≤p were defined as follows: ∀i ∈ {1, . . . , p}, wi = Asi =

∑Ns
l=1 sl,iAl

where A = (Al)1≤l≤Ns is such that each Ai is a vector in Tγ̇0(t0)
M. In this definition, the

weights (sl,i)1≤l≤Ns are random effects of the model called sources. By defining the space
shifts this way, the generic spatiotemporal model will estimate an ICA decomposition of
the space shifts. However, this definition does not ensure the orthogonality of the space
shifts. A possible solution to make the vectors wi orthogonal to v0 = γ̇0(t0) consisted of
decomposing each vector (Al)1≤l≤Ns in an orthonormal basis of Span

(
γ̇0(t0)

)⊥
⊂ Tp0M.

Indeed, if (Bk)1≤k≤(N−1)Ns
is an orthonormal basis of Span

(
γ̇0(t0)

)⊥, we assumed that:

∀l ∈ {1, . . . , Ns}, Al =
∑(N−1)Ns

k=1 βl,kBk. By construction, each independent component Al

(1 ≤ l ≤ Ns) is orthogonal, for the inner product gMp0
, to v0. Therefore, each space shift

(wi)1≤i≤p is orthogonal to v0 since we assumed that it writes as a linear combination of
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these independent components. In the following, the orthonormal basis was computed using
the Gram-Schmidt algorithm or the Householder method (Coleman and Sorensen, 1984).

Moreover, it is important to note that the choice of the form of the distribution of
the space-shifts did not depend on the reference time-point t0. Indeed, the wi = Asi were
defined in the tangent space of the curve at point p0 = γ0(t0). At another point p′

0 = γ0(t
′
0),

space-shifts become w′
i = Pγ0,t0,t

′

0
wi, where Pγ0,t0,t

′

0
is an orthogonal matrix. They were

therefore distributed according to w′
i = Pγ0,t0,tAsi : the distribution of the sources si did

not change and the independent components (i.e. the columns of A) were adjusted to the
new position on the average trajectory. In particular, the variance of the w′

i was invariant.
This property holds for isometric invariant distributions. For instance, if wi ∼ N (0,Σ),
then w′

i ∼ N (0,Pγ0,t0,t
′

0
ΣP⊤

γ0,t0,t
′

0
).

2.4 The Statistical Model

The generic spatiotemporal model assumed that the jth observation of the ith individual
derives from:

yi,j = ηwi(γ0, ψi(ti,j)) + εi,j . (2)

With the notations introduced above, let zpop = (p0, t0,v0, (βl,k)l,k) denote the population
variables and (zi)1≤i≤p denote the set of individual variables with: zi = (ξi, τi, (sl,i)l,i). Both
zpop and (zi)1≤i≤p are latent (or random) variables assumed independent of each other and
distributed as follows:

p0 ∼ N (p0, σ
2
p0
), t0 ∼ N (t0, σ

2
t0),

v0 ∼ N (v0, σ
2
v0), βl,k

i.i.d.
∼ N (βl,k, σ

2
β),

(3)

and ψi(t) = αi(t− t0 − τi) + t0 with αi = exp(ξi) and :

ξi
i.i.d.
∼ N (0, σ2ξ ), τi

i.i.d.
∼ N (0, σ2τ ), sl,i

i.i.d.
∼ N (0, 1). (4)

where σ2p0
, σ2t0 , σ

2
v0

and σ2β are fixed variance parameters. The noise variables (εi,j)i,j are
assumed independent of the other random variables and identically distributed:

εi,j
i.i.d.
∼ N (0, σ2). (5)

Let θvar = (σ2ξ , σ
2
τ , σ

2) denote the variance parameters which are not fixed and

θ =
(
p0, t0,v0, (βl,k),θvar

)
be the parameters of the model. The domain of θ is denoted by

Θ and defined by:

Θ =
{
θ =(p0,v0, t0, (βl,k)l,k,θvar)

/
(p0,v0) ∈ TM,

t0 ∈ R, (βl,k)l,k ∈ R
(N−1)Ns , θvar ∈]0,+∞[3

}
.

(6)

2.4.1 Discussion

The additive, or extrinsic, noise model in Eq. (2) makes sense because we assumed that M

is a subset of the Euclidean space R
N . The term ηwi(γ0, ψi(ti,j)) belongs to the manifold

M while the noise term εi,j is added in the underlying Euclidean space. However, the noise
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Figure 2: Graphical representation of the generic spatiotemporal model. Round shapes in-
dicate latent variables of the model. Boxes with indexes in the upper left corner
indicate a repetition. Shaded boxes indicate that the quantity is observed. This
figure illustrates the dependence between the variables of the generic spatiotem-
poral model.

model is not intrinsic in the sense that the noise term εi,j is not added on the manifold.
In Fletcher (2011), the author has considered an intrinsic noise model which would write:
yi,j = Expηwi (γ0,ψi(ti,j))(εi,j). This noise model allowed for it to remain on the manifold.
Still, obtaining maximum a posteriori estimates of the parameters with this intrinsic noise
model is more difficult as the model likelihood might not be available in closed-form.

We assumed a centered log-normal distribution for the acceleration factors αi. Indeed,
this choice of probability distribution ensured the positiveness of the acceleration factors.
With this assumption, the individual time reparametrizations do not reverse time. Other
probability distributions, such as the exponential distribution, could have been considered.

3. Particular Cases of the Generic Spatiotemporal Model

The generic spatiotemporal model, introduced in the previous section, is a statistical tool
which allowed us, given a Riemannian manifold M equipped with a Riemannian metric
gM, to instantiate a large variety of nonlinear mixed-effects models. This section is aimed at
describing the generic spatiotemporal model for classical Riemannian manifolds. The models
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for one-dimensional geodesically complete Riemannian manifolds given in Section 3.1 were
introduced in Schiratti et al. (2015c). The progression models, given in Section 3.3 were
introduced in Schiratti et al. (2015b).

3.1 The case of One-Dimensional Geodesically Complete Riemannian
Manifolds

Let M be an open interval of R equipped with a Riemannian metric gM , for which it is
geodesically complete. The case of one dimensional manifolds is particular because, for all
p0 ∈M , TpM ≃ R and given v0 ∈ Tp0M , there is only one tangent vector w at p0 which is
orthogonal (for the inner product gMp0 ) to v0 : w = 0. As a result, if γ0 is a geodesic of M ,
t0 ∈ R and w = 0, then for all s ∈ R, ηw(γ0, s) = γ0(s). Therefore, the generic spatiotempo-
ral model writes: yi,j = γ0◦ψi(ti,j)+εi,j , with, for all i ∈ {1, . . . , p}, ψi(t) = αi(t−t0−τi)+t0
and αi = exp(ξi).

We have shown that, in this one-dimensional framework, a different presentation of the
generic spatiotemporal model is possible. This presentation provided a different insight on
the role of the latent variables (αi, τi)1≤i≤p. Let p0 ∈ M , t0 ∈ R and v0 ∈ Tp0M ≃ R. Let
γ0 be the group-average trajectory defined as the geodesic which goes through the point p0
at time t0 and with velocity v0. Let 1 ≤ i ≤ p. The trajectory γi of the ith individual
is defined as the geodesic γi which goes through the point p0 at time t0 + τi and with
velocity αiv0. Having defined individual trajectories of progression, the observations were
seen as random samples along these trajectories: yi,j = γi(ti,j) + εi,j . In this definition, the
acceleration factor αi allowed us to characterize whether the ith individual is progressing
faster (αi > 1) or slower (αi < 1) than the average trajectory. The time shift τi allowed
us to determine whether the ith individual is evolving ahead (τi < 0) or behind (τi > 0)
the average trajectory. Moreover, it followed from a unicity property of the geodesics that,
for all i ∈ {1, . . . , p}, γi(t) = γ0

(
ψi(t)

)
. This result legitimised the choice of affine time

reparametrizations of the form ψi : t 7→ αi(t− t0 − τi) + t0.

3.1.1 The “Straight Lines Model”

Unbounded observations can be considered as points on the real line. The real line M = R

equipped with its canonical metric is a geodesically complete one-dimensional Riemannian
manifold. For the canonical metric, the geodesics are of the form t ∈ R 7→ at + b with
(a, b) ∈ R

2. The generic spatiotemporal model writes: yi,j = p0 + αiv0(ti,j − t0 − τi) + εi,j .
This model is referred to as the univariate straight lines model. Note that, even though
the average and individual trajectories are straight lines, the model is not linear due to the
multiplication between the random effects αi and τi.

We proposed comparison of the nonlinear straight lines model to the random slope and
intercept model, as discussed in the introduction. This linear mixed-effects model writes:
yi,j = (a+ ai)(ti,j − t0)+ (b+ bi)+ εi,j , where (Ai, Bi)1≤i≤p are random effects of the model
which are assumed to be independent of each other and normally distributed with mean
0 and variance-covariance matrix D. The fixed effects of this model are (A,B, t0). This
linear model analyzed the distribution of the observations at a fixed reference time t0. In
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comparison, the straight lines model analyzed the distribution of the times at which the
observations reached a given value of the measurements. These two different approaches are
illustrated in Fig. 3.

Figure 3: Schematic example of a random slope and intercept linear mixed-effects model
(left) and straight lines model (right).

3.2 The “Logistic Curves Model”

If the observations are bounded, such as percentages or scores to a test, the measurements
can be normalized to produce new observations in the open interval M =]0, 1[. We con-
sidered that this open interval of the real line was equipped with the Riemannian metric
g = (gp)p∈]0,1[ where : ∀p ∈ M =]0, 1[, ∀(u, v) ∈ TpM × TpM, gp(u, v) = uM(p)v, where
M(p) = 1/

(
p2(1− p)2

)
. This Riemannian metric on ]0, 1[ was obtained as the push-forward

of the Euclidean metric on R by the logit transform. In Schiratti et al. (2015c), it was
proven that M =]0, 1[ is a geodesically complete Riemannian manifold and that the generic
spatiotemporal model writes:

yi,j =

(
1 +

( 1

p0
− 1
)
exp

(
−
v0αi(ti,j − t0 − τi)

p0(1− p0)

))−1

+ εi,j . (7)

In this framework, the Riemannian logarithm at p = 1/2, which corresponds to the
inflexion point of the logistics, is given by: ∀q ∈]0, 1[, Log1/2(q) = (1/4)logit(q). However,
in (7), the point p0 is not fixed to 1/2, but is estimated as a fixed effect. The model estimates
the p0, and therefore the best tangent space, which best describes the observations. Further-
more, even if one fixes p = 1/2, the model lifted up on the tangent space remains nonlinear
due to the multiplication between the random effects αi and τi. Therefore, the logistic curves
model is not equivalent to a linear model on the logit transform of the observations.

10
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3.3 A Progression Model

The generic spatiotemporal model can be used to study the temporal progression of a family
of features which characterize the evolution of a biological phenomenon. We assumed that
each feature is described by repeated univariate observations, which are random pertur-
bations of quantities lying in a one-dimensional geodesically complete Riemannian mani-
fold (M, gM ), open subset of R. For each individual, at each time point, the observations
(yi,j)1≤i≤p, 1≤j≤ki consisted of a N -dimensional vector of univariate features. Hence, for this
progression model, the observations (yi,j)1≤i≤p, 1≤j≤ki were considered as random perturba-
tions of quantities which belong to the product manifold M = M × . . . ×M = MN . Since
each Riemannian manifold (M, gM ) is geodesically complete, M equipped with the product
metric is also geodesically complete.

On the product manifold M = MN , equipped with the product metric, a geodesic is
of the form t 7→

(
γ1(t), . . . , γN (t)

)
, where γ1, . . . , γN are geodesics of the one-dimensional

Riemannian manifold M . Because we would like to model the joint temporal progression of
N features, we proposed to choose the group-average trajectory among a parametric family
of geodesics of M. This family was of the form:

{
γ0,δ : t ∈ R 7→

(
γ0(t), γ0(t+ δ1), . . . , γ0(t+ δN−1)

)}
, (8)

with δ = (0, δ1, . . . , δN−1)
⊤, δi ∈ R and γ0 denoted a geodesic of the one-dimensional

Riemannian manifold gM which goes through a point p0 ∈ M at time t0 with velocity
v0. The relative delay between two consecutive biomarkers was given by the parameters δi
(1 ≤ i ≤ N − 1). The vector δ was to be estimated as a fixed effect of the model. The
first component of the vector δ was chosen to be equal to zero to ensure the identifiability
of the model. Note that assuming that the group average belongs to this parametric family
of geodesics is equivalent to assuming that the progression of each feature is described by
trajectories which have the same shape but are shifted in time.

Lemma 2 Let γ be a geodesic of the product manifold M =MN and let t0 ∈ R. If ηw(γ, ·)
denotes an exp-parallelization of the geodesic γ using w = (w1, . . . , wN

)
∈ Tγ(t0)M and with

γ(t) = (γ1(t), . . . , γN (t)), we have ηw(γ, s) =
(
γ1
(

w1
γ̇1(t0)

+ s
)
, . . . , γN

(
wN

γ̇N (t0)
+ s
))
, s ∈ R.

In this framework, an exp-parallelization of the group-average trajectory γ0,δ can be
computed using the result given in Lemma 2. Indeed, it follows from Lemma 2 that the
generic spatiotemporal model 2 writes :

yi,j,k = γ0

(
wi,k

γ̇0(t0 + δk−1)
+ ψi(ti,j) + δk−1

)
+ εi,j,k, (9)

where, for all k ∈ {1, . . . , N}, (yi,j)k denotes the kth component of yi,j . In other words,
(yi,j)k is the observation associated to the kth biomarker, for the ith individual, at the
jth time point. Similarly, (wi)k denotes the kth component of the space shift wi. For all
i ∈ {1, . . . , p}, ψi(t) = αi(t− t0 − τi) + t0 is the individual specific time reparametrization.
This model is referred to as the progression model. For this model, the latent variables are:
zpop =

(
p0, t0, v0, (δk)1≤k≤N−1, (βl,k)l,k

)
and, for all i ∈ {1, . . . , p}, zi =

(
ξi, τi, (sl,i)l,i

)
. The

11
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definition of the individual latent variables (zi)1≤i≤p remains unchanged. For the population
latent variables zpop, the variables (δk)1≤k≤N−1 were added. We assumed that the latent
variables zpop were distributed as follows:

p0 ∼ N (p0, σ
2
p0), t0 ∼ N (t0, σ

2
t0), v0 ∼ N (v0, σ

2
v0), (10)

and

βl,k
i.i.d.
∼ N (βl,k, σ

2
β), δk

i.i.d.
∼ N (δk, σ

2
δ ), (11)

where σ2p0 , σ
2
t0 , σ

2
v0 and σ2δ are fixed variance parameters. Similarly to the generic spatiotem-

poral model, the latent variables were assumed independent of each other and independent

of the noise variables εi,j
i.i.d.
∼ N (0, σ2IN ).

3.4 The Symmetric Positive Definite (SPD) Matrices Model

In this section, we described how the generic spatiotemporal model can be used to analyze
longitudinal datasets of symmetric positive definite matrices. Such datasets may arise in
Diffusion Tensor Imaging (DTI) or when observing the temporal evolution of covariance
matrices.

The space of 3 × 3 symmetric positive definite matrices is usually denoted by SDP(3),
which is an open subset of the vector space of (3, 3) symmetric real matrices, denoted by
Sym(3). By identifying Sym(3) with R

6, M = SDP(3) can be considered as an open subman-
ifold of R6. Indeed, M can be equipped with a Riemannian metric. In Pennec et al. (2006),
the authors defined an affine-invariant Riemannian metric on SPD(3). Equipped with this
metric, the space of symmetric positive definite matrices is a geodesically complete Rie-
mannian manifold, without boundaries (matrices with null eigenvalues are at infinity). The
results presented below were obtained with the affine-invariant metric on SPD(3).

If Σ ∈ SDP(3), Σ1/2 denotes the unique symmetric positive definite matrix S such that
: S2 = Σ and Σ−1/2 denotes its inverse. Let TΣM denote the tangent space to M at the
point Σ. TΣM can be identified with Sym(3) and is equipped with the inner product 〈·, ·〉Σ
defined by : ∀(W1,W2) ∈ TΣM, 〈W1,W2〉Σ = tr

(
Σ−1/2W⊤

1 Σ
−1W2Σ

−1/2
)
.

In order to describe exp-parallelization in the Riemannian manifold SPD(n) equipped
with the affine invariant metric, we gave a closed-form expression of the parallel transport.
The result given in Lemma 3 is based in the work of Lenglet et al. (2006). For P0 ∈ SPD(n),
t0 ∈ R, V0 ∈ TP0SPD(n) ≃ SYM(n), the geodesic γ0, defined by γ0(t) = ExpP0,t0(V0)(t)

for all t ∈ R, is given by : γ0(t) = P
1/2
0 exp

(
tP

−1/2
0 V0P

−1/2
0

)
P

1/2
0 , where P

1/2
0 (respectively

P
−1/2
0 ) denotes the unique symmetric positive definite square root of P0 (respectively its

inverse). The proof of Lemma 3 can be adapted to obtain the expression of the geodesics.
One can also obtain this expression by noting that the geodesic starting at In with velocity
V ∈ SYM(n) is given by exp(tV) and use the invariance of the affine-invariant metric under
congruent transformations. Finally, the expression of the parallel transport along such a
geodesic is given by the following lemma.

12
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Lemma 3 Let P0 ∈ SPD(n), t0 ∈ R and V0 ∈ TP0SPD(n) ≃ SYM(n). Let γ0 be the
geodesic defined as above. If W is a tangent vector in TP0SPD(n), the parallel transport
Pγ0,t0,t(W) is given by:

∀t ∈ R, Pγ0,t0,t(W) = exp
( t− t0

2
V0P

−1
0

)
W exp

( t− t0
2

P−1
0 V0

)
. (12)

The proof of Lemma 3 is given in Appendix A.2. It follows from this lemma that the generic
spatiotemporal model writes :

Yi,j = Pi(ti,j)
1/2 exp

(
Pi(ti,j)

−1/2Vi(ti,j)Pi(ti,j)
−1/2

)
Pi(t)

1/2 + εi,j , (13)

with, for all t ∈ R,

Pi(t) = P
1/2
0 exp

(
αi(t− t0 − τi)P

−1/2
0 V0P

−1/2
0

)
P

1/2
0 , (14)

and:

Vi(t) = exp
(αi(t− t0 − τi)

2
V0P

−1
0

)
Wi exp

(αi(t− t0 − τi)

2
P−1

0 V0

)
. (15)

The prior distribution for the matrices P0, V0 and (εi,j)i,j are defined as follows: P0 ∼

SN (P0, σ
2
P0
), V0 ∼ SN (V0, σ

2
V0
) and εi,j

i.i.d.
∼ SN (0, σ2), where SN denotes the Gaus-

sian distribution on the vector space Sym(n). Given M ∈ SYM(n), the probability dis-
tribution SN (M, σ2) on Sym(n) is defined by the density function q such that: q(M) =

1
(2π)m/2σm exp

(
− 1

2σ2 tr
[
(M − M)2

])
with M ∈ Sym(n) and with m = n(n + 1)/2. The

“standard” distribution SN (0, 1) is used in physics and in the theory of random matrices.
It is sometimes called Gaussian Orthogonal Ensemble. The probability distribution of the
other random effects of the model were defined as in Section 2.2. This model will be referred
to as the symmetric positive definite matrices model or SPD(n) matrices model.

In Arsigny et al. (2006), the authors considered the space SPD(n) equipped with the
log-Euclidean metric. This metric provides the space of symmetric positive definite ma-
trices with a structure of Riemannian manifold. Unlike with the affine-invariant metric,
the space SPD(n) endowed with the Log-Euclidean metric is a flat Riemannian manifold,
meaning that its sectional curvature is null everywhere. By contrast, the space SPD(n)
equipped with the affine-invariant metric is a Riemannian manifold of non-positive cur-
vature (Skovgaard, 1984; Moakher and Zéraï, 2011) with no cut-locus. Within the Log-
Euclidean framework, the geodesics are of the form: exp(V1+ tV2) with V1,V2 ∈ SYM(n).
As expected, the geodesics are the image of a straight line in SYM(n) by the matrix expo-
nential map. Future developments should include comparisons with the log-euclidean metric
on the space SPD(3).

4. Parameters Estimation

The generic spatiotemporal model (2) is a nonlinear mixed-effects model for which the
observed likelihood is not available in closed-form. Indeed, it writes as an intractable integral
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Figure 4: Simulated evolutions of diffusion tensors. First row : average trajectory from
a highly anisotropic diffusion tensor to a sphere. Second row : a parallel to
the average trajectory obtained using a random space shift Wi. Third row
: the reparametrization of the exp-parallelization with αi = 0.7 and τi = −4
(years). Fourth row : the observations are samples from the reparametrized exp-
parallelization. The samples are obtained using the noise model described in 3.4.
Each diffusion tensor is colored according to its fractional anisotropy (red for a
highly anisotropic tensors, yellow for a sphere).

which could only be approximated. In order to produce maximum likelihood estimates, we
could use the Expectation Maximization (EM) algorithm (Dempster et al., 1977). The first
step of the EM algorithm, usually called “E-step”, requires us to compute the expectation
of the log-complete likelihood (the likelihood of the observations y = (yi,j)1≤i≤p, 1≤j≤ki and
the latent variables z) with respect to the conditional distribution of the latent variables
knowing the observations and the current values of the parameters. In the case of our model,
this expectation cannot be computed in closed-form.

Therefore, we chose to estimate the parameters of the generic spatiotemporal model by
using a stochastic version of the EM algorithm, in which this step was replaced by a stochastic
approximation. This algorithm is the Monte Carlo Markov Chains (MCMC) Stochastic
Approximation EM (MCMC-SAEM) algorithm (Allassonnière et al., 2010). The MCMC-
SAEM iterates, until convergence, between three steps: simulation, stochastic approximation
and maximization.

4.1 Simulation Step

If θ̃
(k−1)

denotes the current estimate of θ̃ at the beginning of the kth iteration of the
MCMC-SAEM, the simulation step consists of drawing a sample z(k) from the transition
kernel π

θ(k−1),y(z
(k−1),·) of an ergodic Markov chain whose stationary distribution is the con-

ditional distribution q(z | y, θ̃
(k−1)

), the distribution of the latent variables z knowing the ob-

servations y and θ̃
(k−1)

. This step is achieved using a Monte Carlo Markov Chain (MCMC)
sampler. We chose to use a Block Metropolis-Hastings-within-Gibbs (Block MHwG) sampler
for the sampling step of the MCMC-SAEM. Each Metropolis-Hastings step of the algorithm
consists in a multivariate symmetric random walk. The Block MHwG sampler updates si-
multaneously block (or sets) of latent variables then, at each iteration, each block is updated
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conditionally on the others. Even though the latent variables can be grouped in several ways,
we chose to group the latent variables as follows: {zpop} and {zi}1≤i≤p. This grouping being
given by the hierarchical structure of the model. Note that the latent variables also could
have been grouped as follows: {p0, t0,v0}, {(βl,k)l,k} and {zi}1≤i≤p. In the case of the
progression models, the delay variables (δk)1≤k≤N−1 were grouped with zpop, although they
could also be considered as a block in itself.

For each block, the proposal in the Metropolis-Hastings step was chosen to be a mul-
tivariate Gaussian distribution centered at the current state of the block. Each variance-
covariance matrix of a proposal distribution was chosen to be diagonal matrix: Dpop =
Diag

(
ζ2p0

IN , ζ
2
t0 , ζ

2
v0
IN , ζ

2
βI(N−1)Ns

)
for the proposal distribution associated to zpop and

Dindiv = Diag
(
ζ2ξ , ζ

2
τ , ζ

2
s

)
for the proposal distribution associated to zi (1 ≤ i ≤ p). The

variances parameters ζ2p0
, ζ2t0 , ζ

2
v0
, ζ2β and ζ2ξ , ζ

2
τ were adjusted by hand to ensure an aver-

age acceptance rate for each block around 23% (Roberts et al., 1997). The Block MHwG
sampler is described in Algorithm 1.

Algorithm 1 The Block Metropolis-Hastings-within-Gibbs sampler

Require: Set of latent variables z(k−1) =
(
z
(k−1)
pop , (z

(k−1)
i )1≤i≤p

)
, current estimate of the

parameters θ(k−1), variance-covariance matrices Dpop and (Di)1≤i≤p and θhyper

Ensure: Set of latent variables z(k)

1: Block z
(k)
pop of population latent variables:

2: Draw a candidate z∗pop ∼ N
(
z
(k−1)
pop ,Dpop

)

3: Compute the acceptance ratio α(z(k−1)
pop , z∗pop) defined by:

α(z(k−1)
pop , z∗pop) =

q(y | z∗pop, (z
(k−1)
i )1≤i≤p,θ

(k−1))qpop(z
∗
pop | θ(k−1))

q(y | z
(k−1)
pop , (z

(k−1)
i )1≤i≤p,θ

(k−1))qpop(z
(k−1)
pop | θ(k−1))

∧ 1.

4: Draw U ∼ Uniform
(
[0, 1]

)

5: Set: z
(k)
pop = z∗pop if U ≤ α(z

(k−1)
pop , z∗pop) and z

(k)
pop = z

(k−1)
pop otherwise.

6: for i = 1 . . . p do

7: Blocks (z
(k)
i )1≤i≤p of individual latent variables:

8: Draw a candidate z∗i ∼ N
(
z
(k−1)
i ,Dindiv

)

9: Compute the acceptance ratio α(z(k−1)
i , z∗i ) defined by:

α(z
(k−1)
i , z∗i ) =

q(y | z
(k)
pop, z

(k−1),(k)
−i , z∗i ,θ

(k−1))qi(z
∗
i | θ

(k−1))

q(y | z
(k)
pop, z

(k−1),(k)
−i , z

(k−1)
i ,θ(k−1))qi(z

(k−1)
i | θ(k−1))

∧ 1.

10: Draw U ∼ Uniform([0, 1])

11: Set: z
(k)
i = z∗i if U ≤ α(z

(k−1)
i , z∗i ) or z

(k)
i = z

(k−1)
i otherwise.

12: end for
13: Return: z(k) =

(
z
(k)
pop, (z

(k)
i )1≤i≤p

)
.
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Let θhyper = (σ2p0
, σ2t0 , σ

2
v0
, σ2β) denote the fixed hyperparameters which appear in the

probability distribution of the latent variables in zpop. Let i ∈ {1, . . . , p} and qpop
(
· | θ

)

(respectively qi(· | θ) denote the density function of the joint distribution of the latent
variables zpop (respectively zi) as specified in the generative model (equations (3) and (4)):

qpop(zpop | θ) ∝ exp
(
−

1

2σ2p0

‖p0 − p0‖
2
)
exp

(
−

1

2σ2t0
(t0 − t0)

2
)

exp
(
−

1

2σ2v0

‖v0 − v0‖
2
)
exp

(
−

1

2σ2β
‖β − β‖2

)
,

(16)

and
qi(zi | θ) ∝ exp

(
−

1

2σ2ξ
ξ2i

)
exp

(
−

1

2σ2τ
τ2i

)
exp

(
−

1

2
‖si‖

2
)
, (17)

with: β = [βl,k]1≤l≤Ns, 1≤k≤N−1 and for all i ∈ {1, . . . , p}, si = [sl,i]1≤l≤Ns
. The probabil-

ity distributions qpop and qi (1 ≤ i ≤ p) are given up to a constant. Indeed, the normalizing
constant of qpop or qi (1 ≤ i ≤ p) depends only on the parameters θ. Therefore, these
constants can be omitted for the computation of the acceptance ratio in Algorithm 1.

4.1.1 Discussion

In order to avoid tuning by hand the parameters ζ2p0
, ζ2t0 , ζ

2
v0

and ζ2β of the proposal dis-
tribution in the Block MHwG sampler, a possible solution would consist of using an adap-
tive (Atchadé, 2006) version of the Block MHwG sampler, where the algorithm automatically
adjusts these variance parameters.

4.2 Stochastic Approximation

The convergence of the MCMC-SAEM was proven, in Kuhn and Lavielle (2004) (for bounded
latent variables) and in Allassonnière et al. (2010) (for unbounded latent variables), for sta-
tistical models which belong to the curved exponential family. That is to say, models for
which the log complete likelihood q(y, z,θ) writes: ∀θ ∈ Θ, log q(y, z,θ) = −Φ(θ) +
〈S(y, z),Ψ(θ)〉, where Φ,Ψ are smooth functions of the parameters, S(y, z) is a measurable
function of the observations and latent variables called sufficient statistic of the model and
〈·, ·〉 is an inner product on a product space. The generic spatiotemporal model belongs to
the curved exponential family.

Because the generic spatiotemporal model belongs to the curved exponential family, the
stochastic approximation can be done on the sufficient statistics of the model. At the kth
iteration of the MCMC-SAEM, we have: Sk = Sk−1 + εk

(
S(y, z(k))− Sk−1

)
, where (εk)k≥1

is a sequence of positive step sizes such that
∑

k εk = +∞ and
∑

k ε
2
k < +∞. If εk = 1, then

Sk does not depend on Sk−1. Intuitively, the sequence (Sk)k≥0 has “no memory” as long as
εk = 1 and the MCMC-SAEM freely explores the parameters space during this period. In
practice, we chose εk = 1 as long as k ≤ Nb and εk = (k −Nb)

−0.65 if k > Nb.

4.2.1 Maximization Step

The maximization step consists of solving the following optimization problem : θ(k) =
argmax

θ∈Θ

(
−Φ(θ)+ 〈Sk,Ψ(θ)〉

)
, where Sk denotes the stochastic approximation on the suffi-
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cient statistics of the model, obtained in the “stochastic approximation step” of the algorithm.
For the generic spatiotemporal model, this optimization problem was solved in closed-form.

4.3 Computational Aspects

For the progression model (9), the MCMC-SAEM would have to estimate the following
parameters : θ = (p0, t0, v0, δ1, . . . , δN−1, β1, . . . , β(N−1)Ns

, ση, στ , σ). In this example, we
saw that the number of parameters to estimate was 6 + (N − 1)(Ns + 1). As the dimension
N of the manifold M increases, the number of parameters increased linearly. Moreover, as
N increased, the number Ns of independent sources had a greater impact on the number of
parameters to estimate.

The number p of individuls also impacted on the runtime of the MCMC-SAEM. As the
number p of individuals increased, the cost of a single computation of the observed likelihood
increased. This step is the most expensive step of the MCMC-SAEM algorithm. The overall
runtime of the MCMC-SAEM could be improved by sampling the blocks (zi)1≤i≤p (in the
Block MHwG sampler) in parallel.

5. Experiments

The section on numerical experiments begins with a comparison of our implementation of the
MCMC-SAEM algorithm with other state-of-the-art algorithms. It is followed by a section
entitled “Validation Procedure” which presents an evaluation criteria designed to quantify
how well the time reparametrizations of the generic spatiotemporal model allowed to tem-
porally align the progression of individuals. Finally, results obtained on a synthetic dataset
of Symmetric Positive Definite (SPD) matrices and on a real dataset of neuropsychological
tests scores are given. These datasets were analyzed using the particular cases of the generic
spatiotemporal model described in Section 3.

5.1 Convergence of the Algorithm

In this section, we aimed to compare our implementation of the MCMC-SAEM with state of
the art algorithms. Our algorithm, implemented in MATLAB, was compared with STAN and
MONOLIX. STAN is a R/C++ library which implements an adaptive Hamiltonian Monte
Carlo sampler called “the No U-Turns Sampler” (NUTS, Hoffman and Gelman (2014)).
MONOLIX is software developed by Marc Lavielle and the Lixoft company. It implements
the MCMC-SAEM algorithm with some technical improvements (such as a simulated an-
nealing scheme). Note that our implementation of the MCMC-SAEM algorithm differed
from MONOLIX in the sense that it can be used with any particular case of the generic
spatiotemporal model presented in Section 3. In particular, our implementation can be
used to analyze univariate, as well as multivariate (such as covariance matrices) longitudi-
nal observations. In its current version (2016R1), MONOLIX does not allow observations
to be passed as matrices or vectors, which is not convenient for the analysis multivariate
longitudinal observations.

In order to compare these algorithms, we considered a synthetic longitudinal dataset of
observations in ]0, 1[. The open set ]0, 1[ was equipped with the Riemannian metric defined
in Section 3.2, which generated logistic shaped geodesics. This dataset was generated for
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Table 1: Relative error on the parameters estimated with the different algorithms. First
row: results obtained with our implementation of the MCMC-SAEM. Second row:
results obtained with STAN. Third row: results obtained with MONOLIX.

|p̂0 − p∗0|/p
∗
0 |t̂0 − t∗0|/t

∗
0 |v̂0 − v∗0|/v

∗
0 |σ̂ξ − σ∗ξ |/σ

∗
ξ |σ̂τ − σ∗τ |/σ

∗
τ |σ̂ − σ∗|/σ∗

0.0150 0.0050 0.0176 0.0600 0.0545 0.010

0.0917 0.0191 0.1088 0.0600 0.0386 0.010

0.0417 0.0086 0.0412 0.0400 0.0286 0.008

Table 2: Number of iterations and runtimes corresponding to the experimental results given
in Table 1. First row: results obtained with our implementation of the MCMC-
SAEM. Second row: results obtained with STAN. Third row: results obtained with
MONOLIX.

Iterations Runtime (for 1000 iterations) Overall runtime
3500 30 s 90 s
15000 15 min ≃ 3, 75 h
400 110 s 45 s

p = 250 individuals, with an average of 5 time points per individual. Each algorithm was
run with the same initialization and the logistic curves model (7) was used to generate the
data.

The experimental results given in Table 1 consist of relative errors on the parameters
estimated with the different algorithms. The runtime and number of iteration needed for
each method to converge are reported in Table 2. The results presented in the first ta-
ble show that all the different methods succeeded in estimating the parameters which were
used to generate the data. The corresponding number of iterations show that STAN is,
by far, the most computationally intensive method. Even though our implementation of
the MCMC-SAEM required more iterations to converge than MONOLIX, the overall run-
time was similar. The fact that MONOLIX required fewer iterations to converge can be
explained by the fact that the MCMC-SAEM was coupled with a simulated annealing pro-
cedure Lavielle and Mentré (2007), which allowed for a better and faster exploration of the
parameters space.

The results presented in these tables show that the performance of our implementation
of the MCMC-SAEM is similar to one of state-of-the-art methods. Still, the number of
iterations needed to converge could be further reduced, for example, by combining several
MCMC samplers in the sampling step of the MCMC-SAEM.

5.2 Validation Procedure

Here we proposed a validation procedure to see if the model is a fit for the data in which
the optimal values of the parameters are not known.
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The idea was to assess how well the estimated individual time reparametrizations put
in correspondence the progression of the individuals. To this end, we would use additional
information which was not used in the model: the time at which a particular event occurred
in the life of an individual. For example, the event could be the time at which a disease is
diagnosed, or at which a metabolic change occurred, for instance. Such an event occured at
a different time point (or age) for each individual.

Figure 5: The average time of event topt was mapped to the individual timelines using ψ−1
i .

The individual time reparametrization ψi are supposed to precisely put into correspon-
dence the time at which similar spatiotemporal patterns were found in the individual data.
To assess how well this was achieved, we tested whether the time at which a particular event
occured in the life of the individuals was mapped to the same time-point in the average tra-
jectory of the model.

For the ith individual, ψi mapped the timeline of this individual to the “average timeline”,
namely the one of the average trajectory. Let t∗i be the time point at which the event occured
in the timeline of the ith individual. We estimated the time-point topt that corresponded
to the occurrence of the event in the average trajectory γ0 by minimizing the sum of errors
E(t) =

∑
i |t

∗
i−ψ

−1
i (t)|. Note that topt can be interpreted as a median of the normalized ages

(ψi(t
∗
i ))i, and could therefore not be unique. Then we mapped topt back to the individual

timelines by using the mappings ψ−1
i , as illustrated in Fig. 5. The value ψ−1

i (topt) may be
thought of as a prediction of the model of the time-point (or age) at which the event occured
for the ith individual. Without errors, this time-point would be exactly t∗i . In practice, the
difference |t∗i − ψ−1

i (topt)| allowed us to quantify how well the events the timeline of the ith
individual and the average timeline have been put into correspondence.

In the following experiments, the median topt of
(
ψi(t

∗
i )
)
1≤i≤p

was computed unambigu-
ously. To assess how well the individual trajectories and the average trajectory are put into
correspondence, we plotted a histogram of the errors

(
|t∗i − ψ−1

i (topt)|
)
1≤i≤p

.
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5.3 Tensors : a Synthetic Dataset

We started by presenting the synthetic dataset of SPD matrices used for this experiment and
then presented the results obtained with the particular case of the generic spatiotemporal
model for SPD matrices (see Section 3.4).

5.3.1 Data

We considered a synthetic dataset, in which we simulated repeated observations of a a sym-
metric definite positive matrix (also called a diffusion tensor in medical imaging) for one
hundred individuals. The observations were not generated from the model. The observa-
tions were obtained instead by prescribing an adhoc hierarchical model on the eigenvalues of
the diffusion tensors. At the level of the population, the eigenvalues of the diffusion tensors
followed a decreasing piecewise linear evolution with a change point at 50 years old. Obser-
vations for a given individual were simulated by randomly shifting the change point (time
at which the change occurred in the speed at which eigenvalues decrease) and randomly
increasing or decreasing the slopes of each eigenvalue (see Fig.6, left). In this synthetic
dataset, the individuals had, on average, five time points.

5.3.2 Results

The results presented below were obtained with Ns = 1 source. A greater number of
independent sources would have been possible but many more iterations would have been
necessary for the MCMC-SAEM to converge. The Bayesian tensor model with the MCMC-
SAEM allowed us to estimate an average trajectory of progression in the space SDP(3).
This average trajectory was the geodesic which goes through the point P0, at time t0, with
velocity V0, given by :

P0 =



11.30 0.96 0.68
0.96 9.53 1.21
0.68 1.21 10.19


 , t0 = 53.83 years,

and

V0 =



−0.99 −0.17 −0.20
−0.17 −0.75 −0.27
−0.20 −0.27 −0.85


 unit per year.

The evolution of the eigenvalues of the average trajectory, plotted in Fig. 6, was similar
to the model used to generate the observations. However, the MCMC-SAEM tended to
underestimate the first eigenvalue and overestimate the third eigenvalue. The variability in
speed and delay of progression was captured by the estimated parameters ση = 0.07 and
στ = 0.5 year. Fig. 6 (left) shows that the eigenvalues of each individual decreased at a
similar pace before and after the change point. This may explain why the model captured
small variations in speed of progression. The standard deviation στ of the parameter t0 is
much smaller. The individual acceleration factor, time shift and space shift allowed us to
fit the average trajectory to the observations of an individual. As shown in Fig. 6 (right),
the estimated individual trajectory was well adjusted to the observations of the individual.

The eigenvalues of the average estimated trajectory were smooth functions of time.
Therefore, it would not have been possible to obtain a piecewise-linear progression of the
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eigenvalues for the average trajectory. Nevertheless, we could still validate the ability of the
tensor model to put into correspondence the dynamic of each individual following Sec. 5.2 by
using the individual change point t∗i . For this dataset, the sum of errors

∑
i |t

∗
i −ψ

−1
i (t)| had

a unique minimum at topt = 49.73 years. This minimum topt is close to 50 years, the time
at which the change point occurred in the average model used to generate the data. Fig. 7
shows that the model made an error of less than 2 years for almost 60% of the population
by predicting the individual change point with ψ−1

i (topt), and less than 4 years for 90% of
the population. The change point was generated using a Gaussian distribution centered at
50 years with a standard deviation of 2 years. Therefore, the error was of the same order as
the standard deviation of the change point.

Figure 6: Left : In solid bold lines, the average model of eigenvalues evolution for the
synthetic dataset of tensors. In solid lines, the evolution of the eigenvalues for all
the individuals in the dataset. In dotted lines, the evolution of the eigenvalues
of the average trajectory, given by the MCMC-SAEM. Right : the evolution of
the eigenvalues of an individual. In dotted lines, the eigenvalues of the average
trajectory estimated by the MCMC-SAEM. With square markers, the eigenvalues
of the observations for this individual. With round markers, the eigenvalues of
the estimated individual trajectory.

5.4 Neuropsychological Tests

This section is started by presenting the real dataset of neuropsychological tests scores from
the ADNI database. Then, we presented results obtained using the progression model (see
Eq. (9)) with logistic curves.
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Figure 7: Histogram of
(
|t∗i − ψ−1

i (topt)|
)
1≤i≤100

superimposed with the cumulative distri-
bution of this error. Here, t∗i represents the age of the change point for the ith
individual.

5.4.1 Data

The dataset consisted of scores for the modified “ADAS-Cog” test (Mohs et al., 1997) ob-
tained from the ADNI1, ADNIGO and ADNI2 cohorts of the Alzheimer’s Disease Neu-
roimaging Initiative. The 13 items were grouped into 4 categories according to the cognitive
function they assess: memory, language, concentration, and praxis. For each cognitive func-
tion, the scores were added and normalized by the maximum possible value therefore produc-
ing measurements in ]0, 1[. As a consequence, each observation was a point on the manifold
M =]0, 1[4 (note that results without item pooling are presented in Schiratti et al. (2015a)).
We used 248 individuals who were included in the study as mild cognitive impaired (MCI)
subjects and later converted to Alzheimer’s disease (AD). Each individual was observed on
average 6 times.

5.4.2 Results

This data set was analyzed using the progression model given in Eq. (9) with logistic curves.
The number of independent components could be either 1, 2 or 3, as the manifold is of di-
mension 4. The model with one independent component estimated a residual noise variance
σ2 = 0.012 and explained 79% of the total variance. The model with two (resp. three)
independent components estimated a noise variance σ2 = 0.008 (resp. σ2 = 0.0084) and
explained 84% (resp. 85%) of the total variance. Because the results obtained with three
independent components are similar to the results obtained with two independent compo-
nents, we chose, for the sake of clarity, to report the results obtained with two components
(Ns = 2).
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Figure 8: The estimated average trajec-
tory. The estimated parame-
ters p0 (resp. t0) are repre-
sented by an horizontal (resp.
vertical line) at p0 = 0.3 (resp.
t0 = 72 years).
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Figure 9: Histogram of
(
|tconvi −

ψ−1
i (topt)|

)
1≤i≤248

super-
imposed with the cumulative
distribution of this error.

The average trajectory estimated by the progression model, plotted in Fig. 8, is char-
acterized by the fixed effects p0 = 0.3, t0 = 72 years, v0 = 0.04 unit per year and
δ = [0;−15;−13;−5] years. The first biomarker (memory) reached the value p0 = 0.3
at 72 years on average, the second one (concentration), at t0 + 5 = 77 years, followed by
praxis and language. The fixed effects provided an ordering of the biomarkers and the rel-
ative delay between them. The random effects characterized the spatiotemporal variability
of the average trajectory among the population. The estimated standard deviation at the
time-shift is στ = 7.5 years, meaning that age of disease onset ranged between 72±7.5 years
for 95% of the individuals. A positive (resp. negative) time-shift meant that the individual
was evolving behing (resp. ahead) the average trajectory. The estimated standard deviation
of the acceleration factors was ση = 0.9. As a consequence, most of the individuals were
progressing between eση ≃ 2.4 times faster or e−ση ≃ 0.4 times slower than the average tra-
jectory (see Fig. 11, first row). Estimates of the individual time-shits and log-acceleration
factors are plotted in Fig. 10. This figure shows a clear correspondence between the time
shifts and the estimated age at which individuals were diagnosed with the disease. This fact
shows that the normalized age ψi(t) is a better temporal marker of disease progression than
age. This was confirmed by our validation procedure (Fig. 9), which showed an error in the
prediction of age at diagnosis of less than 2.5 years in 50% of the cases.

In this multivariate setting, random effects also included space shifts, which are a com-
bination of two independent components denoted here c1(A) and c2(A). As shown in
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Figure 10: Plot of t0+τi with respect to the log-acceleration factor ηi. Each point is colored
with respect to the estimated age of conversion to AD.

lemma 2, these space-shifts perturbed the relative delay and the ordering in the progression
of biomarkers. Fig. 11 shows that individuals with a space shift of the form wi = σsic1(A)
had memory and concentration impaired at nearly the same time, while the language and
praxis remained nearly constant. In the opposite direction, impairment in language and
praxis nearly coincided for individuals with a space-shift of the form wi = −σsic1(A).
The second independent component almost did not change memory and concentration but
changed the delay and the ordering between language and praxis. These results showed that
the biomarkers tended to evolve in pairs : memory & concentration, language & praxis.
Space shifts captured here the variability in the profile of cognitive decline at the individual
level during the onset of the disease.

5.5 Body Mass Index in Adolescent Girls

We analyzed a longitudinal dataset of body fat percentages from 162 adolescent girls. This
dataset was taken from the MIT Growth and Development Study Bandini et al. (2002);
Phillips et al. (2003). The data was analyzed using the univariate logistic model (see sup-
plementary material for the details and results). The analysis of this data in
Fitzmaurice et al. (2012) required the use of the time at menarche to temporally align the
data across individuals before the statistical analysis. By contrast, our approach was able
to include such an alignment as a random effect of the model. The estimated parameters
produced an error of less than one year for 50% of the individuals in the alignment of the
age at which menarche occured.
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Accelerat ion factor Independent  direct ion Independent  direct ion Time shift  

+

Figure 11: Variability of the average trajectory γδ in terms of space shift, time shift and
acceleration factor. The solid lines represent the average trajectory, while the
dotted lines represent the variability of this average trajectory among the popu-
lation.

6. Conclusion

We proposed a mixed-effects model for the spatiotemporal analysis of manifold-valued mea-
surements. This generic model can be used to automatically learn the temporal progression
of a biological phenomenon from repeated observations of several samples. The model ac-
counts for the fact that each sample had a different appearance, had different trajectory of
changes and different pace of changes. This was enabled by the introduction of a hierarchical
statistical model whose fixed effects defined a group-average trajectory in the space of mea-
surements and random effects accounted for the spatiotemporal variability of the trajectories
of changes at the individual level.

Building the model in the framework of Riemannian geometry allowed us to identify the
key orthogonality conditions to uniquely decompose temporal and spatial variability across
trajectories of changes. Our particular use of parallel transport ensured the invariance of the
form of the distribution of spatial random effects in time. Finally, it allowed the instantiation
of the model for a large variety of data types, as shown by our experiments with univariate
and multivariate bounded measurements, as well as symmetric definite positive matrices.
This framework was also well suited for analysing data with smooth constraints or highly
structured data such as images, networks( Koval et al. (2017)), or shapes, for instance.

We relied on the stochastic approximation of the Expectation-Maximization algorithm
to estimate model parameters. This algorithm is proven to converge asymptotically, and our
experiments confirmed this convergence in several practical situations. This algorithm is very
generic and allowed a modular implementation of the method which eases its instanciation
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for any kind of manifold-valued observations. Note, nevertheless, that specific optimizations
were needed to match, and even outperform state-of-the-art implementations for real-valued
measurements.

The model was particularly useful to analyze biological phenomenon for which there is
no obvious way to temporally align individual data time series. Temporal re-alignement,
introduced as random-effect, allowed us to automatically predict the age at which patients
were diagnosed with Alzheimer’s disease or at which menarche occured in adolescent girls.
Although the model assumed a monotonic progression of body fat with age, this hypothesis
could be relaxed by replacing the distribution of the acceleration factors and space shifts
with a mixture of Gaussian distributions. This could also be achieved by considering non-
affine time reparametrizations of the average trajectory. Improvements in prediction and
goodness of fit might result from extensions of the model, for instance by introducing mix-
ture models to identify population clusters or by adding a drift in the parallel transport so
that individual trajectories do not always remains parallel to the average trajectory.
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Appendix A. Proof of Lemma 2 and Lemma 3

In this appendix, we have first given a proof of Lemma 2 and we have then given a proof of
Lemma 3.

A.1 Proof of Lemma 2

The definitions and properties given above are useful to prove the result given in 2. Before
proving this result, we recalled its context. We considered a product manifold M = MN

where M ⊂ R is an open interval. M is equipped with a Riemannian metric g and is
geodesically complete. The product manifold M is equipped with the product metric.
Proof Let t0 ∈ R, γ = (γ1, . . . , γN ) be a geodesic of M and w = (w1, . . . , wN ) ∈ Tγ(t0)M.
Using the previous proposition on product manifolds, the computation of ηw(γ, t) boiled
down to the computation of Expγi(t)

(
Pγi,t0,t(wi)

)
. This term was computed in three steps.

Let i ∈ {1, . . . , N}. The parallel transport Pγi,t0,t(wi) was computed as follows. First,
note that M is an open interval of R. Therefore, for all p ∈M , TpM ≃ R. The Riemannian
metric g of M is necessarily of the form p ∈ M 7→ gp with : ∀(u, v) ∈ TpM, gp(u, v) =
uvf(p) where f : M → ]0,+∞[ is a smooth function.

It follows from the definition of parallel transport along the curve t 7→ γi that
: ∀t, Pγi,t0,t(wi) ∈ Tγi(t)M . Since, for all t, Tγi(t)M is a one-dimensional vector space, the
tangent vector γ̇i(t) 6= 0 spans this space. As a consequence, there exists a smooth function
ξi : R → R such that : ∀t ∈ R, Pγi,t0,t(wi) = ξi(t)γ̇i(t). Because the parallel transport is
an isometry and because γi is a geodesic, we have :

∀t ∈ R, gγi(t)
(
Pγi,t0,t(wi), γ̇i(t)

)
= gγi(t0)(wi, γ̇i(t0)). (18)

The bilinearity of gγi(t) gives :

gγi(t)
(
Pγi,t0,t(wi), γ̇i(t)

)
= gγi(t)

(
ξi(t)γ̇i(t), γ̇i(t)

)

= ξi(t)gγi(t)
(
γ̇i(t), γ̇i(t)

)
.

(19)

Using that γ̇i is parallel along γi, we have :

∀t ∈ R, gγi(t)
(
γ̇i(t), γ̇i(t)

)
= gγi(t0)

(
γ̇i(t0), γ̇i(t0)

)
. (20)

As a consequence, (18), (19) and (20) give :

∀t ∈ R, ξi(t)gγi(t0)
(
γ̇i(t0), γ̇i(t0)

)
= gγi(t0)

(
wi, γ̇i(t0)

)
. (21)

Using the form of the metric on M , (21) writes :

∀t ∈ R, ξi(t)
(
γ̇i(t0)

)2
f
(
γi(t0)

)
= wiγ̇i(t0)f

(
γi(t0)

)
. (22)

This last equation gives : ∀t, ξi(t) = wi/ ˙γi(t0). Finally,

∀i ∈ {1, . . . , N}, ∀t ∈ R, Pγi,t0,t(wi) =
wi

γ̇i(t0)
γ̇i(t). (23)

27



J.-B. Schiratti et al.

The last step consists of computing Expγi(t)
(
Pγi,t0,t(wi)

)
with t ∈ R fixed. This is done

by introducing the curves

c : s ∈ [0, 1] 7→ Expγi(t)
(
sPγi,t0,t(wi)

)
,

and
c̃ : s ∈ [0, 1] 7→ γi

(
t+ s

wi
γ̇i(t0)

)
.

Both curves c and c̃ are geodesics of M which satisfy to : c(0) = c̃(0) = γi(t) and ċ(0) =
˙̃c(0) = wi

γ̇i(t0)
γ̇i(t). By unicity, the two curves are equal. As a consequence, for all i ∈

{1, . . . , N} and all t ∈ R,

Expγi(t)
(
Pγi,t0,t(wi)

)
= γi

(
t+

wi
γ̇i(t0)

)
. (24)

This last equation completes the proof of the lemma.

A.2 Proof of Lemma 3

First, some notations need to be introduced. Let m = n(n+1)/2 denote the dimension of the
linear space SYM(n), (Ei)1≤i≤m be the canonical basis of SYM(n) and (E∗

i )1≤i≤m its dual
basis. The matrices are indexed by a single index, which corresponds to an enumeration
of the pairs of integers {(k, l), 1 ≤ k, l ≤ n, k ≤ l}. A matrix V in SYM(n) will be
identified to the vector (v1, . . . , vm) of its coefficients from the upper triangular part. Using
the expression of the Christoffel symbols in terms of the canonical basis of SYM(n) and
its dual basis, Lenglet and collaborators proved that if t 7→ Σ(t) = (σ1(t), . . . , σm(t)) is
a smooth curve in SPD(n) and t 7→ V(t) = (v1(t), . . . , vm(t)) a vector field along Σ, the
covariant derivative of V along Σ is given by the expression:

DV/dt =

m∑

i

dvi
dt

(t)Ei +

m∑

i,j=1

vi(t)
dσj
dt

(t)∇EiEj . (25)

Taking the Frobenius inner product of the previous equality (on both sides) with E∗
k (1 ≤

k ≤ m), together with the expression of the Christoffel symbols (see Lenglet et al. (2006),
Eq.(3) and Eq.(4)), one gets that the vector field V is parallel along the curve Σ if and only
if:

dV

dt
(t)−

1

2
V(t)Σ(t)−1dΣ

dt
(t)−

1

2

dΣ(t)

dt
(t)Σ(t)−1V(t) = 0. (26)

We can now give the proof of Lemma 3.
Proof With the expression of the geodesic γ0, given in Section 3.4, one can easily see that:

∀t ∈ R,
dγ0(t)

dt
γ−1
0 (t) = V0P

−1
0 . (27)

Let t 7→ V(t) be a vector field parallel along γ0. Eq. (26) is equivalent to:

dV(t)

dt
=

1

2
V(t)P−1

0 V0 −
1

2
V0P

−1
0 V(t). (28)
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Note that Eq. (28) is a differential Lyapunov equation. It can be solved by considering the
matrix-valued function t 7→ exp(−tM⊤)R(t) exp(−tM), with M = −(1/2)P−1

0 V0 and R,
any differentiable matrix-valued function. Given that V(t0) = W, one has that the parallel
transport in SPD(n) is given by:

V(t) = exp
( t− t0

2
V0P

−1
0

)
W exp

( t− t0
2

P−1
0 V0

)
. (29)
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