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1 Laboratory Jean Kuntzmann, Université Grenoble Alpes, France
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Introduction
Motivation: Barro Colorado Island (BCI) study

3604 locations of Beilschmiedia
pendula Lauraceae (BPL) tree

Intensity: function of covariates

ρ(u;β) = exp(β>z(u)), β ∈ Rp,
z(u) = {z1(u), · · · , zp(u)}> are
spatial covariates at u

p = moderate!

In reality...
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Introduction
Motivation: Barro Colorado Island (BCI) study

What if ...

Parsimonius model

Improve the prediction

Computationally easy and fast to implement
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Spatial point processes
Notations and existing methods

X is a spatial point process, D is the observed domain, |D| is
the volume of observed domain

The Poisson log-likelihood

`(β) =
∑

u∈X∩D
β>z(u)−

∫
D
exp(β>z(u))du.

Estimate β by solving `(1)(β) = 0

Estimating equation-based methods for more general point
processes

5/16 Achmad Choiruddin Feature selection for spatial point processes



Spatial point processes
Notations and existing methods

X is a spatial point process, D is the observed domain, |D| is
the volume of observed domain

The weighted Poisson log-likelihood (Guan and Shen, 2010)

`(w,β) =
∑

u∈X∩D
w(u)β>z(u)−

∫
D
w(u) exp(β>z(u))du.

Estimate β by solving `(1)(w,β) = 0

Estimating equation-based methods for more general point
processes
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Spatial point processes
Notations and existing methods

X is a spatial point process, D is the observed domain, |D| is
the volume of observed domain

The weighted logistic regression log-likelihood (Baddeley et
al., 2014; Choiruddin et al., 2017)

`(w;β) =
∑

u∈X∩D
w(u) log

(
ρ(β)

g(u) + ρ(β)

)
−
∫
D
w(u)g(u) log

(
ρ(β) + g(u)

g(u)

)
du.

Estimate β by solving `(1)(w,β) = 0

Estimating equation-based methods for more general point
processes
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Proposed methods
Methodology

Regularized likelihood :

Q(w,β) = `(w,β)− |D|
p∑
j=1

pλj (|βj |)

where :

`(w,β) is either the Poisson or logistic log-likelihoods

pλ(θ) is a penalty function parameterized by λ ≥ 0

Computation: spatstat + glmnet (and ncvreg)
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Proposed methods
Regularization methods

Method
∑p
j=1 pλj (|βj |)

Ridge
∑p
j=1

1
2
λβ2

j

Lasso
∑p
j=1 λ|βj |

Enet
∑p
j=1 λ{α|βj |+

1
2
(1− α)β2

j }

SCAD
∑p
j=1 pλ(|βj |), with pλ(θ) =


λθ if (θ ≤ λ)
γλθ− 1

2
(θ2+λ2)

γ−1
if (λ < θ < γλ)

λ2(γ2−1)
2(γ−1)

if (θ ≥ γλ)

MC+
∑p
j=1

{(
λ|βj | −

β2
j

2γ

)
I(|βj | < γλ) + 1

2
γλ2I(|βj | ≥ γλ)

}
Adaptive Lasso

∑p
j=1 λj |βj |

Adaptive enet
∑p
j=1 λj{α|βj |+

1
2
(1− α)β2

j }
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Asymptotic theory
Conditions

The pn-dimensional vector of true coefficient values:

β0 = {β01, . . . , β0pn}
> = {β01, . . . , β0s, β0(s+1), . . . , β0pn}

>

= {β>01,β
>
02}
> = {β>01,0

>}>

X observed over D = Dn, n = 1, 2, . . . which expands to Rd as n→∞.

We allow pn →∞ as n→∞ and we have a fixed s.

We assume that p3n/|Dn| → 0 as n→∞.

We define

an = max
j=1,...,s

{p′λn,j
(|β0j |)},

bn = inf
j=s+1,...,pn

inf
|θ|≤εn
θ 6=0

p′λn,j
(|θ|), for εn = K

√
pn/|Dn|, and

cn = max
j=1,...,s

{p′′λn,j
(|β0j |)}.
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Asymptotic theory
Main results

Theorem 1

Under some regularity conditions, if an = O(|Dn|−1/2) and cn → 0, there
exists a local maximizer β̂ of Q(w,β) such that
‖β̂ − β0‖ = OP

(√
pn(|Dn|−1/2 + an)

)
.

Theorem 2

Under some regularity conditions, If an|Dn|1/2 → 0, bn
√
|Dn|/p2n →∞ and√

pncn → 0 as n→∞, the root-(|Dn|/pn) consistent local maximizers

β̂ = (β̂
>
1 , β̂

>
2 )
> in Theorem 1 satisfy:

(i) Sparsity: P(β̂2 = 0)→ 1 as n→∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w,β0)
−1/2(β̂1 − β01)

d−→ N (0, Is),
where Σn(w,β0) = |Dn|{An,11(w,β0) + Πn}−1{Bn,11(w,β0) +
Cn,11(w,β0)}{An,11(w,β0) + Πn}−1
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Asymptotic theory
Discussion

Note! Need to obey |Dn|1/2an → 0 and
√
|Dn|/p2nbn →∞ as

n→∞ to satisfy the Theorem 2

Method an bn Satisfy?

Ridge λn max
j=1,...s

{|β0j |} 0 No

Lasso λn λn No

Enet λn [(1− α) max
j=1,...s

{|β0j |}+ α] λnα No

ALasso max
j=1,...s

{λn,j} inf
j=s+1,...p

{λn,j} Yes

Aenet max
j=1,...s

{λn,j
(
(1− α)|β0j |+ α

)
} α inf

j=s+1,...p
{λn,j} Yes

SCAD 0* λn
** Yes

MC+ 0* λn − K
√
pn

γ
√
|Dn|

** Yes

* if λn → 0 for n sufficient large
** if

√
|Dn|/p2nλn →∞ for n sufficient large
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Application
Barro Colorado Island (BCI) study

Estimate BPL intensity: log ρ(u;β) = β1z1(u) + · · ·+ β93z93(u)

93 covariates: 2 topology, 13 soil nutrients, 78 interactions

Regularized (un)weighted PL with LASSO, AL and SCAD

Method
Unweighted Weighted

#Selected #No #Selected #No

LASSO 77 16 45 48

AL 50 43 10 83

SCAD 58 35 3 90
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Application
10 common selected covariates

Covariates
Unweighted Weighted

LASSO ALASSO SCAD LASSO ALASSO SCAD

Elev 0.32 0.40 0.33 0.40 0.32 0

Slope 0.39 0.40 0.36 0.42 0.44 0

Cu 0.56 0.31 0.61 0.39 0.33 0

Mn 0.14 0.14 0.09 0.15 0.22 0

P -0.48 -0.43 -0.54 -0.33 -0.57 -1.07

Zn -0.75 -0.66 -0.83 -0.58 -0.40 0

Al:P -0.30 -0.29 -0.31 -0.28 -0.16 0

Mg:P 0.62 0.29 0.45 0.48 0.42 0

Zn:N 0.21 0.35 0.30 0 0 0.62

N.Min:pH 0.44 0.44 0.49 0.25 0.27 0
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Application
Estimates of BPL intensity (log scale)

3604 locations of BPL

LASSO WLASSO

AL WAL

SCAD WSCAD
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Conclusion and possible extensions
Conclusion

Regularized versions of EE derived from Poisson and logistic
regression likelihoods

Large classes of spatial point processes and many penalty
functions

Nice theoretical properties and computationally preferable

Satisfy our Theorems: SCAD, MC+, ALasso, Aenet

Regularized WPL may be more appropriate for a clustered
process

Adaptive Lasso may perform best
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Conclusion and possible extensions
Possible extensions

Topology

Soil Nutrients

Other trees

Deal with very large datasets → some troubles

The Dantzig selector vs. penalization methods

Multivariate, spatio-temporal point processes
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