Regularized Poisson and logistic methods for spatial point processes intensity estimation with a diverging number of covariates

Achmad Choiruddin¹

*Work with: Jean-françois Coeurjolly^{1,2} and Frédérique Letué¹

 1 Laboratory Jean Kuntzmann, Université Grenoble Alpes, France 2 Department of Mathematics, Université du Québec à Montréal, Canada

19th Workshop on Stochastic Geometry, Stereology and Image Analysis (SGSIA), Luminy, France May 2017

Introduction

- Motivation
- Spatial point processes intensity estimation
- Proposed methods
 - Methodology
 - Asymptotic results
 - Application to forestry dataset
- Conclusion and possible extensions

Introduction

Motivation: Barro Colorado Island (BCI) study

- 3604 locations of Beilschmiedia pendula Lauraceae (BPL) tree
- Intensity: function of covariates
- $\rho(u; \beta) = \exp(\beta^\top \mathbf{z}(u)), \ \beta \in \mathbb{R}^p,$ $\mathbf{z}(u) = \{z_1(u), \cdots, z_p(u)\}^\top$ are spatial covariates at u

• p = moderate!

Motivation: Barro Colorado Island (BCI) study

What if ...

- Parsimonius model
- Improve the prediction
- Computationally easy and fast to implement

- X is a spatial point process, D is the observed domain, $\left|D\right|$ is the volume of observed domain
- The Poisson log-likelihood

$$\ell(\boldsymbol{\beta}) = \sum_{u \in \mathbf{X} \cap D} \boldsymbol{\beta}^{\top} \mathbf{z}(u) - \int_{D} \exp(\boldsymbol{\beta}^{\top} \mathbf{z}(u)) du.$$

Estimate $\boldsymbol{\beta}$ by solving $\ell^{(1)}(\boldsymbol{\beta}) = 0$

• Estimating equation-based methods for more general point processes

- X is a spatial point process, D is the observed domain, $\left|D\right|$ is the volume of observed domain
- The weighted Poisson log-likelihood (Guan and Shen, 2010)

$$\ell(\boldsymbol{w},\boldsymbol{\beta}) = \sum_{u \in \mathbf{X} \cap D} \boldsymbol{w}(\boldsymbol{u}) \boldsymbol{\beta}^{\top} \mathbf{z}(u) - \int_{D} \boldsymbol{w}(\boldsymbol{u}) \exp(\boldsymbol{\beta}^{\top} \mathbf{z}(u)) \mathrm{d}u.$$

Estimate β by solving $\ell^{(1)}(\boldsymbol{w}, \boldsymbol{\beta}) = 0$

• Estimating equation-based methods for more general point processes

- X is a spatial point process, D is the observed domain, $\left|D\right|$ is the volume of observed domain
- The weighted logistic regression log-likelihood (Baddeley et al., 2014; Choiruddin et al., 2017)

$$\ell(\boldsymbol{w};\boldsymbol{\beta}) = \sum_{u \in \mathbf{X} \cap D} \boldsymbol{w}(u) \log\left(\frac{\rho(\boldsymbol{\beta})}{g(u) + \rho(\boldsymbol{\beta})}\right) \\ - \int_{D} \boldsymbol{w}(u)g(u) \log\left(\frac{\rho(\boldsymbol{\beta}) + g(u)}{g(u)}\right) \mathrm{d}u.$$

Estimate β by solving $\ell^{(1)}(\boldsymbol{w}, \boldsymbol{\beta}) = 0$

• Estimating equation-based methods for more general point processes

Methodology

Regularized likelihood :

$$Q(w,\boldsymbol{\beta}) = \ell(w,\boldsymbol{\beta}) - |D| \sum_{j=1}^{p} p_{\lambda_j}(|\beta_j|)$$

where :

- $\ell(w, \pmb{\beta})$ is either the Poisson or logistic log-likelihoods
- $p_{\lambda}(\theta)$ is a penalty function parameterized by $\lambda \geq 0$
- Computation: spatstat + glmnet (and ncvreg)

Regularization methods

Method	$\sum_{j=1}^p p_{\lambda_j}(eta_j)$
Ridge	$\sum_{j=1}^{p} \frac{1}{2} \lambda \beta_j^2$
Lasso	$\sum_{j=1}^p \lambda eta_j $
Enet	$\sum_{j=1}^{p} \lambda\{\alpha \beta_j + \frac{1}{2}(1-\alpha)\beta_j^2\}$
SCAD	$\sum_{j=1}^{p} p_{\lambda}(\beta_{j}), \text{ with } p_{\lambda}(\theta) = \begin{cases} \lambda \theta & \text{if } (\theta \leq \lambda) \\ \frac{\gamma \lambda \theta - \frac{1}{2}(\theta^{2} + \lambda^{2})}{\gamma - 1} & \text{if } (\lambda < \theta < \gamma \lambda) \\ \frac{\lambda^{2}(\gamma^{2} - 1)}{2(\gamma - 1)} & \text{if } (\theta \geq \gamma \lambda) \end{cases}$
MC+	$\sum_{j=1}^{p} \left\{ \left(\lambda \beta_j - \frac{\beta_j^2}{2\gamma} \right) \mathbb{I}(\beta_j < \gamma \lambda) + \frac{1}{2} \gamma \lambda^2 \mathbb{I}(\beta_j \ge \gamma \lambda) \right\}$
Adaptive Lasso	$\sum_{j=1}^p {oldsymbol{\lambda_j}} eta_j $
Adaptive enet	$\sum_{j=1}^p \lambda_j \{ lpha eta_j + rac{1}{2} (1-lpha) eta_j^2 \}$

э

Asymptotic theory

Conditions

• The p_n -dimensional vector of true coefficient values:

$$\boldsymbol{\beta}_{0} = \{\beta_{01}, \dots, \beta_{0p_{n}}\}^{\top} = \{\beta_{01}, \dots, \beta_{0s}, \beta_{0(s+1)}, \dots, \beta_{0p_{n}}\}^{\top} \\ = \{\boldsymbol{\beta}_{01}^{\top}, \boldsymbol{\beta}_{02}^{\top}\}^{\top} = \{\boldsymbol{\beta}_{01}^{\top}, \boldsymbol{0}^{\top}\}^{\top}$$

- X observed over $D = D_n, n = 1, 2, ...$ which expands to \mathbb{R}^d as $n \to \infty$.
- We allow $p_n \to \infty$ as $n \to \infty$ and we have a fixed s.
- We assume that $p_n^3/|D_n| \to 0$ as $n \to \infty$.
- We define

$$\begin{split} a_n &= \max_{j=1,\dots,s} \{ p'_{\lambda_{n,j}}(|\beta_{0j}|) \}, \\ b_n &= \inf_{\substack{j=s+1,\dots,p_n}} \inf_{\substack{|\theta| \leq \epsilon_n \\ \theta \neq 0}} p'_{\lambda_{n,j}}(|\theta|), \text{ for } \epsilon_n = K\sqrt{p_n/|D_n|}, \text{ and} \\ c_n &= \max_{j=1,\dots,s} \{ p''_{\lambda_{n,j}}(|\beta_{0j}|) \}. \end{split}$$

< ∃ >

Main results

Theorem 1

Under some regularity conditions, if $a_n = O(|D_n|^{-1/2})$ and $c_n \to 0$, there exists a local maximizer $\hat{\beta}$ of $Q(w, \beta)$ such that $\|\hat{\beta} - \beta_0\| = O_P(\sqrt{p_n}(|D_n|^{-1/2} + a_n)).$

Theorem 2

Under some regularity conditions, If $a_n |D_n|^{1/2} \to 0$, $b_n \sqrt{|D_n|/p_n^2} \to \infty$ and $\sqrt{p_n}c_n \to 0$ as $n \to \infty$, the root- $(|D_n|/p_n)$ consistent local maximizers $\hat{\boldsymbol{\beta}} = (\hat{\boldsymbol{\beta}}_1^\top, \hat{\boldsymbol{\beta}}_2^\top)^\top$ in Theorem 1 satisfy: (i) Sparsity: $P(\hat{\boldsymbol{\beta}}_2 = 0) \to 1$ as $n \to \infty$, (ii) Asymptotic Normality: $|D_n|^{1/2} \boldsymbol{\Sigma}_n(w, \boldsymbol{\beta}_0)^{-1/2} (\hat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_{01}) \xrightarrow{d} \mathcal{N}(0, \mathbb{I}_s)$, where $\boldsymbol{\Sigma}_n(w, \boldsymbol{\beta}_0) = |D_n| \{ \mathbf{A}_{n,11}(w, \boldsymbol{\beta}_0) + \boldsymbol{\Pi}_n \}^{-1} \{ \mathbf{B}_{n,11}(w, \boldsymbol{\beta}_0) + \mathbf{C}_{n,11}(w, \boldsymbol{\beta}_0) \} \{ \mathbf{A}_{n,11}(w, \boldsymbol{\beta}_0) + \boldsymbol{\Pi}_n \}^{-1}$

A (1) > (1) = (1) (1)

Asymptotic theory

Discussion

Note! Need to obey $|D_n|^{1/2}a_n\to 0$ and $\sqrt{|D_n|/p_n^2}b_n\to\infty$ as $n\to\infty$ to satisfy the Theorem 2

Method	a_n	b_n	Satisfy?		
Ridge	$\lambda_n \max_{j=1,\dots s} \{ \beta_{0j} \}$	0	No		
Lasso	λ_n	λ_n	No		
Enet	$\lambda_n \left[(1-\alpha) \max_{j=1,\dots,s} \{ \beta_{0j} \} + \alpha \right]$	$\lambda_n lpha$	No		
ALasso	$\max_{j=1,\ldots,s} \{\lambda_{n,j}\}$	$\inf_{j=s+1,\dots p} \{\lambda_{n,j}\}$	Yes		
Aenet	$\max_{j=1,\ldots,s} \{\lambda_{n,j} \left((1-\alpha) \beta_{0j} + \alpha \right) \}$	$\alpha \inf_{j=s+1,\dots p} \{\lambda_{n,j}\}$	Yes		
SCAD	0^*	${\lambda_n}^{**}$	Yes		
MC+	0*	$\lambda_n - rac{K\sqrt{p_n}}{\gamma\sqrt{ D_n }}^{**}$	Yes		
* if $\lambda_n \to 0$ for n sufficient large ** if $\sqrt{ D_n /p_n^2}\lambda_n \to \infty$ for n sufficient large					

Achmad Choiruddin

Feature selection for spatial point processes

- Estimate BPL intensity: $\log \rho(u; \beta) = \beta_1 z_1(u) + \cdots + \beta_{93} z_{93}(u)$
- 93 covariates: 2 topology, 13 soil nutrients, 78 interactions
- Regularized (un)weighted PL with LASSO, AL and SCAD

	Method -	Unweigh	ted	Weighted		
		#Selected	#No	#Selected	#No	
	LASSO	77	16	45	48	
	AL	50	43	10	83	
	SCAD	58	35	3	90	

御 と く ヨ と く ヨ と

3

Application

10 common selected covariates

Covariates	Unweighted			Weighted			
	LASSO	ALASSO	SCAD	LASSO	ALASSO	SCAD	
Elev	0.32	0.40	0.33	0.40	0.32	0	
Slope	0.39	0.40	0.36	0.42	0.44	0	
Cu	0.56	0.31	0.61	0.39	0.33	0	
Mn	0.14	0.14	0.09	0.15	0.22	0	
Р	-0.48	-0.43	-0.54	-0.33	-0.57	-1.07	
Zn	-0.75	-0.66	-0.83	-0.58	-0.40	0	
AI:P	-0.30	-0.29	-0.31	-0.28	-0.16	0	
Mg:P	0.62	0.29	0.45	0.48	0.42	0	
Zn:N	0.21	0.35	0.30	0	0	0.62	
N.Min:pH	0.44	0.44	0.49	0.25	0.27	0	

- 4 回 2 - 4 □ 2 - 4 □

3

Application

10 common selected covariates

Covariates	Unweighted			Weighted			
	LASSO	ALASSO	SCAD	LASSO	ALASSO	SCAD	
Elev	0.32	0.40	0.33	0.40	0.32	0	
Slope	0.39	0.40	0.36	0.42	0.44	0	
Cu	0.56	0.31	0.61	0.39	0.33	0	
Mn	0.14	0.14	0.09	0.15	0.22	0	
Р	-0.48	-0.43	-0.54	-0.33	-0.57	-1.07	
Zn	-0.75	-0.66	-0.83	-0.58	-0.40	0	
AI:P	-0.30	-0.29	-0.31	-0.28	-0.16	0	
Mg:P	0.62	0.29	0.45	0.48	0.42	0	
Zn:N	0.21	0.35	0.30	0	0	0.62	
N.Min:pH	0.44	0.44	0.49	0.25	0.27	0	

3

<ロト <部ト < 注ト < 注ト

Application Estimates of BPL intensity (log scale)

Conclusion

- Regularized versions of EE derived from Poisson and logistic regression likelihoods
- Large classes of spatial point processes and many penalty functions
- Nice theoretical properties and computationally preferable
- Satisfy our Theorems: SCAD, MC+, ALasso, Aenet
- Regularized WPL may be more appropriate for a clustered process
- Adaptive Lasso may perform best

Conclusion and possible extensions

Possible extensions

- Deal with very large datasets \rightarrow some troubles
- The Dantzig selector vs. penalization methods
- Multivariate, spatio-temporal point processes

Some References

- Baddeley, A; Rubak, E; and Turner, R. (2015). Spatial point patterns: methodology and application with R, *CRC press*.
- Baddeley, A; Coeurjolly, J.-F; Rubak, E; and Waagepetersen , R. (2014). Logistic regression for spatial Gibbs point processes, *Biometrika*, 101(2):377–392.
- Choiruddin, A; Coeurjolly, J-F; and Letué, F. (2017). Convex and non-convex regularization methods for spatial point processes intensity estimation, *ArXiv preprint arXiv:1703.02462*.
 - Friedman, J; Hastie, T; Hofling H; Tibshirani, R; et al. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2):302–332.
- Guan, Y and Shen Y. (2010). A weighted estimating equation approach for inhomogeneous spatial point process, *Biometrika*, **97**(4), 867-880.
- Thurman, A. L; Fu, R; Guan, Y; and Zhu, J. (2015). Regularized estimating equations for model selection of clustered spatial point process, *Statistica Sinica*, **25**(1), 173-188.

< ロ > < 同 > < 回 > < 回 >