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Abstract5

Blind Source Separation (BSS) plays a key role to analyze multichannel data

since it aims at recovering unknown underlying elementary sources from ob-

served linear mixtures in an unsupervised way. In a large number of ap-

plications, multichannel measurements contain corrupted entries, which are

highly detrimental for most BSS techniques. In this article, we introduce a10

new robust BSS technique coined robust Adaptive Morphological Component

Analysis (rAMCA). Based on sparse signal modeling, it makes profit of an

alternate reweighting minimization technique that yields a robust estimation

of the sources and the mixing matrix simultaneously with the removal of

the spurious outliers. Numerical experiments are provided that illustrate the15

robustness of this new algorithm with respect to aberrant outliers on a wide

range of blind separation instances. In contrast to current robust BSS meth-

ods, the rAMCA algorithm is shown to perform very well when the number

of observations is close or equal to the number of sources.
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1. Introduction

The fast development of multichannel sensors and imagers in a wide range

of scientific fields mandates the development of dedicated data analysis tools.

In this context, Blind Source Separation (BSS) plays a key role as it allows

extracting relevant information in an unsupervised manner. Moreover, BSS

has demonstrated its efficiency in numerous applications such as astrophysics

[1] or hyperspectral unmixing [2] to only name two. In the setting of BSS,

the data are made of m multichannel observations {Xi}i=1..m. Each one is

assumed to be composed of the linear mixture of n ≤ m sources {Sj}j=1..n

with t > m samples. This so-called linear mixture model is generally recast

in the following matrix formulation:

X = AS,

where X ∈ Rm×t stands for the observations, A ∈ Rm×n the mixing matrix,

and S ∈ Rn×t the sources. The objective of BSS is to estimate both A

and S from the knowledge of the observations X only. Without any further25

assumption, BSS is a challenging matrix factorization problem that admits

an infinite number of solutions. Prior information on the sources and/or

the mixing matrix is required to tackle such an ill-posed problem. In brief,

most BSS methods mainly differ from the prior used to describe the sources

such as statistical independence in ICA (Independent Component Analysis),30

non-negativity in NMF (Nonnegative Matrix Factorization) or sparsity. For

more details about standard BSS methods, we refer to the seminal book [3]

and references therein.
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It is well-known that the presence of noise hampers the performances of most

BSS methods [4, 5]. Accounting for additional additive Gaussian noise is car-35

ried out by adding an extra noise term N to the linear mixture model: X =

AS+N. However, in a large number of applications, the observations are also

contaminated with aberrant entries, rare and large errors, which are not cor-

rectly modeled by Gaussian noise models. More precisely, such spurious out-

liers include observed unexpected physical events or malfunctions of captors.40

Important examples are: i) stripping noise or impulse noise in hyperspectral

data [6]), ii) cosmic ray contamination in astronomical images [7], iii) point

sources emissions in astrophysical data [8] to only name a few. Beyond instru-

mental or physical artifacts, it has been recently advocated that sparse devia-

tions from the linear mixture model can be approximated with outliers mod-45

els in hyperspectral data [2]. Accounting for both Gaussian noise and outliers,

we will further consider that the observations can be expressed as follows:

X = AS + O + N, (1)

where O ∈ Rm×t stands for the outliers, and N ∈ Rm×t the Gaussian noise.

Extending the BSS framework to further dealing with outliers refers to robust

BSS.50

Robust BSS methods in the literature

In the current literature, only few BSS methods have been developed to

manage the presence of outliers. These techniques can be split into three

different groups:

• Robust Independent Component Analysis : In this framework, the sources55
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are assumed to be mutually independent. One way to measure statis-

tical independence of the estimated sources is to compute their mutual

information, defined as the Kullback-Leibler (KL) divergence between

the product of their marginal distributions and their joint distribution

[3]. Unfortunately, the KL-divergence is highly sensitive to the pres-60

ence of outliers [4]. To overcome this problem, the KL divergence is

substituted in [9] with the more robust β-divergence. While such meth-

ods provide a robust estimation of the mixing matrix, it however does

not perform any sources/outliers separation.

• Two-steps methods : These methods are comprised of two successive65

steps: i) removal of the outliers from the observations in a first step,

and ii) separation of the sources from the “outliers-cleaned”data us-

ing standard non-robust BSS techniques. The first outliers denoising

step is however complex to tackle. Recently, and to the best of our

knowledge, the most powerful techniques are based on the PCP algo-70

rithm (Principle Component Pursuit - [10]), which have been proposed

in [6, 11]. However, it is essential for the PCP algorithm to work that

the contribution of the sources AS has low rank. This assumption is

valid whenever m� n. If this assumption holds true for hyperspectral

data, it is far from being the case in more general BSS problems such75

as in astrophysics [1].

• Component separation methods : These approaches aim at recovering

simultaneously A,S and O. They have been essentially used in the

NMF framework with optimization methods [2, 12–15] or a Bayesian
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approach [16]. These methods strongly rely on the positivity of both80

the sources and the mixing matrix, which is not necessarily a valid

assumption in general settings. This is especially the case in imag-

ing where the sources are more conveniently modeled in transformed

domains where the non-negativity assumption does not hold.

Recently, we introduced a component separation method coined robust Gen-85

eralized Morphological Component Analysis (rGMCA - [17]), which does not

require assuming that the sources and/or the mixing matrix are non-negative.

This algorithm emphasizes on the sparse modeling of the sources and outliers

in the same signal representation. We showed that the rGMCA algorithm

provides good separation performances in the over-determined setting (m >90

n) but fails at precisely solving robust BSS problems when the number of ob-

servations is close to the number of sources (determined case, m = n). This

highly limits its suitability in applications where the number of available ob-

servations is of the order of the number of sources, such as in astrophysics [1].

Contribution:95

In this article, we propose a novel algorithm, coined robust Adaptive

Morphological Component Analysis (rAMCA), that generalizes the rGMCA

algorithm [17]. It first builds upon the sparse modeling of both the outliers

and the sources in the same transformed domain. Unlike the rGMCA al-

gorithm, the proposed algorithm further relies on two novel elements: i) a100

refined modeling of the outliers in the source domain based on an analogy

with partially correlated sources (see [18]), and ii) an improved outliers es-

timation procedure, described in Section 2 and 3 respectively. In Section 4,
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the proposed method is shown to yield a highly effective estimation of the

mixing matrix. It also performs very well when the number of observations105

is close or equal to the number of sources; a challenging setting for which

currently available robust BSS methods fail. Besides, we describe how the

parameters of rAMCA can be automatically tuned.

Notations

Uppercase boldface letters denote matrices. The Moore-Penrose pseudo-

inverse of the matrix M is designated by M†. The jth column of M is

denoted Mj, the ith row Mi, and the i, jth entry Mi,j. The norm ‖M‖2

denotes the Frobenius norm of M, and more generally ‖M‖p designates the

p-norm of the matrix M seen as a long vector. The soft-thresholding operator

is denoted Sλ(M), where

[Sλ(M)]i,j =

Mi,j − sign(Mi,j) ∗ λi if |Mi,j| > λi

0 otherwise

Last, the operator MAD designates the median absolute deviation and Pr110

stands for probability.

2. Sparse BSS in the presence of outliers

2.1. Impact of outliers on sparse BSS methods

Based on sparse modeling [19], sparse BSS assumes that the sources

{S}i=1..n have sparsely distributed entries in some signal representation Φ:

Si = αiΦ, ∀i = 1..n,

6



where αi is composed of a small number of non-zero elements (i.e. exactly

sparse model) or few significant large-amplitude entries (i.e. approximately

sparse model). Most natural signals verify such a sparsity property in a well-

suited signal representation Φ such as the wavelets or the curvelets to only

name two [19]. Sparsity has been shown to largely improve the performances

of BSS methods [3, 5, 20] since it allows for an enhanced discrimination

between the sources to be estimated, which are assumed to verify some mor-

phological diversity principle (MDP) [5]. According to the MDP, the large-

amplitude coefficients of the sources in Φ, which encode their most salient

morphological features, are distinct. For instance, sparse and statistically in-

dependent sources verify the MDP with high probability. This is illustrated

in fig.1b: the source’s samples in Φ (blue dots) with the largest amplitudes

are mainly clustered along the canonical axes. Based on this principle, the

Generalized Morphological Component Analysis (GMCA) algorithm [5] tack-

les sparse BSS problems by seeking the sources that are jointly the sparsest

possible. This is performed by minimizing:

minimize
S,A

1

2
‖X−AS‖2

2 +
n∑
i=1

λi
∥∥SiΦT

∥∥
1
,

where the first term is the data-fidelity term and the second term promotes

the sparsity of the sources in the transformed domain Φ.115

In the following, for the sake of clarity, we will assume that the sources and

the outliers are sparse in the direct domain Φ = I. Similarly to [5] and [18],

all the results will be exact for any orthogonal transform Φ and a good ap-

proximation for redundant sparse representations such as tight frames, which
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have diagonally dominant Gram matrices (e.g. undecimated wavelet trans-120

forms, curvelets [19], etc.).

Unlike pure sources’ samples, the outliers are assumed to be distributed

in general position: they do not cluster in any specific direction as illustrated

in fig.1a (red dots). Since the outliers are sparse and distributed in general125

position, we will further assume that few columns of O are entirely active

such as in [2].

According to the MDP, each of the sources is precisely described by its most

prominent coefficients, which makes them the most informative samples to

tackle the separation task. However, in the presence of outliers, the large-130

amplitude entries of the projected sources Ŝ = A†X are more likely related to

samples that are corrupted by outliers as shown in fig.1b. Consequently, when

seeking for the jointly sparsest sources by unmixing the large entries of X,

sparse BSS methods are misled by the outliers. This is illustrated in the fig.1c

which shows the scatter plot of the estimated projected sources S̃ = Ã†X135

where Ã is the mixing matrix returned by GMCA: the corresponding sources

are jointly sparser than the ones in fig.1b. However such a solution yields a

poorly estimated mixing matrix Ã. It highlights that applying sparse BSS

method will very likely yield an erroneous solution. By nature, sparse BSS

methods are highly sensitive to the presence of outliers.140

2.2. An analogy with partially correlated sources

In [17], it clearly appears that solving robust BSS problems requires dis-

criminating between the outliers and the sources. Since both the outliers

and the sources are assumed to be sparsely represented in the same domain
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(a) X1 versus X2. (b) Ŝ1 versus Ŝ2. (c) S̃1 versus S̃2.

Figure 1: Three sparse sources are mixed into 4 noisy observations. Fig.(a): scatter plot of

two noisy observations, (b): scatter plot of two of the projected data given by Ŝ = A†X,
(c): scatter plot of the estimated sources given by S̃ = Ã†X, where Ã has been estimated
with GMCA and is far from the initial A. The initial source contribution is represented
in blue, and the one of the outliers with the red stars.

Φ, sparsity alone cannot be the right separation criterion. Fortunately, both145

components are assumed to have different distributions: sources samples tend

to cluster along the canonical axes in the source domain while the samples of

the projected outliers Ô = A†O (i.e. projection of O in the source domain)

do not have any preferred clustering direction. This is testified by the differ-

ence between the distributions in the source domain of the sources samples150

(blue dots) and corrupted samples (red stars) in fig.1b.

If the mixing matrix A were perfectly known, the sources would be approxi-

mated by projecting the corrupted data onto the span of A: Ŝ = A†X. The

estimated sources are the linear combination of the clean sources and the pro-

jected outliers: Ŝ = S + Ô. Due to the projected outliers contribution which155

is broadly distributed, some of the largest entries of Ŝ are active simultane-

ously in several sources (c.f. the red contribution in fig.1b). These shared

active samples are reminiscent of the partial correlations of the sources we

discussed in [18]. Indeed, the samples of partially correlated sources can be

similarly divided into two groups: the discriminant samples respecting the160
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MDP (the jointly sparse contribution in blue in fig.1b) and the samples cor-

responding to the partial correlations which active simultaneously in several

sources (the broadly distributed contribution in red in fig.1b). Unlike the

rGMCA algorithm we introduced in [17], we propose to exploit the analogy

between the impact of the projected outliers and sparse and partially corre-165

lated sources, which yields a novel robust BSS algorithm that is described in

the next section.

3. Robust AMCA Algorithm

Following the analogy between the impact of outliers and partial cor-

relations, the rAMCA algorithm will be built upon the AMCA algorithm170

(Adaptive Morphological Component Analysis), which has been designed to

deal with partially correlated sources [18]. In this specific context, we un-

derlined in [18] that the ability to identify correlated entries is critical to

perform the separation. For that purpose, the AMCA algorithm builds upon

an adaptive weighting scheme that assigns to each column of the observa-175

tion coefficients X a weight, whose goal is to penalize correlated entries in

the separation process. Details about the weighting procedure will be given

below. According to [18], in the setting of partially correlated sources, the

AMCA algorithm performs by minimizing the following problem:

minimize
A,S

1

2
‖(X−AS) W‖2

2 +
n∑
i=1

λi ‖Si‖1 , (2)

where W ∈ Rt×t is the weight matrix.180
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In the spirit of [17], we propose to estimate jointly A,S and O by exploit-

ing the sparsity of the sources and the outliers. Unlike the rGMCA algorithm,

we propose to further employ a weighting scheme similar to AMCA. This can

be done by substituting the problem in eq. 2 with the following one:185

minimize
S,A,O

1

2
‖(X−AS−O) W‖2

2 +
n∑
i=1

λi ‖Si‖1 +β ‖O‖2,1 . (3)

The `2,1 norm, defined such as ‖O‖2,1 =
m∑
j=1

‖Oj‖2, favors solutions O with

few entirely active columns. This regularization term is well suited to cap-

ture outliers that are distributed in general position in the data domain.

This problem is non-convex but can be tackled using a minimization proce-

dure such as the Block Coordinate Relaxation [21] (BCR). This minimization190

technique amounts to sequentially minimizing subsets of variables. A nat-

ural choice would consist in estimating alternatingly the three variables of

interest A,S, and O. However, we found that this choice performs poorly

in practice since errors are more likely to propagate from one variable to the

other during the sequence of minimization steps. We rather opted for se-195

quential minimization of two blocks of variables: i) the couple (A,S) and ii)

the outliers matrix O. The major advantage of this choice is that it provides

a much more robust estimation of (A,S) since both parameters are updated

jointly and not independently from the residual X−O.
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Procedure 1 rAMCA Algorithm

1: procedure rAMCA(X, n)
2: Initialize Ã(0) (randomly or with a PCA), S̃(0) = 0 and Õ(0) = 0.
3: while k < K do
4: Set S̃(0,k) ← S̃(k−1) and Ã(0,k) ← Ã(k−1)

5: while i < I do . Joint estimation of A and S
6: Update S̃(i,k) from (5)
7: Update W̃ from (7)
8: Update Ã(i,k) from (6)

9: Set S̃(k) ← S̃(i−1,k) and Ã(k) ← Ã(i−1,k)

10: Update Õ(k) from (9) . Estimation of O
return S̃(k−1), Ã(k−1), Õ(k−1).

3.1. Estimating the sources and the mixing matrix200

Applying the BCR technique to estimate the mixing matrix and the

sources amounts to minimizing the problem in Eq. 3 assuming O is fixed:

minimize
S,A

1

2
‖(X−AS−O) W‖2

2 +
n∑
i=1

λi ‖Si‖1 . (4)

The problem shares similarities with the problem solved by the AMCA

algorithm (see (2)) with the exception that it applies to the residual X−O

rather than the raw observations X. Following the AMCA algorithm, the205

problem in (4) is tackled by minimizing alternately the cost function with

respect to A and S with the two following steps:

• Updating S assuming A is fixed : Minimizing (4) with respect to S

consists in solving the following convex problem:

minimize
S

1

2
‖(X−AS−O) W‖2

2 +
n∑
i=1

λi ‖Si‖1 .
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Unless A is orthogonal, the previous problem does not admit a closed

form solution. In the spirit of alternated least-square minimization

techniques, we proposed in [18] to rather approximate this step with210

a projected least-square, which highly limits the computational cost of

the update:

Si = Sλi
([

A† (X−O)
]
i

)
. (5)

• Updating A assuming S is fixed : Minimizing (4) with respect to A

amounts to solving the following convex problem:

minimize
A

1

2
‖(X−AS−O) W‖2

2 .

which admits a closed form solution:

A = (X−O) W (SW)† . (6)

In practice, to avoid the balance indeterminacy between A and S, we assume

that the columns of A are normalized for the `2 norm. Similarly to what is215

done with AMCA, this additional constraint is handled by normalizing the

columns of A after the projected least-squares.

Similarly to the AMCA algorithm [18], the weights play a central role. In

the setting of robust BSS, they help providing robustness to the remaining

outliers contribution in the estimated residual X − O. Following the anal-220

ogy with partial correlations, the weights aim at penalizing entries of the

estimated sources which are in general position rather than clustered along

a canonical axis. The former are more likely related to residuals of outliers
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while the latter are characteristics of the sources. Following [18], samples in

general position can be traced by measuring the sparsity level of the columns225

of the estimated sources using a `q norm. Therefore, the diagonal elements

of the weight matrix W are defined as follows:

Wt,t =
1√

‖St‖q + ε
, (7)

where S denotes the normalized sources Si = Si

‖Si‖2
and where ε is a scalar

typically small used to avoid numerical issues. The parameter q is chosen in

the range [0, 1]. For more details, we refer the reader to [18].230

3.2. Estimating the outliers

In the rAMCA algorithm, the estimation of O given A and S is carried

out by solving the problem in (3):

minimize
O

1

2
‖(X−AS−O) W‖2

2 + β ‖O‖2,1 .

Given that only the diagonal terms of W are non-zero, this problem is

separable. It amounts to solve for each sample k ∈ {1..t}:

minimizeOk

1

2

∥∥∥((X−AS)k −Ok
)

Wk
k

∥∥∥2

2
+ β

∥∥Ok
∥∥

2
.

This problem is equivalent to:

minimizeOk

(Wk
k)

2

2

∥∥∥(X−AS)k −Ok
∥∥∥2

2
+ β

∥∥Ok
∥∥

2
.
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Then, by setting β̃ = β
(Wk

k)2
, we end up with:

minimizeOk

1

2

∥∥∥(X−AS)k −Ok
∥∥∥2

2
+ β̃

∥∥Ok
∥∥

2
.

This problem has a closed form solution which has been derived in [22]:

Ok = (X−AS)k ×
(

1− β̃k

‖(X−AS)k‖2

)
+

. (8)

Detecting the outliers. Most sparsity-based thresholding procedures can be

interpreted as detection procedures: detecting sparse samples out of dense

noise. In that case, it is customary to fix the value of the threshold based on235

the noise statistics [19]; we will see later that this is exactly how the thresh-

olds {λi}i=1,··· ,n are fixed. Similarly, and according to (8), the support (i.e.

the set of active columns) of O is defined by the set of columns whose `2

norm exceeds the threshold β̃. Ideally, the columns having a `2 norm smaller

than β̃ should correspond to the remaining Gaussian noise. Consequently,240

the values of β̃ should also be fixed based on the Gaussian noise statistics.

In that case, only the Gaussian noise contributes to the residual outside the

support of O. Therefore, the samples
{∥∥∥(X−AS)k

∥∥∥
2

}
k:‖Ok‖

2
=0

follow a χ

law with m degrees of freedom. The value of β̃ can then be chosen based on

the expected value of the χ law: σ ×
√

2 × Γ(m+1
2 )

Γ(m
2 )

, where σ corresponds to245

the standard deviation of N.

Nevertheless, relying on the noise statistics only provides a detection pro-

cedure that is not reliable in the determined case. Indeed, even if A is
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correctly recovered, the outliers are very likely to leak into the estimated250

sources S̃ since they also lie in the span of A: S̃ = S + A†O, such that

AS̃ = AS + O. An accurate detection of the outliers based on the residual

X −AS̃ is then not possible. To overcome this issue, we propose to rather

build the detection procedure on a quantity that allows discriminating be-

tween the outliers and the sources, especially in the determined case.255

We emphasized in Section 2.2 that in the source domain the entries of S

are jointly sparse, i.e. clustered along the canonical axes, whereas the pro-

jected outliers behave as correlated non-sparse entries. In this context, the

δ-density, which has been introduced in [23], provides a convenient measure

of sample sparsity that allows discriminating between sparse and non-sparse260

columns of S̃. The δ-density of any jth non-zero sample of the estimated

sources is defined as δ(S̃j) =
‖S̃j‖

1

‖S̃j‖∞
. This quantity takes its values between

1 (for one active entry) and n (for a column whose entries have the same

amplitudes). More interestingly, it is independent of the amplitude of the

columns and well suited for sparse and approximately sparse signals. In this265

framework, detecting the support of O can be performed by identifying the

columns of the estimated S̃ whose δ-density is larger than a certain threshold

α that needs to be determined. This is somehow reminiscent of the outliers

detection discussed in [24].

In the general setting, determining an optimal numerical value for α is chal-270

lenging without an accurate statistical modeling of the sources and the out-

liers. In the following, we propose to use the following statistical modeling:

• the sources are drawn from a Generalized Gaussian law with parameter

ρ denoted by G(ρ).
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• the amplitude of the outliers in the sources domain follows a Gaussian275

law N , well suited to model samples that are distributed in general

position.

Let us notice that the variances of these statistical models do not matter since

the δ-density is independent of the amplitude. From this statistical model,

the threshold α is derived from a classical hypothesis testing procedure such

that, for any random variable X of size n:

Pr (δ(X) < α|X ∼ G(ρ)) = Pr (δ(X) > α|X ∼ N ) .

where Pr (δ(X) < α|X ∼ G(ρ)) stands for the probability for the δ-density

to be smaller than α assuming that every entry of X is distributed according

to a Generalized Gaussian law with parameter ρ. Figure 2 illustrates three280

different cases with n = 10: (a) the case ρ = 1, which corresponds to a low

sparsity level, and then (b) and (c), the cases ρ = 0.5 and ρ = 0.3 that corre-

spond to realistic sparsity levels for the coefficients of sparse representations

of natural signals. The value of α varies from 3.9 to 3.3. Since we have no

precise prior knowledge about the distributions, we derive numerically the285

value α for the corresponding n from the Laplacian law (the largest possi-

ble for sparse sources respecting the MDP). This choice is quite conservative

for the sources since only the samples having a δ-density larger than α are

estimated as being corrupted.
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(a) ρ = 1.
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(b) ρ = 0.3
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Pr(δ(X)<γ|X∼G(0.3))

Pr(δ(X)>γ|X∼G(2))

(c) ρ = 0.1

Figure 2: Numerical approximations of the cumulative distribution functions of δ(.) for dif-
ferent values of ρ and n = 10. In blue: fig.(a): Pr(δ(X) < γ|X ∼ G(1)), fig.(b) Pr(δ(X) <
γ|X ∼ G(0.5)), fig.(c) Pr(δ(X) < γ|X ∼ G(0.3)). In red: Pr(δ(X) > γ|X ∼ N ).

According to (8), the amplitude of the detected outliers is derived from290

the estimated residual X−ÃS̃. Previously, we underline that X−ÃS̃ is very

likely to contain some errors. A more conservative but more effective choice

consists in deriving the amplitude of the detected outliers from the data X.

As a summary, the outliers O are estimated as follows:

Õk =


0 if δ(S̃k) < α

Xk ×
(

1− β̃

‖Xk‖2

)
otherwise,

(9)

where β̃ = MAD(X−AS−O)×
√

2× Γ(m+1
2 )

Γ(m
2 )

and MAD(X−AS−O) corre-295

sponds to a good estimate of the standard deviation of N if it is not known.

Despite the simplicity of the statistical model used to derive a value for α

and consequently β, the proposed scheme has been proved to be robust in the

various numerical experiments of Section 4. Furthermore, at each iteration

of the rAMCA algorithm 1, the couple (A,S) is fully re-estimated, which300

also makes the algorithm less sensitive to mis-estimations of the outliers O.
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3.3. Choice of the parameters

Strategy for λ: The major parameters of the sparse source separation

problems are the thresholds
{
λ̃i

}
i=1..n

. Similar to [18], we use the decreasing

thresholding strategy proposed in [5] which has two interesting properties: i)

it prevents the incorporation of noise in the source estimates and ii) it makes

AMCA less prone to be being trapped in local minima.

Robustness to Gaussian noise: The soft-thresholding operator Sλ(.) rejects

the entries having an amplitude smaller than λ. The final threshold is thus

chosen based on the level of noise which contaminates the projected sources

A†(X − O) = S + A†N, so as to remove the additional noise. Indeed,

Gaussian noise removal (A†N) from sparse signals (S) based on threshold-

ing can be interpreted as a standard hypothesis testing [19]. The value of

λi is typically set to 3σi, where σi stands for the standard deviation of the

noise contaminating the ith projected source, i.e. (A†N)i. If these values

are not known, they can be estimated empirically using the Median Absolute

Deviation (MAD) since MAD
((

A†(X−O)
)
i

)
≈ MAD

(
(A†N)i

)
for sparse

sources - see [5, 18].

Robustness to local minima: Following [5], the use of a decreasing thresh-

olding strategy remarkably improves the separation performances since it

provides more robustness to the spurious local minima. During the unmix-

ing process, the thresholds are chosen automatically so that the number of

non-zero entries of the sources is increased by a fixed amount at every itera-

tion. More precisely, given the total number of iterations I, the jth projected
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source S̃
(i,k)
j =

(
Ã(i−1,k)†(X− Õ(k))

)
j

is thresholded at the ith iteration by:

λj = pct

(
|S̃(i,k)
j ||S̃(i,k)

j |>3σj
, 100× I − i

I

)
,

where pct(x, v) denotes the vth percentile of the entries of x.

Number of inner loops I: The number of iterations is set to I = 1000,

which turned to be a good compromise in the numerical experiments.305

Strategy for β: In the spirit of the decreasing value strategy used for λ̃

in AMCA, the number of eligible active samples of the estimated outliers

is increased during the algorithm. More precisely, at the kth iteration, we

select the outliers among the 5k% largest entries of the residue in order to

limit the number of false estimations. We underline that these parameters310

are also automatically determined: α depends only on the number of sources

and β on the number of observations.

Number of outer loops K: Last, the number of outer loops is maxi-

mally set to 100. In practice, the algorithm is stopped when Ã and Õ are

jointly stabilized fig.3. More precisely, rAMCA stops at the kth outer loop315

if: maxj=1..n〈Ã(k−1)j, Ã(k)j〉 < 5°, and supp
(
Õ(k−1)

)
= supp

(
Õ(k)

)
, where

supp(x) denotes the support of the vector x.

3.4. Stability of rAMCA

Since the problem (3) is not convex, we can only expect to converge to a

local minima. Besides, given that the proposed strategy uses varying param-320

eters, the convergence to a critical point, strictly speaking, cannot be proved.

However, the stability of the two variables of interest, the support of the cor-

rupted samples and the mixing matrix, is heuristically well motivated.
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We propose to minimize the function using the Block Coordinate Descent

(BCD) method [21]. It has been shown in [21] that minimizing (3) alter-325

nately for each variable with fixed parameters converges to a stationary

point. However, in practice, minimizing (3) with the cyclic rule and with

fixed parameters performs poorly: this minimizing scheme is very likely to

be prone to being trapped in local minima. That is why, we minimize 3 using

a sequential minimization alternating between the blocks (A,S) and O, as330

well as the decreasing parameters strategy.

Once the detrimental outliers (or the data estimated as being detrimental)

have been removed from the observations, the AMCA algorithm, whose sta-

bility has been discussed in [18], returns a similar A from one iteration to

another (since the input X −O is constant from one outer iteration to an-335

other one), fig.3a, 3b.

For illustrative purpose, we display the maximal angle made between the

columns of Ã(k) and Ã(k+1) (see Section 4 for the metrics) as well as the per-

centage of estimated corrupting columns for n = m = 10 sources generated

according to Section 4.1 and 30% of corrupting columns. After few outer340

loops, the number of estimated columns fig.3a and Ã almost not vary fig.3b

(a variation with the maximal order of magnitude of 10−3 is observed for A

due to the projected least squares).

4. Numerical Experiments

4.1. Experimental protocol345

In this section, rAMCA is compared with various robust BSS algorithms:
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Figure 3: Convergence of rAMCA.

• GMCA [5]: this standard sparse BSS method is used to illustrate the

sensitivity of the non-robust BSS algorithms to the presence of outliers.

• AMCA [18] whose performances show the benefits of the weighting

scheme (difference between AMCA and GMCA) and of the explicit350

estimation of O (difference between AMCA and rAMCA).

• rGMCA [17]: the discrepancy between its performances and the ones of

rAMCA illustrates the key roles of the novel penalization and outliers

detection procedure, which are, unlike rGMCA, based on the refined

modeling of the outliers in the source domain.355

• the robust minimization of the β-divergence [9], (implementation sim-

ilar to [25]), which assumes that m = n and only estimates the mixing

matrix.

• the robust combination PCP+GMCA: the outliers are first estimated
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with PCP [10] which assumes that m � n, and then the sources and360

mixing matrix are estimated with GMCA.

The parameters of PCP+GMCA and of the minimization of the β-divergence

are manually tuned. In the first part of this section, their performances are

evaluated on various scenarios with synthetic data, which allows performing

Monte-Carlo simulations.365

Complexity of the different methods. The AMCA and GMCA based methods

have a complexity of O (mnt), while PCP has a complexity given by O (m2t).

Their complexities are thus similar except if m� n, what is required by PCP

(low-rank assumption). The minimization of the β-divergence depends on the370

algorithm used to perform the minimization.

Nonetheless, we point out that in practice, if the dimensions are moderate,

running rAMCA may require more computational time than running once

the combination PCP+GMCA. On the other hand, PCP is a parametric

method whose parameter tuning requires several trials, what is then even375

more time consuming.

Performance criteria. We emphasized in [17] that the algorithms listed above

do not all yield a precise estimation of the sources but rather provide a ro-

bust estimation of A. Therefore, we will focus on assessing the performances

of these algorithms with respect to the mixing matrix. More precisely, we380

propose to evaluate the accuracy of the different algorithms as well as their

reliability, which is particularly relevant since BSS problems are non-convex.

The quantity ∆A =
‖PÃ†A−I‖

1

n2 is used as a global indicator of the mixing ma-
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trix estimation accuracy [5], where the matrix P corrects for the permutation

indeterminacy. Additionally, for every simulation and for each algorithm, we385

record the number of runs for which A has been correctly recovered (normal-

ized to 1). The mixing matrix is said to be correctly recovered if, for every

column of A, the angle between the estimated and true ith column is smaller

than 5◦: arccos(
〈
Ãi,Ai

〉
) < 5°. This quantity provides a good indicator of

the reliability of the algorithms.390

Data Setting. The comparisons are first carried out on synthetic data in

order to illustrate the impact of parameters such as the percentage of cor-

rupted data or the number of observations with Monte Carlo simulations (48

simulations). The data are generated as follows:

• A total of 8 sources (unless otherwise stated) are drawn from a Bernoulli-395

Gaussian law whose activation rate is fixed to 5%, and the standard

deviation of their amplitude σS to 100. The number of samples t is

fixed to 4096.

• The mixing matrix is drawn according to a normal law with zero mean.

The columns of A are normalized to unit `2 norm.400

• The outliers are generated so as to corrupt at random a low number of

columns of X. The activation of these columns is drawn according to

a Bernoulli process with probability ρ, which fixes the average number

of corrupted columns to ρt. The amplitude of the outliers is drawn

at random from a Gaussian distribution with zero mean and standard405

deviation σO.
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• The noise is generated according to a Gaussian distribution with zero

mean. Its standard deviation is set to 0.1.

4.2. Influence of the number of observations

We emphasized in [17] that the separation of the sources contribution and410

the outliers is more challenging if m is close to n. The ratio m
n

is therefore

a crucial parameter in BSS, especially in the presence of outliers. In this

paragraph, the data are composed of m observations. The amplitude of the

outliers is fixed to σO = 100 for n = m and then the amplitude ratio between

the outliers and the sources contribution is kept constant. The percentage of415

outliers is fixed to 10% with ρ = 0.1.

As shown in fig.4a, rAMCA tends to be less influenced by the number of
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Figure 4: Influence of the number of observations on the estimations of A, S and O.

observations. The results of all the methods (except the β-divergence min-

imization algorithm) are better if m is very large: the condition number of
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A is smaller and the outliers can be better distinguished from the sources420

contribution since the energy of the outliers lying in the subspace generated

by A is lower when m is large. In this regime, the low-rankness of the term

AS becomes a valid assumption, which makes PCP more efficient [10].

The results are not strictly improved with an increasing number of measure-

ments for the β-divergence algorithm. Since the β-divergence minimization425

algorithm has been designed for the determined case only, its application

to the over-determined case requires a first dimension reduction step. This

pre-processing step, which is performed by PCA, is also impacted by the

presence of outliers and hampers the performances of this algorithm.

In order to further illustrate the impact of the ratio m
n

, the errors
‖S‖2
‖S−S̃‖

2

430

and
‖O‖2
‖O−Õ‖

2

are displayed for a single example. Since the minimization of

the β-divergence does not explicitly return O and S, we (re)-estimate O

and S by minimizing (3) for fixed A, the mixing matrices estimated by the

different algorithms. A good separation of S and O is possible if m � n

because the outliers are less likely to lie in the span of A; this is clearly435

shown in fig.4b. Despite an accurate recovery of A for rAMCA when m is

small, the error made on the estimated outliers and sources is large fig.4b: the

separation is not possible without any additional assumption on the sources

and the outliers. Moreover, these errors decrease when the ratio m
n

increases

whereas the error made on A remains more stable: the separation benefits440

from enhanced estimation of A as well as from a lower contribution of the

outliers in the range of A.
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4.3. Influence of the number of samples t

In the following experiment, we investigate the influence of the number

of samples. In order to observe the impact of this data dimension on the445

combination PCP+GMCA, we consider that 6 sources are mixed into 30

observations (the low-rank assumption is valid), which are corrupted by ρO =

10% of active outliers with σO = 50. We set σN to 0.1. The number of

samples t varies according to the x-axis of fig.5.
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Figure 5: Performance results of the methods versus the number of samples t.

As shown in fig.5, all the algorithms are less reliable if only few samples450

are available since the clustering aspect of the sources contributions is not

significant (an unmixing, even without outliers, is challenging if only few

samples are available). Besides, all the strategies become more and more

precise as the number of samples t increased.

Increasing the number of samples has several favorable effects on the unmix-455

ing: the number of samples available to unmix the sources becomes sufficient

regardless of the presence of outliers, and the clustered aspect of AS has a

greater importance since there are more and more clustered samples in the

term AS but the outliers are still in general position (generating randomly
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several outliers in a same direction is quite unlikely).460

The results would have been different if the proportion of data samples in

a given direction had been set constant from one value of t to another. For

instance, if one resizes an multi/hyperspectral data cube, these proportions

are kept constant, and for the largest image size, few but several outliers are

in a same direction. There are some applications (most of the observations of465

physical processes) were the outliers are not strictly speaking in general po-

sition (such as in 4.6), but whose contributions are less structured/clustered

than the one of the sources: the weighting scheme penalizes the less clustered

solutions, and so, still returns A. That is why AMCA and rAMCA requires

less samples than the others methods to perform accurately fig.5.470

In the following, the impact of two other parameters will be investigated:

the percentage of corrupted data and their amplitudes. We will focus on the

determined case which is more challenging. Since the low-rankness assump-

tion makes no sense in the determined case, the algorithm PCP+GMCA will475

not be evaluated.

4.4. Influence of the amplitude of the outliers

In the following experiments, we consider that 10% of the data samples

are corrupted with outliers. Fig.6a shows the behavior the algorithms when

the amplitude of the outliers σO varies.480

The figure 6a shows that the standard GMCA rapidly fails to correctly

recover the mixing matrix when the amplitude of the outliers increases. In

these experiments, the algorithms AMCA and β-divergence minimization al-

gorithms provide very similar results. Interestingly, rAMCA tends to be the
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Figure 6: Influence of the amplitude and the activation rate of the outliers.

least impacted by the amplitude of the outliers, especially when their ampli-485

tude is of the order of the source’s level or very large. When the amplitude

of the outliers and the sources are close, the weighting schemes of AMCA

and rGMCA are less effective at penalizing the outliers. Unlike AMCA,

the rAMCA algorithm progressively removes a certain level of the outliers’

component, which further enhances the separation performances.490

4.5. Influence of the percentage of corrupted data

In this section, the amplitudes of the outliers σO is fixed to 100. The

figure 6b shows the behavior of the BSS algorithms when the percentage of

corrupted columns ρ varies according to the values of the x-axis.

As illustrated in fig.6b, the β-divergence algorithm is able to recover correctly495

the mixing matrix when the number of corrupted columns of X is low (i.e.

typically below 10%). The rGMCA algorithm is rapidly impacted by an
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increasing number of corrupted data. On the other hand, the AMCA-based

algorithms are less influenced by the percentage of outliers. The rAMCA

algorithm provides a significantly better estimate of the mixing matrix when500

the number of outliers is larger than 10%.

4.6. Application to NMR spectra unmixing

In this section, we propose to compare the different algorithms in a more

realistic setting: the separation of Nuclear Magnetic Resonance (NMR) spec-

tra. In the context of spectroscopy, BSS allows to identify the different505

molecules of the observed mixture [26]. The presence of instrumental arti-

facts is very frequent and makes difficult the interpretation of the data. Such

artifacts can be approximated by outliers contaminating entire columns of

the data matrix [27], which is the case we investigate in the present article.

Following [26], the sources are composed of 6 theoretical NMR spectra of510

the cholesterol, folic acid, adenosine, oleic acid, menthone and saccharose

extracted from the SDBS database1 with t = 2048 samples. These spectra

are further convolved with a Laplacian kernel of varying width at half maxi-

mum (implementation from pyGMCA2), which models the resolution of the

instrument, fig.7a. The set of corrupted data samples is fixed to 10 blocks of515

20 consecutive columns. Their amplitudes are drawn according to a Chi-law

with 1 degree of freedom, and they are further convolved with the same kernel

than the sources. The amplitude of the outliers is set so that the energy of

each block of outliers corresponds to the average contribution of a source in

the observations
‖O‖2

10
=
‖AS‖2
n

, fig.7c. In the following experiments, the data520

1http://sdbs.db.aist.go.jp
2http://www.cosmostat.org/software/gmcalab/
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made of 10 mixtures computed with a positive mixing matrix their entries

are drawn from a Chi-law with 1 degree of freedom and then the columns

are normalized) and corrupted also by the presence of the centered Gaussian

noise with σN = 0.1.

Given that all the variables are non-negative, we will also compare AMCA525

and rAMCA with rNMF [2], whose code is online. This method exploits the

low-rankness of AS, the non-negativity and the “sum-to-one”constraint (that

is, the amplitudes of each sample of S sum to one) to differentiate between

the low-rank subspace and the outliers. The “sum-to-one”constraint, which

is not a valid assumption in this setting, is replaced by the constraint on the530

columns of A, which are assumed to be normalized. We use the following

inputs for rNMF: the ground truth A, the projected sources
(
A†X

)
+

and

the non-negative part of the corresponding residue.

The resulting sources admit a sparser distribution in the wavelet domain.

Subsequently, the data are transformed with the undecimated wavelet trans-535

form [28] prior to applying the BSS algorithms, except for rNMF. Let us

notice that a same wavelet transform is used for the outliers and the sources

because they have a similar morphology in the present setting. In the previ-

ous experiments, we evaluated the separation performances of the algorithms

in the case of exactly sparse signals. The NMR sources we consider in this540

section rather exhibit an approximately sparse distribution in the wavelet

domain. We propose to evaluate the behavior of the robust BSS algorithms

when both the sources and the outliers follow an approximate rather than

exact sparse model. A simple way to evaluate the behavior of the algorithms

with respect to the sparse model is to evaluate their performances when the545
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Figure 7: Top: illustration of one observation Xi, without (left) and with outliers (right,
corrupted entries are represented with the red dashed line). Bottom: estimated sources
with rAMCA and PCP+GMCA for a width of the kernel of 6 (left) and right, performances
of the different algorithms versus the width of the kernel (right).

width of the convolution kernel increases. Low width values will make the

source model close to the exact sparse model while large values will provide

approximately sparse sources.

The figure 7d displays the evolution of the mixing matrix criterion when the

width of the convolution kernel varies. It is interesting to notice that the550

minimization of the β-divergence, PCP+GMCA, and the rNMF algorithms

do not provide satisfactory separation results. This experience is particularly

challenging for these methods since: the low-rank assumption is not valid, the
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“sum-to-one” constraint necessary to the separation between AS and O on

S for rNMF has been removed, and the outliers are less and less sparse as the555

width of the kernel increases. As well, the rGMCA provides good separation

results when the width is low but it rapidly yields incorrect results when the

width of the kernel increases. Indeed, let us recall that the outliers are also

approximately sparse, which makes these separation scenarios close to the

cases we investigated previously where the number of outliers is very large.560

This is typically the kind of settings where these methods tend to fail. The

rAMCA and AMCA provide the most accurate estimates of the mixing. The

discrepancy with respect to the other algorithms is particularly large when

the kernel has a large width. In this regime, the level of correlation between

the sources increases, a phenomenon to which the AMCA algorithm is robust565

[18]. Last, one of the sources estimated by rAMCA and PCP+GMCA are

displayed in fig.7b. Contrary to PCP+GMCA, the source is correctly recov-

ered by rAMCA outside the support of O because A is correctly estimated

by rAMCA. However, the leakages from the outliers into the sources esti-

mated by rAMCA are still important: they come from the coarse scale of the570

wavelet coefficients, which is not sparse and for which we cannot differentiate

the two contributions. Taking into account the non-negativity of the signals

would limit these leakages, but necessitates the use of proximal algorithms

[29] if combined with sparsity in a transformed domain [26]. Nonetheless,

the weighting scheme of rAMCA and AMCA is sufficient to obtain a robust575

estimation of A.
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Software

Following the philosophy of reproducible research [30], a python imple-

mentation of the algorithms introduced in this article will be available at

http://www.cosmostat.org/GMCALab.580

5. Conclusion

In this article, we introduce a new algorithm for tackling BSS problems

in the presence of outliers, which is a key problem in a large number of ap-

plications. The proposed rAMCA algorithm performs by estimating jointly

the mixing matrix, the sources and the outliers. Inspired by the AMCA al-585

gorithm, it first provides a robust estimation of the sources and the mixing

matrix. Additionally, it exploits the difference of structures of the outliers

and the sources to provide a robust detection and estimation of the outliers

based on their sparsity level in the source domain. Numerical experiments

have been carried out on Monte-Carlo simulations with various experimental590

scenarios, which show that rAMCA yields a robust and reliable estimation

of the mixing matrix. It provides the state-of-the-art separation results es-

pecially in the highly challenging determined case. Future work will exploit

the difference of morphology between the sources and the outliers that is

manifested in various imaging problems to further perform an accurately595

separation the two contributions.
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