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R-boundedness Approach to linear third
differential equations in a UMD Space

Bahloul Rachid1

1 Department of Mathematics, Faculty of Sciences and Technology, Fez,
Morocco.

ABSTRACT

The aim of this work is to study the existence of a periodic solutions of third order differential
equations z′′′(t) = Az(t)+f(t) with the periodic condition x(0) = x(2π), x′(0) = x′(2π) and
x′′(0) = x′′(2π). Our approach is based on the R-boundedness and Lp-multiplier of linear
operators.
Keywords: differential equations, Lp-multipliers.
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1 Introduction

Motivated by the fact that functional differential equations arise in many areas of applied
mathematics, this type of equations has received much attention in recent years. In particular,
the problem of existence of periodic solutions, has been considered by several authors. We
refer the readers to papers [[1], [6], [9], [14]] and the references listed therein for informations
on this subject.

1 : E-mail address : bahloul33r@hotmail.com



In this work, we study the existence of periodic solutions for the following differential
equations







z′′′(t) = Az(t) + f(t)

x(0) = x(2π), x′(0) = x′(2π) and x′′(0) = x′′(2π).
(1.1)

where A : D(A) ⊆ X → X is a linear closed operator on Banach space (X, ‖.‖) and α can
be any real number and f ∈ Lp(T, X) for all p ≥ 1.
Hale [18] and Webb [23] firstly studied the first order delay equation:

u′(t) = Au(t) + F (ut) + f(t), (1.2)

Bátkai et al. [5] obtained results on the hyperbolicity of delay equations using the theory
of operatorvalued Fourier multipliers. Bu [8] has studied Cα-maximal regularity for the
problem (1.2) on R. Recently, Lizama [14] obtained necessary and sufficient conditions for
the first order delay equation (1.2) to have Lp-maximal regularity using multiplier theorems
on Lp-(T;X), and Cα-maximal regularity of the corresponding equation on the real line has
been studied by Lizama and Poblete [15].
Arendt [1] gave necessary and sufficient conditions for the existence of periodic solutions of
the following evolution equation.

d

dt
x(t) = Ax(t) + f(t) for t ∈ R,

where A is a closed linear operator on an UMD-space Y .
Hernan et al [9], studied the existence of periodic solutions for the class of linear abstract
neutral functional differential equation described in the following form:

d

dt
[x(t)−Bx(t− r)] = Ax(t) +G(xt) + f(t) for t ∈ R

where A : D(A) → X and B : D(B) → X are closed linear operator such that D(A) ⊂ D(B)
and G ∈ B(Lp([−2π, 0], X); X).
Bahaj et al [3] studied the existence of periodic solution of second degenerate differential
equation described in the following form:

(Mx)′′(t) +Ax(t) +G(xt) = f(t) for t ∈ R

where A : D(A) → X and M : D(M) → X are closed linear operator such that D(A) ⊂
D(M) and G ∈ B(Lp([−2π, 0], X); X).
The organization of this work is as follows: In section 2, collects definitions and basic
properties of R-bounded, UMD space and Fourier multipliers, In section 3, we study the
sufficient Conditions For the Periodic solutions of Eq. (1.1), In section 4, we establish the
periodic solution for the equation (1.1) of this work solely in terms of a property of R-
boundedness for the sequence of operators −ik3(−ik3 + (α − 1)A)−1. We optain that the
following assertion are equivalent in UMD space :

1)DA =
d3

dt3
−A : H3,p(T, X) ∩ Lp(D(A), X) → Lp(T, X) is an isomorphism.

2)σZ(∆) = φ,
{

−ik3∆−1
k

}

k∈Z
is R-bounded.

3)∀f ∈ Lp(T, X) there exists a unique 2π-periodic strong Lp-solution of Eq.(1.1).
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In section 5, we propose an application. In section 6, we give the conclusion.

2 Vector-valued space and preliminaries

Let X be a Banach Space. Firstly, we denote By T the group defined as the quotient
R/2πZ. There is an identification between functions on T and 2π-periodic functions on R.
We consider the interval [0, 2π) as a model for T .
Given 1 ≤ p < ∞, we denote by Lp(T;X) the space of 2π-periodic locally p-integrable
functions from R into X , with the norm:

‖f‖p :=

(
∫ 2π

0

‖f(t)‖
p
dt

)1/p

For f ∈ Lp(T;X), we denote by f̂(k), k ∈ Z the k-th Fourier coefficient of f that is defined
by:

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt for k ∈ Z and t ∈ R.

For 1 ≤ p < ∞, the periodic vector-valued space is defined by

H1,p(T;X) = {u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = ikû(k) for all k ∈ Z} (2.1)

2.1 UMD Space

Definition 2.1. Let ε ∈]0, 1[ and 1 < p < ∞. Define the operator Hε by:
for all f ∈ Lp(R;X)

(Hεf)(t) :=
1

π

∫

ε<|s|< 1

ǫ

f(t− s)

s
ds

if lim
ε→0

Hεf := Hf exists in Lp(R;X) Then Hf is called the Hilbert transform of f on

Lp(R, X).

Definition 2.2. [1]
A Banach spaceX is said to be UMD space if the Hilbert transform is bounded on Lp(R; X)
for all 1 < p < ∞.

2.2 R-bounded and L
p-multiplier

Let X and Y be Banach spaces. Then B(X,Y ) denotes, the space of bounded linear
operators from X to Y.

Definition 2.3. [1]
A family of operators T = (Tj)j∈N∗ ⊂ B(X,Y ) is called R-bounded ( Rademacher
bounded or randomized bounded), if there is a constant C > 0 and p ∈ [1,∞) such that

3



for each n ∈ N, Tj ∈T, xj ∈ X and for all independent, symmetric, {−1, 1}-valued random
variables rj on a probability space (Ω,M, µ) the inequality

∥

∥

∥

∥

∥

∥

n
∑

j=1

rjTjxj

∥

∥

∥

∥

∥

∥

Lp(0,1;Y )

≤ C

∥

∥

∥

∥

∥

∥

n
∑

j=1

rjxj

∥

∥

∥

∥

∥

∥

Lp(0,1;X)

is valid. The smallest C is called R-bounded of (Tj)j∈N∗ and it is denoted by Rp(T ).

Definition 2.4. [1]
For 1 ≤ p < ∞ , a sequence {Mk}k∈Z

⊂ B(X,Y ) is said to be an Lp-multiplier if for each

f ∈ Lp(T, X), there exists u ∈ Lp(T, Y ) such that û(k) = Mkf̂(k) for all k ∈ Z.

Proposition 2.1. [[1], P roposition 1.11]
Let X be a Banach space and {Mk}k∈Z

be an Lp-multiplier, where 1 ≤ p < ∞. Then the
set {Mk}k∈Z

is R-bounded.

Theorem 2.1. (Marcinkiewicz operator-valud multiplier Theorem).
Let X, Y be UMD spaces and {Mk}k∈Z

⊂ B(X,Y ). If the sets {Mk}k∈Z
and {k(Mk+1 −Mk)}k∈Z

are
R-bounded, then {Mk}k∈Z

is an Lp-multiplier for 1 < p < ∞.

Theorem 2.2. (Fejer′s theorem)
Let f ∈ Lp(T, X). Then

f = lim
n→∞

σn(f)

in Lp(T, X) where

σn(f) :=
1

n+ 1

n
∑

m=0

m
∑

k=−m

ekf̂(k)

with ek(t) := eikt.

Lemma 2.3. [1]. Let f, g ∈ Lp(T;X). If f̂(k) ∈ D(A) and Af̂(k) = ĝ(k) for all k ∈ Z

Then

f(t) ∈ D(A) and Af(t) = g(t) for all t ∈ [0, 2π].

3 Sufficient Conditions For the Periodic solutions

of Eq. (1.1)

In this section, we will give conditions which guarantee the periodic solution of the some
second differential equation. We denote by
H1,p(T;X) = {u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = ikû(k)for all k ∈ Z}
H2,p(T;X) =

{

u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = −k2û(k)for all k ∈ Z
}

H3,p(T;X) =
{

u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = −ik3û(k)for all k ∈ Z
}
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Definition 3.1. [14]
For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z

⊂ B(X,Y ) is an (Lp, H3,p)-multiplier, if

for each f ∈ Lp(T, X) there exists u ∈ H3,p(T, Y ) such that û(k) = Mkf̂(k) for all k ∈ Z.

Lemma 3.1. [1]
Let 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X) (B(X) is the set of all bounded linear operators from
X to X). Then the following assertions are equivalent:
(i) (Mk)k∈Z is an (Lp, H1,p)-multiplier.
(ii) (ikMk)k∈Z is an (Lp, Lp)-multiplier.

We define

DA :=
d3

dt3
−A

∆k = (−ik3I +A) and σZ(∆) = {k ∈ Z : ∆k is not bijective}

We begin by establishing our concept of strong solution for Eq. (1.1)

Definition 3.2. Let f ∈ Lp(T;X). A function x ∈ H3,p(T;X) is said to be a 2π-periodic
strong Lp-solution of Eq.(1.1) if x(t) ∈ D(A) for all t ≥ 0 and Eq. (1.1) holds almost every
where.

Proposition 3.1. Let A be a closed linear operator defined on an UMD space X. Suppose
that
σZ(∆) = φ .Then the following assertions are equivalent :

(i)
(

−ik3(−ik3I +A)−1
)

k∈Z
is an Lp-multiplier for 1 < p < ∞

(ii)
(

−ik3(−ik3I +A)−1
)

k∈Z
is R-bounded.

Proof. (i) ⇒ (ii) As a consequence of Proposition (2.1)
(ii) ⇒ (i) Define Mk = −ik3Nk where Nk = (−ik3I + A)−1. By Marcinkiewcz Theorem it
is sufficient to prove that the set {k(Mk+1 −Mk)}k∈Z

is R-bounded. Since

k [Mk+1 −Mk] = k[−i(k + 1)3(−i(k + 1)3I +A)−1 + ik3(−ik3I +A)−1]

= k[−i(k + 1)2Nk+1 + ik2Nk]

= kNk+1[−i(k + 1)3((−k3I +A))) + ik3((−i(k + 1)3I + A)]Nk

= kNk+1[−i(k + 1)3A+ ik3A)]Nk

= ikNk+1[(k
3 − (k + 1)3)A]Nk

= ikNk+1[−(3k2 + 3k + 1)A]Nk

= ik3Nk+1[−(3 + 3
1

k
+

1

k2
)](I + ik3Nk)

=
k3

(k + 1)3
Mk+1[−(3 + 3

1

k
+

1

k2
)](I −Mk)

Since products and sums of R-bounded sequences is R-bounded [[14]. Remark 2.2]. Then
the proof is complete.
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Lemma 3.2. Let 1 ≤ p < ∞. Suppose that σZ(∆) = φ and DA is surjective. Then DA is
bijective.

Proof. We have DA is surjective the H3,p(T, X) to Lp(T, X). Then

∀f ∈ Lp(T, X) ∃z ∈ H3,p(T, X) such that DAz = f

Suppose that there exists z1 and z2 such that DAz1 = f and DAz2 = f . then for z = z1−z2
we have DAz = 0. Taking Fourier transform, we obtain that

(−ik3 +A)ẑ(k) = 0, k ∈ Z.

i.e
∆kẑ(k) = 0

It follows that ẑ(k) = 0 for every k ∈ Z and therefore z = 0. Then z1 = z2 and DA is
bijective.

Theorem 3.3. Let X be a Banach space. Suppose that the operator DA := d3

dt3 − A is an
isomorphism of H3,p(T, X) onto Lp(T, X) for 1 ≤ p < ∞. Then

1. for every k ∈ Z the operator ∆k = (−ik3I +A) has bijective,

2.
{

−ik3∆−1
k

}

k∈Z
is R-bounded.

Before to give the proof of Theorem (3.3), we need the following Lemma.

Lemma 3.4. if x ∈ Ker∆k, then eiktx ∈ KerDA

Proof. x ∈ Ker∆k ⇒ −ik3x = Ax.
Put z(t) = eiktx, then

z′′′(t) = (ikeiktx)′′

= (−k2eiktx)′

= −ik3eiktx

= eiktAx

= Az(t)

⇒ DAz(t) = 0

⇒ eiktx ∈ KerDA.

Proof of Theorem (3.3): 1) Let k ∈ Z and y ∈ X . Then for f(t) = eikty , there exists
z ∈ H3,p(T;X) such that:

DAz(t) = f(t)

Taking Fourier transform, we deduce that:
(−ik3 +A)ẑ(k) = f̂(k) = y ⇒ ∆k = (−ik3 +A) is surjective.
Let u ∈ Ker∆k. By Lemma 3.4, we have eiktu ∈ KerDA, then u = 0 and (−ik3 + A) is
injective.
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2) Let f ∈ Lp(T;X). By hypothesis, there exists a unique z ∈ H3,p(T, X) such that
DAz = f . Taking Fourier transforms, we deduce that

ẑ(k) = (−ik3 +A)−1f̂(k) for all k ∈ Z.

Hence

−ik3ẑ(k) = −ik3(−ik3 +A)−1f̂(k) for all k ∈ Z

Since z ∈ H3,p(T;X), then there exists v ∈ Lp(T;X) such that

v̂(k) = −ik3ẑ(k) = −ik3(−k3 +A)−1f̂(k).

Then
{

−ik3∆−1
k

}

k∈Z
is an Lp-multiplier and

{

−ik3∆−1
k

}

k∈Z
is R-bounded.

4 Main result

Our main result in this section is to establish that the converse of Theorem 3.3, are true,
provided X is an UMD space.

Lemma 4.1. Let 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X). Then the following assertions are
equivalent:
(i) (Mk)k∈Z is an (Lp, H2,p)-multiplier.
(ii) (−k2Mk)k∈Z is an (Lp, Lp)-multiplier.

Proof. We have

(−k2Mk)k∈Z is an (Lp, Lp)−multiplier

⇔ ik(ikMk)k∈Z is an (Lp, Lp)−multiplier

⇔ (ikMk)k∈Z is an (Lp, H1,p)−multiplier (by Lemma3.1)

then the proof ase soon as Lemma (3.1).

Lemma 4.2. Let 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X). Then the following assertions are
equivalent:
(i) (Mk)k∈Z is an (Lp, H3,p)-multiplier.
(ii) (−ik3Mk)k∈Z is an (Lp, Lp)-multiplier.

Theorem 4.3. Let X be an UMD space and A : D(A) ⊂ X → X be an closed linear
operator. Then the following assertions are equivalent for 1 < p < ∞.

(1) The operator DA := d3

dt3 − A is an isomorphism of H3,p(T, X) ∩ Lp(D(A), X) onto
Lp(T, X).

(2) σZ(∆) = φ and
{

−ik3∆−1
k

}

k∈Z
is R-bounded.

Proof. 1) ⇒ 2) see Theorem (3.3)
1) ⇐ 2) Let f ∈ Lp(T;X) . Define ∆k = (−ik3I +A),
By Lemma 3.1, the family

{

−ik3∆−1
k

}

k∈Z
is an Lp-multiplier it is equivalent to
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the family
{

∆−1
k

}

k∈Z
is an Lp-multiplier that maps Lp(T;X) into H3,p(T;X) (Lemma 4.2),

namely there exists z ∈ H3,p(T, X) such that

ẑ(k) = ∆−1
k f̂(k) = (−ik3I +A)−1f̂(k) (4.1)

In particular, z ∈ Lp(T;X) and there exists v ∈ Lp(T;X) such that v̂(k) = −ik3ẑ(k) By
Theorem 2.2, we have

z(t) = lim
n→+∞

1

n+ 1

n
∑

m=0

m
∑

k=−m

eiktẑ(k)

Using now (4.1) we have:

(−ik3I −A)ẑ(k) = f̂(k) for all k ∈ Z.

i.e

(̂DAz)(k) = f̂(k) for all k ∈ Z.

Since A is closed, then z(t) ∈ D(A) and DAz(t) = f(t) [Lemma 2.3].
Uniqueness, suppose that ∃z1, z2 : DAz1(t) = f(t) and DAz2(t) = f(t).
Then

z = z1 − z2 ∈ ker(DA) i.e
d3

dt3
x(t) = Ax(t).

Taking Fourier transform, we deduce that:
∆kẑ(k) = 0 ⇒ ẑ(k) = 0 ∀k ∈ Z ⇒ z = 0. i.e z1 = z2. Or DA is linear operator then DA is
isomorphism.

Corollary 4.4. Let X be an UMD space and A : D(A) ⊂ X → X be an closed linear
operator. Then the following assertions are equivalent for 1 < p < ∞.

(1) for every f ∈ Lp(T;X) there exists a unique 2π-periodic strong Lp-solution of Eq. (1.1).

(2) σZ(∆) = φ and
{

−ik3∆−1
k

}

k∈Z
is R-bounded.

Proof. By theorem 4.3, we have

(2) ⇔ DA : H3,p(T, X) ∩ Lp(D(A), X) → Lp(T, X) is an isomorphism.

⇔ ∀f ∈ Lp(T, X) there exits a unique z ∈ H3,p(T, X) ∩ Lp(D(A), X) : DAz = f

⇔ ∀f ∈ Lp(T, X) there exits a unique z ∈ H3,p(T, X) ∩ Lp(D(A), X) : z = D−1
A f

⇔ ∀f ∈ Lp(T, X)there exists a unique 2π-periodic strong Lp-solution of Eq.(1.1).
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5 Application

To apply the provious result, we propose the following partial functional differential equation























∂3

∂t3w(t, x) =
∂2

∂t2w(t, x) + g(t, x), x ∈ [0, π], t ≥ 0,

w(0, t) = w(π, t) = 0, t ≥ 0.

w(x, t) = w0(x, t), x ∈ [0, π],−r ≤ t ≤ 0.

(5.1)

Let X = C0[0, π] = {u ∈ C([0, π],R) : u(0) = u(π) = 0}. we define the linear operator
A : D(A) ⊂ X → X by







Ay = y′′

D(A) = {y ∈ C2([0, π],R) : y(0) = y(π) = 0}.

Put

y(t)(x) = w(t, x) and f(t)(x) = g(t, x)

Thus, Eq. (5.1) takes the following abstract form

d3

dt3
y(t) = Ay(t) + f(t) (5.2)

It is well known that A is linear operator. Then by [[9], Section 3.7] (see also references
therein), there exists a constant c > 0 such that

||(−ik3 −A)|| ≤ c
1+|k3|

Then
sup
k∈Z

||k3(−ik3 −A)|| < +∞

We deduce from Corollary (4.4) that the above periodic problem has Lp-strong solution.

6 Conclusion

we are obtained necessary and sufficient conditions to guarantee existence and uniqueness of
periodic solutions to the equation z′′′(t) = Az(t)+f(t) in terms of either the R-boundedness
of the modified resolvent operator determined by the equation. Our results are obtained in
the UMD spaces.
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