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Validated semi-analytical transition matrices for

linearized relative spacecraft dynamics via

Chebyshev series appproximations

Paulo Ricardo Arantes Gilz∗ Florent Br�ehard†

Cl�ement Gazzino ‡

1 Introduction

For spacecraft proximity operations (like rendezvous, station keeping, collision
avoidance), the relative dynamics are often linearized for both propagation or
control purposes. More speci�cally, when the magnitude of the relative motion
of the spacecraft is small compared to its distance to the Earth, one linearizes
the equations of motion, which implies solving simpler linear di�erential equa-
tions. However, no closed form solution is available for these equations in most
cases. Exceptionally, for instance, Tschauner-Hempel equations for linearized
Keplerian relative motion [33] admit an analytical solution for the transition
matrix [35]. Other models, like the CNES Orange model [7] for geostationary
orbit including moon and solar attraction, propose a semi-analytical approach
where some coe�cients of the di�erential equations are tabulated. A transition
matrix is not available in this setting, except for the case when considering only
the oblateness of the Earth, when some analytical methods were developed for
the description of the relative motion [30, 14].

In the general case, the propagation is however performed with numerical
iterative schemes (like Euler or Runge-Kutta). The main drawback of this dis-
cretization approach is that the number of needed evaluation points can be
prohibitive and the discretization error is di�cult to estimate precisely. More-
over, for control laws design purposes, analytical solutions are preferable, since
various constraints (such as saturation, restricted space regions, etc.) can be
satis�ed on continuous time domains and not only on discretization grids.

On these lines, an interesting alternative is to obtain polynomial approx-
imations of the solutions because they provide a more compact and accurate
approximation and are easier to evaluate and manipulate. Recent works took
advantage of such polynomial approximations in the context of model predic-
tive control (MPC) and optimal impulsive constrained control [10, 1]. Their
works follow the general framework of semide�nite programming (SDP) based
on nonnegative polynomials written as sums of squares (SOS) [25].
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The purpose of this article is to present a generic framework and algorithmic
tool, which given the linearized equations of relative motion, provides a rigorous
semi-analytical transition matrix, expressed as an approximating matrix whose
entries are polynomials in Chebyshev basis, and uniform rigorous error bounds
for each entry.

From the numerical point of view, spectral methods with Chebyshev ex-
pansions used in our work prove to be very e�cient and accurate. Other re-
cent works also highlight the advantage of using Chebyshev series expansions in
orbital mechanics [28]. They started to successfully replace the classical Tay-
lor series expansions based algebra for intrusive approaches, which has already
many applications to astrodynamics and optimal control for proximity opera-
tions [21, 22, 11].

However, the scope of our work is not limited to numerical e�ciency. The
contribution of our algorithm is also to provide certi�ed upper bounds for the
approximation error (via a Newton-like a posteriori validation method), which
allows to safely replace the exact solution with polynomials as long as the cer-
ti�ed error bound remains smaller than a limit set by the user, depending on
the application. This is particularly useful in optimization algorithms for opti-
mal control where a trade-o� must be done between low-degree polynomials for
e�ciency and accurate results.

The C source code of the whole method, including the e�cient numerical al-
gorithm for Chebyshev expansion of the solution and the automated validation
process to certify these approximations, will be soon freely available1. Though
still being under prototyping, it plainly works and was used for all the exam-
ples illustrating this article. Speci�cally, we chose two heterogeneous examples
which allow us to highlight the generality of our approach: one handles the lin-
earized relative motion of a satellite in Keplerian dynamics in low Earth orbit,
the other focuses on linearizing relative dynamics in a geostationary orbit with
applications to station keeping with a low-thrust propulsion system.

Statement of the problem and contributions In the light of the chal-
lenges mentioned above, the mathematical problem we want to solve can be
stated as follows:

Problem 1. Consider a d-dimensional linear ordinary di�erential equation
(LODE):

X ′(t) = A(t)X(t) +D(t)

over the compact interval [t0, tf ], of unknown X : [t0, tf ] → Rd and where
A : [t0, tf ]→ Rd×d and D : [t0, tf ]→ Rd are at least Lipschitz-continuous. Call
Φ(t0, t) the exact mathematical transition matrix.

Provide an approximate transition matrix Φ̃(t0, t) ∈ Rd×d and rigorous error
bounds εij ≥ 0 (1 ≤ i, j ≤ d) satisfying:

|Φ̃ij(t0, t)− Φij(t0, t)| ≤ εij 1 ≤ i, j ≤ d, t ∈ [t0, tf ]

In Section 2, we present the whole method (numerical Chebyshev expan-
sions and a posteriori validation) designed to automatically solve Problem 1.
This method is fully exposed in [6], and Section 2 only sketches out the main

1http://perso.ens-lyon.fr/�orent.brehard
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ingredients in order to give a precise idea of what was implemented, leaving out
proofs and technical computations.

Section 3 is devoted to a �rst application of the method to Tschauner-Hempel
equations, which are a rather easy case since dynamics can be decoupled be-
tween in-plane and out-of-plane motion and at the end reduced to scalar linear
ordinary di�erential equations. We �rst show how the method will proceed on
this example to output a rigorous semi-analytical transition matrix, though in
practice this will be transparent to the user of our C library. Then, we explain
where polynomial transition matrices can help for impulsive MPC, based on
Nesterov generic framework. Finally, we perform an a posteriori validation to
rigorously prove that the �nal position is reached within accurate precision.

Section 4 deals with another application: a linearized model for the station
keeping of a geostationary satellite, taking into account the J2 perturbation
term due to the oblateness of the Earth. In this case, the dynamical system
cannot be easily decoupled into scalar di�erential equations. We will show that
our method, generalized to the vectorial case, is able to provide certi�ed and
tight error bounds for each component of the motion. In a second time, the
interest of having certi�ed polynomial approximations of the transition matrix
will be put into evidence.

2 Rigorous polynomial approximations of LODE

solutions in Chebyshev basis

2.1 Chebyshev approximation theory and numerical solv-

ing

In many situations arising in scienti�c computing aimed at industrial applica-
tions, solving di�erential equations is a central building block. Since in most
cases, obtaining exact closed forms for the solution is out of reach, a wide variety
of numerical algorithms have been designed for decades to approximate these
solutions as accurately as possible. In order to sketch out the picture, these
methods can be divided into two groups:

• Iterative methods start at a given initial point with prescribed initial val-
ues, and propagate the solution on a time grid using explicit (Euler, ex-
plicit Runge-Kutta) or implicit (implicit Runge-Kutta) methods [18].

• On the opposite, spectral methods approximate the solution over the global
time interval under consideration with a sum of well chosen basis functions,
whose coe�cients have to be computed [15, 5].

In situations where functions are smooth enough, spectral methods have the
advantage over iterative ones of providing a smooth approximation of the so-
lution over the continuous time range, which we can easily derive or integrate
for example. For e�ciency reasons among others, one often chooses families of
polynomials for the basis functions, since addition and multiplication compos-
ing them are the basic operations implemented in �oating-point units (FPU) of
processors. Besides that, the recent advances in polynomial based optimization
methods allowed for very e�cient solutions in optimal control problems (see for
instance [19, 8] and references therein). In this work, we focus on Chebyshev
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polynomials, for this family of orthogonal polynomials enjoys very convenient
algebraic and approximation properties.

2.1.1 A short reminder on Chebyshev polynomials and approximation

theory At �rst glance, working with polynomials in the standard monomial
basis and approximating functions with their Taylor development seems to be a
convenient choice. In practice, this method goes along with some shortcomings
(approximation of non-smooth functions, limited convergence radius due to com-
plex singularities, numerical instability, etc.). For all these reasons, Chebyshev
polynomials are preferable in the general case [5].

Here we brie�y recall the main properties of Chebyshev polynomials. This
family of polynomials is de�ned by the three-term recurrence Tn+2 = 2XTn+1−
Tn with initial terms T0 = 1 and T1 = X. They satisfy the fundamental
trigonometric relation Tn(cosϑ) = cos(nϑ), from which we deduce some of their
basic algebraic properties:

TnTm =
1

2
(Tn+m + T|n−m|)

[
Tn+1

2(n+ 1)
− Tn−1

2(n− 1)

]′
= Tn (n ≥ 2)

and that |Tn(t)| ≤ 1 for x ∈ [−1, 1].
Endowing the space C0 of continuous functions over the compact inter-

val [−1, 1] with a Hilbert space structure using the inner product de�ned by

〈f, g〉 =
∫ 1

−1
f(t)g(t)(1 − t2)−1/2dt =

∫ π
0
f(cosϑ)g(cosϑ)dϑ, we see the Cheby-

shev polynomials as an orthogonal family. To any continuous function f we can
associate its Chebyshev coe�cients:

[f ]0 =
1

π

∫ π

0

f(cosϑ)dϑ [f ]n =
2

π

∫ π

0

f(cosϑ) cos(nϑ)dϑ (n ≥ 1)

Hence, the truncated Chebyshev series f [n] =
∑n
i=0[f ]iTi of f is simply the

orthogonal projection of f onto the �nite-dimensional subspace spanned by
T0, . . . , Tn. Analogously to Fourier series, Chebyshev series enjoy excellent ap-
proximation properties [5]. For example, if f is of class Cr over [−1, 1] with
r ≥ 1, then f [n] uniformly converges to f in O(n−r). Moreover, at �xed de-
gree n, the n-th truncated Chebyshev series f [n] is a near-best approximation
of f among degree n polynomials, with a factor growing relatively slowly, in
O(log(n)) [24].

Using these convergence results, one can easily identify a su�ciently smooth
function space with the space of corresponding Chebyshev coe�cients. Let's call
×1 the Banach space of continuous functions with absolutely summable Cheby-
shev series, and de�ne the associated norm ‖f‖×1 =

∑
i≥0 |[f ]i|. We obtain a

Banach algebra structure, for we have ‖fg‖×1 ≤ ‖f‖×1‖g‖×1 . Moreover, this
norm is a safe overestimation of the supremum norm ‖ · ‖∞ over [−1, 1]:

‖f‖×1 =
∑
i≥0

|[f ]i| ≥ sup
−1≤t≤1

∑
i≥0

|[f ]iTi(t)| ≥ sup
−1≤t≤1

|f(t)| = ‖f‖∞

2.1.2 Integral transform, almost-banded structure and e�cient nu-

merical solving algorithm In this article, we consider Linear Ordinary Dif-
ferential Equations (LODE) of the form:

y(r)(t) + ar−1(t)y(r−1)(t) + · · ·+ a1(t)y′(t) + a0(t)y(t) = g(t) (1)
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together with prescribed initial values at −1:

y(−1) = v0 y′(−1) = v1 . . . y(r−1)(−1) = vr−1 (2)

where ai, g : [−1,−1] → R are functions in ×1 approximated by a truncated
Chebyshev series, and y : [−1, 1] → R is the unknown function which we want
to approximate with a truncated Chebyshev series. For this, a common solution
is to rephrase the di�erential equation (1) into an equivalent integral equation.
For instance, as detailed in [6], one considers ϕ = y(r) as the unknown function
and expresses lower-order derivatives of y as integrals of ϕ. This gives:

ϕ+ K · ϕ = ψ where K · ϕ(t) =

∫ t

−1

k(t, s)ϕ(s)ds (3)

with k(t, s) a bivariate polynomial easily computed from the polynomials ai(t).
A symbolic computation shows that for i ∈ N, K · Ti is a polynomial with
non-zero Chebyshev coe�cients between indices 0 and h (initial coe�cients)
and between i − d and i + d (diagonal coe�cients), where the bandwidths h
and d directly depend on the maximum degree of the ai. Hence, the operator
K : ×1 → ×1 has a so-called almost-banded structure [26, 6] in the Chebyshev
basis, which is depicted on Figure 1.

Figure 1: Matrix representation of K in Chebyshev basis, truncated at order 20.
Almost-banded structure given by initial coe�cients (blue) and diagonal ones (green)

Following the general scheme of spectral Galerkin methods [5], we project

this problem into �nite dimension by taking the truncated operator K[n] =
ïn ·K·ïn where ïn is the orthogonal projection from ×1 to the �nite-dimensional
space spanned by T0, . . . , Tn. Now, it remains to determine the n+ 1 �rst (ap-
proximated) Chebyshev coe�cients of ϕ by solving the following �nite-dimensional
problem:

ϕ+ K[n] · ϕ = ψ

Such an almost-banded system is e�ciently solved using the algorithm presented
in [26]. The mathematical statements and proofs establishing the uniqueness
of the solution and the exponential convergence of the numerical truncated
solutions to the exact one are to be found in [6].

As a �nal remark, we note that this method can be extended to the vec-
torial case, where y, g : [−1, 1] → Rp and ai : [−1, 1] → Rp×p. To see
this, �rst notice that the integral transform can be applied as in the scalar
case described above. The resulting operator K : (×1)p → (×1)p is made of
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p × p (scalar) integral operators Kij : ×1 → ×1 as above (see Figure 2(a)).
By rearranging the basis of (×1)p from T0,1, T1,1, T2,1, . . . , T0,p, T1,p, T2,p, . . . to
T0,1, . . . , T0,p, T1,1, . . . , T1,p, . . . , where Ti,j designates the i-th Chebyshev poly-
nomial in the j-th component of Rp, we end up again with an almost-banded
structure depicted in Figure 2(b). Hence, the numerical solving essentially works
as in the scalar case.

(a) Block matrix representation of vec-
torial K

(b) Almost-banded structure of vecto-
rial K in the rearranged basis

Figure 2: Two representations of vectorial integral operator K

2.2 Validation method

Most of numerical solving methods for di�erential equations are justi�ed by
convergence theorems, estimating how fast the numerical approximations tend
to the exact solution when some parameter (number of discretization points,
degree of approximating polynomials, etc.) tends to in�nity. However, it often
appears that these estimates involve non-e�ective upper bounds (like a bound
on the k-th derivative of the solution). Moreover, they do not take into account
the inherent rounding errors of �oating-point arithmetics. For all these reasons,
such convergence results just state that asymptotically and for a su�ciently large
�oating-point precision, the solving method is well behaved, but nothing can be
said about a particular solution obtained with �nite parameters and precision.

The goal of validating techniques is to provide such e�ective and rigorous
error bounds for given approximations. Two main families with di�erent ap-
proaches may be distinguished:

• Self-validating methods construct an approximation together with a rig-
orous error bound at one time. In the context of di�erential equations,
they are often combined with iterative methods, bounding at each step
the error committed at the current discretization point and propagating
it for the following ones.

• A posteriori validation methods work in two times. First, the user pro-
vides an approximation of the solution, obtained with the procedure of
his choice. Then, the validation method computes a rigorous error bound
without knowing how this approximation was built.
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The paradigm of a posteriori validation methods is particularly well suited for
spectral methods. Since we explained in the previous section how to compute
approximate solutions for LODE (1), we can now suppose that some approxi-
mating truncated Chebyshev series is given and focus on the validation method
itself.

2.2.1 General ideas for designing a posteriori validation methods A
wide majority of a posteriori validation methods are based on Banach �xed-
point theorem and variations around it. Since this article only tackles linear
problems, this theorem can be stated in this simpli�ed version:

Theorem 1. Let (E, ‖·‖E) be a Banach space and T : E → E an a�ne operator
whose linear part DT is a bounded linear endomorphism. If T is contracting,
that is, if ‖DT‖E = µ < 1, then it admits a (necessarily unique) �xed point
x∗ ∈ E, solution of the equation:

T · x = x (4)

and for a given x̃ ∈ E, we have the following enclosure for its distance to x∗:

‖x̃−T · x̃‖E
1 + µ

≤ ‖x̃− x∗‖E ≤
‖x̃−T · x̃‖E

1− µ
(5)

Hence, designing a �xed-point based validation method for a linear problem
of the form F · x = y essentially boils down to rephrasing it as a �xed-point
equation T · x = x for some contracting a�ne operator T, which has to be
explicitly computable (in order to bound ‖x̃ − T · x̃‖E) and whose operator
norm can be e�ectively upper-bounded so to obtain a rigorous µ < 1.

A rather generic way to design such a contracting method is to use an adap-
tation of Newton's method to �nd zeros of maps [34], which can be used even for
non-linear problems. Here we sketch the idea in the linear case. Consider the
equation F · x = y, where F is a linear automorphism. Let A be an approxima-
tion of its inverse F−1. Then the unique solution is also the unique �xed-point
of T de�ned by:

T · x = x−A · (F · x− y) (6)

as soon as A is injective. The underlying idea is that if A is su�ciently close
to the inverse of F, then T will be contracting.

The remaining work then consists in �nding an appropriate A and bounding
the linear part of the resulting T. Such techniques are widely advocated in, for
example [34], but quite often, technical tools to design such a Newton opera-
tor are treated by hand for precise examples. On the contrary, the method we
present below is fully algorithmic over the general case of LODEs and imple-
mented into a C library.

2.2.2 Principles of our validation method Applying variations of New-
ton's methods to ODEs, even non-linear ones, is not a new idea per se (see
for examples instructive works [20]. Our method however aims at providing a
generic, fully automated and rather e�cient algorithm, which could be used as
part of a library for rigorous computing as a black box from the point of view
of the user.
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Considering again the integral reformulation (3) of the problem, we choose
a truncation index n and seek an approximate inverse A of I+K as an approx-
imation of the �nite-dimensional truncated operator I + K[n]. Unfortunately,
the inverse of this n+ 1 order almost-banded square matrix is dense in general.
However, we discuss in [6] the possibility to approximate this inverse with an
almost-banded matrix itself.

Having this A fully determines our Newton-like a�ne operator T : ϕ 7→
ϕ−A · (ϕ+ K · ϕ− ψ). Its linear part I−A · (I + K) may be bound using the
following decomposition of its operator norm:

‖I−A · (I + K)‖×1 ≤ ‖I−A · (I + K[n])‖×1 + ‖A · (K−K[n])‖×1 (7)

• The �rst term is the approximation error, sinceA is only an approximation
of (I+K[n])−1. It boils down to the computation of an n+ 1 order square
matrix using multiplications and additions, which is carried out using
interval arithmetics to avoid rounding errors.

• The second part is the truncation error, due to the fact that K[n] is only
a �nite-dimensional approximation of K.

The di�culty really lies in this second error term, obtained by uniformly
bounding ‖A · (K−K[n]) · Ti‖×1 with respect to i. A good bounding strategy
should avoid huge overestimations, for it would lead the method to choose far
larger values of n than needed to obtain a contracting T. We refer to [6] for a
detailed exposure of an e�cient technique we use for this purpose.

An extended discussion on the smallest value of n this validation method
allows to choose for the Newton-like operator T to be contracting and on the
overall complexity of the algorithm is engaged in [6]. The conclusion is that this
n su�ers an exponential bound with respect to the magnitude of the Cheby-
shev coe�cients of the ai, but that in practice, for a wide range of reasonable
examples, this method is quite e�cient and fully automated.

2.2.3 Extensions of the method Several extensions of the method are con-
sidered to treat a larger variety of LODEs:

• In many problems arising in physics, including the spacecraft dynamics
studied in this article, the coe�cients and right hand side in LODE (1)
are not polynomials (rational functions, special functions, etc.). If they
belong to ×1 and are given through truncated Chebyshev series with a
certi�ed error bound with respect to the ×1-norm, then the exact integral
operator K is non-polynomial but well approximated by the polynomial
integral operator KP obtained by replacing the true coe�cients by their
polynomial approximations. An additional term ‖A·(K−KP )‖×1 appends
to the two others in (7), but the essential ideas of the method remain
unchanged.

• Since we deal with linear problems only in this article, generalized bound-
ary values problems (BVP) can be rigorously solved by computing a basis
of certi�ed solutions. Though, we would like in the future to �nd an ad-
hoc method for such problems, since working with a basis of solutions and
recombine them could lead to worse conditioned numerical solutions and
overestimated error bounds.
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• Our validation method can also be generalized to the vectorial case. The
ongoing work of one of the authors aims to extend the framework of �xed-
point based validation to the vectorial case with individual tight error
bounds for each component of the solution to be validated. In the partic-
ular case of LODE validation, the tools involved in the one-dimensional
case are easily transposed to the vectorial case. This work is still not pub-
lished, but an implementation of the vectorial case is also included in the
C library and used in Section 4.

3 Linearized impulsive rendezvous using Tschauner

and Hempel equations and embedded model

predictive control

As a �rst example to our method presented in Section 2, we consider the lin-
earized relative motion of a satellite in Keplerian dynamics. In a moving Local-
Vertical-Local-Horizontal (LVLH) frame located at the target's position, let x, y
and z denote the relative position of the chaser along respectively the in-track,
cross-track and radial axes. In [33], Tschauner and Hempel show that by a
suitable change of independent variable from the time t to the true anomaly ν
and by working with rescaled coordinates (x̃, ỹ, z̃)T = (1 + e cos ν)(x, y, z)T , we
obtain the following linearized equations:

x̃′′(ν) = 2z̃′(ν) (8)

ỹ′′(ν) = −ỹ(ν) (9)

z̃′′(ν) =
3

1 + e cos ν
z̃(ν)− 2x̃′(ν) (10)

We observe that the in-plane motion (x̃ and z̃) is decoupled from the out-of-plane
motion (ỹ). The latter involves only one coordinate and is a simple harmonic
oscillator. The former involves two coordinates, but x̃′ can be easily eliminated
from the equation of z̃, which becomes:

z̃′′(ν) +

(
4− 3

1 + e cos ν

)
z̃(ν) = c (11)

where the constant c is de�ned from the initial conditions:

c = 4z̃(ν0)− 2x̃′(ν0) (12)

First, we analyze precisely in Section 3.1 how the method will work on this
example in order to produce an approximating Chebyshev expansion of the
trajectory and a rigorous error bound. This is done for pedagogical reasons,
but in practice the approximation and validation algorithms in the C library
run as a black box from the point of view of the user.

Then, in Section 3.2, we brie�y present the work of one of the author about a
predictive control algorithm for spacecraft rendezvous [1]. The underlying poly-
nomial optimization problem justi�es the need for low-degree but still accurate
polynomial approximations of the transition matrix.

Finally in Section 3.3, we use the power of the validation method to perform
an a posteriori veri�cation of an instance of rendezvous by providing a rigorous
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enclosure of the chaser's �nal position. This is particularly important for safety
critical missions.

3.1 Rigorous semi-analytical transition matrix for Tschauner-

Hempel equations

Before running the method on LODE 11, we �rst rescale the interval [ν0, νf ] to
[−1, 1] by introducing the independent variable τ ∈ [−1, 1] and letting ν(τ) =
ν0(1− τ)/2 + νf (1 + τ)/2 = ωτ + θ with ω = (νf − ν0)/2 and θ = (ν0 + νf )/2,
and Z(τ) = z(ν(τ)). We obtain:

Z ′′(τ) + ω2

(
4− 3

1 + e cos ν(τ)

)
Z(τ) = ω2c (13)

together with rescaled initial conditions:

Z(−1) = z(ν0) Z ′(−1) = ωz′(ν0)

In particular, we observe that the magnitude of the coe�cients in Equation (13)
grows quadratically with the length of the interval [ν0, νf ] over which we want
to approximate the trajectory.

3.1.1 Rigorous approximation of the coe�cient The �rst obstacle we
must face is that the coe�cient of Equation (13) is not polynomial because of
the function τ 7→ (1+e cos ν(τ))−1. Hence, our �rst task is to provide a rigorous
polynomial approximation for it.

The cosine function τ 7→ cos ν(τ) is approximated by applying our validation
method to the harmonic oscillator di�erential equation:

y′′(τ) + ω2y(τ) = 0 y(−1) = cos ν0 y′(−1) = −ω sin ν0

From this, we deduce a rigorous approximation of τ 7→ 1 + e cos ν(τ).
Finally, it must be composed with the reciprocal function. Numerical ap-

proximations can be obtained using interpolation at Chebyshev nodes, which
is a very standard and rather e�cient method [5]. Validation is performed
through another Newton-like �xed-point method. Without entering to deeply
into details, we sketch out the principle. Let f be a function in ×1, non-zero
over [−1, 1], to be inverted, and g = 1/f the solution function. We must solve
the functional equation fg − 1 = 0 of unknown g ∈ ×1 (the fact that g = 1/f
belongs to ×1 comes from Wiener's Tauberian theorem). If g0 is a polynomial
approximation of g satisfying ‖1− g0f‖×1 = µ < 1, then g is the unique �xed-
point of the a�ne operator T de�ned by T · g = g− g0(fg− 1) and of Lipschitz
constant µ < 1. Hence, Theorem 1 applies and provides an error enclosure for
any candidate approximation g̃ of g.

Figure 3(a) shows the evolution of the minimal degree p needed to approxi-
mate the coe�cient τ 7→ ω2(4 − 3/(1 + e cos ν(τ))) within a ×1-error less than
1, in function of the eccentricity e and the total time interval [ν0, νf ].

3.1.2 Integral transform and numerical solving Following the integral
transform technique described above, we let ϕ(τ) = Z ′′(τ), so that Z(τ) now
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becomes:

Z(τ) = Z(−1) + (τ + 1)Z ′(−1) +

∫ τ

−1

∫ s

−1

ϕ(u)du

= Z(−1) + (τ + 1)Z ′(−1) +

∫ τ

−1

(τ − s)ϕ(s)ds

We thus obtain the integral equation:

ϕ(τ) +

∫ τ

−1

α(τ)(τ − s)ϕ(s)ds = ω2c− α(τ)(Z(−1) + (τ + 1)Z ′(−1))

where α(τ) = 4− 3/(1 + e cos ν(τ)).
For the numerical solving, replace α(τ) by a polynomial approximation a(τ)

and proceed as in 2.1.2: truncate resulting in�nite-dimensional equations at a
chosen index n and solve the resulting almost-banded system using the algo-
rithm presented in [26] to obtain a polynomial approximation of degree n of the
solution.

3.1.3 Validation The validation method we presented in Section 2.2 is fully
automated. Hence, in this practical example, it just su�ces to provide to the
implemented procedure the di�erential equation (13) where α(τ) is given as a
polynomial approximation a(τ) together with the error bound ε, and the can-
didate polynomial approximate solution ϕ̃ obtained just above. The procedure
will return a rigorous upper bound of the approximation error, with respect to
the ×1-norm.

However, the timings strongly depend on the minimal value for the trunca-
tion index the method will be able to �nd in order to ensure that the obtained
operator is contracting. Figure 3(b) gives these values in function of the time
interval νf − ν0 and the eccentricity e of the target reference orbit. We stress
out the fact that these values only depend on the equation (that is, ν0, νf and
e) and not on the degree of the candidate approximate solution ϕ̃, since the
contracting operator T is completely independent of this approximation and
just need to be contracting.
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Figure 3: Parameters evolution during validation of LODE (13) in function of eccen-
tricity e and total time [ν0, νf ] = [0, 2κπ]
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The results exposed in Figure 3(b) show that a straightforward application
of the validation method tends to rapidly become time-consuming after about
10 periods. In next section, we explain how to exploit the periodicity of the
equation to validate a freely propagated trajectory over a large number of peri-
ods.

3.1.4 Long-term validated integration techniques Since Equation (11) is
2π-periodic, validating a transition matrix over [ν0, ν0 + 2π] is a good starting
point for most applications:

Φ̃(ν0, ν) =


x̃(i)(ν) x̃(ii)(ν) x̃(iii)(ν) x̃(iv)(ν)
z̃(i)(ν) z̃(ii)(ν) z̃(iii)(ν) z̃(iv)(ν)
x̃′(i)(ν) x̃′(ii)(ν) x̃′(iii)(ν) x̃′(iv)(ν)

z̃′(i)(ν) z̃′(ii)(ν) z̃′(iii)(ν) z̃′(iv)(ν)


Column of index (i), (resp. (ii), (iii) and (iv)) is a certi�ed approximation of
the in-plane trajectory corresponding to the initial conditions x̃(ν0) = 1 (resp.
z̃(ν0) = 1, x̃′(ν0) = 1 and z̃′(ν0) = 1), all the other initial values being set to 0.

To ensure validated propagation over several periods, two di�erent approaches
may be considered:

• This transition matrix can be used to provide a separate polynomial
approximation over each period [ν0 + 2kπ, ν0 + 2(k + 1)π]. Call J =

Φ̃(ν0, ν0 + 2π) the matrix of rigorous enclosures of the �nal states after
one period. The trajectory over period [ν0 + 2kπ, ν0 + 2(k + 1)π] is rigor-
ously approximated by:

x̃(ν)
z̃(ν)
x̃′(ν)
z̃′(ν)

 ∈ Φ̃(ν0, ν − 2kπ)Jk


x̃(ν0)
z̃(ν0)
x̃′(ν0)
z̃′(ν0)

 (14)

Several remarks should be made. First, this method does not provide a
uniform rigorous polynomial approximation over the whole time interval
under consideration. Then, if the entries of J are rather loose intervals,
which arises when Φ̃(ν0, ·) is made of low-degree polynomial approxima-
tions, then the intervals in Jk will rapidly become very large and all pre-
cision will be lost after a certain number of periods.

• In some situations however, we absolutely need a uniform polynomial ap-
proximation over the whole time interval. Following Section 3.1.2, we ob-
tain a polynomial approximation for the trajectoryX(ν) = (x̃(ν), z̃(ν), x̃′(ν), z̃′(ν))
over [ν0, νf ] where νf = ν0 + 2κπ. To perform an a posteriori valida-

tion, let's suppose that we have a tight enough transition matrix Φ̃(ν0, ·),
so that we can recover a very precise piecewise polynomial approxima-
tion (14). The �nal task is to bound the di�erence over each period
[ν0 + 2kπ, ν0 + 2(k + 1)π] (0 ≤ k < κ) between this very precise approxi-
mation and the candidate approximation X(ν) restricted over this period.
Remember however that all approximations are truncated Chebyshev se-
ries over [−1, 1] representing rescaled functions so that their de�nition in-
terval is [−1, 1]. Hence, for each period, X must be composed on the right
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by an a�ne time rescaling so to extract the desired time subinterval and
compare the resulting Chebyshev truncated series with the corresponding
precise approximation. Bounding this di�erence using the ×1-norm and
adding to it the rigorous error bound of the precise solution gives a safe
overestimation of the uniform error.

3.2 Embedded model predictive control using the certi�ed

polynomial transition matrices

The spacecraft rendezvous model with Tschauner-Hempel equations (8) can be
employed in the design and control of satellite trajectories. One of the ap-
plications of interest is the conception of MPC (model predictive control) for
automatically on-line computing the maneuvers for guiding the satellites to the
desired constrained trajectories (see [16]).

The method for obtaining rigorous polynomial approximations of the transi-
tion matrices presented in Section 2 is particularly well-suited for this purpose
because, since it is based on Chebyshev polynomials, the constraints and the cri-
terion to be optimized can be addressed by the parametrization of non-negative
polynomials on the cone of positive semide�nite matrices (see [25, 10, 2]).

In the sequel, we present the state propagation for the impulsive rendezvous
and the constraints related to this problem to lastly formulate the MPC opti-
mization problem.

3.2.1 Model predictive control intermediary problems formulation

Let be a d-dimensional linear time-variant dynamical system:

X = A(t)X +B(t)u (15)

where in our case A is the matrix corresponding to Tschauner-Hempel equa-
tions (8) (but could be an arbitrary linear model), for which the evolution of
the state can be represented by Φ̃, a rigorous polynomial approximation of its
transition matrix, as follows:

X(tN ) = Φ̃(t1, tN )X(t1) +

∫ tN

t1

Φ̃(s, tN )B(s)u(s)ds, (16)

where the vector u is the control and t1 and tN are respectively the initial
and �nal time of propagation of the state. In the case of impulsive spacecraft
rendezvous problems, the control thrusts are modeled as Dirac deltas, which
results in the following space-transition:

X(tN ) = Φ̃(t1, tN )X(t1) +

N∑
i=1

Φ̃(ti, tN )B(ti)u(ti), (17)

where the vectors ui (the decision variables) represent the impulsive velocity
corrections applied at instants ti and N is the number of impulses applied in
order to bring the satellite to the desired trajectory.

For proximity operations, the relative motion between spacecraft must re-
spect a�ne constraints, such as visibility cones, safety boundaries, hovering
zones, etc. These constraints are modeled as follows:

X ≤ HX(t) ≤ X, tj ≤ t ≤ tj+1, j = 1, . . . , N − 1 (18)
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where H ∈ Rk×d is a constant matrix and X,X ∈ Rk are the bounds.
The dead-zone and saturation constraints for the actuators can be taken into

account by the following inequalities:

ui ≤ u(ti) ≤ ui, i = 1, . . . , N (19)

The criterion to be minimized is the fuel-consumption, which is modeled by
the `1-norm or the `2-norm of the thrusts depending on the con�guration of the
actuators (see Fig. 4 and [29] for details):

Objective: min
u

N∑
i=1

‖ui‖p, p = 1 or 2 (20)

(a) Spacecraft controlled by three
pairs of axially symmetrically dis-
posed thrusters: p = 1.

(b) Spacecraft controlled by one single
thruster by gimbaling: p = 2.

Figure 4: Two possible con�gurations for the spacecraft thrusters.

The MPC strategy supposes that we have some a priori knowledge on the
behavior of the studied system (in our case, the state-transition). A criterion to
be minimized is formulated in function of the consumption related to the maneu-
vers that must be applied to steer the spacecrafts to a trajectory respecting the
imposed constraints and also in function of the predicted trajectory. This crite-
rion is then iteratively optimized (di�erent types of horizons can be adopted, see
[27] for details) and the consecutive application of the computed control actions
is supposed to steer the dynamical system to the desired trajectory.

Independently of the type of horizon strategy used, each instance of the
MPC optimization problem can be formulated via the relations (17), (18), (19)
and (20):

min
u

∑N
i=1 ‖ui‖p, p = 1 or 2

s.t.

 X(tN ) = Φ̃(t1, tN )X(t1) +
∑N
i=1 Φ̃(ti, tN )B(ti)u(ti)

X ≤ HX(t) ≤ X, tj ≤ t ≤ tj+1, j = 1, . . . , N − 1
ui ≤ u(ti) ≤ ui, i = 1, . . . , N

(21)
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3.2.2 Ongoing work and comparison with existing technique Our on-
going work consists in computing certi�ed semi-analytical polynomial transition
matrices Φ̃(ti, ·) of reasonable degree, in order to plug them into the optimiza-
tion problem (21) and solve it. In fact, since the certi�ed propagated state X(t)
is described by polynomials, the a�ne constraints can be rewritten as poly-
nomial non-negativity constraints. Using the parametrization of non-negative
polynomials on the cone of semide�nite positive matrices [25], the optimization
problem can then be reformulated into a SDP program. This type of opti-
mization problem has already been addressed in previous works on spacecraft
rendezvous [10, 1]. Particularly in the latter reference, a MPC algorithm based
on small SDP programs was tested on a device dedicated to space applications
(a AEROFLEX GAISLER GR-XC6S board containing a synthesized LEON3
microprocessor), showing good performances. Analogously, future experiments
would assess the on-board tractability of the SDP version of (21), focusing on
the analysis of the relation between the computational burden and the precision
of the polynomial approximations.

3.3 Validated Rendezvous

In open loop impulsive rendezvous problems, optimization algorithms like the
one described above to solve (21) determine the locations and values of the im-
pulsions to apply in order to reach the prescribed �nal position while minimizing
the total fuel consumption. In this section, we suppose given these impulsions.
Our goal is to certify the �nal position of the chaser, assuming linearized Kep-
lerian dynamics.

Having at hand algorithmic tools for certi�ed trajectory propagation (Sec-
tions 3.1.3 and 3.1.4), the principle for certi�ed rendezvous is quite simple. We
certify the free propagation of the chaser between each two impulses, thus obtain
a certi�ed enclosure of position and velocity before the next impulse, and �nally
update the velocity using the given value of the impulse. If time intervals under
considerations are rather short, then we directly apply the validation method
as in Section 3.1.3. On the contrary, for longer time intervals, techniques of
Section 3.1.4 should be preferred.

We can lead further the analysis by taking interval values for impulses, mod-
eling the fact that thrusters cannot be controlled with very high precision. This
results in interval values for initial conditions after the impulse. Here, the use
of a certi�ed transition matrix instead of a straightforward application of the
validation method with interval initial conditions is highly recommended, for
in the former case the interval initial conditions will only appear at the end as
they are multiplied by the transition matrix, whereas in the latter case, these
interval values will intervene in the Newton-like operator and produce extremely
overestimated error bounds.
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Semi-major axis 6763 km
Eccentricity 0.0052
Initial time ν0 = 0 rad.
Final time νf = 8.1832 rad.
Initial state (−30, 0.5, 8.514, 0) [km � m/s]
Final state (−100, 0, 0, 0) [m � m/s]

(a) Parameters of the mission

ν ∆ẋ [m/s] ∆ż [m/s]
0.0 -7.50230589 0.742372034

1.388128 -1.55579123 0.08834686
6.666595 0.62565013 0.03325936
8.183058 1.06509710 0.11440204

(b) Impulses found by numerical algorithm

degree x(νf ) z(νf ) ẋ(νf ) ż(νf )
25 -100 + [-2.6861e1, 2.6861e1] [-7.4084e0, 7.4084e0] [-1.8133e-2, 1.8133e-2] [-5.3675e-3, 5.3675e-3]
30 -100 + [-1.0035e-1, 1.0035e-1] [-2.7676e-2, 2.7676e-2] [-6.7741e-5, 6.7741e-5] [-2.0051e-5, 2.0051e-5]
40 -100 + [-2.3194e-5, 2.3190e-5] [-6.3956e-6, 6.3956e-6] [-1.5655e-8, 1.5655e-8] [-4.6336e-9, 4.6336e-9]
50 -100 + [-2.0321e-8, 1.6320e-8] [-5.0437e-9, 5.0607e-9] [-1.2358e-11, 1.2376e-11] [-3.6651e-12, 3.6555e-12]

(c) Final state, in function of the approximation degree. The brackets represent rigorously bounded uncertainties, e.g.
-100+[-3e1,3e1] means a value between -130 and -70.

Figure 5: A posteriori validation of ATV short rendezvous mission

4 Fuel optimal station keeping of a geostationary

spacecraft equipped with a low-thrust propul-

sion system

For geostationary spacecraft station keeping control purposes, the non linear
equations of motion can be linearized with respect to the station keeping point.
In contrast to Tschauner-Hempel equations, the system is here coupled and
will be hence a good illustration of the extension of the method presented in
Section 2 to the vectorial case.

Section 4.1 introduces the model for the station keeping of a geostationary
satellite with a low-thrust propulsion system and the linearization we will con-
sider. Section 4.2 is still ongoing work and aims at providing certi�ed polynomial
transition matrices, which could later be used in optimal control algorithms.

4.1 Description of the model

4.1.1 Minimum fuel non linear station keeping problem The position
and velocity of a satellite orbiting the Earth on a Geostationary Earth Orbit
(GEO) is described with the equinoctial orbital elements as de�ned in [3]:

xeoe =
[
a ex ey ix iy `MΘ

]T ∈ R6, (22)

where a is the semi-major axis, (ex, ey) the eccentricity vector components,
(ix, iy) the inclination vector components, `MΘ = ω + Ω + M − Θ is the mean
longitude where Ω is the right ascension of the ascending node, ω is the perigee's
argument, M is the mean anomaly and Θ(t) is the right ascension of the Green-
wich meridian. The dynamics of the satellite may be represented by the follow-
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ing non linear state-space model:

dxeoe
dt

= fL(xeoe, t) + fG(xeoe, t)u, (23)

where fL ∈ R6 is the Lagrange contribution part of the external forces. As
described in [32] or [31], the oblateness of the Earth gravitational potential, the
third-body attraction of the Sun and the Moon, as well as the Sun Radiation
Pressure (SRP) act as perturbations that make the spacecraft drift from its
nominal position.

fG ∈ R6×3 is the Gauss contribution part. u = [uR uT uN ]t ∈ R3 is the
control vector expressed in the local orbital RTN frame.

The geographical coordinates of the satellite:

yeoe = T (xeoe, t)xeoe, (24)

are of interest because the station keeping problem consists in constraining

them in the vicinity of the station position ysk =
[
rsk 0 λsk

]t
where rsk is

the synchronous radius and λsk is the station keeping geographical longitude.
Denoting δ the half width of the allowed station keeping window, the station
keeping requirements read:

|ϕ| 6 δ and |λ− λsk| ≤ δ, (25)

where ϕ and λ are respectively the geographic latitude and the geographic lon-
gitude of the spacecraft.

4.1.2 Linearization As the station keeping window size is very small with
respect to the distance to the Earth, it is possible to linearize the non linear
Equation 23. In order to express the station keeping problem, the relative state
of the satellite with respect to the station keeping state is de�ned as:

xsk = [ask 0 0 0 0 `MΘsk
]t, (26)

where ask is the synchronous semi-major axis and `MΘsk
is the station mean

longitude. This station keeping state is a �ctitious point evolving on a keplerian
(unperturbed) GEO orbit. It is de�ned such that the spacecraft mean motion
equals the Earth rotation rate. It is then straightforward that :

dxsk
dt

=

[
0 0 0 0 0

√
µ

a3
sk

− ωT
]

= 0, (27)

where ωT is the Earth rotation rate.
The relative dynamics equations are developed by linearization of Equation

(23) about the station keeping point (26). By denoting x = xeoe − xsk the
relative state model for the SK problem is computed as following:

dx

dt
=

dxeoe
dt
− dxsk

dt
,

= fL(xeoe, t) + fG(xeoe, t)u− 0,

≈ fL(xsk, t) +
∂fL(xeoe, t)

∂xeoe

∣∣∣∣
xeoe=xsk

x+ fG(xsk, t)u,

(28)
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assuming that the product of the state vector and the control vector com-
ponents are of order 2. The computations of Equation (28) allows to described
the motion of a geostationary satellite as the relative motion with respect with
a �ctitious point evolving on a keplerian GEO orbit and the dynamical model
reads:

dx

dt
= A(t)x+D(t) +B(t)u, (29)

where the matrices A ∈ R6×6 , B ∈ R6×3, C ∈ R3×6 and D ∈ R6 are de�ned as
follows:

A(t) =
∂ (fL(xeoe(t), t))

∂xeoe

∣∣∣∣
xeoe=xsk

, (30)

B(t) = fG(xsk, t), (31)

D(t) = fL(xsk, t), (32)

The relative geographical position with respect to the station-keeping posi-
tion is denoted by:

y = yeoe − ysk = T (xsk, t)x = C(t)x, (33)

and is obtained by linearizing Equation (24).
After the linearization, the station keeping requirements on the latitude and

the longitude of the spacecraft are expressed in terms of the state vector as:

|[0 1 0]C(t)x(t)| 6 δ and |[0 0 1]C(t)x(t)| 6 δ ∀t ∈ [0, T ], (34)

The linear GEO station keeping control problem is expressed as the following
optimal control problem:

min
u

∫ tf

t0

‖u(t)‖1dt,

s.t.


ẋ(t) = A(t)x(t) +D(t) +B(t)u(t),

x(t0) = x0,

|[0 1 0]C(t)x(t)| 6 δ,

|[0 0 1]C(t)x(t)| 6 δ,

(35)

where t0 is the initial time, tf is the station keeping horizon and x0 is the initial
state vector.

The reference [17] or [4] describe how the direct collocation methods can
be used in order to solve the optimal control problem. These methods rely on
a discretization of the state and control vectors over the time interval [ti, tf ],
with ti the initial time and tf the �nal time. The optimal control problem is
therefore transformed into a non linear programming problem.

The dimension of the unknown vector for the non linear programming prob-
lem can be reduced while eliminating the state vector, meaning that the state
di�erential equation of the system must be integrated explicitly. In the refer-
ence [13], the linear time varying system for the geostationary station keeping
problem is approximated assuming that the matrices are constant on each subin-
terval of the discretization, and an approximate state transition matrix can be
computed.
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The method proposed in Section 2 aims at using Chebyshev polynomials to
compute the state transition matrix. Doing so, the error made while integrating
the state dynamics can be estimated, and the time mesh can be well adjusted.

Another method for solving the minimum fuel station keeping problem de-
scribed in [12] can be improved by using the proposed state transition matrices
integration method. In order to optimize the commutation times of a bang-bang
control pro�le, the state dynamics and the derivative of the state dynamics with
respect to the commutation times have to be numerically integrated, what can
lead to long computation times in the case where the control pro�le commutes
frequently. The integration time could be reduced with the polynomial based
computation of the state transition matrix.

In order to express the relative GEO station keeping linear dynamical model,
the external perturbations have to be linearized. A �rst example is computed
for which only the so-called J2 perturbation is taken into account.

4.1.3 Geostationary station keeping with the J2 perturbation The only
perturbation taken into account in this simple example is the J2 term of the
Legendre decomposition of the Earth potential. The potential is given by (see
[9]):

E =
α

r3

(
3

2
sin2 ϕ− 1

2

)
, (36)

where r is the radius, ϕ is the geographical latitude and α = −µR2
TJ2. Ap-

plying the Lagrange perturbation theory expressed with the equinoctial orbital
elements (see [3]), the expression of the function fL(xeoe, t) from Equation (23)
can be found in [23].

Performing the linearization with respect to the �ctitious point evolving
on a keplerian geostationary orbit as proposed in the previous paragraph, the
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linearized dynamical model reads:

A(t) =



0
3α sinφs(t)

a2
s
√
µas

−3α cosφs(t)

a2
s
√
µas

−21α sinφs(t)

4a4
s
√
µas

6α cosφs(t) sinφs(t)

a3
s
√
µas

6α sin2 φs(t)

a3
s
√
µas

21α cosφs(t)

4a4
s
√
µas

−6α cos2 φs(t)

a3
s
√
µas

−6α cosφs(t) sinφs(t)

a3
s
√
µas

0 0 0
0 0 0

−3

2

√
µ

a5
s

+
21α sinφs(t)

2a4
s
√
µas

39α cosφs(t)

a3
s
√
µas

−39α sinφs(t)

4a3
s
√
µas

0 0 0

0 0
3α cosφs(t)

2a3
s
√
µas

0
3α sinφs(t)

2a3
s
√
µas

3α cosφs(t) sinφs(t)

a3
s
√
µas

−3α cos2 φs(t)

a3
s
√
µas

0

3α sin2 φs(t)

a3
s
√
µas

−3α cosφs(t) sinφs(t)

a2
s
√
µas

0

0 0 0


, (37)

and

D(t) =



0
3α sinφs(t)

2a3
s
√
µas

−3α cosφs(t)

2a3
s
√
µas

0
0

−3α

a3
s
√
µas

+

√
µ

a3
s

− ωT


, (38)

where φs(t) = `MΘ,sk + Θ(t)

4.2 Certi�ed semi-analytical transition matrices for geo-

stationary model

This section is still on-going work, but all the computations, with di�erent
parameters, shall be soon available.

4.2.1 Approximating Chebyshev expansion For the moment, we only had
time to perform a single computation to obtain a Chebyshev approximation of
degree 250 of the relative motion over 20 days. Results for the six components
are given in Figure 6.
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Figure 6: Numerical Chebyshev approximation for geostationary trajectory propa-
gation with J2 perturbation
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4.2.2 Validated transition matrices The same techniques for long-term
propagation as in Section 3.1.4 can be used, so that a contracting operator can
be computed for only one period. Concrete validation examples will be carried
out soon.

5 Conclusion and future developments

The �rst short term objective is to test our semi-analytical transition matrices
for several optimal control problems, like spacecraft rendezvous and geostation-
ary station keeping with several perturbations such as Earth oblateness, solar
and lunar attraction, atmospheric drag and solar radiation pressure. Focusing
on the design of on-the-�y autonomous control laws, we foresee embedding this
method on a board dedicated to space applications, evaluate the execution times
and assess the trade-o� between precision and computational burden.

A second short term objective is to propose several examples of propaga-
tion of uncertain initial conditions via our semi-analytical polynomial transition
matrix. When the uncertainties in the initial conditions are not uniformly dis-
tributed, we plan consider the generalization to other classes of orthogonal poly-
nomials, like Legendre polynomials, or Hermite polynomials. In fact, orthogonal
polynomials always satisfy a three-term-recurrence, so that the multiplication
and integration formulas remain similar, which should produce similar almost-
banded integral operators. Finally, we investigate the generalization of our
method to nonlinear dynamics, based on similar Newton-like iteration methods.
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