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EXTENSION OPERATOR FOR THE MIT BAG MODEL

N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

ABSTRACT. This paper is devoted to the construction of an extension operator
for the MIT bag Dirac operator on a C*!' bounded open set of R? in the spirit of
the extension theorems for Sobolev spaces. As an elementary byproduct, we prove
that the MIT bag Dirac operator is self-adjoint.
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1. INTRODUCTION

1.1. The MIT bag Dirac operator. In the whole paper, €2 denotes a fixed bounded
domain of R? with C*! boundary. The Planck constant and the velocity of light are
assumed to be equal to 1. Let us recall the definition of the Dirac operator associated
with the energy of a relativistic particle of mass m € R and spin 3 (see [12]). The
Dirac operator is a first order differential operator, acting on L*(2, C*) in the sense

of distributions, defined by
(1.1) H=a-D+mpg, D = —iV,
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2 N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

where a = (ay, ag, a3), 5 and 5 are the 4 x 4 Hermitian and unitary matrices given

by
(1 0 (0 I (0 o B
ﬁ_(() _12)>75—<12 0)>ak—(ak 0>fork—1,2,3.

Here, the Pauli matrices 01,09 and o3 are defined by

0 1 0 —2 1 0
01:<10>7 0-2:<7; O)) 03:<0_1)>

and a - X denotes 23:1 a;X; for any X = (Xj, X5, X3). Let us now impose the
boundary conditions under consideration in this paper and define the associated
unbounded operator.

Notation 1.1. In the following , I' := 02 and for all x € I', n(x) is the outward-
pointing unit normal to the boundary.

Definition 1.2. The MIT bag Dirac operator (HS!, Dom(HS)) is defined on the
domain

Dom(H) = {¢pe H'(Q,C*) : By =1 onT}, with B = —if(a-n),

by H® = Hip for all 1» € Dom(H}). Note that the trace is well-defined by a classical
trace theorem.

Notation 1.3. We will denote H = HS' when there is no risk of confusion. We
denote (-,-) the C* scalar product (antilinear w.r.t. the left argument) and (-, ),
the L? scalar product on the set U.

Remark 1.4. The operator (HS!, Dom(H$})) is symmetric (see Lemmal[A2)) and densely
defined.

Remark 1.5. The operator B defined for all x € I' is a Hermitian matrix which
satisfies B? = 14 so that its spectrum is {+1}. Both eigenvalues have multiplicity
two. Thus, the MIT bag boundary condition imposes the wavefunctions ¥ to be
eigenvectors of B associated with the eigenvalues +1 . This boundary condition is
chosen by the physicists [8] so as to get a vanishing normal flow at the bag surface
—in - j = 0 at the boundary I' where the current density j is defined by

J=<W, ).

Let us now describe our main result.
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1.2. Main result. The aim of this paper is to construct a bounded extension op-
erator from the domain of HS! into H'(R®)* in the spirit of extension operators for
Sobolev spaces (see for instance [6, Section 9.2]). As we will see, a motivation to con-
struct such an operator is to prove self-adjointness. Our main result is the following
one.

Theorem 1.6. Let 2 be a nonempty, bounded and C** open set in R® and m € R.
There exist a constant C' > 0 and an operator

P :Dom(H) — H'(R*)*
such that Piyq = and

1Pl < € (18 + o D¥lizg)) -
for all ) € Dom(H).
Corollary 1.7. The operator (H,Dom(H)) is self-adjoint.

Remark 1.8. The proofs of Theorem and Corollary [ rely on the construction
of an extension operator

P :Dom(H*") — H'(R*)*,

where H* is the adjoint of H. Thus,
Dom(H*) = H'(Q)*,

and then the inclusion Dom(H*) < Dom(H) easily follows. Since H is symmetric
(see Lemma [A2]), we get Dom(H*) = Dom(H).
Remark 1.9. Note that the existence of an extension operator

P :Dom(H*) — H'(R?*)*
is a necessary condition for H to be self-adjoint. Indeed, if H is self-adjoint, we have
the bounded injections:

Dom(H) = Dom(H*) — H*(Q)* — H'(R*)*.

To see this, let us recall that, if Q is C™', we have (see [I, Theorem 1.5] and [7,
p.379)):

1
(12)  oeDom(H), la-Vulug = [V6llm + 5 [ slulds,

where k is the trace of the Weingarten map. From this formula, we can show that the
injection Dom(H) = Dom(H*) — H'(Q)* is bounded. The embedding H'(2)* —
H'(R3)* is given by the extension theorem for Sobolev spaces (see for instance [9
Theorem 3.9]) which requires C%! regularity on .
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Remark 1.10. Self-adjointness results have already been obtained in the case of C*-
boundaries in [5] through Calderén projections and sophisticated pseudo-differential
techniques. In two dimensions, C*-boundaries are considered in [4] (see also [11])
by using Cauchy kernels and the Riemann mapping theorem. The recent paper
[10] tackles the three dimensions case for C? boundaries via Calderén projections.
The reader may also consult the survey [2] in the context of spin geometry or [3]
Theorem 4.11] devoted to the smooth case. Let us also mention that more general
local boundary conditions are considered in [5, [4].

2. PROOF OF THE MAIN THEOREM

We denote by .Z(FE, F') the set of continuous linear applications from E to F' where
E and F' are Banach spaces. We recall that the domain of H is independent of m:

Dom(H) = {¢ € H(Q)*, By =1 on 09},
and that the domain of the adjoint H* is defined by
Dom(H*) = {¢ € L*(Q)", Ly e Z(L*()",C)},
where
Ly :¢eDom(H)— (Y, Hp), € C.

The proof is divided in several steps. First, we construct an extension map on the
domain of the adjoint as follows.

Lemma 2.1. There exists an operator
P :Dom(H*) — H'(R?*)*
such that Piyq =1 and

1Pl < € (18 + o D¥liag)) -
for all ) € Dom(H™).
We get as a consequence that
Dom(H*) = H'(Q)*.

The second step in the proof of Theorem relies on a study of the boundary
conditions satisfied by the functions of Dom(H*).

Let us remark that, without loss of generality, we can assume that m = 0 since the
operator 8m is bounded (and self-adjoint) from L?(Q)?* into itself so that Dom(H*)
is independent of m.
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2.1. Extension operator in the half-space case. In this section, we consider the
case when 0 = R? and we establish the existence of an extension operator.

Lemma 2.2. There exists an operator
P :Dom(H*) — { e L*(R**, a- Dy e L*(R*)*} = H(R*)*
such that P%R{“; = and

HPwH%ﬂ(RS) = ‘|P¢|‘%Q(R3) + HVP@bH%?(RS) =2 (|\¢Hi2(mi) + [l D¢|\i2([@i)> -

Proof. The outward-pointing normal n is equal to —e3 = (0,0, —1)7 so that the
boundary condition is

ZBOé3¢ = ¢7

on 0R3. Let us diagonalize the matrix iy appearing in the boundary condition.

We introduce the matrix
1 1y i1,
T=—1 . .
V2 < ily 1y )
0 —ily

*x *x . x 03 0 _. 1RO
T8T _(ilg 0 ), ToyT* =y, T(ifas)T —( 0 , > =:5".

We have

We consider H = THT*. The operator H is defined by H Y = a - Dy for any

~

1 € Dom(H) where
Dom(H) = {¢ € H'(R?), B’ = ¢, on JR? }

(2.1) _ {¢ c Hl(Ri), ? =% =0 on aRi}

and ¢ = (P12 3 "7, This unitarily equivalent representation of the Dirac
operator is called the supersymmetric representation (see [12, Appendix 1.A]). This
expression of the domain makes more apparent the fact that the MIT bag boundary
condition is intermediary between the Dirichlet and Neumann boundary conditions.

Let us denote by S : R — R3 and II : R®> — R? the orthogonal symmetry with
respect to dR? and the orthogonal projection on dR? . Based on (2.1]), we define the

extension operator P for 1 € Dom(H*) as follows:

N Wl y, 2), ifz2>0
Pi(z,y,2) = { (WY, 2, — 3 M (z,y, —2) = B (1 0 S) (2,9, 2), ifz<0

for (z,y,z) € R3. 1In other words, we extend !, by symmetry and 2, ¢? by
antisymmetry.
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Let us get back to the standard representation and define the extention operator
P for ¢ € D(H*) and (z,y, 2) € R? as follows :

U(z,y, 2), if 2> 0,

Py(a,y,2) = T"PTY(@,y,2) = {(B olIl) (¢ o S)(x,y,2), ifz<D0.

Since B(s) is a unitary transformation of C* for any s € dR? | we get that
Pl = 20l
Let us study - DP1 in the distributional sense. We have for ¢ € D = C°(R?) that
{a-DPY,o)p . = (P, Dpyps = (i, - D@R{*‘; +{(Boll)yoS,a- Dp)ys

where (-, )5, p is the distributional bracket on R®. Since B is Hermitian, commutes
with aq, as and anti-commutes with a3, we obtain by a change of variables, that

(Bol)boS,a- Daygs = (oS, (Boll)a- Dy
=), —i (Boll) (an0y + a0y — a30,) @ 0 S>Ri =, a-D((Boll)po S)>Ri .

Hence, we get
<Oé'DP¢7gp>D’><D = <¢704D(g0+ (BOH)¢OS)>R1 .

Let us remark that the function ¢ + (BoIl) ¢ o S belongs to Dom(H). Indeed, we
have that

(Boll) (p + (Boll)poS)(z,y,0) = (¢ + (Boll)poS)(x,y,0)
for all (z,y) € R?. Since 1) € Dom(H*), by a change of variables, we have that

<a : DP?/J,90>D/><D = <Oé - Dy, (gp + (BOH)QPO S)>Ri
= (- D, p)gs +((Boll) (- D) oS, 0)ps -

Thus, we obtain that in the distributional sense
o DPY = xas (@ D) + xps (BoTl) (a- D) o S e L2(RY)

so that
|V P 2msy = lla - DPY|72gsy = 2] - Dw\|i2<m)-
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2.2. Proof of Lemma 2.1 Let us now consider the case of our general §). Let
us remark that the understanding of the case of the half-space is not sufficient to
conclude since curvature effects have to be taken into account (see for instance (L2])).
The proof of Lemma will be used as a guideline for the proof of Lemma 2.1

Proof. Using a partition of unity and the fact that
{fue L*(R*)*: a-Due L*(R*)*} = HY(R?)?,

we are reduced to study the case of a deformed half-space. Let us recall the standard
tubular coordinates near the boundary of €2 :

n:(UndQ)x (=T,T) — U,
(x0,t) — xg — tn(xg)

where 7' > 0 and U is a suitable bounded open set of R3. Since Q is C2, without loss
of generality, we can assume that 7 is a C!-diffeomorphism such that

n((UndQ) x (0,7)=0nU, n((Und)x{0})=00nU.

The rest of the proof is divided into four steps:

(a) we introduce a bounded extension operator P : L*(U n Q) — L*(U),
(b) we introduce a map & which extends the a-matrices on U so that, we have

|6 DPYlzzw) < € (132ano) + o DUlaann)

for any function v € Dom(H*) whose support is a compact subset of U N Q,
(¢c) we show that the norm || - |y defined on

V={veL*(U), a-Dve L*(U), suppv cc U}

by
[0 = [vlZ2 + & - Dov|7
is equivalent to the H' norm on CF(U),
(d) we deduce by a density argument that V < H}(U).

Note that the parts of the proof that are almost immediate in the cases of Sobolev
spaces have to be studied carefully. Here, the presence of the Dirac matrices introduce
some additional difficulties. We tried to stress where the differences occur and where
the regularity on €2 is needed.

Step [@). Let us define the symmetry ¢, = no Son~" and the projection ¢, =
nollon™t where S : (z,t) — (x,—t) and IT : (z,t) — (,0). For all xg € QN U,
let us denote by P(xg) the matrix of the identity map of R? from the canonical basis
(e1, €2, e3) to the orthonormal basis (€1(xg), €2(X0), n(xo)) defined by

P(xq) = Mat(ld, (e1, ea, €3), (€1(x0), €2(X0), n(x0))) ,

1
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where (€(Xo), €2(X¢)) is a basis of the tangent space Tx,0€2. Up to taking a smaller
T, we have, for all xg € 02N U,

10
Jac ¢5(x0) = P(x0)™' | 0 1
0 0

and, for all x € U,

(2.2)

DO | W

> |Jac ¢s(x)] := | det Jac ¢4(x)| =

N | —

Following the idea of the proof of Lemma 2.2 we define the extension operator
P:L*(UnQ)— L*U)

for v € L?(U n Q) and x € U as follows:

h(x), ifxeUnQ,
P _
V) {(Bo Op(X)) Yo ps(x), ifxelUnQe.

By (22]) and a change of variables, we get that
1PV 2y < ClYllzwae) -

Step (D). Let us extend the a-matrices as follows:

3(x) = (a, g, a3)T, ifxeUnQ,
[Jac ¢,(x)|B o ¢, (x) (Jac s (s(x)) (1, an, a5)T) Bo ¢,(x), ifxelUnQe.

Let us remark that &(x) is a column-vector of three matrices and the above matrix
product makes sense as a product in the modulus on the ring of the 4 x 4 Hermitian
matrices. For instance, the first matrix &;(x) is given for x € U n Q¢ by

&1 (x) = [Jac éy(x)|B o ¢,(x) (Z bl,kak> Bo ¢,(x)

k=1
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where Jac ¢s(¢5(x)) = (bi ;)i j=1.3 € R¥*3. We get for almost every xo € 02 n U that
[Jac ¢, (x0)|B © dp(x0) (Jac g, (95 (x0) ) (1, @, 3) ") B o ¢ (x0)

0 (03]

= B(XO) (P(Xo)l ( 01 )P(XQ) ( (0] )) B(Xo)
a - €1(xg)

= B(XQ) P(XQ)_l 0 (07 EQ(X(]) ( )
-1 n(xo)

= P(x0) 'B(xo) | e
_a .
a - €1(xg) ay
= P(Xo)_l (67 €2<X0) = [6%) .
Q- H(Xo) Qs
Hence, the application & is continuous on U. Since it is also a C*-map on both Q n U

and Q¢ N U, we get that a is Lipschitzian. This choice for the extension of « is made
in order to get

—_
—

o
o
i
&

oo, OO
—~—~ O RO OO
[a)

B
oo
N———
&=
%
S

&a-DPy e L*(U),
in the sense of distributions. Indeed, since & is Lipschitz, we get that, for o € H}(U),

<a : DP¢7 ()0>H*1(U)><H1 - <P¢7a DSO>U + <P¢ —Zle< )(p>UmQC .
For x € U n 2, we also have

(@ Vo) (os(x)) = [Jacds(ds(x))| (B o gpaBBody) -V (pods)(x)
and thus

(@ Vo) (ds(x)) = [Jac ds(¢s(x))| B o ¢y (o V ((Bogy)p o ds)) (x)
— [Jac s (¢s(x))| Bo @y (a- V(B ogy,)) pods(x).
We deduce that

<P¢752 : D§0>Uch = <¢704 : D((BO ¢p) gOO ¢S)>Umﬂ

=W (- D(Bogy) o ds)yng -

Since 1) € Dom(H*) and the function ¢ + (Bo¢,) o ¢s: QU — C* belongs to
Dom(H) (since ¢, and ¢, are C'), we get that

(a-DPy, S0>H*1(U)><H6(U) ={a DY, o+ (Body) 9o ds)y.g+ (P, Ry qc
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where R e L®(U n Q°,C**1) is defined by

R = —idiv(a) + i[Jac ¢s|B o ¢, (Jac ¢, (95 () (a1, a2, a3)") - V(B o ) .
By the Riesz theorem, we get & - DPv € L*(U) and

& DPY 1) < O ([9l0 + o Diliage )

where C' > 0 does not depend on .
Step [@). Let ¢ € C(U), we have

| —ia- VSOH%%U) = {p, (—ia- V)2‘P>U (p, div(@) (@ V@) qe

and

(—i = — Z a]aké’ o+ (a0500) O -

7,k=1
Let us define the matrix-valued function A for all x € U by

A(x) = Hac gs(x)[(Jac ¢5(¢s(x)))xvnoe (%) + Laxvna(x) = (a(x))
and denote by A;(x) the j-th line of A(x). We get that, for all x e U,

&J(x)&k( ) = B O (bp (aleél + CLjQOéQ + CLj3Oég) (aklal + Qpoio + ak3043) B e} (bp

(Z aﬂ%l) 1y +Bog, ( Z o (ajiags — ajsakz)> Bo ¢,

=1 1<l<s<3

and
3

3
~ o~ A2 AT A2
jk=1

j,k=1

Since, AAT(x) = 13 for all x € U n 09, we get that x — AAT(x) is a Lipschitz
mapping on U and

3
Z ;005 = Lydiv (AATV) =1, ) (6;,447) 0
Ji:k=1 7, k=1

Integrating by parts yields
| — i@ Veoliew = 1ATVel ) — Clel o Vel w)
> c|Voliaw — Clela Vel 2w

where
¢ = min{inf sp(AA” (x)), x e U}.
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Note that ¢ > 0 by (22)). This ensures that the H'-norm and the | - ||,y-norm are
equivalent on Ci°(U).
Step (). Let v eV and (p.). a mollifier defined for x € R? by
1 X
09 = 5 ()

where py € Cf°(R?), supp p1 < B(0,1), p1 = 0and |py|z1 = 1. Let us define v. = v=p,
for any € > 0. There exists g9 > 0 such that for all £ € (0, g¢], the function v, belongs
to C°(U). Let us temporarily admit that there exists C' independent of v and ¢ such
that

(2.3) [vellv < Cl]y.

Then, Step (@) and the fact that v. converges to v in L*(U) ensure that V < H}(U)
and the result follows.
It remains to prove (Z3]). There exists a constant C' > 0 such that

[vellz> < Cllo] 22
and
Ve — (@ Vo) = pe|p2 + [ (@ Vv) = pe| 2
Vv — (@ Vo) = pelze + Cl& - Vol 2.
By integration by parts, we get, for x € U,
a-Vo(x) — (@ Vv) * p.(x)
- | 360 e Vntx =) dy - | @) Vowinx - y)ay

R3

|6 Dvg| 2 <
<

= fRS (A(x) —a(y)) - (v(y)Vpe(x —y)) dy + f (diva(y)) v(y)p-(x —y)dy,

R3
and by a change of variable

| @) a0 () Vputx = y) ay

B fRs e i(x —2) (o(x — 22)V 1)) da.

Since & is Lipschitzian, we get that

fw M) = 8C=22) (o ca)Vpi(2)) dz

£

< Clof el -V e O s

L2

and

| taivae) et —x)dy

< Ol -,
L2
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so that (23) follows. This ends the proof of Lemma 211 O

2.3. Proof of Corollary .7l Thanks to Lemma 21l the set Dom(H™*) is included
in H'(Q2)*. Hence, for any 1 € Dom(H*), the trace of ¢ on the set 9 is well-defined
and belongs to H?(9Q)*. By the definition of Dom(H*) and an integration by parts,
we obtain that, for any ¢ € Dom(H),

Hence, we have, for almost any s € 0f2,
Bi(s) € ker(B — 14)" = ker(B + 1) ,

so that
U(s) € ker(B —14),

and the conclusion follows.

APPENDIX A. SOME ELEMENTARY PROPERTIES
Lemma A.1. For all x,y € R?, we have
(a-x)(a-y) = (x-y)la + i (x xy),
Bla-x)=—(a-x)B, Py =—70,
Ys(a-x) = (- X)75.
Proof. We refer to [12, Appendix 1.B]. O
In the following lemma, we recall the proof of the symmetry of H.

Lemma A.2. (H,Dom(H)) is a symmetric operator.

Proof. Since the a-matrices are Hermitian, we have, thanks to the Green-Riemann
formula:

(A1) Veo,ve HY(Q,CY, {a- D, yg = {p,a- Dby, + {(—ia-n)p, V), -

Now we consider v, o € Dom(H). By using 3% = 1, and the boundary condition, we
get

<(—ZCY : n)@? ¢>8Q = <5(pa ¢>aQ 5

so that, we deduce

(A2) VYo eD(H), La-Dphg—{p,a Dig =B, -

The left hand side of (A.2) is a skew-Hermitian expression of (p,) and the right
hand side is Hermitian in (p,%) since § is Hermitian. Thus both sides must be
Z€ero. 0
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