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EXTENSION OPERATOR FOR THE MIT BAG MODEL

N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

Abstract. This paper is devoted to the construction of an extension operator
for the MIT bag Dirac operator on a C2,1 bounded open set of R3 in the spirit of
the extension theorems for Sobolev spaces. As an elementary byproduct, we prove
that the MIT bag Dirac operator is self-adjoint.
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1. Introduction

1.1. TheMIT bag Dirac operator. In the whole paper, Ω denotes a fixed bounded
domain of R3 with C2,1 boundary. The Planck constant and the velocity of light are
assumed to be equal to 1. Let us recall the definition of the Dirac operator associated
with the energy of a relativistic particle of mass m P R and spin 1

2
(see [12]). The

Dirac operator is a first order differential operator, acting on L2pΩ,C4q in the sense
of distributions, defined by

(1.1) H “ α ¨D ` mβ , D “ ´i∇ ,
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where α “ pα1, α2, α3q, β and γ5 are the 4 ˆ 4 Hermitian and unitary matrices given
by

β “
ˆ

12 0
0 ´12

˙
, γ5 “

ˆ
0 12
12 0

˙
, αk “

ˆ
0 σk
σk 0

˙
for k “ 1, 2, 3 .

Here, the Pauli matrices σ1, σ2 and σ3 are defined by

σ1 “
ˆ

0 1
1 0

˙
, σ2 “

ˆ
0 ´i
i 0

˙
, σ3 “

ˆ
1 0
0 ´1

˙
,

and α ¨ X denotes
ř

3

j“1
αjXj for any X “ pX1, X2, X3q. Let us now impose the

boundary conditions under consideration in this paper and define the associated
unbounded operator.

Notation 1.1. In the following , Γ :“ BΩ and for all x P Γ, npxq is the outward-
pointing unit normal to the boundary.

Definition 1.2. The MIT bag Dirac operator pHΩ
m,DompHΩ

mqq is defined on the
domain

DompHΩ

mq “ tψ P H1pΩ,C4q : Bψ “ ψ on Γu , with B “ ´iβpα ¨ nq ,

by HΩ
mψ “ Hψ for all ψ P DompHΩ

mq. Note that the trace is well-defined by a classical
trace theorem.

Notation 1.3. We will denote H “ HΩ
m when there is no risk of confusion. We

denote x¨, ¨y the C4 scalar product (antilinear w.r.t. the left argument) and x¨, ¨yU
the L2 scalar product on the set U .

Remark 1.4. The operator pHΩ

m,DompHΩ

mqq is symmetric (see Lemma A.2) and densely
defined.

Remark 1.5. The operator B defined for all x P Γ is a Hermitian matrix which
satisfies B2 “ 14 so that its spectrum is t˘1u. Both eigenvalues have multiplicity
two. Thus, the MIT bag boundary condition imposes the wavefunctions ψ to be
eigenvectors of B associated with the eigenvalues `1 . This boundary condition is
chosen by the physicists [8] so as to get a vanishing normal flow at the bag surface
´in ¨ j “ 0 at the boundary Γ where the current density j is defined by

j “ xψ, αψy .

Let us now describe our main result.
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1.2. Main result. The aim of this paper is to construct a bounded extension op-
erator from the domain of HΩ

m into H1pR3q4 in the spirit of extension operators for
Sobolev spaces (see for instance [6, Section 9.2]). As we will see, a motivation to con-
struct such an operator is to prove self-adjointness. Our main result is the following
one.

Theorem 1.6. Let Ω be a nonempty, bounded and C2,1 open set in R3 and m P R.

There exist a constant C ą 0 and an operator

P : DompHq Ñ H1pR3q4

such that Pψ|Ω “ ψ and

}Pψ}2H1pR3q ď C
´

}ψ}2L2pΩq ` }α ¨Dψ}2L2pΩq

¯
,

for all ψ P DompHq.
Corollary 1.7. The operator pH,DompHqq is self-adjoint.

Remark 1.8. The proofs of Theorem 1.6 and Corollary 1.7 rely on the construction
of an extension operator

P : DompH‹q Ñ H1pR3q4 ,
where H‹ is the adjoint of H . Thus,

DompH‹q Ă H1pΩq4 ,
and then the inclusion DompH‹q Ă DompHq easily follows. Since H is symmetric
(see Lemma A.2), we get DompH‹q “ DompHq.
Remark 1.9. Note that the existence of an extension operator

P : DompH‹q Ñ H1pR3q4

is a necessary condition for H to be self-adjoint. Indeed, if H is self-adjoint, we have
the bounded injections:

DompHq “ DompH‹q ãÑ H1pΩq4 ãÑ H1pR3q4 .
To see this, let us recall that, if Ω is C1,1, we have (see [1, Theorem 1.5] and [7,
p.379]):

(1.2) @ψ P DompHq , }α ¨ ∇ψ}2L2pΩq “ }∇ψ}2L2pΩq ` 1

2

ż

BΩ

κ|ψ|2 ds ,

where κ is the trace of the Weingarten map. From this formula, we can show that the
injection DompHq “ DompH‹q ãÑ H1pΩq4 is bounded. The embedding H1pΩq4 ãÑ
H1pR3q4 is given by the extension theorem for Sobolev spaces (see for instance [9,
Theorem 3.9]) which requires C0,1 regularity on Ω.
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Remark 1.10. Self-adjointness results have already been obtained in the case of C8-
boundaries in [5] through Calderón projections and sophisticated pseudo-differential
techniques. In two dimensions, C2-boundaries are considered in [4] (see also [11])
by using Cauchy kernels and the Riemann mapping theorem. The recent paper
[10] tackles the three dimensions case for C2 boundaries via Calderón projections.
The reader may also consult the survey [2] in the context of spin geometry or [3,
Theorem 4.11] devoted to the smooth case. Let us also mention that more general
local boundary conditions are considered in [5, 4].

2. Proof of the main theorem

We denote by L pE, F q the set of continuous linear applications from E to F where
E and F are Banach spaces. We recall that the domain of H is independent of m:

DompHq “ tψ P H1pΩq4, Bψ “ ψ on BΩu ,
and that the domain of the adjoint H‹ is defined by

DompH‹q “ tψ P L2pΩq4, Lψ P L pL2pΩq4,Cqu ,
where

Lψ : ϕ P DompHq ÞÑ xψ,Hϕy
Ω

P C .

The proof is divided in several steps. First, we construct an extension map on the
domain of the adjoint as follows.

Lemma 2.1. There exists an operator

P : DompH‹q Ñ H1pR3q4

such that Pψ|Ω “ ψ and

}Pψ}2H1pR3q ď C
´

}ψ}2L2pΩq ` }α ¨Dψ}2L2pΩq

¯
,

for all ψ P DompH‹q.

We get as a consequence that

DompH‹q Ă H1pΩq4.
The second step in the proof of Theorem 1.6 relies on a study of the boundary
conditions satisfied by the functions of DompH‹q.

Let us remark that, without loss of generality, we can assume that m “ 0 since the
operator βm is bounded (and self-adjoint) from L2pΩq4 into itself so that DompH‹q
is independent of m.
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2.1. Extension operator in the half-space case. In this section, we consider the
case when Ω “ R3

` and we establish the existence of an extension operator.

Lemma 2.2. There exists an operator

P : DompH‹q Ñ tψ P L2pR3q4, α ¨Dψ P L2pR3q4u “ H1pR3q4

such that Pψ|R3

`
“ ψ and

}Pψ}2H1pR3q “ }Pψ}2L2pR3q ` }∇Pψ}2L2pR3q “ 2
´

}ψ}2
L2pR3

`
q ` }α ¨Dψ}2

L2pR3

`
q

¯
.

Proof. The outward-pointing normal n is equal to ´e3 “ p0, 0,´1qT so that the
boundary condition is

iβα3ψ “ ψ ,

on BR3
`. Let us diagonalize the matrix iβα3 appearing in the boundary condition.

We introduce the matrix

T “ 1?
2

ˆ
12 i12
i12 12

˙
.

We have

TβT ‹ “
ˆ

0 ´i12
i12 0

˙
, TαkT

‹ “ αk , T piβα3qT ‹ “
ˆ
σ3 0
0 ´σ3

˙
“: B0 .

We consider rH “ THT ‹. The operator rH is defined by rHψ “ α ¨ Dψ for any

ψ P Domp rHq where

Domp rHq “
 
ψ P H1pR3

`q, B0ψ “ ψ, on BR3

`

(

“
 
ψ P H1pR3

`q, ψ2 “ ψ3 “ 0 on BR3

`

((2.1)

and ψ “ pψ1, ψ2, ψ3, ψ4qT . This unitarily equivalent representation of the Dirac
operator is called the supersymmetric representation (see [12, Appendix 1.A]). This
expression of the domain makes more apparent the fact that the MIT bag boundary
condition is intermediary between the Dirichlet and Neumann boundary conditions.

Let us denote by S : R3 Ñ R
3 and Π : R3 Ñ R

3 the orthogonal symmetry with
respect to BR3

` and the orthogonal projection on BR3

`. Based on (2.1), we define the

extension operator rP for ψ P Domp rH‹q as follows:

rPψpx, y, zq “
"
ψpx, y, zq, if z ą 0
pψ1,´ψ2,´ψ3, ψ4qT px, y,´zq “ B0 pψ ˝ Sq px, y, zq, if z ă 0

for px, y, zq P R3. In other words, we extend ψ1, ψ4 by symmetry and ψ2, ψ3 by
antisymmetry.
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Let us get back to the standard representation and define the extention operator
P for ψ P DpH‹q and px, y, zq P R3 as follows :

Pψpx, y, zq “ T ‹ rPTψpx, y, zq “
#
ψpx, y, zq, if z ą 0,

pB ˝ Πq pψ ˝ Sq px, y, zq, if z ă 0.

Since Bpsq is a unitary transformation of C4 for any s P BR3
`, we get that

}Pψ}2L2pR3q “ 2}ψ}2
L2pR3

`
q.

Let us study α ¨DPψ in the distributional sense. We have for ϕ P D “ C8
0

pR3q that

xα ¨ DPψ, ϕy
D1ˆD

“ xPψ, α ¨Dϕy
R3 “ xψ, α ¨Dϕy

R3

`

` xpB ˝ Πqψ ˝ S, α ¨Dϕy
R3

´

where x¨, ¨y
D1ˆD

is the distributional bracket on R3. Since B is Hermitian, commutes
with α1, α2 and anti-commutes with α3, we obtain by a change of variables, that

xpB ˝ Πqψ ˝ S, α ¨ Dϕy
R3

´

“ xψ ˝ S, pB ˝ Πqα ¨Dϕy
R3

´

“ xψ,´i pB ˝ Πq pα1Bx ` α2By ´ α3Bzqϕ ˝ Sy
R3

`

“ xψ, α ¨ D ppB ˝ Πqϕ ˝ Sqy
R3

`

.

Hence, we get

xα ¨DPψ, ϕy
D1ˆD

“ xψ, α ¨D pϕ ` pB ˝ Πqϕ ˝ Sqy
R3

`

.

Let us remark that the function ϕ ` pB ˝ Πqϕ ˝ S belongs to DompHq. Indeed, we
have that

pB ˝ Πq pϕ ` pB ˝ Πqϕ ˝ Sq px, y, 0q “ pϕ ` pB ˝ Πqϕ ˝ Sq px, y, 0q

for all px, yq P R2. Since ψ P DompH‹q, by a change of variables, we have that

xα ¨DPψ, ϕy
D1ˆD

“ xα ¨Dψ, pϕ ` pB ˝ Πqϕ ˝ Sqy
R3

`

“ xα ¨Dψ,ϕy
R3

`

` xpB ˝ Πq pα ¨Dψq ˝ S, ϕy
R3

´

.

Thus, we obtain that in the distributional sense

α ¨DPψ “ χR3

`
pα ¨ Dψq ` χR3

´
pB ˝ Πq pα ¨Dψq ˝ S P L2pR3q

so that

}∇Pψ}2L2pR3q “ }α ¨DPψ}2L2pR3q “ 2}α ¨ Dψ}2
L2pR3

`
q .

�
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2.2. Proof of Lemma 2.1. Let us now consider the case of our general Ω. Let
us remark that the understanding of the case of the half-space is not sufficient to
conclude since curvature effects have to be taken into account (see for instance (1.2)).
The proof of Lemma 2.2 will be used as a guideline for the proof of Lemma 2.1.

Proof. Using a partition of unity and the fact that

tu P L2pR3q4 : α ¨Du P L2pR3q4u “ H1pR3q4,
we are reduced to study the case of a deformed half-space. Let us recall the standard
tubular coordinates near the boundary of Ω :

η : pU X BΩq ˆ p´T, T q ÝÑ U,

px0, tq ÞÑ x0 ´ tnpx0q
where T ą 0 and U is a suitable bounded open set of R3. Since Ω is C2, without loss
of generality, we can assume that η is a C1-diffeomorphism such that

ηppU X BΩq ˆ p0, T qq “ Ω X U , ηppU X BΩq ˆ t0uq “ BΩ X U .

The rest of the proof is divided into four steps:

(a) we introduce a bounded extension operator P : L2pU X Ωq Ñ L2pUq,
(b) we introduce a map α̃ which extends the α-matrices on U so that, we have

}α̃ ¨DPψ}L2pUq ď C
´

}ψ}2L2pΩXUq ` }α ¨Dψ}2L2pΩXUq

¯
,

for any function ψ P DompH‹q whose support is a compact subset of U X Ω,
(c) we show that the norm } ¨ }V defined on

V “ tv P L2pUq, α̃ ¨ Dv P L2pUq, supp v ĂĂ Uu
by

}v}2
V

“ }v}2L2 ` }α̃ ¨Dv}2L2

is equivalent to the H1 norm on C8
0 pUq,

(d) we deduce by a density argument that V Ă H1

0
pUq.

Note that the parts of the proof that are almost immediate in the cases of Sobolev
spaces have to be studied carefully. Here, the presence of the Dirac matrices introduce
some additional difficulties. We tried to stress where the differences occur and where
the regularity on Ω is needed.

Step (a). Let us define the symmetry φs “ η ˝ S ˝ η´1 and the projection φp “
η ˝ Π ˝ η´1, where S : px, tq ÞÑ px,´tq and Π : px, tq ÞÑ px, 0q. For all x0 P BΩ X U ,
let us denote by P px0q the matrix of the identity map of R3 from the canonical basis
pe1, e2, e3q to the orthonormal basis pǫ1px0q, ǫ2px0q,npx0qq defined by

P px0q “ MatpId, pe1, e2, e3q, pǫ1px0q, ǫ2px0q,npx0qqq ,
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where pǫ1px0q, ǫ2px0qq is a basis of the tangent space T
x0

BΩ. Up to taking a smaller
T , we have, for all x0 P BΩ X U ,

Jac φspx0q “ P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚P px0q ,

and, for all x P U ,

(2.2)
3

2
ě |Jac φspxq| :“ | det Jac φspxq| ě 1

2
.

Following the idea of the proof of Lemma 2.2, we define the extension operator

P : L2pU X Ωq Ñ L2pUq

for ψ P L2pU X Ωq and x P U as follows:

Pψpxq “
#
ψpxq, if x P U X Ω ,

pB ˝ φppxqqψ ˝ φspxq, if x P U X Ωc.

By (2.2) and a change of variables, we get that

}Pψ}L2pUq ď C}ψ}L2pUXΩq .

Step (b). Let us extend the α-matrices as follows:

rαpxq “
#

pα1, α2, α3qT , if x P U X Ω,

|Jacφspxq|B ˝ φppxq
`
Jacφspφspxqqpα1, α2, α3qT

˘
B ˝ φppxq , if x P U X Ωc .

Let us remark that rαpxq is a column-vector of three matrices and the above matrix
product makes sense as a product in the modulus on the ring of the 4ˆ 4 Hermitian
matrices. For instance, the first matrix rα1pxq is given for x P U X Ωc by

rα1pxq “ |Jacφspxq|B ˝ φppxq
˜

3ÿ

k“1

b1,kαk

¸
B ˝ φppxq
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where Jacφspφspxqq “ pbi,jqi,j“1,3 P R3ˆ3. We get for almost every x0 P BΩ X U that

|Jacφspx0q|B ˝ φppx0q
`
Jacφspφspx0qqpα1, α2, α3qT

˘
B ˝ φppx0q

“ Bpx0q

¨
˝P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚P px0q

¨
˝

α1

α2

α3

˛
‚
˛
‚Bpx0q

“ Bpx0q

¨
˝P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚
¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q
α ¨ npx0q

˛
‚
˛
‚Bpx0q

“ P px0q´1
Bpx0q

¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q

´α ¨ npx0q

˛
‚Bpx0q

“ P px0q´1

¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q
α ¨ npx0q

˛
‚“

¨
˝

α1

α2

α3

˛
‚.

Hence, the application α̃ is continuous on U . Since it is also a C1-map on both Ω X U

and Ωc X U , we get that α̃ is Lipschitzian. This choice for the extension of α is made
in order to get

rα ¨DPψ P L2pUq ,
in the sense of distributions. Indeed, since α̃ is Lipschitz, we get that, for ϕ P H1

0
pUq,

xrα ¨DPψ, ϕy
H´1pUqˆH1

0
pUq “ xPψ, rα ¨Dϕy

U
` xPψ,´idivprαqϕy

UXΩc .

For x P U X Ω, we also have

prα ¨ ∇ϕqpφspxqq “ |Jacφspφspxqq| pB ˝ φpαB ˝ φpq ¨ ∇ pϕ ˝ φsq pxq
and thus

prα ¨ ∇ϕqpφspxqq “ |Jacφspφspxqq|B ˝ φp pα ¨ ∇ ppB ˝ φpqϕ ˝ φsqq pxq
´ |Jacφspφspxqq|B ˝ φp pα ¨ ∇pB ˝ φpqqϕ ˝ φspxq .

We deduce that

xPψ, rα ¨DϕyUXΩc “ xψ, α ¨D ppB ˝ φpqϕ ˝ φsqy
UXΩ

´ xψ, pα ¨D pB ˝ φpqqϕ ˝ φsyUXΩ
.

Since ψ P DompH‹q and the function ϕ ` pB ˝ φpqϕ ˝ φs : Ω X U Ñ C
4 belongs to

DompHq (since φs and φp are C1), we get that

xrα ¨ DPψ, ϕyH´1pUqˆH1

0
pUq “ xα ¨Dψ,ϕ ` pB ˝ φpqϕ ˝ φsyUXΩ

` xPψ,RϕyUXΩc ,
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where R P L8pU X Ωc,C4ˆ4q is defined by

R “ ´i divprαq ` i|Jacφs|B ˝ φp
`
Jacφspφsp¨qqpα1, α2, α3qT

˘
¨ ∇pB ˝ φpq .

By the Riesz theorem, we get rα ¨DPψ P L2pUq and

}α̃ ¨DPψ}L2pUq ď C
´

}ψ}2L2pΩq ` }α ¨ Dψ}2L2pΩq

¯
,

where C ą 0 does not depend on ψ.
Step (c). Let ϕ P C8

0
pUq, we have

} ´ irα ¨ ∇ϕ}2L2pUq “ xϕ, p´irα ¨ ∇q2ϕyU ´ xϕ, divprαq prα ¨ ∇ϕqyUXΩc

and

p´irα ¨ ∇q2 “ ´
3ÿ

j,k“1

rαjrαkB2

jk ` prαjBjrαkq Bk .

Let us define the matrix-valued function A for all x P U by

Apxq “ |Jacφspxq|pJacφspφspxqqqχUXΩcpxq ` 13χUXΩpxq “ pajkpxqqjk
and denote by Ajpxq the j-th line of Apxq. We get that, for all x P U ,

rαjpxqrαkpxq “ B ˝ φp paj1α1 ` aj2α2 ` aj3α3q pak1α1 ` ak2α2 ` ak3α3qB ˝ φp

“
˜

3ÿ

l“1

ajlakl

¸
14 ` B ˝ φp

˜
ÿ

1ďlăsď3

αlαs pajlaks ´ ajsaklq
¸
B ˝ φp

and
3ÿ

j,k“1

rαjrαkB2

jk “ 14

3ÿ

j,k“1

AjA
T
k B2

jk .

Since, AAT pxq “ 13 for all x P U X BΩ, we get that x ÞÑ AAT pxq is a Lipschitz
mapping on U and

3ÿ

j,k“1

rαjrαkB2

jk “ 14 div
`
AAT∇

˘
´ 14

3ÿ

j,k“1

`
BjAAT

˘
Bk.

Integrating by parts yields

} ´ irα ¨ ∇ϕ}2L2pUq ě }AT∇ϕ}2L2pUq ´ C}ϕ}L2pUq}∇ϕ}L2pUq

ě c}∇ϕ}2L2pUq ´ C}ϕ}L2pUq}∇ϕ}L2pUq ,

where

c “ mintinf sppAAT pxqq, x P Uu .
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Note that c ą 0 by (2.2). This ensures that the H1-norm and the } ¨ }V-norm are
equivalent on C8

0
pUq.

Step (d). Let v P V and pρεqε a mollifier defined for x P R3 by

ρεpxq “ 1

ε3
ρ1

´
x

ε

¯
,

where ρ1 P C8
0

pR3q, supp ρ1 Ă Bp0, 1q, ρ1 ě 0 and }ρ1}L1 “ 1. Let us define vε “ v˚ρε
for any ε ą 0. There exists ε0 ą 0 such that for all ε P p0, ε0s, the function vε belongs
to C8

0 pUq. Let us temporarily admit that there exists C independent of v and ε such
that

}vε}V ď C}v}V .(2.3)

Then, Step (c) and the fact that vε converges to v in L2pUq ensure that V Ă H1
0pUq

and the result follows.
It remains to prove (2.3). There exists a constant C ą 0 such that

}vε}L2 ď C}v}L2

and

}rα ¨Dvε}L2 ď }rα ¨ ∇vε ´ prα ¨ ∇vq ˚ ρε}L2 ` } prα ¨ ∇vq ˚ ρε}L2

ď }rα ¨ ∇vε ´ prα ¨ ∇vq ˚ ρε}L2 ` C}rα ¨ ∇v}L2 .

By integration by parts, we get, for x P U ,
rα ¨ ∇vεpxq ´ prα ¨ ∇vq ˚ ρεpxq

“
ż

R3

rαpxq ¨ pvpyq∇ρεpx ´ yqq dy ´
ż

R3

rαpyq ¨ ∇vpyqρεpx ´ yq dy

“
ż

R3

prαpxq ´ rαpyqq ¨ pvpyq∇ρεpx ´ yqq dy `
ż

R3

pdiv rαpyqq vpyqρεpx ´ yq dy ,

and by a change of variable
ż

R3

prαpxq ´ rαpyqq ¨ pvpyq∇ρεpx ´ yqq dy

“
ż

R3

rαpxq ´ rαpx ´ εzq
ε

¨ pvpx ´ εzq∇ρ1pzqq dz .

Since rα is Lipschitzian, we get that
››››
ż

R3

rαp¨q ´ rαp¨ ´ εzq
ε

¨ pvp¨ ´ εzq∇ρ1pzqq dz

››››
L2

ď C}v}L2}| ¨ ||∇ρ1p¨q|}L1 ,

and ››››
ż

R3

pdiv rαpyqq vpyqρεp¨ ´ yq dy
››››
L2

ď C}v}L2 ,
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so that (2.3) follows. This ends the proof of Lemma 2.1. �

2.3. Proof of Corollary 1.7. Thanks to Lemma 2.1, the set DompH‹q is included
in H1pΩq4. Hence, for any ψ P DompH‹q, the trace of ψ on the set BΩ is well-defined
and belongs to H1{2pBΩq4. By the definition of DompH‹q and an integration by parts,
we obtain that, for any ϕ P DompHq,

0 “ xψ,Hϕy
Ω

´ xHψ,ϕy
Ω

“ xψ,´iα ¨ nϕyBΩ “ xβψ, ϕyBΩ .

Hence, we have, for almost any s P BΩ,
βψpsq P kerpB ´ 14qK “ kerpB ` 14q ,

so that

ψpsq P kerpB ´ 14q ,
and the conclusion follows.

Appendix A. Some elementary properties

Lemma A.1. For all x,y P R3, we have

pα ¨ xqpα ¨ yq “ px ¨ yq14 ` iγ5α ¨ px ˆ yq ,
βpα ¨ xq “ ´pα ¨ xqβ , βγ5 “ ´γ5β ,
γ5pα ¨ xq “ pα ¨ xqγ5 .

Proof. We refer to [12, Appendix 1.B]. �

In the following lemma, we recall the proof of the symmetry of H .

Lemma A.2. pH,DompHqq is a symmetric operator.

Proof. Since the α-matrices are Hermitian, we have, thanks to the Green-Riemann
formula:

(A.1) @ϕ, ψ P H1pΩ,C4q , xα ¨Dϕ, ψy
Ω

“ xϕ, α ¨Dψy
Ω

` xp´iα ¨ nqϕ, ψyBΩ .

Now we consider ψ, ϕ P DompHq. By using β2 “ 14 and the boundary condition, we
get

xp´iα ¨ nqϕ, ψyBΩ “ xβϕ, ψyBΩ ,

so that, we deduce

(A.2) @ϕ, ψ P DpHq , xα ¨Dϕ, ψy
Ω

´ xϕ, α ¨ Dψy
Ω

“ xβϕ, ψyBΩ .

The left hand side of (A.2) is a skew-Hermitian expression of pϕ, ψq and the right
hand side is Hermitian in pϕ, ψq since β is Hermitian. Thus both sides must be
zero. �
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