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ABSTRACT
The aim of this research is to link the microstructural state

and the mechanical properties of an age hardening alloy during
a fast heat treatment such as encountered during welding.

A coupled model between precipitation state and mechani-
cal properties is used to predict the yield strength and harden-
ing behavior that can be observed experimentally. The method
permits the identification of the kinematic and isotropic contri-
butions in the hardening model. The methodology is applied to
a 6061-T6 aluminium alloy which is used in the Jules Horowitz
reactor vessel.

The general idea of this methodology is to couple an efficient
microstructural model to a mechanical one based on the dis-
location theory and ad’hoc experiments. The theoretical back-
ground is based on the work of Kampmann and Wagner, known
as the KWN model, to account for nucleation, growth/dissolution
and coarsening of precipitates. This analysis requires transient
thermo-mechanical experimental data. The efficiency of these
models and their coupling are shown for a serie 6XXX aluminium
alloy which contains β ′′ and β ′ precipitates. Ultimately these

∗Address all correspondence to this author.

models are coupled to a FEA model and allows to predict the
distribution of precipitates within each element of the mesh, and
subsequently its mechanical behavior.

NOMENCLATURE
l Length of needle.
DMg Diffusion coefficient of magnesium.
DSi Diffusion coefficient of silicon.
Rp Tip radius of needle.
X0

Mg Atomic fraction of magnesium in matrix.
X i

Mg Atomic fraction of magnesium at matrix/precipitate in-
terface.

X p
Mg Atomic fraction of magnesium in precipitate.

X0
Si Atomic fraction of silicon in matrix.

X i
Si Atomic fraction of silicon at matrix/precipitate interface.

X p
Si Atomic fraction of silicon in precipitate.

γ Matrix/precipitate interface energy.
Ks Solubility product of precipitate.
ξ Needle aspect ratio.
k Boltzmann constant.
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V p
mol Molecular volume of precipitate.

αm/p Ratio of atomics volumes for precipitate and matrix.
σy Yield stress.
σ0 Yield stress of pure aluminium.
ki Element strengthening constant of element ’i’.
Ci

SS Element weight content of element ’i’.
M Taylor’s factor.
b Burger parameter.
li Length of precipitate ’i’ in the distribution.
Ni Number of precipitates ’i’ per volume in the distribution.
Γ Tension line of dislocation.
NTOT Total number of simulated precipitates.

INTRODUCTION
The work presented in this paper is a part of the study of

early qualification of pressure vessel for a new French experi-
mental reactor. The approximate size of this piece is five meters
high with a diameter about one meter. To obtain this piece made
of AA6061-T6, several shells are welded together using a weld-
ing process: the electron beam. The ultimate goal is to predict
the metallurgical state generated by the welding process and to
deduce the mechanical properties and residual stresses in the ves-
sel.

To achieve this goal, this work tries to understand the link
between microstructural evolution and mechanical properties.
In a first part, the implementation of a microstructural model
is presented. This implementation is based on the works of
Hillert [1]. This model is validated using measurement of Small
Angle Neutron Scattering (SANS) and Transmission Electron
Microscopy (TEM). These experimental campaigns provide in-
formations about the distribution of precipitates present in the
alloy for several heat treatment representative of welding. For
SANS, an ellipsoidal distribution is using to have a good fitting
of raw diffusion spectra. The microstructural state of the alloy
for rapid heat treatments can then be provided by finite element
simulations. In a second part, a modelisation is presented to link
the precipitation state and mechanical properties. This modeli-
sation is validated with cyclic tensile tests performed on various
precipitation states.

Microstructural modelisation
The KWN model allows to predict the different microstruc-

tural phenomena that can occur during various heating kinetics
encountered in a welding process: nucleation, growth, and coars-
ening. This model is generally implemented for spherical precip-
itates ( [2] [3] ) but for the aluminium alloys this hypothesis is
not acceptable because precipitates have often large aspect ra-
tio. Indeed, for the 6000 series the Heat Affected Zone (HAZ) is
composed by needle shaped precipitates (β ′′ and β ′) [4].
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FIGURE 1: SIMULATED VS EXPERIMENTAL MEAN RA-
DIUS OF NEEDLES.

Here, Classical Nucleation and Growth Theories (CNGTs)
have been adapted to model accurately the precipitation of nee-
dle shaped particles. Hillert proposed a modification of the Zener
growth equation considering a constant tip radius but without
coarsening treatment. Here, an adaptation of this work is pre-
sented to have a diffusion/coarsening stage. This adapted expres-
sion is implemented in a ’Lagrangian-like’ model class manage-
ment software (PreciSo) to obtain the distribution density of pre-
cipitates. Thus, the evolution of precipitate length can be written
as follows for a constant aspect ratio [5]:


dl
dt =
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4Rp

X0
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Mg−X i
Mg

dl
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4Rp
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Si−X i

Si
αm/pX p

Si−X i
Si

X i
Mg

xX i
Si

y
= Ks.exp

(
ξ

ξ−2/3
4V p

molγ

3RkT

) (1)

Here, as in [2] a fictitious phase is proposed with β ′′-β ′ na-
ture. This equivalent phase allows to obtain a good representa-
tion of the microstructural state for several thermal loads repre-
sentative of welding. These simulations are compared with both
TEM and SANS measurements applied on tensil test samples [5].

Mechanical tests
Tensile tests have been carried out at room temperature on

specimens previously heated up to peak temperatures of 473,
573, 673, 773 and 833 K and with various heating rates (0.5, 5,
15, 50, 200 K/s) in order to measure their mechanical properties.
The thermal loadings are representative of the thermal histories
encountered in Electron Beam welding [6]. The experimental
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FIGURE 3: INSTRUMENTATION FOR TENSILE TESTS.

device that is used here has been specifically developed at INSA
Lyon to meet these kind of requirements [7].

The precipitation state is then used as an input parameter
of a mean field micro-mechanical models that predict the yield
strength of the alloy.

σy = σ0 +∑ki.Ci
SS

2/3
+
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b
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These results are successfully compared to tensile tests ex-
periments performed on various heating conditions, representing
the heat-affected zone of a weld. In this paper the influence of
several assumptions on the yield stress modeling have been re-
viewed and new equations are used [5]. The use of a full distri-
bution approach allows to improve the physical meaning of the
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FIGURE 4: YIELD STRESS PREDICTION VS EXPERI-
MENTS.

fitted parameters. Here, only one fitted parameter is used and
the identified Taylor’s factor is perfectly compatible with recent
works on aluminium alloy [8].

Then, for hardening curves, classical elastoplastics laws can
be used such as Amstrong-Frederic models [9]. In these laws, the
yield stress is predicted by the previous predicted approch. Other
coefficients values are dependant on the simulated precipitates
mean radius and volume fraction.

CONCLUSION AND PERSPECTIVES
In this paper, a coupled physical precipitation/yield stress

modelisation is presented. In the first part, an adjustment strat-
egy is proposed for a single fictitious phase to fit microstructural
evolution obtained by SANS. Then, yield stress prediction are
validated with tensile tests. This modelisation provides a good
fitting in a wide range of thermals histories and can be used in
finite element software with phenomenological plasticty models
such as Amstrong Frederic’s.

The prospect of this work is the identification of viscous part
of mechanical behaviour. Then, all the tools will be available
for prediction of residual stresses for age hardening aluminium
alloys.
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