
HAL Id: hal-01540010
https://hal.science/hal-01540010v1

Submitted on 15 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Set-Constrained Delivery Broadcast: Definition,
Abstraction Power, and Computability Limits

Damien Imbs, Achour Mostefaoui, Matthieu Perrin, Michel Raynal

To cite this version:
Damien Imbs, Achour Mostefaoui, Matthieu Perrin, Michel Raynal. Set-Constrained Delivery Broad-
cast: Definition, Abstraction Power, and Computability Limits. [Research Report] LIF, Univer-
sité Aix-Marseille; LINA-University of Nantes; IMDEA Software Institute; Institut Universitaire de
France; IRISA, Université de Rennes. 2017. �hal-01540010�

https://hal.science/hal-01540010v1
https://hal.archives-ouvertes.fr

Set-Constrained Delivery Broadcast:

Definition, Abstraction Power, and Computability Limits

Damien Imbs◦, Achour Mostéfaoui†, Matthieu Perrin⋄, Michel Raynal⋆,‡

◦LIF, Université Aix-Marseille, 13288 Marseille, France
†LINA, Université de Nantes, 44322 Nantes, France

⋄IMDEA Software Institute, 28223 Pozuelo de Alarcón, Madrid, Spain
⋆Institut Universitaire de France

‡IRISA, Université de Rennes, 35042 Rennes, France

June 15, 2017

Abstract

This paper introduces a new communication abstraction, called Set-Constrained Delivery Broad-

cast (SCD-broadcast), whose aim is to provide its users with an appropriate abstraction level when

they have to implement objects or distributed tasks in an asynchronous message-passing system

prone to process crash failures. This abstraction allows each process to broadcast messages and

deliver a sequence of sets of messages in such a way that, if a process delivers a set of messages

including a message m and later delivers a set of messages including a message m′, no process

delivers first a set of messages including m′ and later a set of message including m.

After having presented an algorithm implementing SCD-broadcast, the paper investigates its pro-

gramming power and its computability limits. On the “power” side it presents SCD-broadcast-based

algorithms, which are both simple and efficient, building objects (such as snapshot and conflict-

free replicated data), and distributed tasks. On the “computability limits” side it shows that SCD-

broadcast and read/write registers are computationally equivalent.

Keywords: Abstraction, Asynchronous system, Communication abstraction, Communication pat-

tern, Conflict-free replicated data type, Design simplicity, Distributed task, Lattice agreement, Lin-

earizability, Message-passing system, Process crash, Read/write atomic register, Snapshot object.

1 Introduction

Programming abstractions Informatics is a science of abstractions, and a main difficulty consists in

providing users with a “desired level of abstraction and generality – one that is broad enough to encom-

pass interesting new situations, yet specific enough to address the crucial issues” as expressed in [18].

When considering sequential computing, functional programming and object-oriented programming are

well-know examples of what means “desired level of abstraction and generality”.

In the context of asynchronous distributed systems where the computing entities (processes) com-

municate –at the basic level– by sending and receiving messages through an underlying communication

network, and where some of them can experience failures, a main issue consists in finding appropri-

ate communication-oriented abstractions, where the meaning of the term “appropriate” is related to the

problems we intend to solve. Solving a problem at the send/receive abstraction level is similar to the

writing of a program in a low-level programming language. Programmers must be provided with ab-

stractions that allow them to concentrate on the problem they solve and not on the specific features of the

underlying system. This is not new. Since a long time, high level programming languages have proved

the benefit of this approach. From a synchronization point of view, this approach is the one promoted in

software transactional memory [33], whose aims is to allow programmers to focus on the synchroniza-

tion needed to solve their problems and not on the way this synchronization must be implemented (see

the textbooks [19, 29]).

If we consider specific coordination/cooperation problems, “matchings” between problems and spe-

cific communication abstractions are known. One of the most famous examples concerns the consensus

problem whose solution rests on the total order broadcast abstraction1 . Another “matching” example is

the causal message delivery broadcast abstraction [11, 31], which allows for a very simple implementa-

tion of a causal read/write memory [2].

Aim of the paper The aim of this paper is to introduce and investigate a high level communication

abstraction which allows for simple and efficient implementations of concurrent objects and distributed

tasks, in the context of asynchronous message-passing systems prone to process crash failures. The

concurrent objects in which we are interested are defined by a sequential specification [20] (e.g., a

queue). Differently, a task extends to the distributed context the notion of a function [10, 27]. It is

defined by a mapping from a set of input vectors to a set of output vectors, whose sizes are the number

of processes. An input vector I defines the input value I[i] of each process pi, and, similarly, an output

vector O defines the output O[j] of each process pj . Agreement problems such as consensus and k-set

agreement are distributed tasks. What makes difficult the implementation of a task is the fact that each

process knows only its input, and, due to net effect of asynchrony and process failures, no process can

distinguish if another process is very slow or crashed. The difficulty is actually an impossibility for

consensus [17], even in a system in which at most one process may crash.

Content of the paper: a broadcast abstraction The SCD-broadcast communication abstraction pro-

posed in the paper allows a process to broadcast messages, and to deliver sets of messages (instead of a

single message) in such a way that, if a process pi delivers a message set ms containing a message m,

and later delivers a message set ms′ containing a message m′, then no process pj can deliver first a set

containing m′ and later another set containing m. Let us notice that pj is not prevented from delivering

m and m′ in the same set. Moreover, SCD-broadcast imposes no constraint on the order in which a

process must process the messages it receives in a given message set.

1Total order broadcast is also called atomic broadcast. Actually, total order broadcast and consensus have been shown to be

computationally equivalent [12]. A more general result is presented in [21], where is introduced a communication abstraction

which “captures” the k-set agreement problem [13, 30] (consensus is 1-set agreement).

1

After having introduced SCD-broadcast, the paper presents an implementation of it in asynchronous

systems where a minority of processes may crash. This assumption is actually a necessary and sufficient

condition to cope with the net effect of asynchrony and process failures (see below). Assuming an upper

bound ∆ on message transfer delays, and zero processing time, an invocation of SCD-broadcast is upper

bounded by 2∆ time units, and O(n2) protocol messages (messages generated by the implementation

algorithm).

Content of the paper: implementing objects and tasks Then, the paper addresses two fundamen-

tal issues of SCD-broadcast: its abstraction power and its computability limits. As far as its abstrac-

tion power is concerned, i.e., its ability and easiness to implement atomic (linearizable) or sequentially

consistent concurrent objects [20, 26] and read/write solvable distributed tasks, the paper presents, on

the one side, two algorithms implementing atomic objects (namely a snapshot object [1, 3], and a dis-

tributed increasing/decreasing counter), and, on the other side, an algorithm solving the lattice agreement

task [6, 16].

The two concurrent objects (snapshot and counter) have been chosen because they are encountered

in many applications, and are also good representative of the class of objects identified in [4]. The

objects of this class are characterized by the fact that each pair op1 and op2 of their operations either

commute (i.e., in any state, executing op1 before op2 is the same as executing op2 before op1, as it is

the case for a counter), or any of op1 and op2 can overwrite the other one (e.g., executing op1 before

op2 is the same as executing op2 alone). Our implementation of a counter can be adapted for all objects

with commutative operations, and our implementation of the snapshot object illustrates how overwriting

operations can be obtained directly from the SCD-broadcast abstraction. Concerning these objects, it is

also shown that a slight change in the algorithms allows us to obtain implementations (with a smaller

cost) in which the consistency condition is weakened from linearizability to sequential consistency [25].

In the case of read/write solvable tasks, SCD-broadcast shows how the concurrency inherent (but

hidden) in a task definition can be easily mastered and solved.

A distributed software engineering dimension All the algorithms presented in the paper are based on

the same communication pattern. As far as objects are concerned, the way this communication pattern

is used brings to light two genericity dimensions of the algorithms implementing them. One is on the

variety of objects that, despite their individual features (e.g., snapshot vs counter), have very similar

SCD-broadcast-based implementations (actually, they all have the same communication pattern-based

structure). The other one is on the consistency condition they have to satisfy (linearizability vs sequential

consistency).

Content of the paper: the computability limits of SCD-broadcast The paper also investigates

the computability power of the SCD-broadcast abstraction, namely it shows that SCD-broadcast and

atomic read/write registers (or equivalently snapshot objects) have the same computability power in

asynchronous systems prone to process crash failures. Everything that can be implemented with atomic

read/write registers can be implemented with SCD-broadcast, and vice versa.

As read/write registers (or snapshot objects) can be implemented in asynchronous message-passing

system where only a minority of processes may crash [5], it follows that the proposed algorithm im-

plementing SCD-broadcast is resilience-optimal in these systems. From a theoretical point of view, this

means that the consensus number of SCD-broadcast is 1 (the weakest possible).

Roadmap The paper is composed of 9 sections. Section 2 defines the SCD-broadcast abstraction

and the associated communication pattern used in all the algorithms presented in the paper. Section 3

presents a resilience-optimal algorithm implementing SCD-broadcast in asynchronous message-passing

2

systems prone to process crash failures, while Section 4 adopts a distributed software engineering point

of view and presents a communication pattern associated with SCD-broadcast. Then, Sections 5-7

present SCD-broadcast-based algorithms for concurrent objects and tasks. Section 8 focuses on the

computability limits of SCD-broadcast. Finally, Section 9 concludes the paper.

2 The SCD-broadcast Communication Abstraction

Process model The computing model is composed of a set of n asynchronous sequential processes,

denoted p1, ..., pn. “Asynchronous” means that each process proceeds at its own speed, which can be

arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly until it

crashes (if it ever does). The model parameter t denotes the maximal number of processes that may

crash in a run r. A process that crashes in a run is said to be faulty in r. Otherwise, it is non-faulty.

Definition of SCD-broadcast The set-constrained broadcast abstraction (SCD-broadcast) provides

the processes with two operations, denoted scd_broadcast() and scd_deliver(). The first operation takes

a message to broadcast as input parameter. The second one returns a non-empty set of messages to the

process that invoked it. Using a classical terminology, when a process invokes scd_broadcast(m), we

say that it “scd-broadcasts a message m”. Similarly, when it invokes scd_deliver() and obtains a set of

messages ms, we say that it “scd-delivers the set of messages ms”. By a slight abuse of language, when

we are interested in a message m, we say that a process “scd-delivers the message m” when actually it

scd-delivers the message set ms containing m.

SCD-broadcast is defined by the following set of properties, where we assume –without loss of

generality– that all the messages that are scd-broadcast are different.

• Validity. If a process scd-delivers a set containing a message m, then m was scd-broadcast by

some process.

• Integrity. A message is scd-delivered at most once by each process.

• MS-Ordering. Let pi be a process that scd-delivers first a message set msi and later a message set

ms′i. For any pair of messages m ∈ msi and m′ ∈ ms′i, then no process pj scd-delivers first a

message set ms′j containing m′ and later a message set msj containing m.

• Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates its scd-broadcast

invocation and scd-delivers a message set containing m.

• Termination-2. If a process scd-delivers a message m, every non-faulty process scd-delivers a

message set containing m.

Termination-1 and Termination-2 are classical liveness properties (found for example in Uniform

Reliable Broadcast [9, 28]). The other ones are safety properties. Validity and Integrity are classical

communication-related properties. The first states that there is neither message creation nor message

corruption, while the second states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-broadcast. It states that the contents of

the sets of messages scd-delivered at any two processes are not totally independent: the sequence of sets

scd-delivered at a process pi and the sequence of sets scd-delivered at a process pj must be mutually

consistent in the sense that a process pi cannot scd-deliver first m ∈ msi and later m′ ∈ ms′i 6= msi,
while another process pj scd-delivers first m′ ∈ ms′j and later m ∈ msj 6= ms′j . Let us nevertheless

observe that if pi scd-delivers first m ∈ msi and later m′ ∈ ms′i, pj may scd-deliver m and m′ in the

same set of messages.

Let us remark that, if the MS-Ordering property is suppressed and messages are scd-delivered one at

a time, SCD-broadcast boils down to the well-known Uniform Reliable Broadcast abstraction [12, 28].

3

An example Let m1, m2, m3, m4, m5, m6, m7, m8, ... be messages that have been scd-broadcast by

different processes. The following scd-deliveries of message sets by p1, p2 and p3 respect the definition

of SCD-broadcast:

• at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.

• at p2: {m1}, {m3,m2}, {m6,m4,m5}, {m7}, {m8}.

• at p3: {m3,m1,m2}, {m6,m4,m5}, {m7}, {m8}.

Differently, due to the scd-deliveries of the sets including m2 and m3, the following scd-deliveries by

p1 and p2 do not satisfy the MS-broadcast property:

• at p1: {m1,m2}, {m3,m4,m5}, ...

• at p2: {m1,m3}, {m2}, ...

A containment property Let msℓi be the ℓ-the message set scd-delivered by pi. Hence, at some time,

pi scd-delivered the sequence of message sets ms1i , . . . ,msxi . Let MSx
i = ms1i ∪ . . . ∪ msxi . The

following property follows directly from the MS-Ordering and Termination-2 properties:

• Containment. ∀ i, j, x, y: (MSx
i ⊆ MS

y
j) ∨ (MS

y
j ⊆ MSx

i).

Partial order on messages created by the message sets The MS-Ordering and Integrity properties

establish a partial order on the set of all the messages, defined as follows. Let 7→i be the local message

delivery order at process pi defined as follows: m 7→i m
′ if pi scd-delivers the message set containing

m before the message set containing m′. As no message is scd-delivered twice, it is easy to see that

7→i is a partial order (locally know by pi). The reader can check that there is a total order (which

remains unknown to the processes) on the whole set of messages, that complies with the partial order

7→= ∪1≤i≤n 7→i. This is where SCD-broadcast can be seen as a weakening of total order broadcast.

3 An Implementation of SCD-broadcast

This section shows that the SCD-broadcast communication abstraction is not an oracle-like object (or-

acles allow us to extend our understanding of computing, but cannot be implemented). It describes an

implementation of SCD-broadcast in an asynchronous send/receive message-passing system in which

any minority of processes may crash. This system model is denoted CAMPn,t[t < n/2] (where

CAMPn,t stands for “Crash Asynchronous Message-Passing” and t < n/2 is its restriction on fail-

ures). As t < n/2 is the weakest assumption on process failures that allows a read/write register to be

built on top of an asynchronous message-passing system [5]2, and SCD-broadcast and read/write reg-

isters are computationally equivalent (as shown in the paper), the proposed implementation is optimal

from a resilience point of view.

3.1 Underlying communication network

Send/receive asynchronous network Each pair of processes communicate by sending and receiving

messages through two uni-directional channels, one in each direction. Hence, the communication net-

work is a complete network: any process pi can directly send a message to any process pj (including

itself). A process pi invokes the operation “send TYPE(m) to pj” to send to pj the message m, whose

type is TYPE. The operation “receive TYPE() from pj” allows pi to receive from pj a message whose

type is TYPE.

2From the point of view of the maximal number of process crashes that can be tolerated, assuming failures are independent.

4

Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily first-in/first-

out, and asynchronous (while the transit time of each message is finite, there is no upper bound on

message transit times) Let us notice that, due to process and message asynchrony, no process can know

if another process crashed or is only very slow.

Uniform FIFO-broadcast abstraction To simplify the presentation, and without loss of generality,

we consider that the system is equipped with a FIFO-broadcast abstraction. Such an abstraction can be

built on top of the previous basic system model without enriching it without additional assumptions (see

e.g. [28]). It is defined by the operations fifo_broadcast() and fifo_deliver(), which satisfy the properties

of Uniform Reliable Broadcast (Validity, Integrity, Termination 1, and Termination 2), plus the following

message ordering property.

• FIFO-Order. For any pair of processes piand pj , if pi fifo-delivers first a message m and later a

message m′, both from pj , no process fifo-delivers m′ before m.

3.2 Algorithm

This section describes Algorithm 1, which implements SCD-broadcast in CAMPn,t[t < n/2]. From

a terminology point of view, an application message is a message that has been scd-broadcast by a

process, while a protocol message is an implementation message generated by the algorithm.

Local variables at a process pi Each process pi manages the following local variables.

• bufferi : buffer (initialized empty) where are stored quadruplets containing messages that have

been fifo-delivered but not yet scd-delivered in a message set.

• to_deliveri : set of quadruplets containing messages to be scd-delivered.

• sni: local logical clock (initialized to 0), which increases by step 1 and measures the local progress

of pi. Each application message scd-broadcast by pi is identified by a pair 〈i, sn〉, where sn is the

current value of sni.

• clocki[1..n]: array of logical dates; clocki[j] is the greatest date x such that the application mes-

sage m identified 〈x, j〉 has been scd-delivered by pi.

Content of quadruplet The fields of a quadruplet qdplt = 〈qdplt.msg, qdplt.sd, qdplt.f, qdplt.cl〉
have the following meaning.

• qdplt.msg contains an application message m,

• qdplt.sd contains the id of the sender of this application message,

• qdplt.sn contains the local date (seq. number) associated with m by its sender. Hence, the pair

〈qdplt.sd, qdplt.sn〉 is the identity of m.

• qdplt.cl is an array of size n, initialized to [+∞, . . . ,+∞]. Then, qdplt.cl[x] will contain the

sequence number associated with m by px when it broadcast FORWARD(msg.m,−,−,−,−).
This last field is crucial in the scd-delivery by the process pi of a message set containing m.

Protocol message The algorithm uses a single type of protocol message denoted FORWARD(). Such

a message is made up of five fields: an associated application message m, and two pairs, each made

up of a sequence number and a process identity. The first pair 〈sd, sn〉 is the identity of the ap-

plication message, while the second pair 〈f, snf 〉 is the local progress (as captured by snf) of the

forwarder process pf when it forwarded this protocol message to the other processes by invoking

fifo_broadcast FORWARD(m, sd, snsd , pf , snf) (line 11).

5

Operation scd_broadcast() When pi invokes scd_broadcast(m), where m is an application message,

it sends the protocol message FORWARD(m, i, sni, i, sni) to itself (this simplifies the writing of the

algorithm), and waits until it has no more message from itself pending in buffer i, which means it has

scd-delivered a set containing m.

Uniform fifo-broadcast of a message FORWARD When a process pi fifo-delivers a protocol message

FORWARD(m, sd, snsd , f, snf), it first invokes the internal operation forward(m, sd, snsd , f, snf). In

addition to other statements, the first fifo-delivery of such a message by a process pi entails its participa-

tion in the uniform reliable fifo-broadcast of this message (lines 5 and 11). In addition to the invocation

of forward(), the fifo-delivery of FORWARD() invokes also try_deliver(), which strives to scd-deliver a

message set (lines 4).

operation scd_broadcast(m) is

(1) send FORWARD(m,sni, i, sni, i) to itself;

(2) wait(∄ qdplt ∈ bufferi : qdplt.sd = i).

when the message FORWARD(m,sd, snsd , f, snf) is fifo-delivered do % from pf
(3) forward(m, sd, snsd , f, snf);
(4) try_deliver().

procedure forward(m, sd, snsd , f, snf) is

(5) if (snsd > clocki[sd])
(6) then if (∃ qdplt ∈ bufferi : qdplt.sd = sd ∧ qdplt.sn = snsd)
(7) then qdplt.cl[f]← snf

(8) else threshold[1..n]← [∞, . . . ,∞]; threshold[f]← snf ;

(9) let qdplt← 〈m, sd, snsd , threshold[1..n]〉;
(10) bufferi ← bufferi ∪ {qdplt};
(11) fifo_broadcast FORWARD(m,sd, snsd , i, sni);
(12) sni ← sni + 1
(13) end if

(14) end if.

procedure try_deliver() is

(15) let to_deliveri ← {qdplt ∈ bufferi : |{f : qdplt.cl[f] <∞}| > n
2
};

(16) while (∃ qdplt ∈ to_deliveri ,∃ qdplt
′ ∈ bufferi \ to_deliveri : |{f : qdplt.cl[f] < qdplt′.cl[f]}| ≤ n

2
) do

to_deliveri ← to_deliveri \ {qdplt} end while;

(17) if (to_deliveri 6= ∅)
(18) then for each qdplt ∈ to_deliveri do clocki[qdplt.sd]← max(clocki[qdplt.sd], qdplt.sn) end for;

(19) bufferi ← bufferi \ to_deliveri ;

(20) ms← {m : ∃ qdplt ∈ to_deliveri : qdplt.msg = m}; scd_deliver(ms)
(21) end if.

Algorithm 1: An implementation of SCD-broadcast in CAMPn,t[t < n/2] (code for pi)

The core of the algorithm Expressed with the relations 7→i, 1 ≤ i ≤ n, introduced in Section 2, the

main issue of the algorithm is to ensure that, if there are two message m and m′ and a process pi such

that m 7→i m
′, then there is no pj such that m′ 7→j m.

To this end, a process pi is allowed to scd-deliver a message m before a message m′ only if it

knows that a majority of processes pj have fifo-delivered a message FORWARD(m,−,−,−) before

m′; pi knows it (i) because it fifo-delivered from pj a message FORWARD(m,−,−,−,−) but not

yet a message FORWARD(m′,−,−,−,−), or (ii) because it fifo-delivered from pj both the messages

FORWARD(m,−,−,−, snm) and FORWARD(m′,−,−,−, snm′) and the sending date smn is smaller

than the sending date snm′. The MS-Ordering property follows then from the impossibility that a ma-

jority of processes “sees m before m′”, while another majority “sees m′ before m”.

6

Internal operation forward() This operation can be seen as an enrichment (with the fields f and snf)

of the reliable fifo-broadcast implemented by the messages FORWARD(m, sd, snsd ,−,−). Considering

such a message FORWARD(m, sd, snsd , f, snf), m was scd-broadcast by psd at its local time snsd , and

relayed by the forwarding process pf at its local time snf . If snsd ≤ clocki[sd], pi has already scd-

delivered a message set containing m (see lines 18 and 20). If snsd > clocki[sd], there are two cases

defined by the predicate of line 6.

• There is no quadruplet qdplt in bufferi such that qdplt.msg = m. In this case, pi creates a

quadruplet associated with m, and adds it to bufferi (lines 8-10). Then, pi participates in the

fifo-broadcast of m (line 11) and records its local progress by increasing sni (line 12).

• There is a quadruplet qdplt in bufferi associated with m, i.e., qdplt = 〈m,−,−,−〉 ∈ bufferi . In

this case, pi assigns snf to qdplt.cl[f] (line 7), thereby indicating that m was known and forwarded

by pf at its local time snf .

Internal operation try_deliver() When it executes try_deliver(), pi first computes the set to_deliveri
of the quadruplets qdplt containing application messages m which have been seen by a majority of

processes (line 15). From pi’s point of view, a message has been seen by a process pf if qdplt.cl[f] has

been set to a finite value (line 7).

As indicated in a previous paragraph, if a majority of processes received first a message FORWARD

carrying m′ and later another message FORWARD carrying m, it might be that some process pj scd-

delivered a set containing m′ before scd-delivering a set containing m. Therefore, pi must avoid scd-

delivering a set containing m before scd-delivering a set containing m′. This is done at line 16, where

pi withdraws the quadruplet qdplt corresponding to m if it has not enough information to deliver m′

(i.e. the corresponding qdplt′ is not in to_deliver i) or it does not have the proof that the situation cannot

happen, i.e. no majority of processes saw the message corresponding to qdplt before the message

corresponding to qdplt′ (this is captured by the predicate |{f : qdplt.cl[f] < qdplt′.cl[f]}| ≤ n
2).

If to_deliveri is not empty after it has been purged (lines 16-17), pi computes a message set to scd-

deliver. This set ms contains all the application messages in the quadruplets of to_deliveri (line 20).

These quadruplets are withdrawn from bufferi (line 18). Moreover, before this scd-delivery, pi needs to

updates clocki[x] for all the entries such that x = qdplt.sd where qdplt ∈ to_deliveri (line 18). This

update is needed to ensure that the future uses of the predicate of line 17 are correct.

3.3 Cost and proof of correctness

Lemma 1 If a process scd-delivers a message set containing m, some process invoked scd_broadcast(m).

Proof If a process pi scd-delivers a set containing a message m, it previously added into bufferi a

quadruplet qdplt such that qdplt.msg = m (line 10), for which it follows that it fifo-delivered a pro-

tocol message FORWARD(m,−,−,−,−). Due to the fifo-validity property, it follows that a process

generated the fifo-broadcast of this message, which originated from an invocation of scd_broadcast(m).
2Lemma 1

Lemma 2 No process scd-delivers the same message twice.

Proof Let us observe that, due to the wait statement at line 2, and the increase of sni at line 15 between

two successive scd-broadcast by a process pi, no two application messages can have the same identity

〈i, sn〉. It follows that there is a single quadruplet 〈m, i, sn,−〉 that can be added to bufferi , and this

is done only once (line 10). Finally, let us observe that this quadruplet is suppressed from bufferi , just

before m is scd-delivered (line 19-20), which concludes the proof of the lemma. 2Lemma 2

7

Lemma 3 If a process pi executes fifo_broadcast FORWARD(m, sd, snsd , i, sni) (i.e., executes line 19),

each non-faulty process pj executes once fifo_broadcast FORWARD(m, sd, snsd , j, snj).

Proof First, we prove that pj broadcasts a message FORWARD(m, sd, snsd , j, snj). As pi is non-

faulty, pj will eventually receive the message sent by pi. At that time, if snsd > clockj [sd], after

the condition on line 6 and whatever its result, buffer i contains a quadruplet qdplt with qdplt.sd = sd
and qdplt.sn = snsd . That qdplt was inserted at line 10 (possibly after the reception of a differ-

ent message), just before pj sent a message FORWARD(m, sd, snsd , j, snj) at line 11. Otherwise,

clockj [sd] was incremented on line 18, when validating some qdplt′ added to bufferj after pj re-

ceived a (first) message FORWARD(qdplt′.msg, sd, snsd , f, clockf [sd]) from pf . Because the mes-

sages FORWARD() are fifo-broadcast (hence they are delivered in their sending order), psd sent message

FORWARD(qdplt.msg, sd, snsd , sd, snsd) before FORWARD(qdplt′.msg, sd, clockj [sd], sd, clockj [sd]),
and all other processes only forward messages, pj received FORWARD(qdplt.msg, sd, snsd ,−,−) from

pf before the message FORWARD(qdplt′.msg, sd, clockj [sd],−,−). At that time, snsd > clockj [sd],
so the previous case applies.

After pj broadcasts its message FORWARD(m, sd, snsd , j, snj) on line 11, there is a qdplt ∈ buffer j
with ts(qdplt) = 〈sd, snsd 〉, until it is removed on line 16 and clockj [sd] ≥ snsd . Therefore, one of the

conditions at lines 5 and 6 will stay false for the stamp ts(qdplt) and pj will never execute line 11 with

the same stamp 〈sd, snsd 〉 later. 2Lemma 3

Lemma 4 Let pi be a process that scd-delivers a set msi containing a message m and later scd-delivers

a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′ and later

a message set msj containing m.

Proof Let us suppose there are two messages m and m′ and two processes pi and pj such that pi scd-

delivers a set msi containing m and later scd-delivers a set ms′i containing m′ and pj scd-delivers a set

ms′j containing m′ and later scd-delivers a set msj containing m.

When m is delivered by pi, there is an element qdplt ∈ buffer i such that qdplt.msg = m and

because of line 15, pi has received a message FORWARD(m,−,−,−,−) from more than n
2 processes.

• If there is no element qdplt′ ∈ buffer i such that qdplt′.msg = m′, since m′ has not been delivered

by pi yet, pi has not received a message FORWARD(m′,−,−,−,−) from any process (lines 10

and 19). Hence, because the communication channels are FIFO, more than n
2 processes have sent

a message FORWARD(m,−,−,−,−) before sending a message FORWARD(m′,−,−,−,−).

• Otherwise, qdplt′ /∈ to_deliver i after line 16. As the communication channels are FIFO, more

than half of the processes have sent a message FORWARD(m,−,−,−,−) before a message

FORWARD(m′,−,−,−,−).

Using the same reasoning, it follows that when m′ is delivered by pj , more than n
2 processes have

sent a message FORWARD(m′,−,−,−,−) before sending a message FORWARD(m,−,−,−,−). There

exists a process pk in the intersection of the two majorities, that has (a) sent FORWARD(m,−,−,−,−)
before sending FORWARD(m′,−,−,−,−) and (b) sent FORWARD(m′,−,−,−,−) before sending a

message FORWARD(m,−,−,−,−). However, it follows from Lemma 3 that pk can send a single

message FORWARD(m′,−,−,−,−) and a single message FORWARD(m,−,−,−,−), which leads to

a contradiction. 2Lemma 4

Lemma 5 If a non-faulty process executes fifo_broadcast FORWARD(m, sd, snsd , i, sni) (line 11), it

scd-delivers a message set containing m.

8

pi

pf

scd_broadcast(mk)

FORWARD(mk, f, snf (k), f, snf (k)) · · ·

• • •

snf (k1) snf (k2)

⋆
i

⋆
i⋆

i

FORWARD(m,sd, snsd ,−,−)
FORWARD(m,sd, snsd ,−,−)

FORWARD(ml+1, sdl+1, snsdl+1
,−,−)

Figure 1: Message pattern introduced in Lemma 5

Proof Let pi be a non-faulty process. For any pair of messages qdplt and qdplt′ ever inserted in

bufferi , let ts = ts(qdplt) and ts′ = ts(qdplt′). Let →i be the dependency relation defined as follows:

ts →i ts
′ def
= |{j : qdplt′.cl[j] < qdplt.cl[j]}| ≤ n

2 (i.e. the dependency does not exist if pi knows that

a majority of processes have seen the first update –due to qdplt′– before the second –due to qdplt). Let

→⋆
i denote the transitive closure of →i.

Let us suppose (by contradiction) that the timestamp 〈sd, snsd 〉 associated with the message m
(carried by the protocol message FORWARD(m, sd, snsd , i, sni) fifo-broadcast by pi), has an infinity of

predecessors according to →⋆
i . As the number of processes is finite, an infinity of these predecessors

have been generated by the same process, let us say pf . Let 〈f, snf (k)〉k∈N be the infinite sequence of

the timestamps associated with the invocations of the scd_broadcast() issued by pf . The situation is

depicted by Figure 1.

As pi is non-faulty, pf eventually receives a message FORWARD(m, sd, snsd , i, sni), which means

pf broadcast an infinity of messages FORWARD(m(k), f, snf (k), f, snf (k)) after having broadcast the

message FORWARD(m, sd, snsd , f, snf). Let 〈f, snf (k1)〉 and 〈f, snf(k2)〉 be the timestamps asso-

ciated with the next two messages sent by pf , with snf (k1) < snf(k2). By hypothesis, we have

〈f, snf (k2)〉 →
⋆
i 〈sd, snsd 〉. Moreover, all processes received their first message FORWARD(m, sd, snsd ,−,−)

before their first message FORWARD(m(k), f, snf (k),−,−), so 〈sd, snsd 〉 →
⋆
i 〈f, snf(k1)〉. Let us ex-

press the path 〈f, snf(k2)〉 →
⋆
i 〈f, snf(k1)〉:

〈f, snf (k2)〉 = 〈sd′(1), sn′(1)〉 →i 〈sd
′(2), sn′(2)〉 →i · · · →i 〈sd(m), sn′(m)〉 = 〈f, snf (k1)〉.

In the time interval starting when pf sent the message FORWARD(m(k1), f, snf (k1), f, snf (k1))
and finishing when it sent the message FORWARD(m(k2), f, snf (k2), f, snf (k2)), the waiting condi-

tion of line 2 became true, so pf scd-delivered a set containing the message m(k1), and according

to Lemma 1, no set containing the message m(k2). Therefore, there is an index l such that pro-

cess pf delivered sets containing messages associated with a timestamp 〈sd′(l), sn′(l)〉 for all l′ > l
but not for l′ = l. Because the channels are FIFO and thanks to lines 15 and 16, it means that a

majority of processes have sent a message FORWARD(−, sd′(l + 1), sn′(l + 1),−,−) before a mes-

sage FORWARD(−, sd′(l), sn′(l),−,−), which contradicts the fact that 〈sd′(l), sn′(l)〉 →i 〈sd′(l +
1), sn′(l + 1)〉.

Let us suppose a non-faulty process pi has fifo-broadcast a message FORWARD(m, sd, snsd , i, sni)
(line 10). It inserted a quadruplet qdplt with timestamp 〈sd, snsd 〉 on line 9 and by what precedes,

〈sd, snsd 〉 has a finite number of predecessors 〈sd1, sn1〉, . . . , 〈sdl, snl〉 according to →⋆
i . As pi is non-

faulty, according to Lemma 3, it eventually receives a message FORWARD(−, sdk, snk,−,−) for all

1 ≤ k ≤ l and from all non-faulty processes, which are in majority.

Let pred be the set of all quadruplets qdplt′ such that 〈qdplt′.sd, qdplt′.sn〉 →⋆
i 〈sd, snsd 〉. Let us

9

consider the moment when pi receives the last message FORWARD(−, sdk, snk, f, snf) sent by a correct

process pf . For all qdplt′ ∈ pred , either qdplt′.msg has already been delivered or qdplt′ is inserted

to_deliver i on line 15. Moreover, no qdplt′ ∈ pred will be removed from to_deliver i, on line 16, as

the removal condition is the same as the definition of →i. In particular for qdplt′ = qdplt, either m
has already been scd-delivered or m is present in to_deliver i on line 17 and will be scd-delivered on

line 20. 2Lemma 5

Lemma 6 If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set containing

m.

Proof If a non-faulty process scd-broadcasts a message m, it previously fifo-broadcast the message

FORWARD(m, sd, snsd , i, sni) at line 11). Then, due to Lemma 5, it scd-delivers a message set contain-

ing m. 2Lemma 6

Lemma 7 If a process scd-delivers a message m, every non-faulty process scd-delivers a message set

containing m.

Proof Let pi be a process pi that scd-delivers a message m. At line 20, there is a quadruplet qdplt ∈
to_deliver i such that qdplt.msg = m. At line 15, qdplt ∈ buffer i, and qdplt was inserted in buffer i
at line 10, just before pi fifo-broadcast the message FORWARD(m, sd, snsd , i, sni). By Lemma 3, every

non-faulty process pj sends a message FORWARD(m, sd, snsd , j, snj), so by Lemma 5, pj scd-delivers

a message set containing m. 2Lemma 7

Theorem 1 Algorithm 1 implements the SCD-broadcast communication abstraction in CAMPn,t[t <
n/2]. Moreover, it requires O(n2) messages per invocation of scd_broadcast(). If there is an upper

bound ∆ on messages transfer delays (and local computation times are equal to zero), each SCD-

broadcast costs at most 2∆ time units.

Proof The proof follows from Lemma 1 (Validity), Lemma 2 (Integrity), Lemma 4 (MS-Ordering),

Lemma 6 (Termination-1), and Lemma 7 (Termination-2).

The O(n2) message complexity comes from the fact that, due to the predicates of line 5 and 6, each

application message m is forwarded at most once by each process (line 11). The 2∆ follows from the

same argument. 2Theorem 1

The next corollary follows from (i) Theorems 2 and 1, and (ii) the fact that the constraint (t < n/2) is

an upper bound on the number of faulty processes to build a read/write register (or snapshot object) [5].

Corollary 1 Algorithm 1 is resiliency optimal.

4 An SCD-broadcast-based Communication Pattern

All the algorithms implementing concurrent objects and tasks, which are presented in this paper, are

based on the same communication pattern, denoted Pattern 1. This pattern involves each process, either

as a client (when it invokes an operation), or as a server (when it scd-delivers a message set).

When a process pi invokes an operation op(), it executes once the lines 1-3 for a task, and 0, 1, or

2 times for an operation on a concurrent object. In this last case, this number of times depends on the

consistency condition which is implemented (linearizability [20] or sequential consistency [25]).

All the messages sent by a process pi are used to synchronize its local data representation of the

object, or its local view of the current state of the task. This synchronization is realized by the Boolean

10

operation op() is

According to the object/task that is implemented, and its consistency condition (if it is an object,

linearizability vs seq. consistency), execute 0, 1, or 2 times the lines 1-3 where the message type

TYPE is either a pure synchronization message SYNC or an object/task-dependent message MSG;

(1) donei ← false;

(2) scd_broadcast TYPE(a, b, ..., i);
a, b, ... are data, and i is the id of the invoking process; a message SYNC carries only the id of its sender;

(3) wait(donei);
(4) According to the states of the local variables, compute a result r; return(r).

when the message set { MSG(..., j1), . . . , MSG(..., jx)), SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) for each message m = MSG(..., j) do statements specific to the object/task that is implemented end for;

(6) if ∃ℓ : jℓ = i then done i ← true end if.

Pattern 1: Communication pattern (Code for pi)

done i and the parameter i carried by every message (lines 1, 3, and 6): pi is blocked until the message

it scd-broadcast just before is scd-delivered. The values carried by a message MSG are related to the

object/task that is implemented, and may require local computation.

It appears that the combination of this communication pattern and the properties of SCD-broadcast

provides us with a single simple framework that allows for correct implementations of both concurrent

objects and tasks.

The next three sections describe algorithms implementing a snapshot object, a counter object, and

the lattice agreement task, respectively. All these algorithms consider the system model CAMPn,t[∅]
enriched with the SCD-broadcast communication abstraction, denoted CAMPn,t[SCD-broadcast], and

use the previous communication pattern.

5 SCD-broadcast in Action (its Power): Snapshot Object

5.1 Snapshot object

Definition The snapshot object was introduced in [1, 3]. A snapshot object is an array REG [1..m]
of atomic read/write registers which provides the processes with two operations, denoted write(r,−)
and snapshot(). The invocation of write(r, v), where 1 ≤ r ≤ m, by a process pi assigns atomically

v to REG [r]. The invocation of snapshot() returns the value of REG [1..m] as if it was executed

instantaneously. Hence, in any execution of a snapshot object, its operations write() and snapshot() are

linearizable.

The underlying atomic registers can be Single-Reader (SR) or Multi-Reader (MR) and Single-Writer

(SR) or Multi-Writer (MW). We consider only SWMR and MWMR registers. If the registers are SWMR

the snapshot is called SWMR snapshot (and we have then m = n). Moreover, we always have r = i,
when pi invokes write(r,−). If the registers are MWMR, the snapshot object is called MWMR.

Implementations based on read/write registers Implementations of both SWMR and MWMR snap-

shot objects on top of read/write atomic registers have been proposed (e.g., [1, 3, 22, 23]). The “hard-

ness” to build snapshot objects in read/write systems and associated lower bounds are presented in the

survey [15]. The best algorithm known to implement an SWMR snapshot requires O(n log n) read/write

on the base SWMR registers for both the write() and snapshot() operations [7]. As far as MWMR snap-

shot objects are concerned, there are implementations where each operation has an O(n) cost3.

3Snapshot objects built in read/write models enriched with operations such as Compare&Swap, or LL/SC, have also been

considered, e.g.,[24, 22]. Here we are interested in pure read/write models.

11

As far as the construction of an SWMR (or MWMR) snapshot object in crash-prone asynchronous

message-passing systems where t < n/2 is concerned, it is possible to stack two constructions: first an

algorithm implementing SWMR (or MWMR) atomic read/write registers (e.g., [5])), and, on top of it,

an algorithm implementing an SWMR (or MWMR) snapshot object. This stacking approach provides

objects whose operation cost is O(n2 log n) messages for SWMR snapshot, and O(n2) messages for

MWMR snapshot. An algorithm based on the same low level communication pattern as the one used

in [5], which builds an atomic SWMR snapshot object “directly” (i.e., without stacking algorithms) was

recently presented in [14] (the aim of this algorithm is to perform better that the stacking approach in

concurrency-free executions).

5.2 An algorithm for atomic MWMR snapshot in CAMPn,t[SCD-broadcast]

Local representation of REG at a process pi At each register pi, REG [1..m] is represented by three

local variables regi[1..m] (data part), plus tsai[1..m] and donei (control part).

• done i is a Boolean variable.

• reg i[1..m] contains the current value of REG [1..m], as known by pi.

• tsai[1..m] is an array of timestamps associated with the values stored in reg i[1..m]. A timestamp

is a pair made of a local clock value and a process identity. Its initial value is 〈0,−〉. The fields

associated with tsai[r] are denoted 〈tsai[r].date, tsai[r].proc〉.

Timestamp-based order relation We consider the classical lexicographical total order relation on

timestamps, denoted <ts. Let ts1 = 〈h1, i1〉 and ts2 = 〈h2, i2〉. We have ts1 <ts ts2
def
= (h1 <

h2) ∨ ((h1 = h2) ∧ (i1 < i2)).

Algorithm 2: snapshot operation This algorithm consists of one instance of the communication

pattern introduced in Section 4 (line 1), followed by the return of the local value of reg i[1..m] (line 2).

The message SYNC(i), which is scd-broadcast is a pure synchronization message, whose aim is to entail

the refreshment of the value of reg i[1..m] (lines 5-11) which occurs before the setting of done i to true

(line 12).

operation snapshot() is

(1) donei ← false; scd_broadcast SYNC(i); wait(done i);
(2) return(reg i[1..m]).

operation write(r, v) is

(3) donei ← false; scd_broadcast SYNC(i); wait(done i);
(4) donei ← false; scd_broadcastWRITE(r,v, 〈tsa i[r].date+ 1, i〉); wait(done i).

when the message set { WRITE(rj1, vj1 , 〈datej1 , j1〉), . . . , WRITE(rjx, vjx , 〈datejx , jx〉),
SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) for each r such that WRITE(r,−,−) ∈ scd-delivered message set do

(6) let 〈date,writer〉 be the greatest timestamp in the messages WRITE(r,−,−);
(7) if (tsa i[r] <ts 〈date,writer〉)
(8) then let v the value in WRITE(r,−, 〈date,writer〉);
(9) regi[r]← v; tsa i[r]← 〈date,writer〉
(10) end if

(11) end for;

(12) if ∃ℓ : jℓ = i then done i ← true end if.

Algorithm 2: Construction of an MWMR snapshot object CAMPn,t[SCD-broadcast] (code for pi)

12

Algorithm 2: write operation (Lines 3-4) When a process pi wants to assign a value v to REG [r],
it invokes REG .write(r, v). This operation is made up of two instances of the communication pattern.

The first one is a re-synchronization (line 3), as in the snapshot operation, whose side effect is here

to provide pi with an up-to-date value of tsa i[r].date. In the second instance of the communication

pattern, pi associates the timestamp 〈tsa i[r].date + 1, i〉 with v, and scd-broadcasts the data/control

message WRITE(r, v, 〈tsa i[r].date + 1, i〉). In addition to informing the other processes on its write of

REG [r], this message WRITE() acts as a re-synchronization message, exactly as a message SYNC(i).
When this synchronization terminates (i.e., when the Boolean done i is set to true), pi returns from the

write operation.

Algorithm 2: scd-delivery of a set of messages When pi scd-delivers a message set, namely,

{ WRITE(rj1 , vj1 , 〈datej1 , j1〉), . . . , WRITE(rjx , vjx , 〈datejx , jx〉), SYNC(jx+1), . . . , SYNC(jy) }
it first looks if there are messages WRITE(). If it is the case, for each register REG [r] for which there

are messages WRITE(r,−,−) (line 5), pi computes the maximal timestamp carried by these messages

(line 6), and updates accordingly its local representation of REG [r] (lines 7-10). Finally, if pi is the

sender of one of these messages (WRITE() or SYNC()), donei is set to true, which terminates pi’s
re-synchronization (line 12).

Time and Message costs An invocation of snapshot() involves one invocation of scd_broadcast(),
while an invocation of write() involves two such invocations. As scd_broadcast() costs O(n2) protocol

messages and 2∆ time units, snapshot() cost the same, and write() costs the double.

5.3 Proof of Algorithm 2

As they are implicitly used in the proofs that follow, let us recall the properties of the SCD-broadcast

abstraction. The non-faulty processes scd-deliver the same messages (exactly one each), and each of

them was scd-broadcast. As a faulty process behaves correctly until it crashes, it scd-delivers a subset

of the messages scd-delivered by the non-faulty processes.

Without loss of generality, we assume that there is an initial write operation issued by a non-faulty

process. Moreover, if a process crashes in a snapshot operation, its snapshot is not considered; if a

process crashes in a write operation, its write is considered only if the message WRITE() it sent at line 4

is scd-delivered to at least one non-faulty process (and by the Termination-2 property, at least to all non-

faulty processes). Let us notice that a message SYNC() scd-broadcast by a process pi does not modify

the local variables of the other processes.

Lemma 8 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes a read or write operation. By the Termination-

1 property of SCD-broadcast, it eventually receives a message set containing the message SYNC() or

WRITE() it sends at line 2, 3 or 4. As all the statements associated with the scd-delivery of a message

set (lines 5-12) terminate, it follows that the synchronization Boolean done i is eventually set to true.

Consequently, pi returns from the invocation of its operation. 2Lemma 8

Extension of the relation <ts The relation <ts is extended to a partial order on arrays of times-

tamps, denoted ≤tsa , defined as follows: tsa1[1..m] ≤tsa tsa2[1..m]
def
= ∀r : (tsa1[r] = tsa2[r] ∨

tsa1[r] <ts tsa2[r]). Moreover, tsa1[1..m] <tsa tsa2[1..m]
def
= (tsa1[1..m] ≤tsa tsa2[1..m]) ∧

(tsa1[1..m] 6= tsa2[1..m]).

13

Definition Let TSAi be the set of the array values taken by tsi[1..m] at line 12 (end of the processing

of a message set by process pi). Let TSA = ∪1≤i≤nTSAi.

Lemma 9 The order ≤tsa is total on TSA.

Proof Let us first observe that, for any i, all values in TSAi are totally ordered (this comes from

tsi[1..m] whose entries can only increase, lines 7 and 10). Hence, let tsa1[1..m] be an array value of

TSAi, and tsa2[1..m] an array value of TSAj , where i 6= j.

Let us assume, by contradiction, that ¬(tsa1 ≤tsa tsa2) and ¬(tsa2 ≤tsa tsa1). As ¬(tsa1 ≤tsa

tsa2), there is a registers r such that tsa2[r] < tsa1[r]. According to lines 7 and 9, there is a message

WRITE(r,−, tsa1[r]) received by pi when tsai = tsa1 and not received by pj when tsaj = tsa2
(because tsa2[r] < tsa1[r]). Similarly, there is a message WRITE(r′,−, tsa2[r′]) received by pj when

tsaj = tsa2 and not received by pi when tsai = tsa1. This situation contradicts the MS-Ordering

property, from which we conclude that either tsa1 ≤tsa tsa2 or tsa2 ≤tsa tsa1. 2Lemma 9

Definitions Let us associate a timestamp ts(write(r, v)) with each write operation as follows. Let pi be

the invoking process; ts(write(r, v)) is the timestamp of v as defined by pi at line 4, i.e., 〈tsa i[r].date+
1, i〉.

Let op1 and op2 be any two operations. The relation ≺ on the whole set of operations is defined as

follows: op1 ≺ op2 if op1 terminated before op2 started. It is easy to see that ≺ is a real-time-compliant

partial order on all the operations.

Lemma 10 No two distinct write operations on the same register write1(r, v) and write2(r, w) have the

same timestamp, and (write1(r, v) ≺ write2(r, w)) ⇒ (ts(write1) <ts ts(write2)).

Proof Let 〈date1, i〉 and 〈date2, j〉 be the timestamp of write1(r, v) and write2(r, w), respectively. If

i 6= j, write1(r, v) and write2(r, w) have been produced by different processes, and their timestamp

differ at least in their process identity.

So, let us consider that the operations have been issued by the same process pi, with write1(r, v) first.

As write1(r, v) precedes write2(r, w), pi first invoked scd_broadcast WRITE(r, v, 〈date1, i〉) (line 4)

and later WRITE(r, w, 〈date2, i〉). It follows that these SCD-broadcast invocations are separated by a

local reset of the Boolean donei at line 4. Moreover, before the reset of done i due to the scd-delivery

of the message {. . . ,WRITE(r, v, 〈date1, i〉), . . .}, we have tsa i[r].datei ≥ date1 (lines 6-10). Hence,

we have tsa i[r].date ≥ date1 before the reset of donei (line 12). Then, due to the “+1” at line 4,

WRITE(r, w, 〈date2, i〉) is such that date2 > date1, which concludes the proof of the first part of the

lemma.

Let us now consider that write1(r, v) ≺ write2(r, w). If write1(r, v) and write2(r, w) have been

produced by the same process we have date1 < date2 from the previous reasoning. So let us as-

sume that they have been produced by different processes pi and pj . Before terminating write1(r, v)
(when the Boolean done i is set true at line 12), pi received a message set ms1i containing the mes-

sage WRITE(r, v, 〈date1, i〉). When pj executes write2(r, w), it first invokes scd_broadcast SYNC(j)
at line 3. Because write1(r, v) terminated before write2(r, w) started, this message SYNC(j) cannot

belong to ms1i.
Due to Integrity and Termination-2 of SCD-broadcast, pj eventually scd-delivers exactly one mes-

sage set ms1j containing WRITE(r, v, 〈date1, i〉). Moreover, it also scd-delivers exactly one message

set ms2j containing its own message SYNC(j). On the the other side, pi scd-delivers exactly one mes-

sage set ms2i containing the message SYNC(j). It follows from the MS-Ordering property that, if

ms2j 6= ms1j , pj cannot scd-deliver ms2j before ms1j . Then, whatever the case (ms1j = ms2j
or ms1j is scd-delivered at pj before ms2j), it follows from the fact that the messages WRITE() are

14

processed (lines 5-11) before the messages SYNC(j) (line 12), that we have tsaj[r] ≥ 〈date1, i〉 when

donej is set to true. It then follows from line 4 that date2 > date1, which concludes the proof of the

lemma. 2Lemma 10

Associating timestamp arrays with operations Let us associate a timestamp array tsa(op)[1..m]
with each operation op() as follows.

• Case op() = snapshot(). Let pi be the invoking process; tsa(op) is the value of tsa i[1..m] when

pi returns from the snapshot operation (line 2).

• Case op() = write(r, v). Let mintsa({A}), where A is a set of array values, denote the smallest ar-

ray value of A according to <tsa . Let tsa(op)
def
= mintsa({tsa [1..m] ∈ TSA such that ts(op) ≤ts

tsa[r]}). Hence, tsa(op) is the first tsa[1..m] of TSA, that reports the operation op() = write(r, v).

Lemma 11 Let op and op′ be two distinct operations such that op ≺ op′. We have tsa(op) ≤tsa

tsa(op′). Moreover, if op′ is a write operation, we have tsa(op) <tsa tsa(op′).

Proof Let pi and pj be the processes that performed op and op′, respectively. Let SYNCj be the SYNC(j)
message sent by pj (at line 2 or 3) during the execution of op′. Let term_tsa i be the value of tsa i[1..m]
when op terminates (line 2 or 4), and sync_tsa j the value of tsaj [1..m] when donej becomes true for

the first time after pj sent SYNCj (line 1 or 3). Let us notice that term_tsa i and sync_tsaj are elements

of the set TSA.

According to lines 7 and 10, for all r, tsa i[r] is the largest timestamp carried by a message WRITE(r, v,−)
received by pi in a message set before op terminates. Let m be a message such that there is a set sm
scd-delivered by pi before it terminated op. As pj sent SYNCj after pi terminated, pi did not receive any

set containing SYNCj before it terminated op. By the properties Termination-2 and MS-Ordering, pj
received message m in the same set as SYNCj or in a message set sm′ received before the set containing

SYNCj . Therefore, we have term_tsa i ≤tsa sync_tsa j .

If op is a snapshot operation, then tsa(op) = term_tsa i . Otherwise, op() = write(r, v). As pi has

to wait until it processes a set of messages including its WRITE() message (and executes line 12), we

have ts(op) <ts term_tsa i [r]. Finally, due to the fact that term_tsa i ∈ TSA and Lemma 9, we have

tsa(op) ≤tsa term_tsa i .

If op′ is a snapshot operation, then sync_tsa j = tsa(op′) (line 2). Otherwise, op() = write(r, v)
and thanks to the +1 in line 4, sync_tsa j [r] is strictly smaller than tsa(op′)[r] which, due to Lemma 9,

implies sync_tsa j <tsa tsa(op′).
It follows that, in all cases, we have tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j ≤tsa tsa(op′) and

if op′ is a write operation, we have tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j <tsa tsa(op′), which

concludes the proof of the lemma. 2Lemma 11

The previous lemmas allow the operations to be linearized (i.e., totally ordered in an order compliant

with both the sequential specification of a register, and their real-time occurrence order) according to a

total order extension of the reflexive and transitive closure of the →lin relation defined thereafter.

Definition 1 Let op, op′ be two operations. We define the →lin relation by op →lin op′ if one of the

following properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op
′),

15

Lemma 12 The snapshot object built by Algorithm 2 is linearizable.

Proof We recall the definition of the →lin relation: op →lin op′ if one of the following properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op
′),

We define the →⋆
lin relation as the reflexive and transitive closure of the →lin relation.

Let us prove that the →⋆
lin relation is a partial order on all operations. Transitivity and reflexivity

are given by construction. Let us prove antisymmetry. Suppose there are op0, op2, ..., opm such that

op0 = opm and opi →lin opi+1 for all i < m. By Lemma 11, for all i < m, we have tsa(opi) ≤tsa

tsa(opi+1), and tsa(opm) = tsa(op0), so the timestamp array of all operations are the same. Moreover,

if opi is a snapshot operation, then opi ≺ op(i+1)%m is the only possible case (% stands for “modulo”) ,

and by Lemma 11 again, op(i+1)%m is a snapshot operation. Therefore, only two cases are possible.

• Let us suppose that all the opi are snapshot operations and for all i, opi ≺ op(i+1)%m. As ≺ is a

partial order relation, it is antisymmetric, so all the opi are the same operation.

• Otherwise, all the opi are write operations. By Lemma 11, for all opi 6≺ op(i+1)%m. The opera-

tions opi and opi+1%m are ordered by the fourth point, so they are write operations on the same

register and ts(opi) <ts ts(opi+1%m). By antisymmetry of the <ts relation, all the opi have the

same timestamp, so by Lemma 10, they are the same operation, which proves antisymmetry.

Let ≤lin be a total order extension of →⋆
lin. Relation ≤lin is real-time compliant because →⋆

lin contains

≺.

Let us consider a snapshot operation op and a register r such that tsa(op)[r] = 〈date1, i〉. Ac-

cording to line 4, it is associated to the value v that is returned by read1() for r, and comes from a

WRITE(r, v, 〈date1, i〉) message sent by a write operation opr = write(r, v). By definition of tsa(opr),
we have tsa(opr) ≤tsa tsa(op) (Lemma 11), and therefore opr ≤lin op. Moreover, for any dif-

ferent write operation op′r on r, by Lemma 10, ts(op′r) 6= ts(opr). If ts(op′r) <ts ts(opr), then

op′r ≤lin opr. Otherwise, tsa(op) <tsa tsa(op′r), and (due to the first item of the definition of →lin)

we have op ≤lin op′r. In both cases, the value written by opr is the last value written on r before op,

according to ≤lin. 2Lemma 12

Theorem 2 Algorithm 2 builds an MWMR atomic snapshot object in the model CAMPn,t[SCD-broadcast].
The operation snapshot costs one SCD-broaddast, the write() operation costs two.

Proof The proof follows from Lemmas 8-12. The cost of the operation snapshot() follows from line 1,

and the one of write() follows from lines 3-4. 2Theorem 2

Comparison with other algorithms Interestingly, Algorithm 2 is more efficient (from both time

and message point of views) than the stacking of a read/write snapshot algorithm running on top of

a message-passing emulation of a read/write atomic memory (such a stacking would costs O(n2 log n)
messages and O(n∆) time units, see Section 5.1).

Sequentially consistent snapshot object When considering Algorithm 2, let us suppress line 1 and

line 3 (i.e., the messages SYNC are suppressed). The resulting algorithm implements a sequentially

consistent snapshot object. This results from the suppression of the real-time compliance due to the

messages SYNC. The operation snapshot() is purely local, hence its cost is 0. The cost of the operation

write() is one SCD-broadcast, i.e., 2∆ time units and n2 protocol messages. The proof of this algorithm

is left to the reader.

16

6 SCD-broadcast in Action (its Power): Counter Object

Definition Let a counter be an object which can be manipulated by three parameterless operations:

increase(), decrease(), and read(). Let C be a counter. From a sequential specification point of view

C.increase() adds 1 to C , C.decrease() subtracts 1 from C , C.read() returns the value of C . As indicated

in the Introduction, due to its commutative operations, this object is a good representative of a class of

CRDT objects (conflict-free replicated data type as defined in [32]).

operation increase() is

(1) donei ← false; scd_broadcast PLUS(i); wait(donei);
(2) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is

(3) donei ← false; scd_broadcast SYNC(i); wait(donei);
(4) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . , SYNC(jy), . . . } is scd-delivered do

(5) let p = number of messages PLUS() in the message set;

(6) let m = number of messages MINUS() in the message set;

(7) counteri ← counteri + p−m;

(8) if ∃ℓ : jℓ = i then done i ← true end if.

Algorithm 3: Construction of an atomic counter in CAMPn,t[SCD-broadcast] (code for pi)

An algorithm satisfying linearizability Algorithm 3 implements an atomic counter C . Each process

manages a local copy of it denoted counteri. The text of the algorithm is self-explanatory.

The operation read() is similar to the operation snapshot() of the snapshot object. Differently from

the write() operation on a snapshot object (which requires a synchronization message SYNC() and a

data/synchronization message WRITE()), the update operations increase() and decrease() require only

one data/synchronization message PLUS() or MINUS(). This is the gain obtained from the fact that,

from a process pi point of view, the operations increase() and decrease() which appear between two

consecutive of its read() invocations are commutative.

Lemma 13 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes an increase(), decrease() or read() operation. By the

Termination-1 property of SCD-broadcast, it eventually receives a message set containing the message

PLUS(), MINUS() or SYNC() it sends at line 1 or 3. As all the statements associated with the scd-delivery

of a message set (lines 5-8) terminate, it follows that the synchronization Boolean done i is eventually

set to true. Consequently, pi returns from the invocation of its operation. 2Lemma 13

Definition 2 Let opi be an operation performed by pi. We define past(opi) as a set of messages by:

• If opi is an increase() or decrease() operation, and mi is the message sent during its execution at

line 1, then past(opi) = {m : m 7→ mi}.

• If opi is a read() operation, then past (opi) is the union of all sets of messages scd_delivered by

pi before it executed line 4.

We define the →lin relation by op →lin op′ if one of the following conditions hold:

• past (op) past(op′);

17

• past (op) = past(op′), op is an increase() or a decrease() operation and op′ is a read() operation.

Lemma 14 The counter object built by Algorithm 3 is linearizable.

Proof Let us prove that →lin is a strict partial order relation. Let us suppose op →lin op′ →lin op′′.

If op′ is a read() operation, we have past(op) ⊆ past(op′) past(op′′). If op′ is an increase() or a

decrease() operation, we have past (op) past(op′) ⊆ past(op′′). In both cases, we have past (op)
past(op′′), which proves transitivity as well as antisymmetry and irreflexivity since it is impossible to

have past(op) past(op).
Let us prove that →lin is real-time compliant. Let opi and opj be two operations performed by

processes pi and pj respectively, and let mi and mj be the message sent during the execution of opi
and opj respectively, on line 1 or 3. Suppose that opi ≺ opj (opi terminated before opj started). When

pi returns from opi, by the waiting condition of line 1 or 3, it has received mi, but pj has not yet

sent mj . Therefore, mi 7→i mj , and consequently mj /∈ past(opi). By the waiting condition during the

execution of opj (line 1 or 3), we have mj ∈ past(opj). By the Containment property of SCD-broadcast,

we therefore have past (opi) past (opj), so opi →lin opj . Let ≤lin be a total order extension of →⋆
lin.

It is real-time compliant because →⋆
lin contains ≺.

Let us now consider the value returned by a read() operation op. Let p be the number of PLUS()

messages in past(op) and let m be the number of MINUS() messages in past (op). According to line 1,

op returns the value of counteri that is modified only at line 7 and contains the value p −m, by com-

mutativity of additions and substractions. Moreover, due to the definition of →lin, all pairs composed of

a read() and an increase() or decrease() operations are ordered by →lin, and consequently, op has the

same increase() and decrease() predecessors according to both →lin and to ≤lin. Therefore, the value

returned by op is the number of times increase() has been called, minus the number of times increase()
has been called, before op according to ≤lin, which concludes the lemma. 2Lemma 14

Theorem 3 Algorithm 3 implements an atomic counter.

Proof The proof follows from Lemmas 13 and 14. 2Theorem 3

An algorithm satisfying sequential consistency The previous algorithm can be easily modified to

obtain a sequentially consistent counter. To this end, a technique similar to the one introduced in [8]

can be used to allow the operations increase() and decrease() to have a fast implementation. “Fast”

means here that these operations are purely local: they do not require the invoking process to wait in the

algorithm implementing them. Differently, the operation read() issued by a process pi cannot be fast,

namely, all the previous increase() and decrease() operations issued by pi must be applied to its local

copy of the counter for its invocation of read() terminates (this is the rule known under the name “read

your writes”).

Algorithm 4 is the resulting algorithm. In addition to counteri, each process manages a local syn-

chronization counter lsci initialized to 0, which counts the number of increase() and decrease() executed

by pi and not locally applied to counteri. Only when lsci is equal to 0, pi is allowed to read counteri.
The cost of an operation increase() and decrease() is 0 time units plus the n2 protocol messages of

the underlying SCD-broadcast. The time cost of the operation read() by a process pi depends on the

value of lsci. It is 0 when pi has no “pending” counter operations.

Remark As in [8], using the same technique, it is possible to design a sequentially consistent counter

in which the operation read() is fast, while the operations increase() and decrease() are not.

18

operation increase() is

(1) lsci ← lsci + 1;

(2) scd_broadcast PLUS(i);
(3) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is

(4) wait(lsci = 0);
(5) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . } is scd-delivered do

(6) let p = number of messages PLUS() in the message set;

(7) let m = number of messages MINUS() in the message set;

(8) counteri ← counteri + p−m;

(9) let c = number of messages PLUS(i) and MINUS(i) in the message set;

(10) lsci ← lsci − c.

Algorithm 4: Construction of a seq. consistent counter in CAMPn,t[SCD-broadcast] (code for pi)

7 SCD-broadcast in Action (its Power): Lattice Agreement Task

Definition Let S be a partially ordered set, and ≤ its partial order relation. Given S′ ⊆ S, an upper

bound of S′ is an element x of S such that ∀ y ∈ S′ : y ≤ x. The least upper bound of S′ is an upper

bound z of S′ such that, for all upper bounds y of S′, z ≤ y. S is called a semilattice if all its finite

subsets have a least upper bound. Let lub(S′) denotes the least upper bound of S′.

Let us assume that each process pi has an input value ini that is an element of a semilattice S. The

lattice agreement task was introduced in [6] and generalized in [16]. It provides each process with an

operation denoted propose(), such that a process pi invokes propose(ini) (we say that pi proposes ini);

this operation returns an element z ∈ S (we say that it decides z). The task is defined by the following

properties, where it is assumed that each non-faulty process invokes propose().

• Validity. If process pi decides outi, we have ini ≤ outi ≤ lub({in1, . . . , inn}).

• Containment. If pi decides outi and pj decides outj , we have outi ≤ outj or outj ≤ outj .

• Termination. If a non-faulty proposes a value, it decides a value.

Algorithm Algorithm 5 implements the lattice agreement task. It is a very simple algorithm, which

uses one instance of the communication pattern introduced in Section 4. The text of the algorithm is

self-explanatory.

operation propose(ini) is

(1) outi ← ini;

(2) donei ← false; scd_broadcast MSG(i, ini); wait(done i);
(3) return(outi).

when the message set { MSG(j1, vj1), . . . , MSG(jx, vjx)} is scd-delivered do

(4) for each MSG(j, v) ∈ the scd-delivered message set do outi ← outi ∪ v end for;

(5) if ∃ℓ : jℓ = i then done i ← true end if.

Algorithm 5: Solving Lattice Agreement in CAMPn,t[SCD-broadcast] (code for pi)

Theorem 4 Algorithm 5 solves the lattice agreement task.

19

Proof The Termination property follows from the assumption that all non-faulty processes propose a

value, lines 2 and 5. The Validity property follows directly from lines 1 and 4.

As far as the Containment property is concerned we have the following. Let us assume, by contradic-

tion, that there are two processes pi ans pj such that we have neither outi ≤ outj nor outj ≤ outj .This

means that there is a value v ∈ outi \ outj , and a value v′ ∈ outj \ outi. Let msi and ms′i be the

message sets (scd-delivered by pi) which contained v and v′ respectively. As v ∈ outi and v′ /∈ outi,
we have msi 6= ms′i, and msi was scd-delivered before ms′i.

Defining similarly msj (containing v′) and ms′j (containing v), we have ms′j 6= msj, and ms′j was

scd-delivered before msj . It follows (see Section 2) that we have m 7→i m
′ and m′ 7→j m, from which

it follows that 7→ = ∪1≤x≤n 7→x is not a partial order. A contradiction with SCD-broadcast definition.

2Theorem 4

Remark 1 SCD-broadcast can be built on top of read/write registers (see below Theorem 5). It follows

that the combination of Algorithm 5 and Algorithm 6 provides us with a pure read/write algorithm solv-

ing the lattice agreement task. As far as we known, this is the first algorithm solving lattice agreement,

based only on read/write registers.

Remark 2 Similarly to the algorithms implementing snapshot objects and counters satisfying sequen-

tial consistency (instead of linearizability), Algorithm 5 uses no message SYNC().

Let us also notice the following. Objects are specified by “witness” correct executions, which are

defined by sequential specifications. According to the time notion associated with these sequences we

have two consistency conditions: linearizability (the same “physical” time for all the objects) or sequen-

tial consistency (a logical time is associated with each object, independently from the other objects).

Differently, as distributed tasks are defined by relations from input vectors to output vectors (i.e., with-

out referring to specific execution patterns or a time notion), the notion of a consistency condition (such

as linearizability or sequential consistency) is meaningless for tasks.

8 The Computability Power of SCD-broadcast (its Limits)

This section presents an algorithm building the SCD-broadcast abstraction on top of SWMR snapshot

objects. (Such snapshot objects can be easily obtained from MWMR snapshot objects.) Hence, it follows

from (a) this algorithm, (b) Algorithm 1, and (c) the impossibility proof to build an atomic register

on top of asynchronous message-passing systems where t ≥ n/2 process may crash [5], that SCD-

broadcast cannot be implemented in CAMPn,t[t ≥ n/2], and snapshot objects and SCD-broadcast are

computationally equivalent.

8.1 From snapshot to SCD-broadcast

Shared objects The shared memory is composed of two SWMR snapshot objects. Let ǫ denote the

empty sequence.

• SENT [1..n]: is a snapshot object, initialized to [∅, . . . , ∅], such that SENT [i] contains the mes-

sages scd-broadcast by pi.

• SETS_SEQ [1..n]: is a snapshot object, initialized to [ǫ, . . . , ǫ], such that SETS_SEQ [i] contains

the sequence of the sets of messages scd-delivered by pi.

The notation ⊕ is used for the concatenation of a message set at the end of a sequence of message sets.

20

Local objects Each process pi manages the following local objects.

• sent i is a local copy of the snapshot object SENT .

• sets_seq i is a local copy of the snapshot object SETS_SEQ .

• to_deliveri is an auxiliary variable whose aim is to contain the next message set that pi has to

scd-deliver.

The function members(set_seq) returns the set of all the messages contained in set_seq.

Description of Algorithm 6 When a process pi invokes scd_broadcast(m), it adds m to sent i[i] and

SENT [i] to inform all the processes on the scd-broadcast of m. It then invokes the internal procedure

progress() from which it exits once it has a set containing m (line 1).

A background task T ensures that all messages will be scd-delivered (line 2). This task invokes

repeatedly the internal procedure progress(). As, locally, both the application process and the underlying

task T can invoke progress(), which accesses the local variables of pi, those variables are protected by a

local fair mutual exclusion algorithm providing the operations enter_mutex() and exit_mutex() (lines 3

and 11).

operation scd_broadcast(m) is

(1) sent i[i]← sent i[i] ∪ {m}; SENT .write(sent i[i]); progress().

(2) background task T is repeat forever progress() end repeat.

procedure progress() is

(3) enter_mutex();
(4) catchup();
(5) sent i ← SENT .snapshot();
(6) to_deliveri ← (∪1≤j≤n sent i[j]) \members(sets_seq i[i]);
(7) if (to_deliveri 6= ∅)
(8) then sets_seq i[i]← sets_seq i[i]⊕ to_deliveri ; SETS_SEQ .write(sets_seq i[i]);
(9) scd_deliver(to_deliveri)
(10) end if;

(11) exit_mutex().

procedure catchup() is

(12) sets_seq i ← SETS_SEQ .snapshot();
(13) while (∃j, set : set is the first set in sets_seq i[j] : set 6⊆ members(sets_seq i[i]) do

(14) to_deliveri ← set \members(sets_seq i[i]);
(15) sets_seq i[i]← sets_seq i[i]⊕ to_deliveri ; SETS_SEQ .write(sets_seq i[i]);
(16) scd_deliver(to_deliveri)
(17) end while.

Algorithm 6: An implementation of SCD-broadcast on top of snapshot objects (code for pi)

The procedure progress() first invokes the internal procedure catchup(), whose aim is to allow pi to

scd-deliver sets of messages which have been scd-broadcast and not yet locally scd-delivered.

To this end, catchup() works as follows (lines 12-17). Process pi first obtains a snapshot of SETS_SEQ ,

and saves it in sets_seq i (line 12). This allows pi to know which message sets have been scd-delivered

by all the processes; pi then enters a “while” loop to scd-deliver as many message sets as possible ac-

cording to what was scd-delivered by the other processes. For each process pj that has scd-delivered a

message set set containing messages not yet scd-delivered by pi (predicate of line 13), pi builds a set

to_deliver i containing the messages in set that it has not yet scd-delivered (line 14), and locally scd-

delivers it (line 16). This local scd-delivery needs to update accordingly both sets_seq i[i] (local update)

and SETS_SEQ [i] (global update).

21

When it returns from catchup(), pi strives to scd-deliver messages not yet scd-delivered by the other

processes. To this end, it first obtains a snapshot of SENT , which it stores in sent i (line 5). If there

are messages that can be scd-delivered (computation of to_deliver i at line 6, and predicate at line 7), pi
scd-delivers them and updates sets_seq i[i] and SETS_SEQ [i] (lines 7-9) accordingly.

8.2 Proof of Algorithm 6

Lemma 15 If a process scd-delivers a set containing a message m, some process invoked scd_broadcast(m).

Proof The proof follows directly from the text of the algorithm, which copies messages from SENT to

SETS_SEQ , without creating new messages. 2Lemma 15

Lemma 16 No process scd-delivers the same message twice.

Proof Let us first observe that, due to lines 7 and 15, all messages that are scd-delivered at a process pi
have been added to sets_seq i[i]. The proof then follows directly from (a) this observation, (b) the fact

that (due to the local mutual exclusion at each process) sets_seq i[i] is updated consistently, and (c) lines

6 and 14, which state that a message already scd-delivered (i.e., a message belonging to sets_seq i[i])
cannot be added to to_deliver i. 2Lemma 16

Lemma 17 Any invocation of scd_broadcast() by a non-faulty process pi terminates.

Proof The proof consists in showing that the internal procedure progress() terminates. As the mutex

algorithm is assumed to be fair, process pi cannot block forever at line 3. Hence, pi invokes the internal

procedure catchup(). It then issues first a snapshot invocation on SETS_SEQ and stores the value

it obtains the value of sets_seq i. There is consequently a finite number of message sets in sets_seq i.

Hence, the “while” of lines 13-17 can be executed only a finite number of times, and it follows that any

invocation of catchup() by a non-faulty process terminates. The same reasoning (replacing SETS_SEQ

by SENT) shows that process pi cannot block forever when it executes the lines 5-10 of the procedure

progress(). 2Lemma 17

Lemma 18 If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set contain-

ing m.

Proof Let pi be a non-faulty process that scd-broadcasts a message m. As it is non-faulty, pi adds m
to SENT [i] and then invokes progress() (line 1). As m ∈ SENT , it is eventually added to to_deliveri
if not yet scd-delivered (line 6), and scd-delivered at line 9, which concludes the proof of the lemma.

2Lemma 18

Lemma 19 If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers a

message set containing m.

Proof Let us assume that a process scd-delivers a message set containing a message m. It follows that

the process that invoked scd_broadcast(m) added m to SENT (otherwise no process could scd-deliver

m). Let pi be a correct process. It invokes progress() infinitely often (line 2). Hence, there is a first

execution of progress() such that senti contains m (line 5). If then follows from line 6 that m will

be added to to_deliver i (if not yet scd-delivered). If follows that pi will scd-deliver a set of messages

containing m at line 9. 2Lemma 19

22

Lemma 20 Let pi be a process that scd-delivers a set msi containing a message m and later scd-

delivers a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′

and later a set msj containing m.

Proof Let us consider two messages m and m′. Due to total order property on the operations on the

snapshot object SENT , it is possible to order the write operations of m and m′ into SENT . Without loss

of generality, let us assume that m is added to SENT before m′. We show that no process scd-delivers

m′ before m.4

Let us consider a process pi that scd-delivers the message m′. There are two cases.

• pi scd-delivers the message m′ at line 9. Hence, pi obtained m′ from the snapshot object SENT

(lines 5-6). As m was written in SENT before m′, we conclude that SENT contains m. It then

follows from line 6 that, if pi has not scd-delivered m before (i.e., m is not in sets_seq i[i]), then

pi scd-delivers it in the same set as m′.

• pi scd-delivers the message m′ at line 16. Due to the predicate used at line 13 to build a set of

message to scd-deliver, this means that there is a process pj that has previously scd-delivered a set

of messages containing m′.

Moreover, let us observe that the first time the message m′ is copied from SENT to some

SETS_SEQ [x] occurs at line 8. As m was written in SENT before m′, the corresponding pro-

cess px cannot see m′ and not m. It follows from the previous item that px has scd-delivered m in

the same message set (as the one including m′), or in a previous message set. It then follows from

the predicate of line 13 that pi cannot scd-delivers m′ before m.

To summarize, the scd-deliveries of message sets in the procedure catchup() cannot violate the

MS-Ordering property, which is established at lines 6-10.
2Lemma 20

Theorem 5 Algorithm 6 implements the SCD-Broadcast abstraction in the system model CARWn,t[t <
n].

Proof The proof follows from Lemma 15 (Validity), Lemma 16 (Integrity), Lemmas 17 and 18 (Termination-

1), Lemma 19 (Termination-2), and Lemma 20 (MS-Ordering). 2Theorem 5

9 Conclusion

What was the paper on? This paper has introduced a new communication abstraction, suited to asyn-

chronous message-passing systems where computing entities (processes) may crash. Denoted SCD-

broadcast, it allows processes to broadcast messages and deliver sets of messages (instead of delivering

each message one after the other). More precisely, if a process pi delivers a set of messages containing a

message m, and later delivers a set of messages containing a message m′, no process pj can deliver a set

of messages containing m′ before a set of messages containing m. Moreover, there is no local constraint

imposed on the processing order of the messages belonging to a same message set. SCD-broadcast has

the following noteworthy features:

• It can be implemented in asynchronous message passing systems where any minority of processes

may crash. Its costs are upper bounded by twice the network latency (from a time point of view)

and (O(n2) (from a message point of view).

• Its computability power is the same as the one of atomic read/write register (anything that can be

implemented in asynchronous read/write systems can be implemented with SCD-broadcast).
4Let us notice that it is possible that a process scd-delivers them in two different message sets, while another process

scd-delivers them in the same set (which does not contradicts the lemma).

23

• It promotes a communication pattern which is simple to use, when one has to implement concur-

rent objects defined by a sequential specification or distributed tasks.

• When interested in the implementation of a concurrent object O, a simple weakening of the SCD-

broadcast-based atomic implementation of O provides us with an SCD-broadcast-based imple-

mentation satisfying sequential consistency (moreover, the sequentially consistent implementation

is more efficient than the atomic one).

On programming languages for distributed computing Differently from sequential computing for

which there are plenty of high level languages (each with its idiosyncrasies), there is no specific lan-

guage for distributed computing. Instead, addressing distributed settings is done by the enrichment of

sequential computing languages with high level communication abstractions. When considering asyn-

chronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast is

a candidate to be one of them, when one has to implement read/write solvable objects and distributed

tasks.

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANR Project 14-CE35-0010-02

DISCMAT (devoted to connections between mathematics and distributed computing) and the French

ANR project 16-CE40-0023-03 DESCARTES (devoted to layered and modular structures in distributed

computing).

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared memory.

Journal of the ACM, 40(4):873-890 (1993)

[2] Ahamad M., Neiger G., Burns J.E., Hutto P.W., and Kohli P. Causal memory: definitions, implementation

and programming. Distributed Computing, 9:37-49 (1995)

[3] Anderson J., Multi-writer composite registers. Distributed Computing, 7(4):175-195 (1994)

[4] Aspnes J. and Herlihy M., Wait-free data structures in the asynchronous PRAM model. Proc. 2nd ACM

Symposium on Parallel algorithms and architectures (SPAA’00), ACM Press, pp. 340-349 (1990)

[5] Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems. Journal of the

ACM, 42(1):121-132 (1995)

[6] Attiya H., Herlihy M., and Rachman O., Atomic snapshots using lattice agreement. Distributed Computing,

8:121-132 (1995)

[7] Attiya H. and Rachman O., Atomic snapshots in O(n log n) operations. SIAM Journal of Computing,

27(2):319-340 (1998)

[8] Attiya H. and Welch J.L., Sequential consistency versus linearizability. ACM Transactions on Computer

Systems, 12(2):91-12 (1994)

[9] Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and advanced topics, (2d

Edition), Wiley-Interscience, 414 pages (2004)

[10] Biran O., Moran S., and Zaks S., A combinatorial characterization of the distributed tasks which are solvable

in the presence of one faulty processor. Proc. 7th ACM Symposium on Principles of Distributed Computing

(PODC’88), ACM Press, pp. 263-275 (1988)

24

[11] Birman K. and Joseph T. Reliable communication in the presence of failures. ACM Transactions on Com-

puter Systems, 5(1):47–76 (1987)

[12] Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM,

43(2):225-267 (1996)

[13] Chaudhuri S., More choices allow more faults: set consensus problems in totally asynchronous systems.

Information and Computation, 105(1):132-158 (1993)

[14] Delporte-Gallet C., Fauconnier H., Rajsbaum S., and Raynal M., Implementing snapshot objects on top of

crash-prone asynchronous message-passing systems. Proc. 16th Int’l Conference on Algorithms and Archi-

tectures for Parallel Processing (ICA3PP’16), Springer LNCS 10048, pp. 341–355 (2016)

[15] Ellen F., How hard is it to take a snapshot? Proc. 31th Conference on Current Trends in Theory and Practice

of Computer Science (SOFSEM’05), Springer LNCS 3381, pp. 27-35 (2005)

[16] Faleiro J.M., Rajamani S., Rajan K., Ramalingam G., and Vaswani K., Generalized lattice agreement. Proc.

31th ACM Symposium on Principles of Distributed Computing (PODC’12), ACM Press, pp. 125-134 (2012)

[17] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed consensus with one faulty process.

Journal of the ACM, 32(2):374-382 (1985)

[18] Fischer M.J. and Merritt M., Appraising two decades of distributed computing theory research. Distributed

Computing, 16(2-3):239-247 (2003)

[19] Herlihy M.P. and Shavit N., The Art of Multiprocessor Programming. Morgan Kaufmann Pub., San Fran-

cisco (CA), 508 pages (2008)

[20] Herlihy M. P. and Wing J. M., Linearizability: a correctness condition for concurrent objects. ACM Trans-

actions on Programming Languages and Systems, 12(3):463-492 (1990)

[21] Imbs D., Mostéfaoui A., Perrin M., and Raynal M., Which broadcast abstraction captures k-set agreement?

(Extended version). Tech Report, ArXiv:1705.04835.pdf, 19 pages (2017)

[22] Imbs D. and Raynal M., Help when needed, but no more: efficient read/write partial snapshot. Journal of

Parallel and Distributed Computing, 72(1):1-12 (2012)

[23] Inoue I., Chen W., Masuzawa T. and Tokura N., Linear time snapshots using multi-writer multi-reader

registers. Proc. 8th Int’l Workshop on Distributed Algorithms (WDAG’94), Springer LNCS 857, pp. 130-

140 (1994)

[24] Jayanti P., An optimal multiwriter snapshot algorithm. Proc. 37th ACM Symposium on Theory of Computing

(STOC’05), ACM Press, pp. 723-732 (2005)

[25] Lamport L., How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE

Transactions on Computers, C28(9):690–691 (1979)

[26] Lamport L., On interprocess communication, Part I: basic formalism. Distributed Computing, 1(2):77-85

(1986)

[27] Moran S. and Wolfstahl Y., Extended impossibility results for asynchronous complete networks. Information

Processing Letters, 26(3):145-151 (1987)

[28] Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous distributed systems.

Morgan & Claypool Publishers, 251 pages, ISBN 978-1-60845-293-4 (2010)

[29] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, ISBN

978-3-642-32026-2 (2013)

[30] Raynal M., Set agreement. Encyclopedia of Algorithms, Springer, pp. 1956-1959 (2016)

25

[31] Raynal M., Schiper A., and Toueg S., The causal ordering abstraction and a simple way to implement it.

Information Processing Letters, 39:343-351 (1991)

[32] Shapiro M., Preguiça N., Baquero C., and Zawirski M., Conflict-free replicated data types. Proc. 13th Int’l

Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS’11), Springer LNCS 6976,

pp. 386-400 (2011)

[33] Shavit N. and Touitou D., Software transactional memory. Distributed Computing, 10(2):99-116 (1997)

26

