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Abstract 

In biomedical research, cell counting is important to assess physiological and pathophysiological information. 

However, the automated analysis of microscopic images of tissues remains extremely challenging. We propose 

an automated processing protocol for proper segmentation of individual cells in microscopic images. A Gaussian 

filter is applied to improve signal to noise ratio (SNR) then an original min-max method is proposed to produce 

an image in which information describing both cell centers (minima) and boundaries are enhanced. Finally, a 

contour-based model initialized from minima in the min-max cartography is carried out to achieve cell 

individualization. This method is evaluated on a NeuN-stained macaque brain section in sub-regions presenting 

various levels of fraction of neuron surface occupation. Comparison with several methods of reference 

demonstrates that the performances of our method are superior. A first application to the segmentation of 

neurons in the hippocampus illustrates the ability of our approach to deal with massive and complex data. 

 

Index Terms— Cell individualization, neuron counting, segmentation, microscopic images, min-max 

cartography 

 

1. Introduction 

Cell segmentation is a major biological research tool which can provide useful information about cell 

number and organization in the tissue. In neurodegenerative disease, for example, it allows to 

investigate neuronal loss in pathological brains. Microscopic images are commonly used in biology 

and provide high resolution images in which cytoarchitecture can be investigated. Traditionally, 

stereology methods [1] are used by the biologists to perform robust cell counting in an anatomical 

region based on manual segmentation performed in several samples. But this manual operation is time 

consuming and cumbersome. In addition, its accuracy depends on the complexity of images and the 

experience of the biologists. In order to overcome these limitations, an automated, accurate and robust 

method is requested. So far, several image processing methods have been proposed, but most of them 

are highly specific. Mathematical morphology [2] and concavity detection [3], [4] can only segment 

cells in simple images where only few cells are touching. However with histological tissue, a 

tremendous quantity of data is to be analyzed. Some anatomical regions like the dentate gyrus consist 

of massively packed neurons which are extremely difficult to individualize. Watershed algorithms [5] 

can segment touching cells but can easily cause over- and under-segmentation. Snakes [6]–[8]  can 

avoid over-segmentation but the initial contour and a pertinent external force are essential for a good 

segmentation. More recently, the iCut algorithm [9] has been proposed to segment touching cells 

based on a size prior and concavity detection.  

This paper presents a new image processing protocol which aims at automatically segmenting 

individual cells in two steps. First, segmentation of cells from tissue and background is performed 

using Random Forest (RF) classifier. The second step concerns the individualization of touching cells. 

We propose to use an original min-max filter that exacerbates local extrema to recover valuable 

information about cell centers and boundaries. The generated cartography can then guide a 

competitive region growing scheme. An optimization of the parameters of the proposed method is 

realized on a dataset manually segmented by experts and this method is compared to two methods of 



reference (watershed, iCut). Our method is then applied to segment cells on the hippocampus region, 

one of the most challenging anatomical regions to study due to its size and complex organization. 

2. Materials and Methodology 

2.1. Biological material  

This work is based on a macaque brain which was cut after euthanasia into 40-µm-thick sections. 

About 150 brain sections were produced and stained using a neuronal marker NeuN. They were 

digitized using an AxioScan.Z1 (Zeiss) with an in plane resolution of 0.22 µm (x20-magnification). In 

this preliminary work, sub-parts of one brain section corresponding to 120 GB were extracted and 

processed. A training set of ten representative images (512x512 pixels) were extracted and manually 

segmented into 3 classes (neurons, non-stained tissue and background) by an expert. To validate our 

individualization method, a centroid set of eighty images (256x256 pixels) presenting different levels 

of fraction of cell surface occupation were extracted. In these images, each cell was manually 

segmented by 2 experts by marking a point in its center providing information about cell number and 

cell center location. Finally, the proposed method was applied to an image of the left hippocampus 

corresponding to about 5 GB (44000x28000 pixels) in order to count neurons and compute neuron 

density in complex manually segmented sub-regions (CA1, CA2, CA3, CA4, dentate gyrus, 

subiculum). 

2.2. Tissue segmentation 

A RF model (100 trees) that we’ve previously described [10] is generated using the training set. The 

features considered are H, S, V color channels and local intensity (gray level intensity computed in 

disk of 5 pixels radius). Then the centroid set are segmented into 3 classes with the RF model. 

Additionally, color images are converted to gray level images [11] noted Igray in the following sections. 

2.3. Cell individualization 

To individualize touching neurons, we propose a new method by computing an image in which neuron 

centers and boundaries can be visualized at the same time. To achieve this purpose, Igray is first filtered 

by a Gaussian kernel with a standard deviation σ to improve SNR. This parameter σ is optimized to 

minimize the count error (see section 2.4). The filtered image Ig is then masked with the RF 

segmentation so that all background and non-stained pixels are set to 0.  

The min-max cartography Ie is then computed. For each pixel p of Ig, let D(d, p) the disk (not 

including p) of radius d centered on p, let N(D) the number of pixels in D(d, p), let S(p) the number of 

values in D(d, p) smaller than Ig(p) and G(p) the number of values greater or equal to Ig(p). The output 

value is then: 
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Consequently, pixels whose filtered value is -1 are absolutely minima in the local disk while those 

whose value is 1 are absolutely maxima. d is fixed at 10 pixels as it is the expected minimum neuron 

radius (2.5 µm [12]). This two-step process (Gaussian smoothing, min-max filtering) can be repeated n 

times to sharpen the extrema. n is optimized to minimize the count error (see section 2.4). Pixels of 

value -1 are selected as neuron centroids and each centroid is assigned to a unique label as the 

identification (id) of neurons. 



The final segmentation is obtained with a discrete contour-based model. Contours are initialized as 5-

pixel-radius circles centered on each centroid and all pixels inside them are labeled with the same id of 

their centroid. As neuron boundaries are close to maxima in Ie, we propose to give each contour point 

an expanding speed that depends on the contour curvature and Ie’s intensity. Let p a contour point, κ(p) 

the curvature-dependent term, µ(p) the intensity-dependent term, o the position of the neuron centroid. 

The next position of p noted p’ is obtained through equation (2). 
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Let k(p) the contour curvature at point p and c an optimal curvature. κ(p) is obtained through equation 

(3), making the contour expanding for curvatures smaller than c and shrinking for curvatures greater 

than c. 

   pkcp        (3) 

The intensity-dependent term is inspired by [13]. Let t a coefficient empirically set to 0.8×max(Ie). µ(p) 

is obtained through equation (4). 
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After each iteration, when the distance between two consecutive points p and q is superior to a 

predefined maximal distance dmax, new points are interpolated automatically according to equation (5). 








































Ni

i
N

pq
opop

d

pq
N

i

1

1

1
max

   (5) 

Then pixels surround each contour point p within dmax are examined. For those nearer to their centroid 

than p and not yet labeled are assigned to the same id of their centroid. 

All cell contours are simultaneously expanded, and contour crossing is forbidden. In our experiment, 

we fixed the number of expanding iterations at 30. This number can be arbitrarily high, and should be 

chosen so that the computation time is low enough but contours have enough time to reach the cell 

boundaries. Once the process is finished, the remaining unlabeled pixels are assigned according to 

their neighbors by majority voting. 

2.4. Parameters optimization and validation 

To optimize parameters (σ and iteration number n), our protocol is applied to the centroid set with σ 

values ranging from 1 to 8 pixels and iteration number from 1 to 3. The relative count error ε is 

defined as the absolute difference between the automatic count (Na) and the expert count (Ne) divided 

by the expert count: 
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In addition, a classification score that takes into account the position of the segmented neurons is 

defined. For each automatically segmented neuron, the number of expert centroids contained in the 

neuron is computed. If exactly one expert centroid is contained, this neuron is considered as a true 

positive. Else, it is either over segmented (zeros expert centroids) or under segmented (more than 1 

expert centroids).  Recall (R), precision (P) and F-score (F) are calculated as follows: 
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where Nt is the number of correctly automatic segmented neurons. 

The bigger the values of those criteria are, the better the performance of method is. 

3. Results and Discussion 

3.1. Parameters optimization 

Fig. 1 shows an example of different iterations applied to touching neurons (σ=4). A number of two 

iterations of min-max cartography computation is optimal because one iteration lead to under-

detection of neurons and three iterations to over-detection. A consistent estimation between the expert 

and automated method is obtained for two iterations (10 centroids detected). This setting enables to 

force the detection of small, blurred or brighter neurons which are very difficult to detect. 

    

Figure 1: Creation of min-max cartography (σ=4). a) Original color image. b) One iteration Ie. c) Two 

iterations Ie. d) Three iterations Ie. Red crosses are neuron centroids marked by expert while green crosses 

are the detected neuron centroids. 

Relative count errors resulting from the optimization of σ and iteration number n are calculated in 

Table 1 for expert 1 (similar results are obtained for expert 2).  

Table 1: Relative count error ε based on n and σ. 

Error 

Expert 1 

Iteration number n 

1 2 3 

σ 

1 0.20±0.19 0.55±0.44 1.48±0.86 

2 0.22±0.19 0.32±0.30 0.95±0.62 

3 0.23±0.19 0.16±0.19 0.48±0.41 

4 0.24±0.19 0.12±0.16 0.25±0.26 

5 0.26±0.19 0.14±0.17 0.16±0.19 

6 0.29±0.19 0.18±0.17 0.14±0.17 

7 0.31±0.20 0.22±0.18 0.16±0.18 

8 0.35±0.20 0.26±0.19 0.21±0.18 

a               b            c        d

  



Based on the minimal relative count error calculated, parameters σ=4 and 2 iterations are selected as 

optimal. 

3.2. Neuron individualization 

We have applied the proposed method to the centroid set. Fig. 2 presents the results obtained on 3 

different images presenting different levels of fraction of neuron surface occupation. Images 1 

represent simple images with a few individual neurons, images 2 represent moderately dense images 

in which several neurons touch and images 3 represent extremely dense images in which many 

neurons touch. A simple classification (neuron and unstained tissue) illustrated in Fig 2. b1-b3 is 

insufficient to segment neurons when touching neurons are present. Fig 2. c1-c3 present two iterations 

min-max cartographies in which neuron centers appear in black and neuron boundaries in bright 

(visually very close compared to the final neuron contours automatically detected). The proposed 

individualization method provides good results visually assessed in Fig 2. d1-d3.  

   

   

    

Figure 2: Neuron segmentation results obtained in images presenting different levels of fraction of neuron 

surface occupation. a1-a3) Original images. Red crosses are neuron centroids marked by expert. a1) a few 

individual neurons, a2) several touching neurons, a3) lots of touching neurons. b1-b3) Classification 

results by random forest. c1-c3) Two iterations min-max cartographies Ie. d1-d3) Individualization results 

obtained by our method. 

Fig. 3 presents the results obtained on the same images using two methods of reference: iCut and 

watershed. All these methods perform well in the simple cases. However, in the more complicated 

situations, the results of iCut method and watershed are not accurate. iCut separates touching neurons 

based on the features taking into account neuron size, spatial location, intervening contours and 

concave contours. In dense neuronal regions, information of concavity contours is not helpful anymore. 

iCut estimates the number of neurons by their mean area and gives a homogeneous segmentation 

result which doesn’t correspond visually to real neurons (Fig 2. a1-a3). The watershed results present 

a1                 b1      c1       d1 
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a3     b3      c3       d3 



over- and under-segmentation making the final contours unnatural (straight borders, large neurons 

detected). Visually, the proposed method provides a better neuron individualization result. 

        

   

Figure 3: Segmentation results of 2 reference methods. a) represents iCut method, b) Watershed method. 

Images 1, 2, 3 represent different levels of fraction of neuron surface occupation. 

In addition, a quantitative evaluation applied to the centroid set among the 3 methods is illustrated in 

Table 2. It shows that the proposed method provides the best performances. Moreover, the standard 

deviation of our method is smaller, demonstrating that the proposed method is more robust for both 

simple and complicated cases.  

Table 2: Comparison of performances among 3 neuron individualization methods based on 2 experts 

segmentation. Highest scores are shown in bold. 

Method 
Performances 

Expert 1 Expert 2 

iCut 

Recall 0.88±0.13 0.83±0.14 

Precision 0.87±0.14 0.90±0.11 

F-score 0.86±0.11 0.85±0.10 

Watershed 

Recall 0.88±0.18 0.82±0.14 

Precision 0.82±0.13 0.86±0.09 

F-score 0.84±0.09 0.83±0.09 

Proposed 

method 

Recall 0.92±0.09 0.85±0.11 

Precision 0.94±0.07 0.97±0.05 

F-score 0.92±0.06 0.90±0.07 

Another important fact to mention for iCut and watershed methods is that despite relatively high 

scores observed all superior to 0.8, the segmentation of the neurons is questionable (visual evaluation). 

It is thus important to define a more sensitive quality index. 

3.3. Application to the study of hippocampal sub-regions 

Fig. 4a presents the left hippocampus and the sub-regions manually segmented (CA1 to CA4, dentate 

gyrus (DG) and subiculum (S) shown in Fig. 4b) to which our method is applied. Table 3 presents the 

fraction of neuron surface occupation (F), the number of neurons detected (N) and neuron density (D, 

the number of neurons per mm²) in each sub-region using the optimal parameters. Our method 

performs well on large images of several GB in reasonable computational time (about 5 hours in this 

case on a recent workstation). 

a1        a2             a3 
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Figure 4: a) Hippocampus of one macaque brain section. b) 6 sub-regions segmented by expert. 

Table 3: F, N and D obtained in each sub-region. 

Region CA1 CA2 CA3 CA4 DG S 

F 0.17 0.24 0.18 0.12 0.29 0.15 

N 5160 3079 12323 4409 11689 3641 

D 2241 3310 2598 1515 4079 1852 

 

4. Conclusion 

This paper presents an efficient method to individualize touching cells in cerebral microscopic images. 

Some promising segmentation results have been obtained above on neuronal staining in macaque. The 

accuracy of our method is higher compared to state-of-the-art methods as assessed qualitatively and 

quantitatively. The method has been successfully applied to a hippocampus of macaque brain, one of 

the most challenging anatomical regions to study in neuroscience. Perspectives of this work will be to 

extend this study to the entire brain sections or brains to alleviate the issue of big data processing [14]. 

The automated detection of millions of cells is still challenging and an in-depth comparison of 

strengths and complementarities between stereology and image processing methods should be 

carefully addressed in the future. This generic tool should also help to address major biological issues 

such as understanding of pathology mechanisms or evaluation of novel therapies. 
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