
HAL Id: hal-01539926
https://hal.science/hal-01539926

Submitted on 15 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Centralized versus Decentralized Multi-Cell Resource
and Power Allocation for Multiuser OFDMA Networks

Mohamad Yassin, Samer Lahoud, Kinda Khawam, Marc Ibrahim, Dany
Mezher, Bernard Cousin

To cite this version:
Mohamad Yassin, Samer Lahoud, Kinda Khawam, Marc Ibrahim, Dany Mezher, et al.. Centralized
versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks.
Computer Communications, 2017, 107, pp.112 - 124. �10.1016/j.comcom.2017.04.002�. �hal-01539926�

https://hal.science/hal-01539926
https://hal.archives-ouvertes.fr


Centralized versus Decentralized Multi-Cell Resource
and Power Allocation for Multiuser OFDMA Networks

Mohamad Yassina,b,∗, Samer Lahouda, Kinda Khawamc, Marc Ibrahimb,
Dany Mezherb, Bernard Cousina

aUniversity of Rennes 1, IRISA, Campus de Beaulieu, 35042 Rennes, France
bSaint Joseph University of Beirut, ESIB, CST, Mar Roukoz, Lebanon

cUniversity of Versailles, 45 Av. des Etats-Unis, 78035 Versailles, France

Abstract

The exponential growth in the usage of mobile networks along with the in-

creasing number of User Equipments (UEs) are exacerbating the scarcity of

frequency resources. Dense frequency reuse on the downlink of multiuser Or-

thogonal Frequency Division Multiple Access networks leads to severe Inter-Cell

Interference (ICI) problems. Resource and power allocation techniques are re-

quired to alleviate the harmful impact of ICI. Contrarily to the existing tech-

niques that consider single-cell resource and power allocation problem without

taking ICI into account, we formulate a centralized downlink multi-cell joint

resource and power allocation problem. The objective is to maximize system

throughput while guaranteeing throughput fairness between UEs. We demon-

strate that the joint problem is separable into two independent problems: a

resource allocation problem and a power allocation problem. Lagrange dual-

ity theory is used to solve the centralized power allocation problem. We also

tackle the resource and power allocation problem differently by addressing it in

a decentralized manner. We propose a non-cooperative downlink power alloca-

tion approach based on game theory. The players are the base stations, and

each base station seeks to maximize its own utility function. We investigate the

convergence of our proposed centralized and decentralized approaches, and we

∗Corresponding author
Email address: mohamad.yassin@usj.edu.lb (Mohamad Yassin)

Preprint submitted to Elsevier Computer Communications February 27, 2017



compare their performance with that of state-of-the-art approaches.

Keywords: Convex optimization, resource and power allocation, inter-cell

interference, ICIC, OFDMA

1. Introduction

Multiuser Orthogonal Frequency Division Multiple Access (OFDMA) net-

works, such as the Third Generation Partnership Project (3GPP) Long Term

Evolution (LTE) [1] and LTE-Advanced (LTE-A) [2] networks, are able to avoid

the negative impact of multipath fading and intra-cell interference, by virtue of5

the orthogonality between subcarrier frequencies. Nevertheless, Inter-Cell Inter-

ference (ICI) problems arise on the downlink of dense frequency reuse networks

due to simultaneous transmissions on the same frequency resources. System

performance is interference-limited, since the achievable throughput is reduced

due to ICI.10

Fractional Frequency Reuse (FFR) [3] and Soft Frequency Reuse (SFR) [4]

were introduced to avoid the harmful impact of ICI on system performance,

by applying static rules on Resource Block (RB) usage and power allocation

between cell-center and cell-edge users. Heuristic Inter-Cell Interference Co-

ordination (ICIC) techniques are proposed to achieve ICI mitigation without15

severe degradation of the overall system throughput. For instance, authors

of [5, 6] propose suboptimal solution for the resource allocation problem. The

objective is to minimize ICI by exploiting User Equipment (UE) diversity to

maximize system throughput. They propose a two-level algorithm that oper-

ates at the evolved-NodeBs (eNodeBs) and at a central controller connected to20

several eNodeBs. In [7], a heuristic power allocation algorithm is introduced to

reduce energy consumption and to improve cell-edge UEs throughput. It has

been proven that the proposed algorithm reduces power consumption without

reducing the achievable throughput. Moreover, it mitigates ICI and increases

the achievable throughput for cell-edge UEs.25

Beside heuristic resource and power allocation algorithms [8], convex opti-
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mization is used to improve the performance of multiuser OFDMA networks,

and to alleviate the negative impact of ICI on UE throughput. Resource and

power allocation problem is usually formulated as nonlinear optimization prob-

lem, where the objective consists in maximizing system throughput, spectral30

efficiency, or energy efficiency, with constraints on the minimum throughput per

UE or other Quality of Service (QoS) parameters [9]. The exponential growth

in the usage of mobile networks along with the increasing number of UEs are

exacerbating the scarcity of frequency resources.

The majority of state-of-the-art contributions formulate the resource and35

power allocation problem for a single cell network [10, 11, 12], or do not con-

sider the impact of ICI on system performance. For instance, the tradeoff

between spectral efficiency and energy efficiency is addressed in [12], and a

low-complexity suboptimal algorithm is proposed to allocate RBs for practical

applications of the tradeoff. However, the system model consists of a single cell40

OFDMA network, where one subcarrier is assigned to at most one UE. There-

fore, ICI problems are not considered. In this article, we formulate the joint

resource and power allocation problem for the downlink of multiuser OFDMA

networks, as a centralized multi-cell optimization problem. Inter-cell interfer-

ence is taken into account, and throughput fairness between the different users is45

guaranteed. We prove that our joint problem is separable into two independent

optimization problems: a resource allocation problem and a power allocation

problem. Our objective is to maximize system throughput, while satisfying

constraints related to resource usage, Signal-to-Interference and Noise Ratio

(SINR), and power allocation. We also propose a decentralized power alloca-50

tion approach that does not rely on centralized controllers. Each base station

maximizes its own utility function in a distributed manner. We evaluate the

performance of the proposed approaches, and we compare their performance

with state-of-the-art resource and power allocation approaches.

The remainder of this article is organized as follows. In section II, we de-55

scribe the limitations of the existing state-of-the-art approaches. In section III,

system model is presented followed by our joint resource and power allocation
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problem formulation. The joint problem is decomposed into two independent

problems in section IV: a resource allocation problem and a power allocation

problem. We also demonstrate the convexity of the formulated problems. In60

section V, we solve both resource and power allocation problems using the La-

grange duality theory. Our decentralized power allocation approach is intro-

duced in section VI. Then, we investigate the convergence of the centralized

and the decentralized approaches in section VII, where we also provide compar-

isons with other approaches. Section VIII concludes this article and summarizes65

our main contributions.

2. Related Work

2.1. State-of-the-Art Contributions

For a given multiuser OFDMA network, resource and power allocation prob-

lem is formulated as a centralized optimization problem [10, 11, 12]. Centralized70

inter-cell coordination is therefore required to find the optimal solution, where

the necessary information about SINR, power allocation, and resource usage are

sent to a centralized coordination entity.

In [13], the multi-cell optimization problem is decomposed into two dis-

tributed optimization problems. The objective of the first problem is to mini-75

mize the transmission power allocated for cell-edge UEs, while guaranteeing a

minimum throughput for each UE. RB and power are allocated to cell-edge UEs

so that they satisfy their minimum required throughput. The remaining RBs

and the remaining transmission power are uniformly allocated to cell-center

UEs. At this stage, the second problem aims at finding the resource alloca-80

tion strategy that maximizes the achievable throughput for cell-center UEs. An

improved version of this adaptive ICIC technique is proposed in [14], where re-

source allocation for cell-edge UEs is performed depending on their individual

channel conditions. However, the main disadvantage of this adaptive ICIC tech-

nique and the proposed improvement is that they do not consider the impact of85

ICI between adjacent cells when power allocation is performed. Each cell solves
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its own optimization problem without requesting additional information from

its neighboring cells.

Resource and power allocation for a cluster of coordinated OFDMA cells

are studied in [15]. Energy efficiency is maximized under constraints related to90

the downlink transmission power. However, noise-limited regime is considered,

and ICI is neglected. Moreover, energy-efficient resource allocation for OFDMA

systems is investigated in [16], where generalized and individual energy effi-

ciencies are defined for the downlink and the uplink of the OFDMA system,

respectively. Properties of the energy efficiency objective function are studied,95

then a low-complexity suboptimal algorithm is introduced to reduce the compu-

tational burden of the optimal solution. Subcarrier assignment is made easier

using heuristic algorithms. Authors of [17] consider the joint resource alloca-

tion, power allocation, and Modulation and Coding Scheme (MCS) selection

problem. The joint optimization problem is separated into resource allocation100

and power allocation problems, and suboptimal algorithms are proposed. An-

other low complexity suboptimal resource allocation algorithm is proposed in

[18]. The objective consists in maximizing the achievable throughput, under

constraints related to resource usage in the different cells. Cooperation between

adjacent cells is needed. A multi-cell resource allocation approach for OFDMA105

systems with decode-and-forward relaying is proposed in [19], where an inter-

ference constraint is introduced along with time sharing variables. Although

this approach guarantees throughput fairness between the different users, the

spectral efficiency is reduced since the cells are not allowed to use the available

spectrum during 100% of the time due to time sharing between base stations110

and relays.

Minimizing energy consumption and maximizing spectral efficiency in mul-

tiuser OFDMA networks cannot be achieved simultaneously. Energy-bandwidth

tradeoff is studied in [20], where authors consider the total energy consumption

versus the end-to-end rate in wireless multihop networks. For an arbitrary place-115

ment of wireless nodes, resource and power allocation that minimizes the energy

level required to achieve a given data rate is found. However, interference-free
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resource allocation is considered, and the impact of ICI on system performance

is not taken into account.

2.2. Our Contributions120

The majority of state-of-the-art contributions that formulate spectral effi-

ciency or energy efficiency problems as centralized optimization problems, ne-

glect the impact of ICI on system performance [10, 11, 12], or introduce subop-

timal approaches to solve resource and power allocation problems [21, 22, 23].

Moreover, performance comparisons are not made with other distributed heuris-125

tic ICIC algorithms, that are usually characterized by a lower computational

complexity. In our work, we consider the multi-cell downlink resource and power

allocation problem, where the objective is to maximize system throughput while

guaranteeing throughput fairness between the different UEs. Moreover, ICI is

taken into account when solving the centralized resource and power allocation130

problem. We also formulate a decentralized non-cooperative power allocation

approach based on game theory. The players are the cells, and each cell seeks

maximizing its own utility function independently of the other cells in the net-

work. We investigate the convergence of both centralized and decentralized ap-

proaches, and we compare their performance with that of the frequency reuse-1135

model, the frequency reuse-3 model, FFR, and SFR techniques. Our major

contributions are summarized as follows:

• Propose an original formulation of the centralized joint resource and power

allocation problem: instead of considering a single cell OFDMA network,

we formulate our problem for a multi-cell OFDMA network, taking ICI140

problems into account. The objective is to maximize the mean rate per

UE, and ensure a proportional fair rate for all the active UEs.

• Decompose the joint downlink resource and power allocation problem

into two independent problems, and solve the centralized power alloca-

tion problem using Lagrange duality theory and subgradient projection145

method.
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• Formulate a novel decentralized super-modular game for resource and

power allocation, and propose a best response algorithm to attain the

Nash Equilibrium. Then, solve the decentralized power allocation prob-

lem using subgradient projection method.150

• Validate the convergence of the proposed centralized and decentralized

approaches and evaluate their performance in comparison with broadly

adopted state-of-the-art approaches.

3. System Model and Problem Formulation

3.1. System Model155

We consider the downlink of a multiuser OFDMA system that consists of I

adjacent cells and K active UEs. Let I = {1, 2, ..., I} denote the the set of cells,

and K = {1, 2, ...,K} the total set of active UEs. We also define K(i) as the

number of UEs served by cell i. Thus, we have
∑I
i=1K(i) = K. The set of

available RBs in each cell is denoted by N = {1, 2, ..., N}.160

In OFDMA networks, system spectrum is divided into several channels,

where each channel consists of a number of consecutive orthogonal OFDM sub-

carriers [24]. An RB is the smallest scheduling unit. It consists of 12 con-

secutive subcarriers in the frequency domain, and seven OFDM symbols with

normal cyclic prefix in the time domain [25] (or six OFDM symbols with ex-

tended cyclic prefix). Frequency resources are allocated to UEs each Transmit

Time Interval (TTI), which is equal to 1 ms. When the frequency reuse-1 model

is applied along with homogeneous power allocation, each RB is allocated the

same downlink transmission power Pmax

N , where Pmax denotes the maximum

downlink transmission power per cell. The signal to interference and noise ratio

for a UE k attached to cell i and allocated RB n is given by:

σk,i,n =
πi,nGk,i,n

N0 +
∑
i′ 6=i πi′,nGk,i′,n

, (1)
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where πi,n is the downlink transmission power allocated by cell i to RB n, Gk,i,n

denotes channel gain for UE k attached to cell i and allocated RB n, and N0 is

the thermal noise power. Indexes i and i′ refer to useful and interfering signals

respectively. In our work, we rely on perfect channel state information to infer

the SINR. Authors of [26] provide models to account for imperfect channel state165

and study the impact on energy efficiency. Notations, symbols, parameters, and

variables used within this document are reported in Table 1.

Table 1: Sets, parameters and variables in the article

i Index of cell
k Index of UE
n Index of RB
I Set of cells
K Total set of UEs
K(i) Set of UEs associated to cell i
N Set of RBs
ρk,i,n Peak rate of UE k associated with RB n on cell i
πi,n Transmit power of cell i on RB n
Gk,i,n Channel gain for UE k over RB n on cell i
N0 Thermal noise density
θk,n Percentage of time UE k is associated with RB n
η Total system achievable mean rate
σk,i,n SINR for UE k over RB n on cell i
Pmax Maximum DL transmission power per cell
πmin Minimum DL transmission power per RB
I ′(i) Set of neighboring cells for cell i

3.2. Problem Formulation

3.2.1. Centralized Multi-Cell Optimization Problem

We define θk,n as the percentage of time during which UE k is associated170

with RB n. θk,n,∀k ∈ K,∀n ∈ N , and πi,n,∀i ∈ I,∀n ∈ N , are the optimization

variables of the joint resource and power allocation problem. Our objective is

to manage resource and power allocation in a manner that maximizes system

throughput and guarantees throughput fairness between the different UEs. The

standard approach is to have integer scheduling variables, while in our problem175

formulation, θk,n and πi,n are continuous variables. In fact, using continuous

variables will decrease the computation time and the complexity of the problem
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without losing generality. A simple way of implementing the solution is to

extend the Round-Robin scheduler in a way to allocate equal time shares to the

users in the cell on each RB.180

The peak rate of UE k when associated with RB n on cell i is given by:

ρk,i,n = log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
. (2)

Then, the mean rate of UE k is given by:

∑
n∈N

(θk,n.ρk,i,n) =

∑
n∈N

(
θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
.

(3)

Our centralized multi-cell joint resource and power allocation problem seeks rate

maximization in a proportional fair manner. We make use of the logarithmic

function that is intimately associated with the concept of proportional fairness

[27]. Our problem is formulated in the following:

maximize
θ,π

η =

∑
i∈I

∑
k∈K(i)

log

(∑
n∈N

θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
(4a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (4b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (4c)

∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (4d)

πi,n ≥ πmin, ∀i ∈ I,∀n ∈ N , (4e)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i),∀n ∈ N . (4f)

The objective function η ensures a proportional fair rate for all UEs in the

network. Constraints (4b) ensure that an RB is used at most 100% of the time,
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and constraints (4c) ensure that a UE shares its time on the available RBs.

Constraints (4d) guarantee that the total downlink transmission power allocated

to the available RBs does not exceed the maximum transmission power Pmax for185

each cell i, and constraints (4e) represent the minimum power constraint of the

transmit power allocated to each RB. In fact, the power allocated to each RB is

larger than a predefined value denoted πmin, and the transmit power of cell i is

lower than Pmax. In practice, these bounds are related to hardware limitations.

θk,n,∀k ∈ K,∀n ∈ N , and πi,n,∀i ∈ I,∀n ∈ N are the optimization variables of190

the joint resource and power allocation problem.

In order to reduce the complexity of the joint resource and power allocation

problem (4), we prove that this problem is separable into two independent prob-

lems: a resource allocation problem and a power allocation problem. In fact,

maximizing the objective function of problem (4) is achieved by maximizing the

following term: ∑
i∈I

∑
k∈K(i)

∑
n∈N

(log (θk,n) + log (ρk,i,n)) . (5)

The proof of this hypothesis is given in Appendix I.

4. Problem Decomposition

We tackle ICIC as an optimization problem, where we intend to maximize

the mean rate of UEs in a multiuser OFDMA system. We consider a system of195

I cells, having K(i) UEs per cell i. According to (5), and due to the absence of

binding constraints, the optimization problem (4) is linearly separable into two

independent problems: a power allocation problem and a resource allocation

problem.

4.1. Centralized Multi-Cell Power Allocation Problem200

In the first problem, the optimization variable π is considered, and the

problem is formulated as follows:
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maximize
π

η
1

=

∑
i∈I

∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
(6a)

subject to
∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (6b)

πi,n ≥ πmin, ∀i ∈ I,∀n ∈ N . (6c)

Problem (6) consists in finding the optimal power allocation. However, it is

not a convex optimization problem as formulated in (6). In the following, we

introduce a variable change that allows to formulate problem (6) as a convex205

optimization problem as follows:

maximize
ρ,π

η
1

=
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (ρk,i,n) (7a)

subject to ρk,i,n ≤ log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
,

∀i ∈ I,∀k ∈ K(i),∀n ∈ N , (7b)∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I, (7c)

πi,n ≥ πmin, ∀i ∈ I,∀n ∈ N . (7d)

Let us consider the following variable change:

ρ̂k,i,n = log (exp (ρk,i,n)− 1) , ∀ i ∈ I,∀ k ∈ K(i),∀n ∈ N , (8a)

π̂i,n = log(πi,n), ∀ i ∈ I,∀n ∈ N . (8b)

Hence, the original variables are given by:

ρk,i,n = log (exp (ρ̂k,i,n) + 1) , ∀ i ∈ I,∀ k ∈ K(i),∀n ∈ N , (9a)

πi,n = exp (π̂i,n) , ∀ i ∈ I,∀n ∈ N . (9b)

To show that the optimization problem (7) is a convex optimization prob-

lem, we need to show that the objective function is concave and the inequality

constraint functions define a convex set. After applying the variable change on210
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peak rate constraints (7b), they can be written as:

ρk,i,n ≤ log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)
,

∀i ∈ I,∀k ∈ K(i),∀n ∈ N

⇒ log(exp(ρ̂k,i,n) + 1) ≤ log(1 +
exp(π̂i,n)Gk,i,n

N0 +
∑
i′ 6=i exp(π̂i′,n)Gk,i′,n

)

⇒ exp(ρ̂k.i.n) + 1 ≤ 1 +
exp(π̂i,n)Gk,i,n

N0 +
∑
i′ 6=i exp(π̂i′,n)Gk,i′,n

⇒
exp(ρ̂k.i.n).(N0 +

∑
i′ 6=i exp(π̂i′,n)Gk,i′,n)

exp(π̂i,n)Gk,i,n
≤ 1

⇒log

exp(ρ̂k.i.n−π̂i,n)
N0

Gk,i,n
+
∑
i′ 6=i

exp(ρ̂k.i.n+π̂i′,n−π̂i,n)
Gk,i′,n
Gk,i,n

≤0,

∀i ∈ I,∀k ∈ K(i),∀n ∈ N .

These constraints are the logarithmic of the sum of exponential functions.

Thus, they are convex functions [28]. When we apply the variable change on

power constraints (7c), we get:∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I

⇒ log

(∑
n∈N

exp (π̂i,n)

)
− log (Pmax) ≤ 0, ∀i ∈ I.

Since log(
∑

exp) is convex [28], the constraints at hand are therefore convex.215

Using the variable change, the power allocation problem (7) can be written as

follows:

maximize
ρ̂,π̂

η1 =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (log (exp (ρ̂k,i,n) + 1)) (10a)

subject to

log

exp(ρ̂k.i.n−π̂i,n)
N0

Gk,i,n
+
∑
i′ 6=i

exp(ρ̂k.i.n+π̂i′,n−π̂i,n)
Gk,i′,n
Gk,i,n

≤0,

∀i ∈ I,∀k ∈ K(i),∀n ∈ N , (10b)

log

(∑
n∈N

exp (π̂i,n)

)
− log (Pmax) ≤ 0, ∀i ∈ I, (10c)

π̂i,n ≥ log (πmin) , ∀i ∈ I,∀n ∈ N . (10d)
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The objective function of problem (10) is concave in ρ̂ and π̂, and con-

straints (10b), (10c), and (10d) are convex functions. Thus, the power allocation

problem is a convex optimization problem.220

4.2. Centralized Resource Allocation Problem

The optimization variable θ is considered in the second optimization problem

that is given in the following:

maximize
θ

η
2

=
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (θk,n) (11a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (11b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (11c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i),∀n ∈ N . (11d)

As demonstrated for the power allocation problem (6), we prove that prob-

lem (11) is indeed a convex optimization problem in θ. The objective func-225

tion (11a) of the resource allocation problem (11) is concave in θ, since the log

function is concave for θ ∈ ]0; 1]. Moreover, constraints (11b), (11c), and (11d)

are linear and separable constraints. Hence, the resource allocation problem (11)

is a convex optimization problem, and it is separable into I subproblems. For

each cell i, the ith optimization problem is written as follows:230

maximize
θ

(η
2
)i =

∑
k∈K(i)

∑
n∈N

log (θk,n) (12a)

subject to
∑
k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (12b)

∑
n∈N

θk,n ≤ 1, ∀k ∈ K(i), (12c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i),∀n ∈ N . (12d)

5. Centralized Multi-Cell Resource and Power Allocation

As stated in the previous section and proven in Appendix I, the joint resource

and power allocation problem (4) is separable into two independent convex
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optimization problems: a power allocation problem, and a resource allocation

problem. In this section, we solve the resource and power allocation problems235

using Lagrange duality theory and subgradient projection method.

5.1. Solving the Centralized Power Allocation Problem

5.1.1. Lagrange-Based Method

Since the power allocation problem (10) is a convex optimization problem, we

can make use of Lagrange duality properties, which also lead to decomposability240

structures [29]. Lagrange duality theory links the original problem, or primal

problem, with a dual maximization problem. The Lagrangian of problem (10)

is given as follows:

L (ρ̂, π̂,λ,ν) =
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (log (exp (ρ̂k,i,n) + 1))

−
∑
i∈I

∑
k∈K(i)

∑
n∈N

λk,i,n(log(exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n

+
∑
i′∈N
i′ 6=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n
Gk,i,n

))

−
∑
i∈I

νi

(
log

(∑
n∈N

exp (π̂i,n)

)
− log (Pmax)

)
.

(13)

The optimization variables ρ̂ and π̂ are called the primal variables. λk,i,n

and νi are the dual variables associated with the (k, i, n)th inequality con-245

straint (10b) and with the ith inequality constraint (10c), respectively.

After relaxing the coupling constraints (10b) and (10c), the optimization

problem separates into two levels of optimization: lower level and higher level.

At the lower level, L(ρ̂, π̂,λ,ν) is the objective function to be maximized. ρ̂k,i,n

and π̂i,n are the optimization variables to be found. At the higher level, we have

the master dual problem in charge of updating the dual variables λ and ν by
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solving the dual problem:

minimize
λ,ν

max
ρ̂,π̂

(L (ρ̂, π̂,λ,ν)) (14a)

subject to λ ≥ 0, (14b)

ν ≥ 0. (14c)

In order to solve the primal optimization problem (lower level of optimiza-

tion), we use the subgradient projection method. It starts with some initial fea-

sible values of ρ̂k,i,n and π̂i,n that satisfy the constraints (10d). Then, the next

iteration is generated by taking a step along the subgradient direction of ρ̂k,i,n

and π̂i,n. For the primal optimization variables, iterations of the subgradient

projection are given by:

ρ̂k,i,n(t+ 1) = ρ̂k,i,n(t) + δ(t)× ∂L

∂ρ̂k,i,n
,

∀k ∈ K(i),∀i ∈ I,∀n ∈ N , (15a)

π̂i,n(t+ 1) = π̂i,n(t) + δ(t)× ∂L

∂π̂i,n
,∀i ∈ I,∀n ∈ N . (15b)

The scalar δ(t) is a step size that guarantees the convergence of the primal opti-

mization problem [29]. The partial derivatives of the objective function L(ρ̂, π̂,λ,ν)

with respect to ρ̂k,i,n and π̂i,n, are given in the following:

∂L

∂ρ̂k,i,n
=

exp (ρ̂k,i,n)

(exp (ρ̂k,i,n) + 1) log (exp (ρ̂k,i,n) + 1)
− λk,i,n,

∀k ∈ K(i),∀i ∈ I,∀n ∈ N , (16a)

∂L

∂π̂i,n
=
∑
k∈K(i)

λk,i,n − νi
exp (π̂i,n)∑

n∈N
exp (π̂i,n)

, ∀i ∈ I,∀n ∈ N . (16b)

The dual function g (λ,ν) = max
ρ̂,π̂

(L (ρ̂, π̂,λ,ν)) is differentiable. Thus, at

the higher optimization level, the master dual problem (14) can be solved using

15



the following gradient method:

λk,i,n(t+ 1) = λk,i,n(t) + δ(t)(log(exp(ρ̂?k.i.n − π̂?i,n)
N0

Gk,i,n

+
∑
i′∈N
i′ 6=i

exp(ρ̂?k.i.n + π̂?i′,n − π̂?i,n)
Gk,i′,n
Gk,i,n

)),

∀k ∈ K(i),∀i ∈ I,∀n ∈ N , (17a)

νi(t+ 1) = νi(t) + δ(t)

(
log

(∑
n∈N

exp
(
π̂?i,n
))
−log(Pmax)

)
,

∀i ∈ I,∀n ∈ N , (17b)

where t is the iteration index, and δ(t) is the step size at iteration t. Appropriate

choice of the step size [30] leads to convergence of the dual algorithm. π̂?i,n and

ρ̂?k,i,n denote the solution to the primal optimization problem. When t→∞ the

dual variables λ(t) and ν(t) converge to the dual optimal λ∗ and ν∗, respec-

tively. The difference between the optimal primal objective and the optimal dual

objective, called duality gap, reduces to zero at optimality, since the problem (10)

is convex and the KKT conditions are satisfied. We define ∆ρ̂,∆π̂,∆λ, and ∆ν

as the differences between the optimization variables obtained at the current it-

eration and their values at the previous iteration. They are given by:

∆ρ̂(t+ 1) = ‖ρ̂(t+ 1)− ρ̂(t)‖, (18a)

∆π̂(t+ 1) = ‖π̂(t+ 1)− π̂(t)‖, (18b)

∆λ(t+ 1) = ‖λ(t+ 1)− λ(t)‖, (18c)

∆ν(t+ 1) = ‖ν(t+ 1)− ν(t)‖. (18d)

5.1.2. Iterative Power Allocation Algorithm

The procedure for solving the centralized power allocation problem is de-

scribed in Algorithm 1. Initially, the primal optimization variables ρ̂k,i,n and π̂i,n

as well as the dual variables λk,i,n and νi start with some initial feasible values.250

t, tprimal, and tdual denote the number of rounds required for the centralized
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Algorithm 1 Dual algorithm for centralized power allocation

1: Parameters: the utility function L(ρ̂, π̂,λ,ν), Pmax, and πmin.
2: Initialization: set t = tprimal = tdual = 0, and πi,n ≥ πmin,∀i ∈ I,∀n ∈ N ,

such as
∑
n∈N

πi,n ≤ Pmax,∀i ∈ I. Calculate π̂i,n(0) and ρ̂k,i,n(0) accordingly,

∀k ∈ K(i),∀i ∈ I,∀n ∈ N .
3: Set λk,i,n(0) and νi(0) equal to some non negative value, ∀k ∈ K(i),∀i ∈
I,∀n ∈ N .

4: (π̂?(t+ 1), ρ̂?(t+ 1))← PrimalProblem(ν?(t),λ?(t))
5: (ν?(t+ 1),λ?(t+ 1))← DualProblem(π̂?(t+ 1), ρ̂?(t+ 1))
6: if (∆π̂?(t+1) > ε) or (∆ρ̂?(t+1) > ε) or (∆ν?(t+1) > ε) or (∆λ?(t+1) >
ε) then

7: t← t+ 1
8: go to 4
9: end if

power allocation problem to converge, the number of iterations for the pri-

mal problem, and the number of iterations for the dual problem, respectively.

At each round t, we start by updating the primal optimization variables, us-

ing the PrimalProblem function given in Algorithm 2. The solution to the255

primal optimization problem at the current round t is denoted by π̂?i,n(t + 1)

and ρ̂?k,i,n(t+ 1). The PrimalProblem function updates π̂i,n(tprimal + 1) and

ρ̂k,i,n(tprimal+1), and increments tprimal until ∆π̂(tprimal+1) and ∆ρ̂(tprimal+

1) become less than ε.

Then, the solution to the dual optimization problem at the current round t,260

denoted by ν?i (t + 1) and λ?k,i,n(t + 1) is calculated using the DualProblem

function given in Algorithm 3. νi and λk,i,n are updated using the obtained

primal solution π̂?i,n(t+1) and ρ̂?k,i,n(t+1), until ∆ν(tdual+1) and ∆λ(tdual+1)

become less than ε. An additional round of calculations is performed, and t is

incremented as long as ∆π̂?(t+ 1) or ∆π̂?(t+ 1) or ∆ν?(t+ 1) or ∆λ?(t+ 1)265

is greater than ε. Otherwise, the obtained solution at the current round is the

optimal solution to the centralized power allocation problem.

5.2. Solving the Resource Allocation Problem

In this subsection, we search for the optimal solution to the resource allo-

cation problem (12). For each cell i, the problem (12) is a convex optimization270

problem, as proven previously.
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Algorithm 2 Primal problem function

1: function PrimalProblem(ν?(t),λ?(t))
2: for i = 1 to |I| do
3: for n = 1 to |N | do

4: π̂i,n(tprimal+1)← max
(

log (πmin) ; π̂i,n (tprimal) + δ (t)× ∂L
∂π̂i,n

)
5: for k = 1 to |K(i)| do
6: ρ̂k,i,n(tprimal + 1)← ρ̂k,i,n(tprimal) + δ(t)× ∂L

∂ρ̂k,i,n

7: end for
8: end for
9: end for

10: if (∆π̂(tprimal + 1) > ε) or (∆ρ̂(tprimal + 1) > ε) then
11: tprimal ← tprimal + 1
12: go to 2
13: end if
14: return π̂(tprimal + 1), ρ̂(tprimal + 1)
15: end function

Theorem 5.1. For each cell i, the optimal solution to the resource allocation

problem (12) is given by:

θk,n =
1

max (|K(i)|, |N |)
,∀k ∈ K(i),∀n ∈ N . (19)

The proof of Theorem 5.1 is given in Appendix II. When the number of

active UEs is less than the number of available resources, θk,n = 1
|N | ,∀k ∈

K(i),∀n ∈ N . Thus, the available resources are not fully used over time, and275

each UE is permanently served. Otherwise, when |K(i)| > |N |, the optimal

solution is: θk,n = 1
|K(i)| ,∀k ∈ K(i),∀n ∈ N . In this case, each RB is fully used

over time, while UEs are not permanently served over time.

6. Decentralized Resource and Power Allocation

6.1. Problem Formulation and Decomposition280

We have shown that the power allocation problem can be solved optimally

in a centralized fashion. The centralized approach is the reference approach for

performance comparison, since it finds the optimal resource and power alloca-

tion for all the active users. Nevertheless, the computational complexity of the
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Algorithm 3 Dual problem function

1: function DualProblem(π̂?(t+ 1), ρ̂?(t+ 1))
2: for i = 1 to |I| do
3: νi(tdual + 1)← max(0; νi(tdual) + δ(t)× (log(

∑
n∈N

exp(π̂?i,n(t+ 1)))−

log(Pmax)))
4: for n = 1 to |N | do
5: for k = 1 to |K(i)| do
6: λk,i,n(tdual + 1) ← max(0;λk,i,n(tdual) + δ(t) ×

(log(exp(ρ̂?k.i.n(t + 1) − π̂?i,n(t + 1)) N0

Gk,i,n
+
∑
i′∈N
i′ 6=i

exp(ρ̂?k.i.n(t +

1) + π̂?i′,n(t+ 1)− π̂?i,n(t+ 1))
Gk,i′,n
Gk,i,n

)))

7: end for
8: end for
9: end for

10: if (∆ν(tdual + 1) > ε) or (∆λ(tdual + 1) > ε) then
11: tdual ← tdual + 1
12: go to 2
13: end if
14: return ν(tdual + 1),λ(tdual + 1)
15: end function

centralized approach motivates the introduction of low-complexity decentralized

approaches. In this section we investigate the decentralized resource and power

allocation approach. Base stations of the LTE/LTE-A networks are autonomous

entities, and each cell performs resource and power allocation independently of

the other cells. Each cell i maximizes its own utility function, which is given

by: ∑
k∈K(i)

∑
n∈N

log

(
θk,n. log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
=

∑
k∈K(i)

∑
n∈N

log (θk,n) +

∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
.

(20)

The decentralized joint resource and power allocation problem is separable into

two independent problems: a resource allocation problem and a power allocation

problem. The resource allocation problem is solved in a distributed manner as

proven in the previous section. We propose a decentralized power allocation

19



approach based on game theory, where the cells are the decision makers or285

players of the game. We define a multi-player game G between the |I| cells.

The cells are assumed to make their decisions without knowing the decisions of

each other.

The formulation of this non-cooperative game G = 〈I, S, U〉 can be described

as follows:290

• A finite set of cells I = (1, ..., |I|).

• For each cell i, the space of pure strategies is Si given by what follows:

Si = {πi ∈ R|N | such as πi,n ≥ πmin,∀i ∈ I,∀n ∈ N , and
∑
n∈N πi,n ≤

Pmax,∀i ∈ I}.

An action of a cell i is the amount of power πi,n allocated to the RB n, and295

the strategy chosen by cell i is then πi = (πi,1, ..., πi,N ). A strategy profile

π = (π1, ..., π|I|) specifies the strategies of all players and S = S1×...×S|I|
is the set of all strategies.

• A set of utility functions U = (U1(π), U2(π), ..., UI(π)) that quantify play-

ers’ utility for a given strategy profile π, where a given utility Ui for cell i

is such as:

Ui =
∑
k∈K(i)

∑
n∈N

log

(
log

(
1 +

πi,nGk,i,n
N0 +

∑
i′ 6=i πi′,nGk,i′,n

))
. (21)

For every i, Ui is concave w.r.t. πi and continuous w.r.t. πl, l 6= i. Hence, a

Nash Equilibrium (NE) exists [31]. We note that the objective function η1 of300

the centralized power allocation problem (10) is equivalent to the sum of the

utility functions Ui of the I cells.

6.2. Super-Modular Games

Super-modular games exhibit strategic complementarity i.e., the marginal

utility for a player in playing a higher strategy increases when the opponents also305

play higher strategy [32]. These games encompass many applied models, and
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they are characterized by the existence of pure strategy NE. Before presenting

the properties of a super-modular game, we list first the following definition:

Definition 6.1. If Ui is twice differentiable, it is said to be super-modular if:

∂Ui
∂πl∂πi

≥ 0,∀l ∈ I − {i},∀πi ∈ Si.

According to [33], a game is super-modular if ∀i ∈ I:

1. The strategy space Si is a compact sublattice of RN .310

2. The utility function Ui is super-modular.

In [33, 34], proof is given for the following result in a super-modular game:

• If we start with a feasible policy, then the sequence of best responses

monotonically converges to an equilibrium: it monotonically increases in

all components in the case of maximizing in a super-modular game.315

Proposition 6.2. The game G is a super-modular game.

The proof of this proposition is given in Appendix III.

To attain the NE of the game, we implement a best response algorithm

where in each round t, cell i strives to find, in parallel for every RB n ∈

N , the following optimal power level as a response to π−i(t − 1): π∗i (t) =320

arg maxπi
Ui(πi, π−i), s.t. π

∗
i ∈ Si.

The resulting optimization problem for each cell i is as follows:

maximize
πi

Ui (22a)

subject to:
∑
n∈N

πi,n ≤ Pmax, (22b)

πi,n ≥ πmin,∀n ∈ N . (22c)

6.3. Solving the Decentralized Power Allocation Problem

We use the subgradient projection method to solve the decentralized power

allocation problem (22). It is an iterative method that starts with some initial
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feasible vector πi that satisfies constraints (22b) and (22c), and generates the

next iteration by taking a step along the subgradient direction of Ui at πi. For

each cell i, iterations of the subgradient projection are given by:

πi,n(t+ 1) = πi,n(t) + δ(t)× ∂Ui
∂πi,n

,∀n ∈ N , (23)

where the partial derivative of the objective function Ui with respect to πi,n is

given by:

∂Ui
∂πi,n

=
∑
k∈K(i)

Gk,i,n

(N0 + Fi,n)
(

1 +
πi,nGk,i,n

N0+Fi,n

)
log
(

1 +
πi,nGk,i,n

N0+Fi,n

) , (24a)

Fi,n =
∑
i′∈I
i′ 6=i

πi′,nGk,i′,n,∀n ∈ N . (24b)

The scalar δ(t) > 0 is a small step size (e.g., δ(t) = 0.001) chosen appropri-

ately [30] to guarantee the convergence of the decentralized power allocation

problem (22). Before updating the variables πi,n(t + 1), we make sure that

πi,n(t + 1) ≥ πmin in order to satisfy the constraints (22c). Moreover, if con-

straints (22b) are not satisfied, we perform a projection on the feasible set Pmax,

which is straightforward for a simplex [35]. Then, we calculate the power dif-

ference ∆πi, which is the difference between the power allocation vectors of the

current and the previous iterations. It is given by:

∆πi(t+ 1) = ‖πi(t+ 1)− πi(t)‖. (25)

As described in Algorithm 4, each cell i calculates πi,n(ti + 1),∀n ∈ N ,

where ti is the iteration number for cell i. The obtained power values are

updated in accordance with the constraints (22b) and (22c). This procedure325

is repeated and the number of iterations ti is incremented until ∆πi(ti + 1)

becomes less than ε. The number of rounds required for all the cells to converge

is denoted by t. An additional round of power calculation is performed for all

the cells and t is incremented as long as ∆π∗(t + 1) > ε, where π∗(t) is the
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Algorithm 4 Decentralized power allocation

1: Parameters: the utility function Ui,∀i ∈ I, the maximum power per
cell Pmax, and the minimum power per RB πmin.

2: Initialization: set t = 0, ti = 0,∀i ∈ I, and πi,n(0) to some positive value ≥
πmin,∀i ∈ I,∀n ∈ N , such as

∑
n∈N

πi,n(0) ≤ Pmax,∀i ∈ I.

3: for i = 1 to |I| do
4: for n = 1 to |N | do

5: πi,n(ti + 1)← max
(
πmin;πi,n (ti) + δ (ti)× ∂Ui

∂πi,n

)
6: end for

7: if
|N |∑
n=1

πi,n(ti + 1) > Pmax then

8: Perform projection on simplex Pmax
9: end if

10: if ∆πi(ti + 1) > ε then
11: ti ← ti + 1
12: go to 4
13: end if
14: π∗i,n(t+ 1)← πi,n(ti + 1),∀n ∈ N
15: end for
16: if ∆π∗(t+ 1) > ε then
17: t← t+ 1
18: go to 3
19: end if

power allocation vector obtained at the end of round t.330

7. Performance Evaluation

In this section, we evaluate the convergence and the performance of the

proposed centralized joint resource and power allocation problem, and the de-

centralized power allocation approach.

7.1. Centralized Resource and Power Allocation335

To verify the convergence of the centralized solution, we consider a multi-

user OFDMA network, such as LTE/LTE-A networks, that consists of seven

adjacent hexagonal cells, with one UE served by each cell. UE positions and

radio conditions are randomly generated, and the initial power allocation for

each RB equals πmin (0.1 W). System bandwidth equals 5 MHz. Thus, 25 RBs340

are available in each cell. The maximum transmission power per cell Pmax is
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set to 43 dBm or 20 W. At the first iteration, the dual variables λk,i,n(0),∀k ∈

K(i),∀i ∈ I,∀n ∈ N , and νi(0),∀i ∈ I, are assigned initial positive values.

The evolution of π̂i,1 along with the number of iterations is shown in Fig. 1(a),

where π̂i,1 is the logarithm of the transmission power allocated by the cell i to345

the RB 1. In addition, the number of primal iterations and the number of dual

iterations per round are shown in Fig. 1(b).
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We notice that for the centralized power allocation approach, the primal

problem requires approximately 6000 iterations to converge. As shown in Fig. 1(b),

1100 rounds are required to reach the optimal values of the primal and the dual350

variables. The zoomed box within Fig. 1(a) shows the evolution of π̂i,n versus

the number of primal iterations for a given round t. The values of π̂i,n are

calculated using the dual variables obtained at the round (t−1). We also notice

that the number of primal iterations and the number of dual iterations decreases

with the number of rounds. When t increases, the impact of Lagrange prices355

λk,i,n(t) and νi(t) on the primal variables calculation is reduced, and the num-

ber of primal iterations required for the primal problem to converge becomes

lower. The same behavior is noticed for the number of dual iterations when the

number of rounds increases.

For the same simulated scenario, we also show the dual variables λk,i,n and νi360

versus the number of dual iterations in Fig. 2(a) and Fig. 2(b), respectively. We

notice that approximately 8000 iterations are required for the dual problem to

converge. At a given round t, the Lagrange prices λk,i,n and νi are updated

using the most recent values of the primal variables. The zoomed boxes within

Fig. 2(a) and Fig. 2(b) show the evolution of λk,i,n and νi versus the number of365

iterations, respectively. These values are updated until ∆λk,i,n and ∆νi become

less than ε. Convergence of the centralized power allocation problem occurs

when two conditions are satisfied: first, the difference between the updated

primal variables at round t and their values at round (t − 1) is less than ε.

Second, the difference between the updated primal variables at round t and370

their values at round (t− 1) is less than ε.

7.2. Decentralized Power Allocation

The same scenario in 7.1 is also simulated in this paragraph to evaluate the

performance and convergence of the decentralized power allocation approach.

The evolution of the downlink transmission power allocated by all the cells to375

a given RB is shown in Fig. 3(a).

The initial value of the downlink transmission power allocated to each RB
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equals πmin (0.1 W). This allocation satisfies the constraints of the minimal

downlink transmission power per RB and that of the maximum transmission

power per cell. Each cell i seeks maximizing its own utility function Ui by ad-380

justing the transmission power allocated to the available RBs. It also estimates

the interference due to the usage of the same RBs by the neighboring cells. As

shown in Fig. 3(a), each cell starts increasing the downlink transmission power
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allocated to its RBs, and then the transmission power converges after a given

number of iterations. At convergence, the partial derivative of the objective385

function Ui with respect to πi,n becomes negligible. The difference between the

updated power allocation vector (πi,1, πi,2, ..., πi,N ) at iteration (t+ 1) and the

power vector at iteration t becomes less than ε.
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We also show the evolution of the power vector difference ∆πi,∀i ∈ I, defined

in (25) along with the number of iterations in Fig. 3(b). The obtained curves390

show that ∆πi,∀i ∈ I, decreases when the number of iterations increases. The

impact of the subgradient projection iterations on the downlink transmission

power πi,n,∀i ∈ I,∀n ∈ N , becomes smaller as more iterations are performed.

Power convergence is achieved when ∆πi,∀i ∈ I, becomes less than ε. In fact,

the utility function of each cell i is maximized, and the amount by which the395

downlink transmission power πi,n is modified becomes negligible.

7.3. Comparison with State-of-the-Art Resource Allocation Approaches

We also compare the performance of our proposed centralized and decen-

tralized resource and power allocation approaches with that of state-of-the-art

resource and power allocation approaches [36] such as the frequency reuse-1400

model, the frequency reuse-3 model, FFR, SFR, and a single cell resource and

power allocation approach [12]. Note that our centralized approach searches for

the optimal resource and power allocation. It is considered as a reference ap-

proach when comparing the performance of heuristic algorithms and distributed

approaches.405

The frequency reuse-1 model allows the usage of the same frequency spec-

trum simultaneously in all the network cells. Moreover, homogeneous power

allocation is performed. In the frequency reuse-3 model, one third of the avail-

able spectrum is used in each cell in a cluster of three adjacent cells. Interference

problems are eliminated, but the spectral efficiency is reduced. FFR and SFR410

techniques divide each cell into a cell-center and a cell-edge zones, and set restric-

tions on resource usage and power allocation in each zone. For all the compared

techniques, resource allocation is performed according to Theorem 5.1.

7.3.1. Spectral Efficiency

We investigate the impact of the compared techniques on the spectral effi-415

ciency. Simulation results, including the 95% confidence interval, are shown in

Fig. 4(a).
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Figure 4: Comparison with state-of-the-art approaches

Our proposed centralized resource allocation approach offers the highest

spectral efficiency, since the optimal resource and power allocation is guaran-
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teed. The spectral efficiency of our decentralized approach is slightly lower than420

that of the centralized approach, due to the lack of information about resource

usage in the neighboring cells. Nevertheless, the spectral efficiency for both

the centralized and the decentralized approaches is greater than that of FFR,

SFR, and the single-cell resource and power allocation approach [12] displayed

as “One Cell” in Fig. 4. In fact, the static resource allocation between cell zones,425

and the quantified transmission power levels do not allow performing flexible

resource allocation in a manner that satisfies UE needs in each cell. Concerning

the single-cell approach, it does not take inter-cell interference problems into

account; however, its spectral efficiency is slightly higher than that of reuse-1

model because it searches for the optimal resource and power allocation locally430

in each cell.

7.3.2. Objective Function

We also compare the objective function η1 given in (6a) for the different

resource and power allocation techniques. Simulation results are shown in

Fig. 4(b).435

We notice that our centralized approach shows the highest objective function

η1. In fact, it finds the optimal power allocation for the entire system, while

taking into account constraints related to resource usage and to the maximum

downlink transmission power per cell. It outperforms the decentralized approach

where each cell strives to maximize its own utility function independently of the440

other cells, and the single-cell approach where inter-cell interference problems

are not taken into account when solving the resource and power allocation prob-

lem.

7.4. Centralized Versus Decentralized Complexity Comparison

We evaluate the computational complexity of our centralized and decentral-

ized resource and power allocation approaches. For the centralized and decen-

tralized approaches, resource allocation is performed according to Theorem 5.1,

and it is equivalent to one operation. The complexity of each approach equals
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the number of required operations multiplied by the complexity of a single op-

eration, denoted by Top. The complexity of the centralized approach is given

by:

O [(nbprimal×|N |×(1 + k) + nbdual×(1 + k×|N |))×|I|×Top] . (26)

Similarly, the decentralized approach complexity is given as follows:

O(nbiterations × |I| × |N | × Top), (27)

where nbprimal is the number of primal iterations and nbdual is the number of445

dual iterations required for convergence of the centralized approach. k is the

number of UEs per cell, and nbiterations is the number of iterations required for

convergence of the decentralized approach.

We notice that the decentralized approach complexity is independent of the

number of UEs per cell, contrarily to the centralized approach. The complexity450

of both techniques depends of the number of cells in the system and the number

of RBs available in each cell. Moreover, the computational complexity of these

approaches are evaluated under the same simulation scenario as in 7.1. The

median number of operations required for the centralized and decentralized

approaches are given in Table 2.455

Table 2: Median number of operations per approach

Approach Number of operations
Centralized 3.02 · 108

Decentralized 8.84 · 105

According to the results reported in Table 2, the number of operations re-

quired for the centralized resource and power allocation approach largely exceeds

that of the decentralized approach. In fact, the centralized approach maximizes

the objective function for the entire network, contrarily to the decentralized

approach where each cell maximizes its objective function independently of the460

other cells. Therefore, the centralized approach guarantees the optimal solution

at the expense of a high computational complexity.
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8. Conclusion

Resource and power allocation problem is a challenging problem for nowa-

days and future wireless networks. Several state-of-the-art techniques consider465

the joint resource and power allocation problem, and formulate it as nonlinear

optimization problems. The objective consists in maximizing system through-

put, spectral efficiency, or energy efficiency under constraints related to the

minimum throughput per UE, QoS parameters, and the maximum transmis-

sion power. However, these techniques fall short from considering the impact of470

inter-cell interference. Indeed, each cell solves its own resource and power allo-

cation problem without taking into account resource usage and power allocation

in the neighboring cells.

In this article, we formulated the joint resource and power allocation prob-

lem for multiuser OFDMA networks as a centralized optimization problem,475

where the objective consists in maximizing system throughput while guarantee-

ing throughput fairness between UEs. The joint problem is then decomposed

into two independent problems: a resource allocation problem and a power al-

location problem. Contrarily to the majority of the state-of-the-art approaches,

ICI is not neglected, and the impact of the simultaneous transmissions in the480

neighboring cells is taken into account when managing the resource and power

allocation. Moreover, we introduced a decentralized power allocation approach

based on game theory. The players are the cells, and each cell aims at max-

imizing its own utility function regardless of the decisions made by the other

cells. Simulation results prove the convergence of our proposed approaches, and485

show the positive impact of our centralized and decentralized resource alloca-

tion approaches on system performance. In a future work, we will consider

the formulation of a multi-cell and multi-objective resource and power alloca-

tion problem, where we address the compromise between spectral efficiency and

energy efficiency.490
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Appendix I

Upper Bound of the Objective Functions Difference

Given Jensen’s inequality and the concavity of the logarithmic function, we

have:

log

(∑
n∈N θk,n.ρk,i,n

|N |

)
≥
∑
n∈N log (θk,n.ρk,i,n)

|N |
(28a)

⇒log

(∑
n∈N

θk,n.ρk,i,n

)
≥
∑
n∈N log (θk,n.ρk,i,n)

|N |
+ log (|N |) , (28b)

the objective function η can be written as:

η =
∑
i∈I

∑
k∈K(i)

log

(∑
n∈N

θk,n.ρk,i,n

)

≥ 1

|N |
∑
i∈I

∑
k∈K(i)

∑
n∈N

log (θk,n.ρk,i,n) + |K|. log (|N |) .
(29)

Since 1
|N | and |K|. log (|N |) are constant terms, maximizing the objective func-

tion of problem (4) is achieved by maximizing the following term:

∑
i∈I

∑
k∈K(i)

∑
n∈N

log (θk,n.ρk,i,n) =

∑
i∈I

∑
k∈K(i)

∑
n∈N

(log (θk,n) + log (ρk,i,n)) .
(30)

In order to decompose the joint problem into two independent problems, we

evaluate the gap between the original objective function η and the function given

in (30). It is evident that there exists a gap between our objective function η

and the function (30) that we will maximize in the following sections. However,

maximizing these two functions is equivalent as long as the gap between them is

bounded. For this reason, we demonstrate the existence of a finite upper bound

on the following difference:

0 ≤ log

(∑
n∈N

θk,n.ρk,i,n

)
−
∑
n∈N

log (θk,n.ρk,i,n) ≤ B. (31)
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Let φn = θk,n.ρk,i,n> 0, and suppose that a ≤ φn ≤ b. Thus, there exists

0 ≤ γn ≤ 1 such that φn = γna+ (1− γn)b.

log

(∑
n∈N

φn

)
−
∑
n∈N

log (φn)

= log

(∑
n∈N

(γna+ (1− γn) b)

)
−
∑
n∈N

log (γna+ (1− γn) b)

≤ log

(∑
n∈N

(γna+ (1− γn) b)

)
−
∑
n∈N

(γn log (a) + (1− γn) log (b))

= log

(
a

(∑
n∈N

γn

)
+ b

(
|N | −

∑
n∈N

(γn)

))
− log (a)

(∑
n∈N

γn

)

− log (b)

(
|N | −

∑
n∈N

(γn)

)
.

Taking p =
∑
n∈N γn and q = |N | −

∑
n∈N γn, we have 0 ≤ p ≤ |N |,

0 ≤ q ≤ |N |, and p+ q = |N |. Consequently, we have:

log

(∑
n∈N

φn

)
−
∑
n∈N

log (φn)

≤ log (ap+ bq)− p log (a)− q log (b)

≤ max
p

(log (ap+ b (|N | − p))− p log (a)− (|N | − p) log (b))=B.

For fixed a and b, let us denote:

g(p) = log (ap+ b (|N | − p))− p log (a)− (|N | − p) log (b) .

g is defined, differentiable, and concave on [0, |N |]. Its first derivative is given

by:

g′(p) =
a− b

ap+ b (|N | − p)
− log (a) + log (b) .
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g(p) attains its maximal value B for a p0 that satisfies: g′(p0) = 0. Thus, we

have B = g(p0), where p0 is given by:

p0 =
1

log(a)− log(b)
+
b.|N |
b− a

.

Therefore, the considered difference is bounded by B, which is a finite bound.495

Appendix II

Proof of Theorem 5.1

We consider the objective function (12a), which can be written as follows:

(η
2
)i =

∑
k∈K(i)

∑
n∈N

log (θk,n)

= log

 ∏
k∈K(i)
n∈N

θk,n

 .

(32)

Since the logarithmic function is monotonically increasing, the maximization

of (η
2
)i becomes equivalent to the maximization of the term

∏
k∈K(i)
n∈N

θk,n. We

consider the following cases:500

1. Let us assume that:

∑
k∈K(i)

θk,n<
∑
n∈N

θk,n, ∀ k ∈ K(i), ∀ n ∈ N . (33)

We suppose that θk,n,∀ k ∈ K(i),∀ n ∈ N is an optimal solution to the

resource allocation problem (12) i.e., this solution maximizes the objective

function (12a). For this solution, we assume that:

∃ k ∈ K(i) /
∑
n∈N

θk,n < 1. (34)
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We define ε > 0 as follows:

ε = 1−
∑
n∈N

θk,n,

and we demonstrate that this solution is not an optimal solution to prob-

lem (12) using the proof by contradiction. In fact, we define a set of θ′k,n

variables as given in the following:

θ′k,n =

 θk,n,

θk,n + ε,

∀ n ∈ N , n 6= n1,∀ k ∈ K(i)

if n = n1,∀ k ∈ K(i).

Therefore, we have:

∏
k∈K(i)
n∈N

θ′k,n =
∏

k∈K(i)
n∈N

θk,n + ε ·
∏

k∈K(i)
n∈N

θk,n>
∏

k∈K(i)
n∈N

θk,n,

and the assumption made in (34) is false, since it does not maximize the

objective function (12a). Consequently, we have:

∑
n∈N

θk,n = 1,∀ k ∈ K(i)

⇒
∑
k∈K(i)

∑
n∈N

θk,n = |K(i)|.

Since the sum of all the θk,n variables is constant, the term
∏
k∈K(i)
n∈N

θk,n

reaches its maximum when all the variables θk,n are equal i.e.,

θk,n =
|K(i)|

|K(i)| · |N |
=

1

|N |
,∀ k ∈ K(i),∀ n ∈ N ,

which is an optimal solution to the resource allocation problem (12). Ac-
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cording to (33):

∑
k∈K(i)

θk,n<
∑
n∈N

θk,n, ∀ k ∈ K(i), ∀ n ∈ N

⇒ |K(i)|
|N |

<1

⇒ |K(i)|<|N |.

2. Similarly when:

∑
n∈N

θk,n<
∑
k∈K(i)

θk,n, ∀ k ∈ K(i), ∀ n ∈ N . (35)

In this case, the optimal solution is given by:

θk,n =
|N |

|K(i)| · |N |
=

1

|K(i)|
,∀ k ∈ K(i),∀ n ∈ N .

Appendix III

Proof of Proposition 6.2

To prove the super-modularity of the present game, we need to verify the

conditions in 6.2. First, the strategy space Si is obviously a compact convex set

of RN . Hence, it suffices to verify the super-modularity of the utility function505

as there are no constraint policies for G:

∂Ui,n
∂πl,n∂πi,n

=

1

log (1 + σk,i,n)

Gk,i,nGk,l,n(
N0 +

∑
i′ 6=i πi′,nGk,i′,n

)2 ( σk,i,n
log (1 + σk,i,n)

− 1

)
.

As x
log(1+x) > 1 for x > 0,

∂Ui,n

∂πl,n∂πi,n
≥ 0, ∀l ∈ I − {i} and ∀n ∈ N .
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