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An extension of Lobachevsky formula
Hassan Jolany

Abstract. In this paper we extend the Dirichlet integral formula of Lobachevsky. Let f(x)
be a continuous function and satisfy in the π-periodic assumption f(x + π) = f(x), and
f(π − x) = f(x), 0 ≤ x <∞. If the integral

∫∞
0

sin4 x
x4

f(x)dx defined in the sense of the
improper Riemann integral, then we show the following equality∫ ∞

0

sin4 x

x4
f(x)dx =

∫ π
2

0

f(t)dt− 2

3

∫ π
2

0

sin2 tf(t)dt

hence if we take f(x) = 1, then we have∫ ∞

0

sin4 x

x4
dx =

π

3

Moreover, we give a method for computing
∫∞
0

sin2n x
x2n

f(x)dx for n ∈ N

1. INTRODUCTION Dirichlet integral play an important role in distribution the-
ory. We can see the Dirichlet integral in terms of distribution. The following classical
Dirichlet integral has drawn lots of attention.

∫ ∞
0

sinx

x
dx =

π

2

We can use the theory of residues to evaluate this Dirichlet’s integral formula. G.H.
Hardy and A. C. Dixon gave a lot of different proofs for it. See [5-7]. In this paper we
give an elegant method to generalize this Lobachevsky formula.

We start with the following elementary lemma. See [1-4]

Lemma. For α /∈ Zπ, we have

1

sinα
=

1

α
+
∞∑
m=1

(−1)m
(

1

α−mπ
+

1

α+mπ

)
Proof. For every positive integer N , denote by CN the positively-oriented square in
the complex plane with vertices (N + 1

2
)(±1± i). On the one hand, since the function

1/ sin(z) is bounded on CN by a constant which is independent of N , one has∮
CN

2παdz

(z2π2 − α2) sin(πz)
→ 0

as N →∞. On the other hand, by the Residue Theorem, one also gets∮
CN

2παdz

(z2π2 − α2) sin(πz)
=

N∑
n=−N

(−1)n 2α

n2π2 − α2
+

1

sin(α)

which proves the claim as N →∞.
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Lemma. For α /∈ Zπ, we have the following identity

1

sin2 α
=

1

α2
+
∞∑
m=1

(
1

(α−mπ)2
+

1

(α+mπ)2

)
Proof. The identity follows by differentiating termwise the classical formula ,

cot(z) =
1

z
+
∞∑
m=1

2z

z2 −m2π2

2. LOBACHEVSKY FORMULA Now, we present the Lobachevsky formula.

Theorem 1. Let f satisfy the conditions of the beginning of the article. Then we have
the following Lobachevsky identity

∫ ∞
0

sin2 x

x2
f(x)dx =

∫ ∞
0

sinx

x
f(x)dx =

∫ π
2

0

f(x)dx

Proof. Take

I =

∫ ∞
0

sinx

x
f(x)dx

we can write I as follows

I =
∞∑
v=0

∫ (v+1)π2

v π2

sinx

x
f(x)dx

where v = 2µ− 1 or v = 2µ, by changing x = µπ + t or x = µπ − t we get∫ (2µ+1)π2

2µπ2

sinx

x
f(x) = (−1)µ

∫ π
2

0

sin t

µπ + t
f(t)dt

and

∫ (2µ)π2

(2µ−1)π2

sinx

x
f(x) = (−1)µ−1

∫ π
2

0

sin t

µπ − t
f(t)dt

so we get

I =

∫ π
2

0

sin t

t
f(t)dt+

∞∑
µ=1

∫ π
2

0

(−1)µf(t)
(

1

t+ µπ
+

1

t− µπ

)
sin tdt

Consequently we can write I in the following form
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I =

∫ π
2

0

sin t

(
1

t
+
∞∑
µ=1

(−1)µ
(

1

t+ µπ
+

1

t− µπ

))
f(t)dt

Hence

I =

∫ π
2

0

f(t)dt

and proof of the identity
∫∞
0

sin x
x
f(x)dx =

∫ π
2

0
f(x)dx is complete. Now we prove

the second part of identity. Take

J =

∫ ∞
0

sin2 x

x2
f(x)dx

we can write J as follows

J =
∞∑
v=0

∫ (v+1)π2

v π2

sin2 x

x2
f(x)dx

where v = 2µ− 1 or v = 2µ, by changing x = µπ + t or x = µπ − t we get∫ (2µ+1)π2

2µπ2

sin2 x

x2
f(x) =

∫ π
2

0

sin2 t

(µπ + t)2
f(t)dt

and

∫ (2µ)π2

(2µ−1)π2

sin2 x

x2
f(x) =

∫ π
2

0

sin2 t

(µπ − t)2
f(t)dt

so we get

J =

∫ π
2

0

sin2 t

t2
f(t)dt+

∞∑
µ=1

∫ π
2

0

f(t)

(
1

(t+ µπ)2
+

1

(t− µπ)2

)
sin2 tdt

consequently we can write J in the following form

J =

∫ π
2

0

sin2 t

(
1

t2
+
∞∑
µ=1

(
1

(t+ µπ)2
+

1

(t− µπ)2

))
f(t)dt

Hence from Lemma 1.2, we get

J =

∫ π
2

0

f(t)dt

and proof is complete
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3. EXTENSION OF THE LOBACHEVSKY FORMULA Now we give a general
method for calculating the following Dirichlet integral.

∫ ∞
0

sin2n x

x2n
f(x)dx

where f(π + x) = f(x), and f(π − x) = f(x), 0 ≤ x < ∞. Here we have as-
sumed f is continuous and

∫∞
0

sin2n x
x2n

f(x)dx defined in the sense of the improper
Riemann integral. We start with n = 2. As we did in the previous section, take

I =

∫ ∞
0

sin4 x

x4
f(x)dx

By a direct computation

d2

dx2

(
1

sin2 x

)
=

6

sin4(x)
− 4

sin2(x)

Next, differentiating twice termwise the right-hand side of identity of Lemma 1.2,
we get the following identity

1

sin4 α
− 2

3 sin2 α
=

1

α4
+
∞∑
m=1

(
1

(α−mπ)4
+

1

(α+mπ)4

)
From the previous method which we explained in section 2, we can write I as

follows

I =

∫ π
2

0

sin4 t

(
1

sin4 t
− 2

3 sin2 t

)
f(t)dt

Hence

I =

∫ π
2

0

f(t)dt− 2

3

∫ π
2

0

sin2 tf(t)dt

So we proved the following theorem

Theorem 2. Let f(x) satisfies in f(x+ π) = f(x), and f(π − x) = f(x), 0 ≤ x <
∞. If the following integral ∫ ∞

0

sin4 x

x4
f(x)dx

defined in the sense of the improper Riemann integral, then we have the following
equality ∫ ∞

0

sin4 x

x4
f(x)dx =

∫ π
2

0

f(t)dt− 2

3

∫ π
2

0

sin2 tf(t)dt

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 September 12, 2017 10:58 p.m. main.tex page 5

As remark if we take f(x) = 1, then we have

Remark. We have ∫ ∞
0

sin4 x

x4
dx =

π

3

We have also the following remark from Lobachevsky formula

Remark. If f(x) satisfy in the condition f(x+ π) = f(x), and f(π − x) = f(x),
0 ≤ x <∞, take

I =

∫ ∞
0

sin2n+1 x

x
f(x)dx =

∫ ∞
0

sin2n x
sinx

x
f(x)dx

If we set sin2n xf(x) = g(x), we get g(x+ π) = g(x), g(π − x) = g(x), now if
we take f(x) = 1, then∫ ∞

0

sin2n+1 x

x
dx =

∫ π
2

0

sin2n xdx =
(2n− 1)!!

(2n)!!

π

2

Now, by the following important remark, we can calculate the Lobachevsky formula
for any n ≥ 3. Let f(z) satisfy the conditions of the beginning of the article.

Remark. In fact, the Dirichlet integral∫ ∞
0

sin2n z

z2n
f(z)dz

has the form (for n ≥ 3)

α1

∫ π
2

0

f(z)dz + α2

∫ π
2

0

cot2n−2(z) sin2n−2(z)f(z)dz + · · ·+ αk

∫ π
2

0

cot2(z) sin2(z)f(z)dz

where the constants αi can be computed by the use of the following formulas (and
the help of the engine Wolfram Alpha for instance) : For every positive integer n, one
can compute

dn

dzn

(
1

sin2(z)

)
=

dn

dzn
(1 + cot2 z) =

n∑
k=0

(
n

k

)
dn−k

dzn−k
(cot z)

dk

dzk
(cot z)

by Leibnitz rule and then apply the closed formula

dm

dzm
(cot z) = (2i)m(cot(z)− i)

m∑
j=1

{
m

k

}
(i cot(z)− 1)k

of Lemma 2.1. of [8], where
{
n
k

}
are the Stirling numbers of the second kind. Now by

applying the identity

dn

dzn

(
1

sin2 z

)
=

∞∑
k=−∞

(−1)n(n+ 1)!

(z + kπ)n+2
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we can find a closed formula for such Dirichlet integral formula for any n. For ex-
ample, when n = 3 we have {α1 = 2

15
, α2 = 2

15
, α3 = 11

15
} and for n = 4, {α1 =

272
7!
, α2 =

64
7!
, α3 =

1824
7!
, α4 =

2880
7!
}.

Remark. We have the following formulas

1)
∫∞
0

sin6 z
z6

dz = 11π
40

2)
∫∞
0

sin8 z
z8

dz = 151π
630

3)
∫∞
0

sin10 z
z10

dz = 15619π
72576
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