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An extension of Lobachevsky formula

HASSAN JOLANY

Universite Lille 1
UMR 8524, Mathematiques 59655 Villeneuve d’Ascq France
hassan.jolany @math.univ-lillel.fr

In this paper we extend the Dirichlet integral formula of Lobachevsky. Let f(x) be a continuous func-
tion and satisfy in the assumption f(x+ ) = f(x), and f(7m —x) = f(x), 0 < x < 0. If the integral
Jo Si;‘:x (x)dx converges and defined in the sense of the improper Riemann integral, then we show the
following equality

. 4 z z
i 2
/ Y £ (x)dx = / * fyde— = / > sin? 1 f(t)dr
o x 0 3Jo
hence if we take f(x) = 1, then we have
oo oind
sin” x T
dx==
/o 4 T3
sin” x

Moreover,we give an explicit formula for fy° *5% f(x)dx where n = 6,8 and for general natural number
n € N, we give a method to find such explicit formula.

1. Introduction

The following classical Dirichlet integral has drawn lots of attention.

" 8inx T
/ S N
0o X 2

We can use the theory of residues to evaluate this Dirichlet’s integral formula. G.H. Hardy and A. C.
Dixon gave a lot of different proofs for it. See [5-7]. In this paper we generalize this Lobachevsky
formula.

We start with the following elementary lemma. See [1-4]

LEMMA 1.1 We have

Proof. Let

where o # k7, then we have

flx) = (1—§) ﬁ <1_(2n—f)7t—a> <1+(2n_1x)7z+a> <1_ 2n7tx+a) <1+2nnx—a>

n=1

By applying Taylor expansion on sinx,
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3 5
X X X
X)=l-—-+ =
U sinog  3!sinat Slsino
Now let the right hand side of the above equality as an infinite series. If aj,--- ,a,,- - are the roots

of f(x), then we can write

f(x>=(1_;) <1_2>(1_X>:§1(1_;)

Now since the roots of f(x) are

2nwt+ o
2ngk—a+n n=0,+1,42,---

SO

flx)= fl (I_Qnﬂx+a> (1_2nn—xa+7r>

hence we have

flx) = (1—§> ﬁ <1_(2n_1x)n_a) <1+ (2n—lx)7r+a) (1_2nrcx+oc> <1+2nnx—a>

n=1

sinx

By writing the right hand side of the equality f(x) = 1 — 33 as a power series and equate the
coefficients of both sides, the right hand side is infinite elementary symmetric functions, since in general

[TA-X)=A"—er(X1,.... XA +ea(Xp, .. X)) A" 2o (= 1)"en(X1, . Xa).
j=1

where for k > 0 we define

ex(X1,..., X)) = ) XX

17T Rk
ISj1<ja<--<jgksn
so that e (Xy, -+ ,X,) = 0if k > n. Then we get the desired result.

LEMMA 1.2 We have the following identity

L1y .
sinfa o? (a—mm)?>  (ot+mm)?

m=1

Proof. By the same idea from the proof of Lemma 1.1,by taking f(x) =1 — SIX e get

sin? ot
;_L+i 1 N 1 N 1 N 1
sinfor a2 =\ (Cm-Dr—a)?  (Cm—Dr+a)?  (2mr+a)®  (2mr—a)?

so we have

1_*+i Lo,
sinfa a? (a—mm)?>  (ot+mm)?

m=1
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It is worth to mention that we can get the identity of Lemma 1.2, by differentiating termwise the
following classical formula,
oo 2z

1
cot(z) = B + 21 e
=

2. Lobachevsky formula
Now we present Lobachevsky formula with new technique.

THEOREM 2.1 Let f(x) satisfies in the condition f(x+ ) = f(x), f(® —x) = f(x), 0 < x < o0 and the

following integral exists
2

/°° sin xf(x)dx
0

¥2

and defined in the sense of the improper Riemann integral, then we have the following Lobachevsky
identity

o @i o o z
[ = [T pagae= [ poax
0 X 0 X 0
Proof. Take
I= / SOY e )dx
0 X
we can writ / as follows )
it v+1)%
1= Z ’ %f(x)dx

where v=2u — 1 or v =2y, by changing x = umw+¢t orx = U —t we get

2u+D)% sinx 7 sint
T fx) =(~1 ”/ —— f(t)dt
[ R =
and
w3 sinx 7 sint
ST o) = (—1 “*‘/ ST ey
/(zuq)g x f)=(=1) Jo unftf()
so we get

7 sint > 3 1 1
I:/ — f(t)dt + / —1)# r< + )sintdt
[ S 0as R0 (ot
Consequently we can write / in the following form

I= ./o7 sint (l * i =1 <t+1u7r i 1#7:)) fede

u=l1
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1:/0§f(t)dt

and proof of the identity [;”%2* f(x)dx = [;? f(x)dx is complete. Now we prove the second part of

identity. Take
sin’ x
J=
/ x? )

o r(v+1)Z ¢in2
J:Z’/7I g xf(x)dx
v=0“"V2

where v=2u — 1 or v=2u, by changing x = um+¢ orx = umw —t we get

utD3 gin?x 5 sin’r
/ )= [

Hence

we can writ J as follows

" x U+t
and
2175 sin’x 3 sin’t
= —— f(t)dt
/(ZH% 0= [ e 0
So we get

% sin? t 1
J= t)dt in®tdt
o +Z/ ) (e )

Consequently we can write J in the following form

J:/Ogsinzt< Z ( T (t_iur)z))f(t)dt

Hence from Lemma 1.2, we get
3
J= / f(t)de
0

and proof is complete

3. Extension of Lobachevsky formula
Now we give a general method for calculating the generalized Dirichlet integral, as follows
0 @i

/0 51;12nx F)dx

where f(7t+x) = f(x), and f(7m —x) = f(x), 0 < x < eo. Here we have assumed f is continuous

and [ ““2 £ f(x)dx converges and defined in the sense of the improper Riemann integral. We start with
n=2. As we did in previous section, take

> 8in” x
I:/0 x4 fx)dx
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By a direct computation

d? < 1 ) 6 4
dx® \sin’x)  sin*(x)  sin®(x)
Next, differentiating twice termwise the right-hand side of identity of Lemma 1.2, we get the fol-
lowing identity

I 2 _ 1§ Lo
sinfa 3sin*a ot (o —mm)* * (a+mm)*

m=1

From previous method which we explained in section 2, we can write / as follows

z 1 2
I:/ sin4t< —) t)dt
0 sin*t  3sin?t )

Hence

T 2 E
I:/zf(t)dt——/2 sin®t f(¢)dt
0 3Jo
So we proved the following theorem

THEOREM 3.1 Let f(x) satisfies in f(x+ ) = f(x), and f(7 —x) = f(x), 0 < x < eo. If the following

integral
4

/‘°° sin™x 7 (x) dx

Jo x4

exists and defined in the sense of the improper Riemann integral, then we have the following equality

4

/Om sin_x (x)dx:/ojf(t)dt—g/ojsinztf(t)dt

4
As remark if we take f(x) = 1, then we have

REMARK 3.1 We have
4

< sin™x T
/ 7 dx = —
0 X 3

We have also the following remark from Lobachevsky formula

REMARK 3.2 If f(x) satisfies in the condition f(x+ ) = f(x), and (7 —x) = f(x), 0 <x < oo, then

00 aia2n+1 oo :
I:/ Mf()c)dx:/ sinznxf(x)%dx
0 X 0 X

Now if we set sin?" xf(x) = g(x), we get g(x+ ) = g(x), g(m —x) = g(x), now if we take f(x) =1,

then
0 qin2n+1 z
/ sin +xdx:/zsinz"xdx:(zn_l)!!z
0 X 0 @2n)!! 2

We can have the following theorem, which is the generalization of the previous theorem.



6 of 7 Hassan Jolany

THEOREM 3.2 Let the continuous function f(x) satisfies in f(x+ m) = f(x), and f(7w —x) = f(x),

0 < x < oo. If the following integral
6

sin®x
| S rwds
converges and defined in the sense of the improper Riemann integral, then we have the following equal-
ity

6

/O sin xf 15/ F(x) E/O cot4(x)sin4(x)f(x)dx+ﬁ/o sin®(x) cot? (x) f (x)dx

+6

Moreover, if the following integral

converges, then

0 @ind

/0 S X = 21 / F(%) / cot® (x) sin® (x) £ (x)dx +% /0 sin® (x) cot? (x) f (x)dx+ o0 /0 * sin? (x) cot® (x) £ (x)

x8 7!

Proof. The proof is as same as previous method, and we just need to compute
d* 1 6 4 2 2 4
—— | === ) = 16¢sc”(x) + 16cot” (x) csc™(x) + 88 cot™(x) csc™ (x)
dx* \ sin®x

and

d° (1
——=|==)=272 escB(x) 4 64 cot®(x) esc? (x) + 1824 cot* (x) csc (x) + 2880 cot? (x) csc® (x)
dx5 \ sin®x

and using the identity
dar 1 _ i (=1)"(n+1)!
dx" \sin’x/) & (x+km)+?

we get the desired result. g
Now from the previous method, the following Dirichlet integral

2n

* sin“" x
= f(x)d
| S s

can have the following expression

T

o /gf(x)dx—s— az/g cot® 2 (x) sin®" 2 (x )f(x)dx+~~+ock/2 cot? (x) sin? (x) f (x)d:x
/ A Jo

for finding the constants @, since 1+ cot?x = by using Leibnitz rule we have

dn n dnfk dk
dx 1+ cot’x) k;)( )d — cotx)ﬁ(cotx)
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and then apply the closed formula

:;1 (cotx) = (2i)" (cot(x) —i) f; {’Z}(icot(x) — 1)

j=1
of Lemma 2.1. of [8], where {Z} are the Stirling numbers of the second kind. Now by applying the

identity
ﬁ 1 _ i (—1)”(n—|— 1)!
dx" 2 - (x+k7t)"+2

sin” x oo

we can find a closed formula for such Dirichlet integral formula for any n.

REMARK 3.3 We have the following formulas
D et de = L4

40
.8
0 sin®x _ 15Ix
2)Jo Htdx = 59
.10
° sin'" x _ 15619
3)Jo Himrdx = S5
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