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An extension of Lobachevsky formula

HASSAN JOLANY

In this paper we extend the Dirichlet integral formula of Lobachevsky. Let f (x) satisfies in f (x+π) =
f (x), and f (π − x) = f (x), 0 ⩽ x < ∞. If the integral

∫ ∞
0

sin4 x
x4 f (x)dx exists then we show the following

equality ∫ ∞

0

sin4 x
x4 f (x)dx =

∫ π
2

0
f (t)dt +

2
3

∫ π
2

0
sin2 t f (t)dt

hence if we take f (x) = 1, then we have ∫ ∞

0

sin4 x
x4 dx =

π
3

Extension of Lobachevsky formula was a part of my bachelor project in 2007.

1. Introduction

We start with the following elementary lemma. See [1-4]

LEMMA 1.1 Let
f (x) = 1− sinx

sinα
where α ̸= kπ , then we have

f (x) =
(

1− x
α

) ∞

∏
n=1

(
1− x

(2n−1)π −α

)(
1+

x
(2n−1)π +α

)(
1− x

2nπ +α

)(
1+

x
2nπ −α

)
Proof. By applying Taylor expansion on sinx,

f (x) = 1− x
sinα

+
x3

3!sinα
− x5

5!sinα
+ · · ·

Now let the right hand side of the above equality as an polynomial of infinite degree. If a1, · · · ,an, · · ·
are the roots of f (x), then we can write

f (x) =
(

1− x
a1

)(
1− x

a2

)
· · ·
(

1− x
an

)
· · ·=

∞

∏
k=1

(
1− x

ak

)
Now since the roots of f (x) are {

2nπ +α
2nπ −α +π n = 0,±1,±2, · · ·

□
so

f (x) =
∞

∏
n=−∞

(
1− x

2nπ +α

)(
1− x

2nπ −α +π

)
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hence we have

f (x) =
(

1− x
α

) ∞

∏
n=1

(
1− x

(2n−1)π −α

)(
1+

x
(2n−1)π +α

)(
1− x

2nπ +α

)(
1+

x
2nπ −α

)
LEMMA 1.2 We have the following two identities

1
sinα

=
1
α
+

∞

∑
m=1

(−1)m
(

1
α −mπ

+
1

α +mπ

)
and

1
sin2 α

=
1

α2 +
∞

∑
m=1

(
1

(α −mπ)2 +
1

(α +mπ)2

)
Proof. By writing the right hand side of the equality f (x) = 1− sinx

sinα as a power series and equate the
coefficients of both sides, the right hand side is infinite elementary symmetric functions. Now we use
the Newton relations in infinite case. Put

σm = ∑
i1,···im

ai1ai2 · · ·aim and Sm =
∞

∑
i=1

am
i

Then we get

S1 = σ1,

S2 = σ2
1 −2σ2,

S3 = σ3
1 −3σ2σ1 +3σ3,

S4 = σ4
1 −4σ2σ2

1 +4σ3σ1 +2σ2
2 −4σ4,

S5 = σ5
1 −5σ2σ3

1 +5σ3σ2
1 +5σ2

2 σ1 −5σ4σ1 −5σ3σ2 +5σ5,

S6 = σ6
1 −6σ2σ4

1 +6σ3σ3
1 +9σ2

2 σ2
1 −6σ4σ2

1 −12σ3σ2σ1 +6σ5σ1 −2σ3
2 +3σ2

3 +6σ4σ2 −6σ6.

The general formula (for all non-negative integers ”m”) is:

Sm = ∑
r1+2r2+···+mrm=m

r1⩾0,...,rm⩾0

(−1)m m(r1 + r2 + · · ·+ rm −1)!
r1!r2! · · ·rm!

m

∏
i=1

(−σi)
ri

This can be conveniently stated in terms of logarithmic polynomials as

Sm =
(−1)n−1

(n−1)!
Lm(σ1,2!σ2,3!σ3, . . . ,m!σm).

The logarithmic polynomials are related to the partial exponential Bell polynomials by

Ln(x1,x2, . . . ,xn) =
n

∑
k=1

(−1)k−1(k−1)!Bn,k(x1, . . . ,xn−k+1).
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1
sinα

=
1
α
+

∞

∑
m=1

(−1)m
(

1
α −mπ

+
1

α +mπ

)
but we can write it as

1
sinα

=
1
α
+

∞

∑
m=1

(
1

(2m−1)π −α
− 1

(2m−1)π +α
+

1
2mπ +α

− 1
2mπ −α

)
and hence

1
sin2 α

=
1

α2 +
∞

∑
m=1

(
1

((2m−1)π −α)2 +
1

((2m−1)π +α)2 +
1

(2mπ +α)2 +
1

(2mπ −α)2

)
so we get

1
sin2 α

=
1

α2 +
∞

∑
m=1

(
1

(α −mπ)2 +
1

(α +mπ)2

)
□

2. Lobachevsky formula

Now we present Lobachevsky formula with new technique.

THEOREM 2.1 Let f (x) satisfies in the condition f (x+π) = f (x), f (π − x) = f (x), 0 ⩽ x < ∞ and the
following integral exists ∫ ∞

0

sin2 x
x2 f (x)dx

then we have the following Lobachevsky identity∫ ∞

0

sin2 x
x2 f (x)dx =

∫ ∞

0

sinx
x

f (x)dx =
∫ π

2

0
f (x)dx

Proof. Take

I =
∫ ∞

0

sinx
x

f (x)dx

we can writ I as follows

I =
∞

∑
v=0

∫ (v+1) π
2

v π
2

sinx
x

f (x)dx

where v = 2µ −1 or v = 2µ , by changing x = µπ + t or x = µπ − t we get∫ (2µ+1) π
2

2µ π
2

sinx
x

f (x) = (−1)µ
∫ π

2

0

sin t
µπ + t

f (t)dt

and ∫ (2µ) π
2

(2µ−1) π
2

sinx
x

f (x) = (−1)µ−1
∫ π

2

0

sin t
µπ − t

f (t)dt

so we get
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I =
∫ π

2

0

sin t
t

f (t)dt +
∞

∑
µ=1

∫ π
2

0
(−1)µ f (t)

(
1

t +µπ
+

1
t −µπ

)
sin tdt

□
Consequently we can write I in the following form

I =
∫ π

2

0
sin t

(
1
t
+

∞

∑
µ=1

(−1)µ
(

1
t +µπ

+
1

t −µπ

))
f (t)dt

Hence

I =
∫ π

2

0
f (t)dt

and proof is complete

3. Extension of Lobachevsky formula

Now we give a general method for calculating the generalized Dirichlet integral(which could be written
as Bell polynomials), as follows ∫ ∞

0

sin2n x
x2n f (x)dx

where f (π + x) = f (x), and f (π − x) = f (x), 0 ⩽ x < ∞
We start with n = 2. As we did in previous section, take

I =
∫ ∞

0

sin4 x
x4 f (x)dx

we can have the following identity from Newton formula

1
sin4 α

+
2

3sin2 α
=

1
α4 +

∞

∑
m=1

(
1

(α −mπ)4 +
1

(α +mπ)4

)
From previous method which we explained in section 2, we can write I as follows

I =
∫ π

2

0
sin4 t

(
1

sin4 t
+

2
3sin2 t

)
f (t)dt

Hence

I =
∫ π

2

0
f (t)dt +

2
3

∫ π
2

0
sin2 t f (t)dt

So we proved the following theorem

THEOREM 3.1 Let f (x) satisfies in f (x+π) = f (x), and f (π − x) = f (x), 0 ⩽ x < ∞. If the following
integral ∫ ∞

0

sin4 x
x4 f (x)dx
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exists then we have the following equality∫ ∞

0

sin4 x
x4 f (x)dx =

∫ π
2

0
f (t)dt +

2
3

∫ π
2

0
sin2 t f (t)dt

As remark if we take f (x) = 1, then we have

REMARK 3.1 We have ∫ ∞

0

sin4 x
x4 dx =

π
3

We have also the following remark from Lobachevsky formula

REMARK 3.2 If f (x) satisfies in the condition f (x+π) = f (x), and f (π − x) = f (x), 0 ⩽ x < ∞ , then

I =
∫ ∞

0

sin2n+1 x
x

f (x)dx =
∫ ∞

0
sin2n x f (x)

sinx
x

dx

Now if we set sin2n x f (x) = g(x), we get g(x+π) = g(x), g(π −x) = g(x), now if we take f (x) = 1,
then ∫ ∞

0

sin2n+1 x
x

dx =
∫ π

2

0
sin2n xdx =

(2n−1)!!
(2n)!!

π
2
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