
HAL Id: hal-01539713
https://hal.science/hal-01539713

Submitted on 15 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Model based on Design Pattern for the Service
Provider in the Service Oriented Architecture

Akram Kamoun, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Akram Kamoun, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. Feature Model based on
Design Pattern for the Service Provider in the Service Oriented Architecture. The 19th International
Conference on Enterprise Information Systems (ICEIS’2017), Apr 2017, Porto, Portugal. pp.111-120,
�10.5220/0006332301110120�. �hal-01539713�

https://hal.science/hal-01539713
https://hal.archives-ouvertes.fr


Feature Model based on Design Pattern for the
Service Provider in the Service Oriented

Architecture
Akram Kamoun1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1,

and Khalil Drira2

1Laboratory of Development and Control of Distributed Applications (ReDCAD),
National Engineering School of Sfax, Tunisia

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
akram.kamoun@redcad.tn, mohamed.hadjkacem@redcad.org,

ahmed.hadjkacem@fsegs.rnu.tn, and khalil@laas.fr

Abstract
In Service Oriented Architecture (SOA), service contracts are widely

used for designing and developing the features (e.g., services and capabil-
ities) of Service Providers (SPs). Two of the most widely used traditional
service contracts in SOA are: WSDL and WADL. We identify that these
service contracts suffer from several problems, like: they only work for
SOAP and REST communication technologies and do not rely on model-
ing SOA Design Patterns (DPs). One benefit of using SOA DPs is that
they permit developing proven SPs for different platforms. In order to
overcome these problems, we introduce a new DP-based Feature Model
(FM), named F MSP , as a service contract that models the variability
of SP features including 15 SOA DPs (e.g., Event-driven messaging DP)
and their corresponding constraints. This permits to easily identify and
develop valid SOA compound DPs. We demonstrate, through a practical
case study and a developed tool, that our F MSP allows to automatically
generate fully functional, valid, highly customized and DP-based SPs. We
also show that our F MSP reduces the required effort and time to develop
SPs.

Index terms— Service oriented architecture; Service provider; Service con-
tract; Design pattern; Feature model.

1 Introduction
Service Oriented Architecture (SOA) [1] is a widely used distributed computing
platform. An SOA application is composed of Service Providers (SPs) and
Service Consumers (SCs) that communicate through services. In this paper, we
focus on designing and developing SPs. A SP can implement different features
like: capabilities (i.e., operations), services and communication technologies
(e.g., Simple Object Access Protocol “SOAP”, Representational state transfer
“REST” and Middleware Oriented Messaging “MOM”). In particular, a feature

1



can be designed to implement a Design Pattern (DP) [2] (e.g., Event-driven
messaging DP).

The DP is an appropriate and proven design solution for a specific problem in
a certain context. In the practice, it is frequent to use a compound DP to solve
specific problems. A compound DP is a coarse-grained DP, who is composed
of a set of finer-grained DPs. Erl [2] gathers in his book 78 SOA DPs (e.g.,
Event-driven messaging DP). In our work, we focus on studying 15 SOA DPs
and their possible combinations (see Sect. 3).

In SOA, the contract-first is a widely used approach to develop Service
Providers (SPs). It consists in developing service contracts that will be used to
generate the artifacts of the corresponding SP. A service contract is a document
(e.g., XML) of meta information through which the SP features are expressed.

The service contract represents a core part and one of the fundamental de-
sign principles in SOA [1]. Two of the most widely used SOA traditional service
contracts are: Web Services Description Language (WSDL) [3] and Web Appli-
cation Description Language (WADL) [4]. By studying these service contracts,
we identify that they suffer from several problems, as follows:

P.1 they are dependent on specific communication technologies. The WSDL
and WADL only work for the SOAP and REST communication technolo-
gies, respectively;

P.2 they do not use a standardized or common syntax to define SP features.
They use different syntaxes even to describe the same SP features (e.g.,
input and output data features). This can lead to misinterpretation and
difficulty to understand SP features;

P.3 they only allow to express a limited set of features. This prevents the
development of complex SPs;

P.4 they do not rely on modeling SOA DPs and compound DPs [2]. This
prevents the development of proven SPs. Developing SOA DPs and valid
compound DPs is not a straightforward and easy task and requires a
solid core of expert knowledge. For example, using the Event-driven
messaging DP [2] requires the use of the Service callback DP [2]. In
this case, if a given compound DP includes the Event-driven messaging
DP but omits the Service callback DP, then this compound DP is in-
valid. Hence, the SP developer must manually develop valid SOA DPs
and compound DPs in order to develop a valid SP;

P.5 some communication technologies (e.g., MOM) do not offer service con-
tracts. In this case, using the first-contract approach to develop SPs can-
not be possible.

In order to overcome the enumerated SOA traditional service contract prob-
lems, we propose in this paper, a DP-based Feature Model (FM), named FMSP .
The latter is designed as a service contract which models different SP features
including SOA DPs and valid compound DPs. It is also designed to generate
fully functional, valid and highly customized SPs for different communication
technologies (SOAP, REST and MOM). In the literature, several FMs [5], [6],
[7], [8] have been proposed to model the SP features. However, these FMs do not

2



permit to generate fully functional SPs and do not model DPs and compound
DPs.

The rest of this paper is structured as follows. In Sect. 2, we provide a brief
overview of the FM. In Sect. 3, we introduce our FMSP . In Sect. 4, we evaluate
our FMSP through a practical case study. In Sect. 5, we discuss some related
works. This paper is concluded in Sect. 6.

2 A brief overview of the feature model
The Software Product Line (SPL) [9] is a paradigm whose goal is the mass-
customization of applications that fit individual customer needs. In this context,
it relies on the variability modeling of the application artifacts (e.g., source code
and design) to develop customized applications. The variability consists in the
ability of an artifact to be customized or configured in a particular context.

The FM [10] is the defacto standard for variability modeling in SPL. It
permits to model the customized applications, based on features, that the SPL
offers to generate. The FM expresses the legal combination of features to derive
customized applications (e.g., see Fig. 1). An end user can derive from this FM,
an Application Model (AM), by selecting the required features and deselecting
the others, in line with the constraints of the FM (e.g., see Fig. 3). Based on
the features of this AM, the SPL will generate the artifacts of the corresponding
application.

The structure of the FM is a rooted tree of features that can be defined
through different notations [10]. Many FM metamodels [11], [10] have been
proposed in the literature that offer different notations. In this work, we rely
on the FM metamodel of Czarnecki et al. [10] because its notations (see Fig. 1)
allow to efficiently express the SP features.

We present in Fig. 1, these notations that will be briefly presented in the fol-
lowing. The feature can be either mandatory or optional. The feature attribute
allows to add an attribute value (e.g., integer) to specify extra-functional infor-
mation for features. The feature [min, max] defines the lower and upper bounds
of instances of a given feature. The “requires” constraint is in the form: if a
feature A requires a feature B, then the selection of A in the AM requires the
selection of B. The “excludes” constraint is in the form: if a feature A excludes
a feature B, then both features cannot be selected in the same AM. The feature
group XOR [1, 1] allows selecting exactly one out of its child features which can
be called as alternative exclusive features. The feature group OR [1, n] allows
selecting one or many of its child features which can be called as alternative in-
clusive features. The FM allows to define complex constraints between features
(e.g., see the propositional constraints in Fig. 1).

3 Feature model for the service provider F MSP

In this paper, we propose a new DP-based FM, named FMSP (see Fig. 1),
which allows to generate fully functional, valid and highly customized Service
Providers (SPs) for different communication technologies (SOAP, REST and
MOM). Our FMSP is designed as a service contract, which models 46 SP fea-
tures, that permits to overcome the SOA traditional service contract problems

3



(see Problems P.1, P.2, P.3, P.4 and P.5 in the introduction). We present in
Table 1 the descriptions of these features.

We rely on 15 SOA DPs [2] to develop our FMSP , which are: Contract
centralization DP, Service messaging DP, Direct authentication DP,
Service agent DP, Intermediate routing DP, Service callback DP, Asyn-
chronous queue DP, Event-driven messaging DP, Reliable messaging DP,
Atomic service transaction DP, Dual protocols DP, State messaging DP,
Stateful services DP, Service instance routing DP and State repository
DP. These DPs are described as features in our FMSP .

Mathematically, there exist 215 compound DPs that represent the existence
or the non-existence of the 15 DPs. However, not all of these compound DPs
are valid. For example, in order to use the Event-driven messaging DP, it is
necessary to use the Service callback DP (see Sect. 3.2). Hence, if a given
compound DP includes the Event-driven messaging DP but omits the Service
callback DP, then this compound DP is invalid. One of the main challenges
tackled in this work is to identify and model the valid compound DPs in our
FMSP . In this context, it is crucial to identify and model the constraints
between DPs in FMSP (see Sect. 3.2). Erl presents several constraints between
these DPs [2]. However, he illustrates them in many dispersed diagrams. This
makes difficult to identify properly these constraints. Also, many constraints
are missing.

3.1 Benefits
Our FMSP is designed to overcome the SOA traditional service contract prob-
lems (see Problems P.1, P.2, P.3, P.4 and P.5 in the introduction). We present
in the following the benefits of our FMSP and which problems they consider:

1. it relies on the FM notations which permit to efficiently model the features
and complex constraints (i.e., propositional constraints) of the SP. Also,
the FM graphical presentation can be easily interpreted and facilitate
deriving customized and valid SPs. In order to generate a valid SP, the SP
developer only needs to derive an AMSP (e.g., see Fig. 3), by selecting the
required features and deselecting the others, from FMSP (see Fig. 1). This
facilitates the mass-customization of SPs. The constraints presented in
FMSP allow to guide the SP developer to derive valid AMSP (considering
Problems P.1, P.2, P.3 and P.5);

2. it is designed as a service contract for SP which is generic and indepen-
dent of the communication technologies. It can be considered as a ref-
erence model [12] which reflects the variability of practical SP features
(considering Problems P.1, P.2, P.3 and P.5);

3. it includes the required features to generate fully functional, valid and
highly customized SPs. This reduces the required effort and time to de-
velop SPs (considering Problems P.1, P.2, P.3 and P.5);

4. it models 15 DPs and their corresponding constraints (see Sect. 3.2). This
permits to easily identify and derive the valid compound DPs. By using
the FAMILIAR tool [13], we identify, from the DPs constraints modeled
in FMSP , that there are 406 valid compound DPs from 215 possible ones
(considering Problem P.4);

4



5. many benefits can be enumerated when expressing DPs as features in our
FMSP . DPs are introduced by veteran problem solvers in order to pro-
vide appropriate and proven design solutions. A DP shows the right level
of abstraction to describe a certain solution in a generic context, i.e., in-
dependently of the programming languages and platforms. It also has a
major benefit of providing a common language which it is understandable
by the developers instead of using terminologies related to a certain con-
text. For example, simply saying the Event-driven messaging DP [2] is
more efficient and easier than to explain it in details. Hence, integrating
DPs in our FMSP allows to ensure that the SPs that can be derived are
based on proven solutions and can be used to generate the artifacts for
different contexts (considering Problems P.1, P.2, P.3, P.4 and P.5);

3.2 Constraints of the design patterns
We discuss here the constraints between the 15 DPs modeled in our FMSP (see
Fig. 1). These constraints have been identified from theoretical and practical
studies that we have led which are essentially based on these works [2], [14],
[15], [16].

We express the feature Contract centralization DP as mandatory because
our FMSP is designed as a service contract that models the SP features, like the
SOAP, REST and MOM communication technology features. In the introduction,
we mention that the MOM does not offer a service contract (see Problem P.5).
Because our FMSP models the MOM features, then it can be considered as a
service contract for MOM. Hence, it would be possible to use the first-contract
approach to develop SPs based on the MOM features.

3.2.1 Constraints between the design patterns with the communica-
tion types

The SC needs to send a request message to the SP in order to invoke a capability.
This communication type is called one-way. If this capability returns a response
message, then the communication type is called two-way. In FMSP , the feature
Output represents the two-way communication type. If this feature is omitted
when deriving an AMSP , then the result type of the capability is void and the
communication type is considered as one-way.

The features Service callback DP, Atomic service transaction DP, Re-
liable messaging DP and State messaging DP can be only applied for the
SP response messages, i.e., for the two-way communication type (see Table 1).
Thus, we define “requires” constraints from these features to the feature Output.

3.2.2 Constraints of the communication design patterns

We express the feature Service messaging DP as mandatory because the three
communication technologies (SOAP, REST and MOM) expressed in the FMSP are
messaging-based.

The Dual protocols DP requires that a given capability must support two
or more communication technologies and vice-versa. The first propositional
constraint defined in FMSP implements this requirement.

5



A
sy

nc
hr

on
ou

s
qu

eu
e

D
P

A
to

m
ic

se
rv

ic
e

tr
an

sa
ct

io
n

D
P

A
ck

no
w

le
dg

em
en

t

P
er

si
st

en
t

de
liv

er
y

E
ve

nt
-d

ri
ve

n
m

es
sa

gi
ng

D
P

M
O

M

R
el

ia
bl

e
m

es
sa

gi
ng

D
P

D
ur

ab
le

Se
rv

ic
e

ca
llb

ac
k

D
P

In
te

rm
ed

ia
te

ro
ut

in
g

D
P

Se
rv

ic
e

ag
en

t
D

P
St

at
e

St
at

ef
ul

se
rv

ic
es

D
P

St
at

e
m

es
sa

gi
ng

D
P

Se
rv

ic
e

in
st

an
ce

ro
ut

in
g

D
P

In
te

rn
al

m
em

ro
ry

St
or

ag
e

m
od

e

C
om

m
un

ic
at

io
n

te
ch

no
lo

gy

SO
A

P

1.
1

1.
2

P
os

t
G

et

P
ut

D
el

et
e

R
E

ST

In
pu

t
O

ut
pu

t

O
N

am
e

O
T

yp
e

O
D

at
a

cl
as

s
na

m
e

C
ap

ab
ili

ty
na

m
eC
ap

ab
ili

ty

Se
rv

ic
e

Se
rv

ic
e

na
m

e

Se
rv

ic
e

co
nt

ra
ct

[1
,n

]

[1
,n

]

A
dd

re
ss

St
at

e
re

po
si

to
ry

D
P

T
em

po
ra

ry
m

em
or

y

P
ro

p
os

it
io

n
al

co
n

st
ra

in
ts

:
1:

D
ua

l
pr

ot
oc

ol
s

D
P

↔
((

M
O

M
∧

R
E

ST
)

∨
(M

O
M

∧
SO

A
P

)
∨

(R
E

ST
∧

SO
A

P
)

∨
(M

O
M

∧
R

E
ST

∧
SO

A
P

))
2:

(M
O

M
∧

O
ut

pu
t)

→
(A

to
m

ic
se

rv
ic

e
tr

an
sa

ct
io

n
D

P
∨

A
ck

no
w

le
dg

em
en

t)

D
ir

ec
t

au
th

en
ti

ca
ti

on
D

P

D
ua

l
pr

ot
oc

ol
s

D
P

Se
rv

ic
e

m
es

sa
gi

ng
D

P

C
on

tr
ac

t
ce

nt
ra

liz
at

io
n

D
P

O
D

at
a

[1
,n

]

IN
am

e
IT

yp
e

ID
at

a
cl

as
s

na
m

e

ID
at

a
[1

,n
]

Figure 1: Feature model FMSP (design pattern features are colored)

6



Table 1: Descriptions of the features of FMSP

Feature name Description
Service con-
tract

Root feature

Address Address of the SP
Service [1, n] Services of the SP
Service name Service name
Capability
[1, n]

Capabilities of the SP

Capability
name

Capability name

Input Input data of a given capability
IData [1, n] Gathering input data features
IName Input data name
IType Input data type
IData class
name

Input data class name (e.g., Java class name)

Output Output data of a given capability
OData [1, n] Gathering output data features
OName Output data name
OType Output data type
OData class
name

Output data class name (e.g., Java class name)

Communication
technology

Gathering the communication technologies

SOAP SOAP communication technology
1.1 SOAP version 1.1
1.2 SOAP version 1.2
REST REST communication technology
Get HTTP get method for REST
Post HTTP post method for REST
Put HTTP put method for REST
Delete HTTP delete method for REST
MOM Middleware oriented messaging communication technology
Durable The MOM stores the messages of the publisher (i.e., SP) for

the subscribers (i.e., SCs) if the latter disconnect. Upon re-
connecting, the subscribers will receive all these messages

Acknowledgem-
ent

The MOM acknowledges the SP about the received messages

Persistent
delivery

Persisting the SP messages in a data store so they are not lost
if the MOM fails. Therefore, we ensure that the SP messages
are delivered to the SC

Contract cen-
tralization
DP

Gathering the SP features within the service contract so it
will be used by the SC as the sole entry point to communicate
with the SP

Direct authen-
tication DP

Requiring that the SCs must provide authentication creden-
tials to invoke a capability

7



Service messag-
ing DP

Using a messaging-based communication technology which
removes the need for persistent connections and reduces cou-
pling requirements between the SP and SC

Service agent
DP

Deferring some logic (e.g., logging messages) from services
to event-driven programs to reduce the size and performance
strain of services

Intermediate
routing DP

Dynamically routing messages through the use of a service
agent

Service callback
DP

Redirecting the SP response messages to a callback address
that can be different of the requester SC address

Asynchronous
queue DP

Deploying an intermediary MOM allowing the SP and SC to
asynchronously communicate and to independently process
messages by remaining temporally decoupled

Event-driven
messaging DP

Asynchronously sending the response messages of the pub-
lisher (i.e., SP), when ready, to its corresponding subscribers
(i.e., SCs)

Reliable mes-
saging DP

Adding a reliability mechanism to the SP response messages
in order to ensure message delivery. This mechanism relies
on acknowledging the SP messages and persisting them in a
data store

Atomic service
transaction DP

Treating a group of the SP response messages as a single work
unit. The latter is wrapped in a transaction with a rollback
feature that resets all actions and changes if the exchanging
messages fails

Dual protocols
DP

The capability is designed to support two or more communi-
cation technologies

State Gathering the techniques that handle the state data of capa-
bilities

Stateful ser-
vices DP

Managing and storing state data by intentionally stateful util-
ity services

Service in-
stance routing
DP

Supplementing the exchanged messages with an instance
identifier, given by the SP as messaging metadata, so the
SC uses it to communicate with the same instance of a given
capability

State messag-
ing DP

Delegating the storage of state data to the SP response mes-
sages instead to the SP internal memory

State reposi-
tory DP

Deferring storing state data from a temporary memory to a
state repository

Internal mem-
ory

Storing the state data in the SP internal memory

Storage mode Gathering the modes of how the state data are stored
Temporary
memory

Storing and managing the state data in a temporary memory

8



The SOAP and REST rely on a synchronous communication for the message
exchanging between the SP and SC. The problem of the synchronous commu-
nication is that it forces processing overhead because the SP and SC must wait
and continue to consume resources (e.g., memory) until they finish the mes-
sage exchanging. To overcome this problem, the asynchronous communication
is used as a solution. Also, in certain cases, it is necessary to implement (i.e.,
develop the artifacts of) the features Atomic service transaction DP and
Reliable messaging DP.

In this context, it is possible to configure the SOAP and REST to implement
the features Atomic service transaction DP and Reliable messaging DP
and to support the asynchronous communication by implementing the feature
Service callback DP. However, this requires significant costs associated with
necessary infrastructure upgrades in the SP and also in the SC [2]. In the other
hand, the MOM offers advanced functionalities to implement these features in both
the SP and SC. Thus, we propose implementing these features with the feature
MOM. Hence, we express the three asynchronous communication DPs (Service
callback DP, Asynchronous queue DP and Event-driven messaging DP), the
Atomic service transaction DP and the Reliable messaging DP as child
features of the feature MOM.

In the MOM, the SC request messages are always carried on by an asynchronous
queue [15] which it is an implementation of the feature Asynchronous queue
DP. This is the reason why we define this feature as mandatory. In order to
implement the feature Event-driven messaging DP, we use an asynchronous
topic [15]. The latter is used to send asynchronously the SP response messages
as notifications to its subscribers (i.e., SCs). The addresses of the asynchronous
queue and topic are different. In this context, we define a “requires” constraint
from the feature Event-driven messaging DP to the feature Service callback
DP because one need redirecting the SP response messages to the asynchronous
topic address.

In the case where the features Asynchronous queue DP and Service call-
back DP are selected and the feature Event-driven messaging DP is omitted
when deriving an AMSP , then the SC request and SP response messages are
handled by two different asynchronous queues with different addresses. If the
Service callback DP is omitted, then all messages are handled by a single
asynchronous queue.

Because the MOM communication technology ensures a loosely coupled and
an asynchronous communication between the SP and SC, then it should inform
the SP and SC if their outgoing messages have been successfully received. In
this context, the MOM should use either the features Acknowledgement or Atomic
service transaction DP [2], [15]. This requirement is considered in our FMSP

by defining these two features as mutually exclusive and by defining the second
propositional constraint in Fig. 1.

3.2.3 Constraints of the service agent design patterns

The feature Intermediate routing DP is implemented through a service agent
(see Table 1). Thus, we define the Intermediate routing DP as an optional
child feature of the feature Service agent DP.

In contrast of SOAP and REST, the SC request messages which are dedicated
to MOM do not explicitly contain information about which capability the SC wants

9



to invoke. As a consequence, it would be not possible to invoke the required
capability. As a solution, we propose implementing the feature Intermediate
routing DP that dynamically routing the SC request messages to the required
capability. Hence, we define, in our FMSP , a “requires” constraint from the
feature MOM to the feature Intermediate routing DP.

3.2.4 Constraints of the service state design patterns

Erl reports that the service state DPs (Service instance routing DP, State
messaging DP, Stateful services DP and State repository DP) can be
implemented in conjunction in the SP [2]. This requirement is implemented in
our FMSP by defining these DPs as alternative inclusive features.

The goal of the State messaging DP is delegating the storage of state data
to the SP response messages. In this context, we propose implementing the
Service agent DP to automatically perform this delegation. Hence, we define,
in our FMSP , a “requires” constraint from the feature State messaging DP to
the feature Service agent DP.

4 Evaluation
In order to show the merits and evaluate our FMSP (see Fig. 1) in practice, we
propose to use the case study of the Integrated Air Defense (IAD) (see Fig. 2).

Infantary

Command
and control

system
Radars

Anti-crafts

Ground force

Jet aircrafts HelicoptersDrones

Air force

Maritime
force

Aircraft
carriers

Submarines

AMSP1

AMSP2
AMSP3

AMSP4
AMSP5 AMSP6

AMSP7 AMSP8 AMSP9
AMSP10

AMSP11

AMSP12

AMSP13

AMSP14
AMSP15

AMSP16 AMSP17

Figure 2: Case study of the integrated air defense

The IAD is a command and control compound of geographically dispersed
force elements already in peace time as well as in crisis. In Fig. 2, we illus-

10



trate 17 force elements which are grouped into three main forces: ground force
(command and control system, radars, anti-aircrafts and infantry), air force
(drones, helicopters and jet aircrafts) and maritime force (aircraft carriers and
submarines). These force elements communicate with services to achieve their
missions. One main requirement must be satisfied to realize this IAD case study:

Requirement 1 Each of the 17 force elements illustrated in the IAD case study
is a SP, named SPi, which it is responsible to implement its own features (see
Fig. 1).

As illustrated in the introduction (see Problems P.1, P.2, P.3, P.4 and
P.5), the SOA traditional service contracts WSDL [3] and WADL [4] suffer
from several problems to develop SPs which prevent to efficiently realize the
Requirement 1. In order to overcome these problems and to efficiently realize
the Requirement 1, we propose deriving for each SPi of the 17 IAD force
elements a specific AMSPi (e.g., see Fig. 3) from our FMSP (see Fig. 1). For
example, in Fig. 2, the AMSP13 includes the SP features of the command and
control system force element.

Using our FMSP has several benefits as mentioned in Sect. 3.1 like it facili-
tates the mass-customization of SPs. This is important especially when we have
an important SP count to develop which it is the case of our IAD case study
(17 SPs to develop). Pohl et al. [9] show, from empirical investigations, that a
given SPL is necessary and efficient if there are more than three or four systems
to develop which it is our case.

In fact, Erl [2] reports that the U.S. Department of Defense (DoD) has
decided to plan and manage its business IT (Information Technology) via an
architectural approach based upon SOA. The IAD system presented in Fig. 2 is a
part of the DoD’s business IT. He also reports that due to the scale, complexity
and diversity of the DoD’s business IT, the DoD developed a strategy with
guiding principles which relies on the SOA DPs [2]. In this context, because
our FMSP relies on the SOA DPs, it can help contribute to develop the DoD’s
business IT.

We present in Fig. 3 an example of a derived AMSP that contains 40 SP
features. We note that this AMSP implements a valid compound DP that is
composed of 15 DPs. It is possible that an AMSP contains different services
and capabilities (see Fig. 1). For the sake of simplicity, we illustrate in Fig. 3, an
AMSP that contains a single service, named “Personal”, which it is composed of
a single capability, named “login”. The signature of this capability has a single
input data, named “id”, with a String type and included in the class “Session”
(Java class). It also has a single output data, named “ok”, with a Boolean
type and included in the class “SessionResponse” (Java class). The goal of this
capability is to enable a user to login to his/her account. We define the SP
address as “http://localhost:8080/SP”.

We developed a tool [17], [18] that relies on the Apache Velocity1 tool (a
“model to code” template engine) in order to transform a given AMSP to the
artifacts of the corresponding SP. Our tool generates SPs based on the Enter-
prise Service Bus (ESB) Switchyard [16]. Switchyard is a recent free software
ESB that includes different technologies, such as the Service Component Archi-
tecture (SCA), HornetQ (a MOM implementation) [15], SOAP, REST, Spring

1http://velocity.apache.org

11



A
sy

nc
hr

on
ou

s
qu

eu
e

D
P

A
to

m
ic

se
rv

ic
e

tr
an

sa
ct

io
n

D
P

P
er

si
st

en
t

de
liv

er
y

E
ve

nt
-d

ri
ve

n
m

es
sa

gi
ng

D
P

M
O

M

R
el

ia
bl

e
m

es
sa

gi
ng

D
P

D
ur

ab
le

Se
rv

ic
e

ca
llb

ac
k

D
P

In
te

rm
ed

ia
te

ro
ut

in
g

D
P

Se
rv

ic
e

ag
en

t
D

P
St

at
e

St
at

ef
ul

se
rv

ic
es

D
P

St
at

e
m

es
sa

gi
ng

D
P

Se
rv

ic
e

in
st

an
ce

ro
ut

in
g

D
P

In
te

rn
al

m
em

ro
ry

St
or

ag
e

m
od

e

C
om

m
un

ic
at

io
n

te
ch

no
lo

gy

SO
A

P 1.
2

G
et

R
E

ST

C
ap

ab
ili

ty
na

m
eC
ap

ab
ili

ty

Se
rv

ic
e

Se
rv

ic
e

na
m

e

Se
rv

ic
e

co
nt

ra
ct

A
dd

re
ss

St
at

e
re

po
si

to
ry

D
P

D
ir

ec
t

au
th

en
ti

ca
ti

on
D

P

D
ua

l
pr

ot
oc

ol
s

D
P

Se
rv

ic
e

m
es

sa
gi

ng
D

P

C
on

tr
ac

t
ce

nt
ra

liz
at

io
n

D
P

F
ea

tu
re

at
tr

ib
u

te
va

lu
es

:
A

dd
re

ss
=

"h
tt

p:
//

lo
ca

lh
os

t:
80

80
/S

P
"

Se
rv

ic
e

na
m

e
=

"P
er

so
na

l"
C

ap
ab

ili
ty

na
m

e
=

"l
og

in
"

IN
am

e
=

"i
d"

It
yp

e
=

"S
tr

in
g"

ID
at

a
cl

as
s

na
m

e
=

"S
es

si
on

"
O

N
am

e
=

"o
k"

O
ty

pe
=

"B
oo

le
an

"
O

D
at

a
cl

as
s

na
m

e
=

"S
es

si
on

R
es

po
ns

e"

In
pu

t
O

ut
pu

t

O
N

am
e

O
T

yp
e

O
D

at
a

cl
as

s
na

m
e

O
D

at
a

IN
am

e
IT

yp
e

ID
at

a
cl

as
s

na
m

e

ID
at

a

Figure 3: Application model AMSP (design pattern features are colored)

12



and Apache Camel [14]. These technologies are integrated on demand in the
generated SP depending on the features of AMSP . Our tool also relies on the
FAMILIAR tool [13] to develop and manage the FMSP and AMSP (e.g., to
check that AMSP is in conformity with FMSP ).

From the AMSP illustrated in Fig. 3, our tool succeeds to automatically
generate a valid and fully functional SP. This generated SP has been successfully
deployed in the JBoss Java server without any further manual interventions. It
should be noted that the SP developer can manually adapt the generated SP to
his/her application requirements (e.g., defining the business logic of the SP). The
generated SP is composed of 333 Java code instructions and five XMLs2. These
XMLs permit to configure the SOAP and MOM technologies and to configure
the ESB Switchyard. The time required to derive the AMSP (see Fig. 3) and
generate its corresponding SP is several seconds. By using the SOA traditional
approach (i.e., using the SOA traditional service contracts and relying on the
tools offered by the ESB Switchyard), we require more than 20 minutes to
develop the same SP and we need many manual interventions. Hence, we can
say that using our FMSP (see Fig. 1) reduces the required effort and time to
develop valid and fully functional SPs.

5 Related work
Many works have been proposed to model the SP features [7], [6], [8], [5], [19],
[20]. In this section, we discuss these works and compare them with our FMSP

(see Table 2).

Table 2: Comparing our FMSP with related work (FGC: Functionality of the
Generated Code, CT: Communication Technology; CDP: Compound DP)

Approach Tool FGC CT DP CDP
WSDL XML Fully SOAP - -
WADL XML Fully REST - -
Wada et al.,
2007

FM Semi n/a - -

Fantinato et
al., 2008

FM Semi SOAP - -

Ed-douibi et
al., 2016

EMF Semi REST - -

Parra and
Joya, 2015

FM Semi Generic - -

Kajsa and
Návrat, 2012

FM Semi - + -

Our F MSP FM Fully Generic + +

Wada et al. [7] propose a FM that expresses the variability of non-functional
aspects of the SP. Although their FM includes communication features, it does
not explicitly specify which communication technologies it supports. That is
why we put the symbol “n/a” in Table 2. Their FM can be used to extend

2https://github.com/MSPL4SOA/MSPL4SOA-tool/tree/master/generated_SPs_SCs/conf/sp

13



our FMSP (see Fig. 1) in order to express the variability of SP non-functional
aspects. In contrast, our FMSP permits to generate fully functional SPs and
models DPs and compound DPs.

Fantinato et al. [6] elaborate a FM that models the variability of WSDL
service contract of SOAP. Our FMSP is more complete than theirs in a way that
it contains the required features (e.g., the features of the input and output data)
to generate fully functional SPs. As reported by Fantinato et al., the input and
output data features are absent in their FM. Another advantage of our FMSP is
that it expresses the variability of different communication technologies (SOAP,
REST and MOM) and models DPs and compound DPs.

Ed-douibi et al. [8] introduce a MDE-based approach, called EMF-REST,
that takes EMF data models as input to generate their corresponding REST
services. In our work, we propose FMSP to model the REST features. Their
approach supports generating more REST features (e.g., security features) than
ours. In contrast, our FMSP permits to generate services with different com-
munication technologies (SOAP, REST and MOM) and models SOA DPs and
compound DPs.

Parra and Joya [5] propose an approach that generates a FM (using reverse
engineering techniques) from current JEE artifacts. The latter, as affirmed by
the authors, can support only limited features (e.g., the input and output data
features and the MOM features are missing). The advantage of our FMSP is
that it permits to generate fully functional and highly customized SPs and mod-
els SOA DPs and compound DPs. Parra and Joya report that their approach
should be extended to generate fully functional SPs.

Kajsa and Návrat [19] introduce a FM to handle the variability of the object
oriented DPs. The goal is to support the instantiation and the evolution which
occur to these DPs. Their work helps to generate the artifacts of a specific DP.
The advantage of our FMSP is that it allows to generate the artifacts of DPs
and also of compound DPs.

6 Conclusion
In Service Oriented Architecture (SOA), the service contract is one of the funda-
mental design principles used to develop Service Providers (SPs). In this paper,
we have proposed, based on SOA Design Patterns (DPs), a Feature Model (FM)
for SP, named FMSP . The latter is designed as a service contract for SP that is
generic and independent of the communication technologies. We have modeled
in our FMSP 15 SOA DPs (e.g., Event-driven messaging) and their correspond-
ing constraints. This allows to easily identify and generate the possible valid
compound DPs which permits to develop valid SPs, accordingly. Based on our
FMSP , we have identified that there are 406 valid compound DPs from 215

possible ones. We have demonstrated through a practical case study and based
on a developed tool, that our FMSP permits to automatically generate valid,
highly customized, fully functional, proven and DP-based SPs. We have shown
that using our FMSP reduces the required effort and time to develop SPs. We
have also demonstrated the efficiency of our FMSP compared with related works
notably the SOA traditional service contracts WSDL and WADL.

For future research, we plan to extend our FMSP by other features, including
other DPs, in order to generate more complex SPs.

14



References
[1] Thomas Erl. SOA Principles of Service Design. Prentice Hall, 2007.

[2] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[3] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. WSDL 2.0. https://www.w3.org/TR/wsdl20, 2007.

[4] Marc Hadley and Sun Microsystems. WADL.
https://www.w3.org/Submission/wadl, 2009.

[5] Carlos Parra and Diego Joya. SPLIT: an automated approach for enterprise
product line adoption through SOA. Internet Services and Information
Security, 5(1):29–52, 2015.

[6] Marcelo Fantinato, De Toledo Maria Beatriz Felgar, and De Souza
Gimenes Itana Maria. WS-contract establishment with QOS: an approach
based on feature modeling. Cooperative Information Systems, 17(03):373–
407, 2008.

[7] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. A feature modeling sup-
port for non-functional constraints in service oriented architecture. In Pro-
ceedings of the 4th IEEE International Conference on Services Computing
(SCC’2007), pages 187–195, Salt Lake City, Utah, USA, July 2007.

[8] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo
Tisi, and Jordi Cabot. EMF-REST: generation of RESTful APIs from
models. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing (SAC’2016), pages 1446–1453, Pisa, Italy, 2016.

[9] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Product
Line Engineering. Springer, 2005.

[10] Krzysztof Czarnecki, Simon Helsen, and Eisenecker Ulrich. Staged configu-
ration through specialization and multilevel configuration of feature models.
Software Process: Improvement and Practice, 10(2):143–169, 2005.

[11] Kyo C. Kang and Hyesun Lee. Systems and Software Variability Manage-
ment: Concepts, Tools and Experiences. chapter 2: Variability Modeling,
pages 25–42. Springer, 2013.

[12] Matthias Galster, Paris Avgeriou, and Dan Tofan. Constraints for the
design of variability-intensive service-oriented reference architectures – an
industrial case study. Information and Software Technology, 55(2):428–441,
2013.

[13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
FAMILIAR: a domain-specific language for large scale management of fea-
ture models. Science of Computer Programming, 78(6):657–681, 2013.

[14] Claus Ibsen and Jonathan Anstey. Camel in Action. Manning Publications
Corporation, 2011.

15



[15] Piero Giacomelli. HornetQ Messaging Developer’s Guide. Packt Publishing,
2012.

[16] Switchyard tool. http://switchyard.jboss.org.

[17] MSPL4SOA tool. https://mspl4soa.github.io, 2017.

[18] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Multi-
ple software product lines for software oriented architecture. In Proceedings
of the 25th IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE’2016), pages 56–61,
Paris, France, June 2016.

[19] Peter Kajsa and Pavol Návrat. Design pattern support based on the
source code annotations and feature models. In Proceedings of the 38th
International Conference on Current Trends in Theory and Practice of
Computer Science on SOFtware SEMinar (SOFSEM’2012), pages 467–478,
Špindlerův Mlýn, Czech Republic, January 2012.

[20] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Feature
model for modeling compound SOA design patterns. In Proceedings of the
11th ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA’2014), pages 381–388, Doha, Qatar, November 2014.

16


