
HAL Id: hal-01539697
https://hal.science/hal-01539697

Submitted on 15 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Models as Service Contracts in Service Oriented
Architecture

Akram Kamoun, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Akram Kamoun, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. Feature Models as
Service Contracts in Service Oriented Architecture. International Journal of Services Technology and
Management, 2019, 25 (3-4), pp.267-288. �10.1504/IJSTM.2019.100050�. �hal-01539697�

https://hal.science/hal-01539697
https://hal.archives-ouvertes.fr


Feature Models as Service Contracts in Service
Oriented Architecture

Akram Kamoun1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1,
and Khalil Drira2

1Laboratory of Development and Control of Distributed Applications (ReDCAD),
National Engineering School of Sfax, Tunisia

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
akram.kamoun@redcad.tn, mohamed.hadjkacem@redcad.org,

ahmed.hadjkacem@fsegs.rnu.tn, and khalil@laas.fr

Abstract
The service contract is one of the fundamental design principles in

the Service Oriented Architecture (SOA). Its goal is to express the fea-
tures (e.g., services and capabilities) of Service Providers (SPs) so Service
Consumers (SCs) can identify them to communicate correctly. The two
most known service contracts in the literature are: WSDL for SOAP and
WADL for REST. We identify that these service contracts suffer from sev-
eral problems (e.g., they only allow expressing a limited set of features).
Also, we notice from the literature a lack of service contracts dedicated
for SC. In order to overcome these problems, we propose two Features
Models (FMs) based on SOA design patterns that can be considered as
generic and formal service contracts for SP and SC. We propose exten-
sions to the Feature MetaModel (FMM) and semantic constraints that
ensure generating fully functional, valid, customized and consistent SPs
and SCs from the proposed FMs.

Index terms— Service oriented architecture; Service contract; Service provider
and service consumer; Software product line; Feature model; Design pattern.

1 Introduction
In recent years, the Service Oriented Architecture (SOA) has been widely used
as an architectural model that represents a distributed computing platform in
the software engineering. In the literature, many works have been proposed to
facilitate the development of SOA applications [1], [2], [3], [4]. SOA uses ser-
vices as the essential means through which Service Providers (SPs) and Service
Consumers (SCs) can communicate. Services consist of a set of capabilities that
are developed and exposed by an SP and can be invoked by different SCs. Each
capability can offer different SP features such as the communication technologies
(SOAP, REST and Messaging-Oriented Middleware “MOM”), the authentica-
tion support, publish/subscribe support, message acknowledgements and the
support of synchronous and asynchronous communications. Service contracts

1



are documents including meta information used to describe these features. They
can be used by SCs to identify these SP features in order to communicate cor-
rectly with the SP.

Erl classifies the service contract as one of the fundamental design prin-
ciples in SOA [4]. The two most used traditional service contracts in SOA
are: WSDL for SOAP and WADL for REST. We identify that these service
contracts suffer from several problems: First, they only allow expressing a lim-
ited set of SP features. Thus, some features cannot be formally described in
these service contracts to impose for example certain business logics or complex
constraints (e.g., propositional constraints between features) or Service Level
Agreements (SLAs) or non functional requirements that SCs must respect to
communicate correctly with the SP. In this case, the SP developer needs to
write informal documentations so that SC developers can identify the offered
SP features. The problem is that, due to this informality, these documentations
cannot be included in an automatic process to generate the artifacts of SCs
and SPs. Second, service contracts are dependent to specific communication
technologies. For example, the WSDL expresses only the features of SOAP and
WADL defines only the features of REST. The problem is that SP developers
have to use different syntaxes even to describe the same features (e.g., input
and output data information) in order to develop the service contracts WSDL
and WADL. This can lead to misinterpretation and difficulty in understanding
these contracts. Third, some communication technologies (e.g., MOM) do not
offer service contracts. This makes it difficult for SCs to identify the features
of these communication technologies. Fourth, there is a lack in the literature
of service contracts dedicated for SC that generate the artifacts of SCs. Fifth,
developing many separated service contracts (e.g., WSDL and WADL) might
be needed to identify the different features offered by the SP. This decreases the
governance of the SP and makes it difficult for SC developers to identify these
features. These identified problems can make the development of SPs and SCs
costly, a repetitive task, time-consuming, error-prone and requires a solid core
of expert knowledge.

In order to overcome these problems, we propose designing new service con-
tracts for SP and SC that should take into consideration the following chal-
lenges. They should be generic, formal and independent of the communication
technologies. They should provide mechanisms to express features and complex
constraints. They also should permitting to generate fully functional, valid, cus-
tomized and consistent SPs and SCs. In this paper, our objective is to carry out
an in-depth and rigorous study that addresses these challenges. In this context,
we present an SOA approach based on the Software Product Line (SPL) [5].
The latter is a paradigm allowing the mass customization of applications. We
particularly propose in our approach two Feature Models (FMs) [6] for SP and
SC that can be considered as new service contracts which take into consideration
the identified challenges. We note that the goal of FMs is to model variability
in SPL. The variability consists of the ability of an artifact to be customized or
configured in a particular context.

The rest of this paper is structured as follows. In Sect. 2, we provide a
brief overview of the FM. In Sect. 3, we introduce our approach. In Sect. 4, we
evaluate our approach. In Sect. 5, we present threats to validity. In Sect. 6, we
discuss some related works. We summarize the main conclusions and suggest
future work in Sect. 7.

2



2 A brief overview of the feature model
The Software Product Line (SPL) is a paradigm proposing advanced techniques
for the mass customization of applications using as an essential means the con-
cept of variability modeling. SPL developers often design a Variability Model
(VM) [5] to model the customized applications, based on features, that the SPL
offers to generate. Then, an end-user needs to derive an Application Model
(AM) (also called configuration [7]) from this VM by selecting the required
features. This derived AM is used to generate the artifacts of the required
application.

The Feature Model (FM) [6] is one of the most used VMs in the literature
that will be used in this work. The structure of the FM is a rooted tree of
features. It is possible to define constraints between features in the FM in order
to restrict the legal combination of features (i.e., to restrict the AMs that can
be derived).

JFM1K = {
{M, O, S, W},
{M, H, C, A, S},
{M, O, S, C},
{M, A, S, C, W, H},
{M, W, A, S, O, C},
{M, C, H, S, W},
{M, C, S, H},
{M, C, B, S},
{M, S, O, C, A}
}

F1 = {M, A, C, S, W, B, O, H}

Mandatory Optional XOR
Requires

Excludes ORFeature Feature
attribute

[min, max]

Cardinality

(a) FM1

(c) Corresponding AMs

Notations
(b) Corresponding features

Mobile phone

CAmera

COlorBasic High resolution

Screen WIFI

WIFI → COlor ∨ High resolution

Calls
[0, 2]

Figure 1: Feature model FM1, corresponding features and AMs, and notations

The FM can be defined through different notations [6] (see Fig. 2). Features
can be either mandatory (e.g., Screen) or optional (e.g., WIFI). The feature at-
tribute allows to add an attribute value (e.g., integer) to specify extra-functional
information for features (e.g., camera sensor size). The cardinality-based feature
[min, max] defines a lower and an upper bounds of instances of a given feature
that can be expressed in an AM. The “requires” constraint is in the form of:
if a feature A requires a feature B, then the selection of A in the AM requires
the selection of B. The “excludes” constraint is in the form of: if a feature A
excludes a feature B, then both features cannot be selected in the same AM.
Two widely used types of a feature group can be identified: the feature group
XOR [1, 1] and the feature group OR [1, n]. A feature group XOR [1, 1] allows

3



selecting exactly one out of its child features which can be called alternative
exclusive features. A feature group OR [1, n] allows selecting one or many of its
child features which can be called alternative inclusive features. The FM allows
to define propositional constraints between features (e.g., see WIFI → Color ∨
High resolution in Fig. 2).

We present, in Fig. 2, an example of a FM that reflects the features of a
mobile phone.

Definition 1 (Feature model semantic) F = {f1, f2, · · · , fn} defines the finite
set of features of a given FM . The set of the features F1 of FM1 in Fig. 2a is
depicted in Fig. 2b. The set of AMs that can be derived from a FM is denoted
JFMK. Each AM = {f1, f2, · · · , fm} is composed of a set of features. The set
of valid AMs of FM1 in Fig. 2a is enumerated in Fig. 2c.

Definition 2 (Feature model specialization) Specialization is a transformation
process that allows the elimination of some AMs from FM to produce FMspecialize

[6]. The specialization process requires that: JFMspecializeK ⊂ JFMK. Czarnecki
et al. [6] introduce seven ways for specialization (e.g., an optional feature be-
comes either mandatory or it is omitted).

3 Contribution
3.1 Approach overview
The contributions proposed in this paper are based on results obtained in our
earlier work [8]. The latter proposes an approach named Multiple SPLs (MSPL)
for Service Oriented Architecture (SOA) that allows developers to generate cus-
tomized, valid and consistent Service Providers (SPs) and Service Consumers
(SCs). This allows to increase the reusability principle, improve reliability, make
it easier and gain time in the development of SPs and SCs. The MSPL [9] is a
paradigm representing a set of related and dependent SPLs to contribute to a
larger SPL. Consistent SP and SC means in our case that they can communicate
correctly. For example, if a given capability in the SP implements the communi-
cation technologies SOAP and REST and requires an authentication, then the
SC must use one of these communication technologies and provide credentials
for authentication to invoke this capability. We present in Fig. 3 on overview of
our approach which is ensured by three actors that are: MSPL developer, SP
developer and SC developer. Our approach requires eleven main implementa-
tion steps. We define solid lines as the manual steps ensured by developers and
the dotted lines as the automatic steps ensured by our approach.

In the first step, the MSPL developer implements an MSPL that is composed
of two dependent SPLs for SPs and SCs, named SPLSP and SPLSC , respec-
tively. The variability of these two SPLs is managed by two FMs, respectively
named FMSP (see Fig. 5) and FMSC (see Fig. 4) which express the variability
of the features of SP and SC. We consider these FMs as the service contracts of
SP and SC. In the second step, we check the consistency of FMSC and FMSP .
This allows to check that all the AMs that can be derived from these FMs per-
mit to generate consistent SPs and SCs. This step is newly introduced in this
paper compared with our earlier work in [8]. In this paper, we essentially study
in details these two steps.

4



Specialization of

SP developer

FMSCupdate

SC developer

AMSCupdate

FMSCupdate

Specialization of

Conform to
8

1

3

5

6 10

Service
consumerResponses

Requests

Checking the consistency of
FMSPspecialize

4

Checking the consistency of
AMSCupdate

9
Updating FMSC

FMSPspecialize

2

SPLSC

Manual Automatic
Legend:

SPLSP

Checking the consistency of
FMSC and FMSP

FMSC

(Fig. 4)
FMSP

(Fig. 5)

Service
provider

MSPL developer
1

7 11

Figure 2: Approach overview

In the third step, the SP developer specializes a FM, named FMSPspecialize
,

from FMSP . This step has two goals. First, it defines the features that the SP
developer wants to implement in the SP. Second, it helps to show the variability
supported by the SP to the SC developers. In the fourth step, we check the
consistency of the specialized FM, i.e., it must be a specialization of FMSP (see
Definition 2). In the fifth step, we use the update operator, which has been
introduced in [8], to propagate the variability of the FMSPspecialize

to FMSC ,
i.e., updating the variability of FMSC with that of FMSPspecialize

. The result
of this operator is an updated FMSC , named FMSCupdate

. For example, if
FMSPspecialize

omits the feature SOAP (see Figs. 4 and 5), the FMSCupdate
must

omit it as well. This allows the FMSCupdate
to derive customized and valid SCs

which are consistent with the generated SP. In the sixth and seventh steps, a

5



A
u

th
en

ti
ca

ti
on

A
sy

n
ch

ro
n

ou
s

q
u

eu
e

T
ra

n
sa

ct
io

n
al

A
ck

n
ow

le
d

ge
m

en
t

P
er

si
st

en
t

d
el

iv
er

y

P
os

t
G

et
P

u
t

D
el

et
e

R
E

S
T

P
u

b
li

sh
/

su
b

sc
ri

b
e

M
O

M
S

O
A

P

C
om

m
u

n
ic

at
io

n
te

ch
n

ol
og

y

[1
,n

]
In

p
u

t
d

at
a

C
ap

ab
il

it
y

n
am

e

C
ap

ab
il

it
y

1
..

..
.

..
..

.

S
er

v
ic

e
1

..
..

.
..

..
.

S
er

v
ic

e
n

am
e

C
ap

ab
il

it
y

j
C

ap
ab

il
it

y
m

S
er

v
ic

e
i

S
er

v
ic

e
n

R
el

ia
b

il
it

y

D
u

ra
b

le

S
er

v
ic

e
co

n
tr

ac
t

[1
,n

]
O

u
tp

u
t

d
at

a

O
u

tp
u

t
n

am
e

O
u

tp
u

t
ty

p
e

In
p

u
t

n
am

e
In

p
u

t
ty

p
e

P
ro

p
os

it
io

n
al

co
n

st
ra

in
ts

:
M

O
M

→
(T

ra
n

sa
ct

io
n

al
∨

A
ck

n
ow

le
d

ge
m

en
t)

In
p

u
t

O
u

tp
u

t

O
u

tp
u

t
d

at
a

cl
as

s
n

am
e

In
p

u
t

d
at

a
cl

as
s

n
am

e

S
er

v
ic

e
co

n
su

m
er

in
te

rn
al

fe
at

u
re

E
ss

en
ti

al
fe

at
u

re

P
as

sw
or

d
U

se
rn

am
e

S
ta

te
m

es
sa

gi
n

g

S
ta

te
re

p
os

it
or

y
T

em
p

or
ar

y
m

em
or

y
T

w
o-

w
ay

st
at

e

A
sy

n
ch

ro
n

ou
s

S
y

n
ch

ro
n

ou
s

R
es

p
on

se
h

an
d

le
r

In
p

u
t

va
lu

e

M
an

d
at

or
y

O
p

ti
on

al
X

O
R

R
eq

u
ir

es

E
x

cl
u

d
es

O
R

F
ea

tu
re

at
tr

ib
u

te

[m
in

,
m

ax
]

C
ar

d
in

al
it

y

N
ot

at
io

n
s

Figure 3: Feature model FMSC (readers of the electronic version can zoom in)

6



A
ut

he
nt

ic
at

io
n

A
sy

nc
hr

on
ou

s
qu

eu
e

T
ra

ns
ac

ti
on

al

A
ck

no
w

le
dg

em
en

t
P

er
si

st
en

t
de

li
ve

ry

P
os

t
G

et
P

ut
D

el
et

e

R
E

ST

P
ub

li
sh

/
su

bs
cr

ib
e

M
O

M
SO

A
P

C
om

m
un

ic
at

io
n

te
ch

no
lo

gy

[1
,n

]
In

pu
t

da
ta

C
ap

ab
il

it
y

na
m

e

C
ap

ab
il

it
y

1
..

..
.

..
..

.

Se
rv

ic
e

1
..

..
.

..
..

.

Se
rv

ic
e

na
m

e
C

ap
ab

il
it

y
j

C
ap

ab
il

it
y

m

Se
rv

ic
e

i
Se

rv
ic

e
n

R
el

ia
bi

li
ty

D
ur

ab
le

Se
rv

ic
e

co
nt

ra
ct

[1
,n

]
O

ut
pu

t
da

ta

O
ut

pu
t

na
m

e
O

ut
pu

t
ty

p
e

In
pu

t
na

m
e

In
pu

t
ty

p
e

P
ro

p
os

it
io

na
l

co
ns

tr
ai

nt
s:

(M
O

M
∧

O
ut

pu
t)

→
(T

ra
ns

ac
ti

on
al

∨
A

ck
no

w
le

dg
em

en
t)

St
at

e
m

es
sa

gi
ng

Se
rv

ic
e

st
at

e St
at

ef
ul

se
rv

ic
e

T
w

o-
w

ay
st

at
e

In
pu

t
O

ut
pu

t

O
ut

pu
t

da
ta

cl
as

s
na

m
e

In
pu

t
da

ta
cl

as
s

na
m

e

St
at

e
re

p
os

it
or

y
T

em
p

or
ar

y
m

em
or

y

Sp
ec

ia
li

ze
d

fe
at

ur
e

Se
rv

ic
e

co
ns

um
er

in
te

rn
al

fe
at

ur
e

E
ss

en
ti

al
fe

at
ur

e
M

an
da

to
ry

O
pt

io
na

l
X

O
R

R
eq

ui
re

s

E
xc

lu
de

s
O

R
F

ea
tu

re
at

tr
ib

ut
e

[m
in

,
m

ax
]

C
ar

di
na

li
ty

N
ot

at
io

ns

Figure 4: Feature model FMSP (readers of the electronic version can zoom in)

7



fully functional, valid and customized SP is generated from FMSPspecialize
which

can be adapted if necessary by the SP developer.
In the eighth step, the SC developer derives one or many AMs, named

AMSCupdate
, from the FMSCupdate

according to his/her case study. In the ninth
step, we check that these AMs are in conformity with the FMSCupdate

. In the
tenth and eleventh steps, a fully functional, valid and customized SC, which is
consistent with the generated SP, is generated from these AMs which can be
adapted if necessary by the SC developer. At this point and theoretically, we
can ensure that the generated customized SP and SC are valid and consistent.

3.2 Extensions of the feature metamodel
The FM proposes notations to model variability for a general use (see Fig. 2).
However, in order to take into consideration the particularities of the variability
of the SP and SC features in respectively FMSP and FMSC , we need to extend
the Feature MetaModel (FMM) with new notations. We propose adding to the
FMM of Czarnecki et al. [6] these five UML classes Feature type, Internal,
Shared, Essential and Specialized (see Fig. 6). We define the Internal,
Essential and Specialized as concrete classes and the Feature type and
Shared as abstract classes. Hence, the MSPL developer must specify for each
feature in the FM if it is either Internal, Essential or Specialized. We
propose in Fig. 6, the graphical notations that can be used in FMSP and FMSP

to describe these three feature types.

« abstract »
Feature type

Specialized

Internal

Essential

« abstract »
Shared

Service consumer
internal feature

Service provider
internal feature

Essential feature Specialized feature

Notations :

Feature

Name

Figure 5: Extensions of the feature metamodel

3.2.1 Internal features

An internal feature is used to express the internal variability of SP and SC
in FMSP and FMSC respectively. We propose that the variability of the in-
ternal features of FMSP (respectively, FMSC) are not visible to SC develop-
ers (respectively, SP developers). For example, the features Reliability and

8



Transactional which allow to configure the MOM communication technology, are
expressed as internal features in FMSP and FMSC (see Figs. 4 and 5). The SC
developer (respectively, SP developer) will not have the knowledge about how
the variability of these features is resolved in the SP (respectively, SC). Thus,
we propose that the variability of the SP internal features of FMSPspecialize

will
not be propagated to FMSC in the fifth step of our approach (see Fig. 3). In
other words, the FMSCupdate

, which is an update of FMSC that has been gen-
erated from this step, will not present any information about the variability
of SP internal features of FMSPspecialize

. In this context, internal features can
be useful to hide some sensitive SP variability (e.g., the security policies of the
SP) from the SC developers. This allows to protect the variability of the SP
from malicious SCs. Acher et al. [10] and Metzger and Klaus [11] demonstrate
that exposing certain variability of an SPL can lead to severe consequences and
should then be protected. In fact, since the SP internal features are not con-
sidered by the SC, then we propose that their variability must be resolved (i.e.,
become mandatory or should be omitted) when specializing FMSPspecialize

(see
step 3 in Fig. 3).

3.2.2 Shared features

A shared feature is used to manage and interrelate the variability which ex-
ists in both FMSP and FMSC . Its goal is to inform SC developers about the
features supported by the SP (e.g., the supported communication technologies,
see Figs. 5 and 4) that he/she can use to invoke capabilities. In contrast with
internal features, the variability of shared features in FMSPspecialize

is propa-
gated to FMSC in the fifth step of our approach (see Fig. 3). In other words,
this variability will be used, in this step, to update that of the FMSC and
then to generate FMSCupdate

. For example, if a shared feature is mandatory
(e.g., SOAP) in FMSPspecialize

, then it becomes mandatory in FMSCupdate
. If

it is omitted in FMSPspecialize
, then it is omitted in FMSCupdate

. It is useful
to define certain features as shared in order to impose certain business logics,
complex constraints, SLAs or non functional requirements that both the SP and
SC must respect. Throughout in this paper, we denote by F sh the set
of shared features of a given FM. In fact, we propose that a shared feature
must be either a specialized or an essential feature.

3.2.3 Specialized features

A specialized feature is the one which can be specialized, when specializing
FMSPspecialize

from FMSP . For example, if a specialized feature is optional in
FMSP , then it can become a mandatory feature or remain an optional feature
(i.e., it preserves its variability) or is omitted in FMSPspecialize

. This feature type
allows to show to the SC developer the variability of certain features offered by
the SP such as the supported communication technologies (see Figs. 5 and 4).

3.2.4 Essential features

An essential feature is the one whose variability must be resolved (i.e., be-
comes either mandatory or it is omitted) by the SP developer when specializing
FMSPspecialize

from FMSP . In contrast with specialized features, an essential

9



feature cannot be specialized. The goal of this feature type is to express features
whose variability must be resolved in FMSPspecialize

and propagated to FMSC

like the input and output data of capabilities (see Figs. 5 and 4).

3.3 Checking the consistency of FMSC and FMSP (step 2)
Developing consistent FMSC and FMSP is crucial to derive AMSC and AMSP

that generate consistent SCs and SPs. Hence, the MSPL developer should design
these two FMs while taking into consideration their consistency in mind.

We present in the following the automated analysis slice operator [7] that
we particularly rely on in our work. This operator is a unary operation on FM ,
denoted ΠFslice

(FM), where Fslice ⊆ F represents a set of features to slice from
FM . The overall idea behind this operator is to compute from a FM , a FMslice

that considers only Fslice. The latter can be seen as a projection of the relational
algebra on FM when the other features are discarded. We present in Fig. 7 an
example of the slice operator: FM1slice

= ΠM,A,B,H,OFM1 (see Fig. 2).

JFM1slice
K = {

{M, B},
{M, O},
{M, A, O},
{M, H},
{M, A, H}
}F1slice

= {M, A, B, H, O}

(a) FM1slice
= ΠM,A,B,H,OFM1

(c) Corresponding AMs
(b) Corresponding features

Mobile phone

CAmera
[0, 2]

COlorBasic High resolution

Figure 6: Feature model, corresponding features and AMs of FM1slice
=

ΠM,A,B,H,OFM1 (see Fig. 2)

We identify three semantic constraints that should be considered to develop
consistent FMSP and FMSC , which are:

• First, the following instruction should be true: F sh
SP = F sh

SC . It ensures that
all features defined by the shared notation (i.e., specialized or essential) in
FMSP exist and defined by the shared notation in FMSC and vice-versa.

• Second, the FMSP should be developed in a way that each of its AMSP

is consistent (i.e., can communicate) at least with an AMSC of FMSC ,
formally: ∀AMSP ∈ JFMSP K,∃AMSC ∈ JFMSCK such that AMSC is
consistent with AMSP . The objective is to ensure that all the SPs that
can be generated from AMSP can be consumed by SCs that are generated
from AMSC . For example, if the protocol SOAP is expressed in FMSP ,
then the FMSC must support it. This constraint can be formulated as:
JΠF sh

SP
(FMSP )K ⊆ JΠF sh

SC
(FMSC)K.

• Third, like to the second constraint, the FMSC should be designed in a
way that each of its AMSC is consistent at least with an AMSP of FMSP ,
formally: ∀AMSC ∈ JFMSCK,∃AMSP ∈ JFMSP K such that AMSP and
AMSC are consistent. The goal is to guarantee that all the SCs that

10



can be generated from AMSC are supported by SPs that are generated
from AMSP . For example, if the FMSC supports the publish/subscriber
communication, then the FMSP must support it as well. This constraint
can be formulated, as follows: JΠF sh

SC
(FMSC)K ⊆ JΠF sh

SP
(FMSP )K.

The goal of the two slice operations ΠF sh
SP

(FMSP ) and ΠF sh
SC

(FMSC) is to
slice the shared features respectively from FMSP and FMSC . This is important
to compare the AMSC and AMSP of FMSC and FMSP based on their shared
features. In order to respect these three constraints, we propose the following
rule:

JΠF sh
SP

(FMSP )K = JΠF sh
SC

(FMSC)K (1)

If Equation 1 is ensured when developing the FMSP and FMSC , we can
ensure that these FMs allow to always generate consistent SPs and SCs. Oth-
erwise, three possible cases can be identified, as follows:

• if JΠF sh
SC

(FMSC)K(JΠF sh
SP

(FMSP )K, then JΠF sh
SP

(FMSP )K\JΠF sh
SC

(FMSC)K
are AMs offered by SPs but cannot be used by SCs. Despite this disadvan-
tage, this case still ensures that all the AMs of FMSC derive SCs which
are consistent with any generated SP from FMSP .

• if JΠF sh
SP

(FMSP )K(JΠF sh
SC

(FMSC)K, then JΠF sh
SC

(FMSC)K\JΠF sh
SP

(FMSP )K
are AMs offered by SCs but cannot be supported by SPs. In this case,
these AMs will derive SCs that are inconsistent with any generated SP
from FMSP .

• if JΠF sh
SP

(FMSP )K ∩ JΠF sh
SC

(FMSC)K = ∅, then the generated SP and SC
will always be inconsistent and cannot communicate accordingly.

3.4 Developing FMSC and FMSP (step 1)
We demonstrate in the introduction that the traditional service contracts (WSDL
and WADL) suffer from many problems (e.g., inability to express complex con-
straints). In order to overcome these problems, we propose in this paper, inte-
grating the variability concept to model formally the features and constraints
of SP and SC. In this context, we propose FMSC and FMSP (Figs. 4 and 5)
as service contracts for SC and SP, respectively. These FMs are designed to be
formal, generic, independent of the communication technologies and can express
the features and constraints of SC and SP. They are also designed to be able to
generate fully functional, customized, valid and consistent SCs and SPs. These
FMs contain mandatory (e.g., information about services and capabilities) and
optional (e.g., service state) features that model the variability of SC and SP.
These FMs can also be considered as reference models [12] which reflect the
variability of practical features of SC and SP.

We rely on SOA Design Patterns (DPs) [3] to define the features of FMSC

and FMSP . Many advantages can be enumerated when expressing DPs as
features in the FMSC and FMSP . DPs are introduced by veteran problem
solvers in order to provide an appropriate and proven design solutions for specific
problems in certain contexts. Hence, integrating DPs in our SPLSC and SPLSP

and in particular in our FMSC and FMSP allows to ensure that the applications

11



that can be derived are based on proven solutions. DPs show the right level
of abstraction to describe a certain solution. They have also a major benefit
of providing a common language, which is understandable by the developers
instead of using terminologies related only to a certain technology. For example,
by simply saying reliable messaging DP [3] is more efficient and easier than
explaining it in details.

3.4.1 Shared features of FMSC and FMSP

We present in this section the shared (i.e., essential and specialized) features
presented in FMSC and FMSP (see Figs. 4 and 5). We define the roots of these
FMs as essential features named Service contract. The latter are composed
of the alternative exclusive features Service1, · · · , Servicen that reflect the
services offered by the SP which can be consumed by SCs. Each feature Service
is composed of a mandatory feature attribute Service name that refers to the
service name and alternative exclusive features Capability1, · · · , Capabilitym.

The mandatory feature attribute Capability name refers to the name of the
capability. The optional feature Input expresses the input information of the
capability. It is composed of the cardinality-based feature [1, n] Input data and
the mandatory feature attribute Input data class name. The feature Input
data is composed of two mandatory feature attributes Input name and Input
type allowing to define the signature of the capability. The feature attribute
Input data class name refers to the class name that regroups the input data
information. Similarly to the feature Input, we define the feature Output to
specify the output information of the capability. If the feature Output is omitted
when deriving FMSPspecialize

then the type of the result of the capability is void
and the communication type is considered as one-way.

The mandatory feature Communication technology is composed of three
alternative exclusive communication technology features: SOAP, REST and MOM.
The feature REST is composed of four alternative exclusive features that repre-
sent the four HTTP methods most used by REST: Post, Get, Put and Delete.
The feature MOM is composed of the mandatory feature Asynchronous queue
and the optional feature Publish/subscribe. The Asynchronous queue is a
mandatory feature that implements the asynchronous queue DP [3]. It allows
to exchange messages between SP and SC via an intermediary buffer in order to
ensure an asynchronous communication. The Publish/subscribe is a feature
which implements the event driven messaging DP [3] and proceeds as follows.
The SC subscribes itself to a capability. When the result of this capability is
ready, it is returned to this SC and any of its subscribers (i.e., SCs). This
feature is used only to send messages from the SP to the SC. Thus, we de-
fine a “requires” constraint from it to the feature Output. We note that if the
type of communication is two-way and if the feature Publish/subscribe is not
selected, then the exchanged data between SP and SC are carried on by the
feature Asynchronous queue. The feature Publish/subscribe is composed of
the optional feature Durable. The latter allows the SP to store messages for
the SCs if the latter disconnect. Upon reconnecting, these SCs will receive these
messages from the SP.

The optional feature Authentication implements the direct authentication
DP [3]. The State messaging is a feature that implements the state messaging
DP [3]. Its goal is to temporarily delegate the storage of state data of the SP

12



to messages instead of the memory. This feature can be used only in a two-
way communication type because the state data is delegated to the messages
sent from the SP to the SC. Thus, a “requires” constraint is defined from this
feature to the feature Output. The feature State messaging is composed of
an optional feature Two-way state. The latter’s goal is to impose the SC on
delegating the received state from the SP in its future outgoing messages.

In fact, it is the responsibility of the SP developer to choose if the feature
State messaging will be integrated or omitted in the SP. The SC cannot choose
if this feature will be implemented or not in the SP because it is related to the
business logic of the SP and not to that of the SC. Thus, this feature cannot
be defined as specialized. At this point, we can define this feature as internal
in FMSP . However, in order to use this feature, it must be supported by the
SC [3] to work correctly. In this case, defining the feature State messaging
as an essential feature in FMSP and FMSC is required. Also, the features
describing the arguments of capabilities must be defined as essential because
such variability must be resolved by SP and not by SC.

We propose in particular that Service1, · · · , Servicen, Capability1, · · · ,
Capabilitym and the communication technologies (SOAP, REST and MOM) should
be alternative exclusive features and defined as specialized. The objective is to
ensure that each AMSCupdate

(see Fig. 3), derived by the SC developer from
FMSCupdate

, permits to invoke only one service and only one of its capabili-
ties using a given communication technology. Hence, each AMSCupdate

can be
considered as a configuration file that includes the features used to invoke a
given capability, such as the used communication protocol, the synchronous or
asynchronous communication types, and the authentication credentials. This
will increase modularity in the different AMSCupdate

, thus allowing these AMs
to be more flexible to adapt and to edit.

We note that we do not need specializing FMSC in our approach (see Fig 3).
Thus, we define the specialized features in FMSP as essential in FMSC .

3.4.2 Internal features of FMSC

We add to the essential feature Input data, the mandatory internal feature
attribute Input value. The latter allows to specify a value to the input data
in order to invoke a capability. We also add to the essential feature Output, the
mandatory internal feature Response handler. The latter is composed of two
alternative exclusive internal features that are Synchronous and Asynchronous.
These features are useful to specify whether the SC should synchronously or
asynchronously handle the incoming messages from the SP.

The shared feature MOM regroups four internal features: Transactional,
Reliability, Persistent delivery and Acknowledgement. The optional fea-
ture Transactional implements the atomic service transaction DP [3]. It allows
to establish a transactional communication between the SC and the SP. The op-
tional feature Reliability implements the reliable messaging DP [3]. This fea-
ture regroups two alternative inclusive internal features, which are: Persistent
delivery and Acknowledgement. The feature Persistent delivery is used to
persist the received messages so that they are not lost if the MOM fails. Therefore,
we ensure that the messages are delivered to the receiver (SP or SC). The fea-
ture Acknowledgement allows the messages to be acknowledged as soon as the
receiver gets it. We define the features Acknowledgement and Transactional

13



as mutually exclusive [3], [13]. In fact, a MOM requires the use of one of these
two features [13]. Thus, we define the following propositional constraint: MOM
→ (Transactional ∨ Acknowledgement).

The shared feature State messaging is composed of the essential feature
Two-way state and the two internal features State repository and Temporary
memory. Erl [3] presents two approaches describing how the SC can implement
the feature State messaging. The first approach proposes that the SC retains
the state data in memory and only the SP benefits from delegating the state
data to messages. In this context, the state data can be stored in a state reposi-
tory (represented by the feature State repository) or in a temporary memory
(represented by the feature Temporary memory) of the SC. We note that the fea-
ture State repository implements the state repository DP [3] which proposes
deferring state data to a state repository. The goal of this DP is to avoid the
limits of storing state data in a temporary memory [3]. The second approach
proposes that both the SC and SP temporarily delegate the storage of state data
in the exchanged messages. The essential feature Two-way state implements
this approach. Erl reports that these two approaches require an extra custom
development effort to delegate and retrieve state data by the SP and SC [3]. In
our approach, this effort is handled automatically by our SPLSC and SPLSP .

3.4.3 Internal features of FMSP

The internal features Transactional, Reliability, Persistent delivery,
Acknowledgement, State repository and Temporary memory of FMSC are
also expressed as internal features in FMSP . Their objectives is the same in
both FMSP and FMSC . However, they are expressed differently in these two
FMs (see Figs. 5 and 4) and also implemented differently in SPLSP and SPLSC .
In FMSP , the features Transactional, Reliability, Persistent delivery,
Acknowledgement require the selection of the shared feature Output. Thus, we
define “requires” constraints from these features to the shared feature Output.
These constraints are not defined in FMSC . The reason is that these features
can be applied only to the outgoing messages either from the SP or from the
SC. Since, the SC needs at least to send a message to invoke a capability,
then these features can always be used without constraints. We also define the
following propositional constraint which is required by MOM [13]: (MOM ∧ Output)
→ (Transactional ∨ Acknowledgement).

Also, the internal features State repository and Temporary memory are
expressed differently in both FMs. In fact, the FMSP integrates the optional
internal feature Service state that regroups two approaches of handling state
data which are reflected by the two inclusive features State messaging and
Stateful service. In contrast with FMSC , the feature State messaging in
FMSP requires that the storage of state data of SP is by default temporarily
delegated to messages [3]. The Stateful service feature is an implementation
of the stateful services DP [3] and regroups the two alternative exclusive inter-
nal features State repository and Temporary memory. Since the SC does
not participate in storing state data when the SP uses the feature Stateful
service, then, in contrast with the feature State messaging, it is not pre-
sented in FMSC . Erl reports that service state approaches can be implemented
in conjunction in the SP [3]. This constraint is considered in FMSP (see Fig. 5)
by defining an alternative inclusive constraint between the state data features.

14



4 Evaluation
We propose using the case study of an Integrated Air Defense (IAD) system to
show the merits of our approach in practice (see Fig. 8). The IAD is a command
and control compound of geographically dispersed force elements already in
peace time as well as in crisis and war. The force elements are grouped into three
main forces: ground force (command and control system, radars, anti-aircrafts
and infantry), air force (drones, helicopters and jet aircrafts) and maritime
force (aircraft carriers and submarines). These elements communicate through
services to achieve their missions. Each element can be either an SP or an SC or
both. Also, each element is responsible for implementing its own requirements.

Infantary

Command and
control system

Radars

Anti-crafts
Ground force

Jet aircrafts HelicoptersDrones

Air force

Maritime force
Aircraft carriers Submarines

Figure 7: Case study of integrated air defense

The command and control system is composed of both an SC and an SP.
Its goal is to coordinate the force elements to achieve common missions. It
implements a service that broadcasts periodically a report about the current
situations of the forces. In this context, it should integrate a MOM in all the
capabilities of this service and this MOM should be configured to support the
publish/subscribe feature (Event-driven messaging pattern [3]). Also, it should
make sure to store the messages in a database for the force elements if the latter
disconnect (e.g., in case of an error). For security and reliability matters, some
capabilities need an authentication process and a transactional communication
support. Furthermore, we must ensure that all the messages sent from/to the
command and control system are persisted to a database so they are not lost
in case of an error. Some air forces (drones) should implement a MOM to
communicate asynchronously with the other forces. This allows to overcome
the resource locking problem of synchronous communications [3]. Also, it is
necessary that each message sent from this MOM should be acknowledged (i.e.,
via ACK messages) by the receivers as soon as they get it. The capabilities of
SPs should be designed to support many communication technologies (SOAP,
REST and MOM) in order to ensure their availability in case of an error. Many
other requirements can be added.

We can notice that the variability information in these requirements is dif-
ferent and can be complex. Traditional service contracts cannot describe this

15



variability information as demonstrated in the introduction. Thus, developing
the SCs and SPs of the IAD case study, especially if they are numerous, without
taking into consideration the variability modeling in mind can be costly, error-
prone, a repetitive task, time-consuming and requires a solid core of expert
knowledge. The FMSP and FMSC allow to express the variability information
of our case study.

We demonstrate in Table 1 that integrating the concept of variability in
service contracts, by using FMs, is efficient, useful and allows to overcome the
problems of traditional contracts.

Table 1: Demonstrating how our FMSP and FMSC allow to overcome the
problems of the traditional service contracts (WSDL and WADL)

Traditional service contracts problems FMSP and FMSC solu-
tions

-Traditional services contracts allow to express only
a limited set of features.
-They do not offer formal mechanisms to express
complex variability (e.g., propositional constraints)
of features of SP and SC.
-They are SP-centric.
-Some communication technologies of SP (e.g.,
MOM) do not offer service contracts, which makes
it difficult to identify its features for SC developers.

-The FMSP and FMSC al-
low expressing formally any
features (e.g., for SOAP,
REST and MOM) and com-
plex constraints of SP and
SC thanks to the semantic
and notations (e.g., shared
and internal feature types)
of the FM.

-Traditional service contracts are dependent of spe-
cific communication technologies (e.g., WSDL is only
for SOAP). They use different syntaxes even to de-
scribe the same features (e.g., input and output data
information) of SP and SC. This can lead to mis-
interpretation and difficulty in understanding these
contracts.

-The FMSP and FMSC use
a set of formal notations,
which are independent of
the technology domain, to
express the features of SP
and SC.

-An SP might require to expose many separated ser-
vice contracts to expose its offered features. This
decreases the governance of the SP and makes it dif-
ficult for SC developers to identify these features.

-All the features of SP and
SC are regrouped in two
FMs: FMSP and FMSC .

-The SP developer needs to write informal docu-
mentations to describe features like SLA and non
functional constraints so SC developers can identify
them. The problem is that, due to this informal-
ity, these documentations cannot be included in an
automatic process to generate an SC.

-The formal nature of
FMSP and FMSC permits
to be used in an auto-
matic process to generate
fully functional, valid,
customized and consistent
SP and SC.

We develop a tool, named MSPL4SOA (available at our website [14]), which
implements all the steps of our approach (see Fig. 3) notably the proposed
FMSP and FMSC . It is based essentially on Java EE technologies and SPL
tools (e.g., the FAMILIAR [15] tool). We note that we use the Java Messaging
Server (JMS) HornetQ [13] to implement the feature MOM. This tool allows to
concretely implement the variability of the case study IAD (see Fig. 8). For
example, it allows to generate a fully functional, valid and customized SP of

16



a command and control system based on the Switchyard 2 Enterprise Service
Bus (ESB) [16]. This SP is composed of 5186 Java lines of codes like classes,
interceptors and composers of messages [16]. It is also composed of 13 XML
configuration files, such as XMLs for configuring the asynchronous queues, pub-
lish/subscribe features, reliable and transactional communications, and other
XMLs to configure the Switchyard 2 ESB [14]. We note that this SP has been
generated in less than one minute [14].

5 Threats to validity
Threats to external validity are the factors and limits within our ability that
reduce the generality of our results to industrial practice. Our first concern is
that the FMSP and FMSC express a limited number of features (see Sect. 3.4).
Thus, many other features (e.g., non functional requirements) in the industry
are not defined to model the variability of SP and SC. However, the features
and the constraints expressed in these FMs allow to generate fully functional,
customized, valid and consistent SPs and SCs. Our second concern is whether
the feature types (i.e., internal, specialized and essential) proposed in Sect. 3.2
are enough, in industrial practice, to express the variability of all features of SP
and SC. We demonstrate that these feature types have successfully expressed
all the features presented in FMSP and FMSC (see Sect. 3.4).

Threats to internal validity are concerned with the degree of control of the
study design and its implementation correctness. Our concern is that whether
FMSP and FMSC generate fully functional, valid, customized and consistent
SPs and SCs. We implement in our MSPL4SOA tool [14] an automatic test that
checks the correctness of these FMs. In this context, this test generates an SP
and an SC that include respectively all the variants that can be derived from
FMSP and FMSC . The generated SP and SC have communicate successfully
and no errors have appeared [14].

6 Related work
Managing the variability of SCs and ensuring the consistency of the variability
of SCs with that of SPs are issues that have not been intensively studied. We
highlight this fact essentially from the literature and in particular from the
systematic mapping study of combining SOA and SPL that has been proposed
by Mohabbati et al. [17]. Holl et al. [9] introduce a systematic review study
about many MSPL approaches. They reveal that, in a general context, there is a
lack of work handling inconsistencies between FMs and their SPLs, accordingly.
The same results have been obtained in the mapping study of strategies for
consistency checking on FMs presented by Santos et al. [18]. These issues
have been considered as the main challenges in our approach. In this context,
we propose two FMs, named FMSC and FMSP (see Sect. 3.4), in order to
manage the variability of SCs and SPs. We also introduce extensions of the
FMM and semantic constraints to ensure the consistency of FMSC and FMSP

(see Sects. 3.2 and 3.3). We note that our FMSC and FMSP are based on SOA
DPs [3] and are designed to be generic (i.e., independent of a communication
technology). The communication technologies supported by our FMSC and

17



FMSP are: SOAP, REST and MOM. They are also designed to generate fully
functional, customized, valid and consistent SCs and SPs.

In the literature, several works [19], [20], [21], [22], [23], [24], [25] have been
proposed to manage the variability of SP. In the following, we discuss these
works and compare them with our FMSP (see Table 2). This comparison also
includes the traditional service contracts (WSDL and WADL).

Table 2: Comparing our FMSP with related work

Approach Tool Functional Communication
technology

Design
pattern

Ed-douibi et al. [19] EMF Semi REST -
Parra and Joya [20] FM Semi Generic -
Kamoun et al. [21] FM - - +
Kajsa and Navrat [22] FM Semi - +
Abumaatar and Gomaa [23] FM Semi Generic -
Fantinato et al. [24] FM Semi SOAP -
Wada et al. [25] FM Semi n/a -
WSDL XML Fully SOAP -
WADL XML Fully REST -
Our FMSP FM Fully Generic +

Ed-douibi et al. [19] introduce EMF data models that express many features
of the REST communication technology. In this paper, we elaborate a FMSP to
model the REST features as well. Their EMF data models support generating
more REST features (e.g., features for security) than our FMSP . In contrast,
our FMSP relies on SOA DPs (which are proven solutions [3]) and permits to
generate fully functional SPs with different communication technologies (SOAP,
REST and MOM).

Parra and Joya [20] propose a FM that expresses several SP features (e.g.,
REST and SOAP features). The advantage of our FMSP is that it permits to
generate fully functional SPs and considers SOA DPs. Parra and Joya report
that their FM should be extended (by modeling the input and output data
features and the MOM features) to generate fully functional SPs.

We have proposed in our earlier work [21] a FM based on SOA DP for SP. The
goal is to model the possible combinations between DPs. The problem of this
FM is that many SP features are not modeled (mostly the input and output data
features and the communication technology features) which prevents generating
a fully functional and valid SP. Our FMSP allows to overcome this problem.

Kajsa and Návrat [22] introduce a FM to manage the variability of the object
oriented DPs. Their work helps to generate the source code of a specific DP.
The advantage of our FMSP is that it allows to generate both the source code
of a specific DP and combinations of DPs.

Abumaatar and Gomaa [23] propose designing SOA systems as service fam-
ilies using SPL concepts. They introduce a FM that manages the variability of
the SOA views (service contract, business process and service interface views).
The advantage of our FMSP is that it permits to generate fully functional SPs
and considers SOA DPs. Also, our FMSP models more communication tech-
nology features (see the MOM features in FMSP ).

18



Fantinato et al. [24] introduce a FM that models some features of the ser-
vice contract WSDL of SOAP. In contrast with our FMSP , as reported by the
authors, many features are absent (e.g., the features of the input and output
data) in their FM which prevents deriving fully functional SPs. Another ad-
vantage of our FMSP is that it models the features of different communication
technologies and considers SOA DPs.

Wada et al. [25] propose a FM that expresses the variability of non functional
aspects of the SP. Although their FM includes communication features, it does
not explicitly model which communication technologies it supports. Their FM
can be used to extend our FMSP in order to express the variability of SP non
functional aspects. That is why we put the symbol “n/a” in Table 2. In contrast,
our FMSP relies on SOA DPs and permits to generate fully functional SPs for
different communication technologies.

7 Conclusion
The service contract is one the fundamental design principles in the Service
Oriented Architecture (SOA). Two of the most service contracts used in the
literature are: WSDL for SOAP and WADL for REST. However, despite their
usefulness, we have demonstrated in this paper that they suffer from several
problems (e.g, they only allow to express a limited set of features and they can-
not express complex constraints). Also, we have noticed from the literature a
lack of formal service contracts dedicated for SCs. In order to overcome these
problems, we have proposed a model-based, top-down, formal and end-to-end
approach based on the Software Product Line (SPL). We have particularly pro-
posed two practical Feature Models (FMs), named FMSP and FMSC , that
integrate, based on SOA design patterns, features and constraints (e.g., func-
tional requirements) of SP and SC, respectively. In order to be able to model the
variability of these features, we have extended the feature metamodel. We have
defined semantic constraints that should be respected when developing FMSP

and FMSC to ensure their consistency. We have designed these FMs in order to
be able to generate fully functional, valid, highly customized and consistent SPs
and SCs. We have developed a tool that implements our approach, including
the proposed two FMs, and we have demonstrated its efficiency and usefulness
through a practical case study.

For future research, we plan to extend the FMSP and FMSC by other
features in order to reflect more SOA features and constraints. Another work
would be to extend our approach to be able to generate SPs and SCs with
different programming languages (e.g., Java EE and .Net).

References
[1] Alshaimaa Mustafa, Hany F. ElYamany, Mahmoud Elarabawy, Nashwa M.

Yhiea, and Hossam M. Faheem. An intelligent-ranking framework for web
services selection process. International Journal of Services Technology and
Management, 20(1/2/3):85–107, 2014.

19



[2] Xiaolin Zheng, Zhen Lin, Jianyue Wang, and Yijun Bei. Rule-based service
charging method for composite services. International Journal of Services
Technology and Management, 16(3/4):337–355, 2011.

[3] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[4] Thomas Erl. SOA Principles of Service Design. Prentice Hall, 2007.

[5] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Product
Line Engineering. Springer, 2005.

[6] Krzysztof Czarnecki, Simon Helsen, and Eisenecker Ulrich. Staged configu-
ration through specialization and multilevel configuration of feature models.
Software Process: Improvement and Practice, 10(2):143–169, 2005.

[7] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
Slicing feature models. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE’2011), pages 424–
427, Lawrence, Kansas, USA, November 2011.

[8] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Multi-
ple software product lines for software oriented architecture. In Proceedings
of the 25th IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE’2016), pages 56–61,
Paris, France, June 2016.

[9] Gerald Holl, Paul Grünbacher, and Rick Rabiser. A systematic review and
an expert survey on capabilities supporting multi product lines. Informa-
tion and Software Technology, 54(8):828–852, 2012.

[10] Mathieu Acher, Guillaume Bécan, Benoit Combemale, Benoit Baudry, and
Jean-Marc Jézéquel. Product lines can jeopardize their trade secrets. In
Proceedings of the 10th International Symposium on Foundations of Soft-
ware Engineering (FSE’2015), pages 930–933, New York, USA, August
2015.

[11] Andreas Metzger and Klaus Pohl. Software product line engineering and
variability management: achievements and challenges. In Proceedings of
the 36th International Conference on Software Engineering (ICSE’2014),
pages 70–84, Hyderabad, India, May 2014.

[12] Matthias Galster, Paris Avgeriou, and Dan Tofan. Constraints for the
design of variability-intensive service-oriented reference architectures – an
industrial case study. Information and Software Technology, 55(2):428–441,
2013.

[13] Piero Giacomelli. HornetQ Messaging Developer’s Guide. Packt Publishing,
2012.

[14] MSPL4SOA tool. https://mspl4soa.github.io, 2017.

[15] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
FAMILIAR: a domain-specific language for large scale management of fea-
ture models. Science of Computer Programming, 78(6):657–681, 2013.

20



[16] Switchyard tool. http://switchyard.jboss.org.

[17] Bardia Mohabbati, Mohsen Asadi, Dragan Gašević, Marek Hatala, and
Hausi A. Müller. Combining service-orientation and software product line
engineering: a systematic mapping study. Information and Software Tech-
nology, 55(11):1845–1859, 2013.

[18] Alcemir Rodrigues Santos, Raphael Pereira de Oliveira, and Eduardo San-
tana de Almeida. Strategies for consistency checking on software product
lines: a mapping study. In Proceedings of the 19th International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE’2015),
pages 5:1–5:14, Nanjing, China, April 2015.

[19] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo
Tisi, and Jordi Cabot. EMF-REST: generation of RESTful APIs from
models. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing (SAC’2016), pages 1446–1453, Pisa, Italy, 2016.

[20] Carlos Parra and Diego Joya. SPLIT: an automated approach for enterprise
product line adoption through SOA. Internet Services and Information
Security, 5(1):29–52, 2015.

[21] Akram Kamoun, Mohamed Hadj Kacem, and Ahmed Hadj Kacem. Feature
model for modeling compound SOA design patterns. In Proceedings of the
11th ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA’2014), pages 381–388, Doha, Qatar, November 2014.

[22] Peter Kajsa and Pavol Návrat. Design pattern support based on the
source code annotations and feature models. In Proceedings of the 38th
International Conference on Current Trends in Theory and Practice of
Computer Science on SOFtware SEMinar (SOFSEM’2012), pages 467–478,
Špindlerův Mlýn, Czech Republic, January 2012.

[23] Mohammad Abu Matar and Hassan Gomaa. Feature-based variability
meta-modeling for service-oriented product lines. In Proceedings of the 14th
International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’2011), pages 68–82, Wellington, New Zealand, May 2011.

[24] Marcelo Fantinato, De Toledo Maria Beatriz Felgar, and De Souza
Gimenes Itana Maria. WS-contract establishment with QOS: an approach
based on feature modeling. Cooperative Information Systems, 17(03):373–
407, 2008.

[25] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. A feature modeling sup-
port for non-functional constraints in service oriented architecture. In Pro-
ceedings of the 4th IEEE International Conference on Services Computing
(SCC’2007), pages 187–195, Salt Lake City, Utah, USA, July 2007.

21


