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Successful computer studies of glass-forming materials need to overcome both the natural tendency to
structural ordering and the dramatic increase of relaxation times at low temperatures. We present a
comprehensive analysis of eleven glass-forming models to demonstrate that both challenges can be
efficiently tackled using carefully designed models of size polydisperse supercooled liquids together with
an efficient Monte Carlo algorithm where translational particle displacements are complemented by swaps
of particle pairs. We study a broad range of size polydispersities, using both discrete and continuous
mixtures, and we systematically investigate the role of particle softness, attractivity, and nonadditivity of
the interactions. Each system is characterized by its robustness against structural ordering and by the
efficiency of the swap Monte Carlo algorithm. We show that the combined optimization of the potential’s
softness, polydispersity, and nonadditivity leads to novel computer models with excellent glass-forming
ability. For such models, we achieve over 10 orders of magnitude gain in the equilibration time scale using
the swap Monte Carlo algorithm, thus paving the way to computational studies of static and
thermodynamic properties under experimental conditions. In addition, we provide microscopic insight
into the performance of the swap algorithm, which should help optimize models and algorithms
even further.

DOI: 10.1103/PhysRevX.7.021039 Subject Areas: Chemical Physics, Soft Matter,
Statistical Physics

I. INTRODUCTION

Computer simulations play an increasingly important role
in elucidating the nature of the glass transition because they
allow particle-level resolution of any relevant static or
dynamic observable [1]. While a similar spatial resolution
can now be achieved in experiments performedwith colloids
[2], less direct microscopic information is available from
experimental studies of molecular liquids [3]. Regarding
time scales, however, colloidal experiments and computer
simulations cover, at best, the first 4–5 decades of the
dynamic slowing down of systems approaching a glass
transition [4], whereas 12–13 orders of magnitude of glassy
slowdown can be analyzed in molecular liquids [5].
Therefore, the exquisite level of detail gained from simu-
lations in the description of the onset of slow dynamics
concerns a dynamical regime that is separated from experi-
ments on molecular glasses by about 8 orders of magnitude.
The dichotomy between accessible length scales and time
scales is amajor challenge for glass transition studies [1,6,7].
There are several promising experimental advances

that could improve either the dynamic range of colloidal
experiments [8] or the spatial resolution in molecular

supercooled liquids [9]. In addition, new protocols to prepare
molecular glasses corresponding to even larger relaxation
times are being developed [10]. On the simulation front, the
situation appears challenging, as the increase in the time
window accessible to computer simulations has been rather
slow, amounting to a gain of about 3 orders ofmagnitude over
the last 30 years [4,11,12], and this is mostly due to
improvements in computer hardware. A rough extrapolation
of this trend would pessimistically suggest that it could take
another 100 years for simulations to close the gap with
experimentally relevant thermodynamic conditions. The
recent advent of graphic processing units and accelerators
in the high-performance computing arena suggests that
progress could be made at a faster pace if novel technologies
become available. Exploiting them in the context of molecu-
lar simulations [13–17] nonetheless requires a substantial
investment in code development and low-level optimization.
The above summary suggests that it is desirable to

develop alternative strategies that do not simply rely on
the brute-force increase of computing power. A possible
path is to take advantage of the flexibility offered by
simulations and implement algorithms that simulate equi-
librium material properties more efficiently [18]. Several
such strategies have already been explored. A first line of
research concerns the development of collective particle
displacements to improve sampling efficiency [19–21].
This approach follows the method employed to study
phase transitions in spin systems [22,23]. For instance,
the event-chain Monte Carlo algorithm has proved useful in
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the study of two-dimensional melting [21], but its gain in
efficiency for the three-dimensional dense fluids consid-
ered here is, at most, a factor of 40 [24], which remains
insufficient to close the gap with experiments. A crucial
aspect for the efficiency of this approach is the choice of the
correct type of collective move, which still requires some
a priori knowledge of the relaxation path used by the
system [25]. However, this information remains to be
understood in fragile glass-forming materials.
A different simulation strategy is the replica-exchange

technique, where simulations of the same system are
conducted in parallel over a range of state points, and
infrequent exchanges between neighboring state points are
performed [26–29]. The idea is that navigating through
different state points would facilitate the crossing of large
barriers in a complex free-energy landscape, and indeed,
the technique was first developed to study spin glasses [26].
In dense fluids, the reported speedup is again of about 2
orders of magnitude [28,29], with the additional drawback
that the replica-exchange technique scales very poorly with
the number of particles and loses most of its efficiency for
system sizes of thousands of particles, which are typically
used in studies of the bulk glass transition [29]. Therefore,
replica exchange works best for studies of equilibrium

phase transitions in small systems, as confirmed in a series
of recent studies [30–33]. Different algorithms such as
Wang-Landau sampling [34] and population dynamics [35]
have also been employed in the context of glass studies.
The swap Monte Carlo algorithm is another long-stand-

ing simulation technique that has been used in computer
studies of the glass transition. The algorithm was first
applied to the study of the equation of state of a nonadditive
hard sphere system [36] and later rediscovered in the
context of the glass transition of a binary mixture of soft
spheres [37]. The swap algorithm has since been mostly
used in the glass context, for both binary mixtures [38–41]
and for continuously polydisperse systems [42–44]. For the
binary mixture of Ref. [45], the reported speedup in terms
of equilibration times is a factor of 180, independent of
temperature [46]. The glass-forming ability of this model
is, however, poor because of the appearance of ordered
phases [37,47,48]. Little quantitative information is avail-
able concerning the efficiency of the swap algorithm for
continuously polydisperse soft [43,44,47] and hard spheres
[49]. In an effort to improve the stability of discrete
mixtures, Gutierrez et al. recently introduced a ternary
mixture of soft spheres to study the increase of a static
length scale [50]. Very low temperatures were studied, and
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FIG. 1. Summary of the results obtained for the eleven models studied in this work. The top row shows the particle size distribution for
each model; the next two rows specify the pair potential and its additivity. Below, we use a temperature axis rescaled by the location of
the mode-coupling crossover, where blue points indicate equilibrium disordered fluid configurations and red diamonds indicate
instability towards crystalline or demixed states. The bottom row indicates the estimated range of equilibrium relaxation times τα that
can be studied in stable equilibrium conditions for each model, using τ0 as the relaxation time at the onset temperature [53]. We have
constructed several models that remain stable and can be equilibrated deep in the temperature regime T=TMCT < 1, which conventional
simulation studies are unable to penetrate, three of which allow us to reach temperatures below the experimental glass transition,
conventionally defined as τα=τ0 ¼ 1012.

NINARELLO, BERTHIER, and COSLOVICH PHYS. REV. X 7, 021039 (2017)

021039-2



a claim of a 10-decade efficiency gain was made. We
demonstrate below that changing from a binary to a ternary
mixture indeed improves the thermodynamic stability, but
the claims made in Ref. [50] do not resist our detailed
analysis of the structure and thermalization of the model.
We demonstrate that the efficiency gain for this model is
much more modest, and the accessible dynamical window
is increased by about 2–3 orders of magnitude.
The aim of our work is to bring the swap algorithm to a

whole new level of performance. We present a systematic
study of glass-forming ability and thermalization efficiency
over a broad range of glass-forming models, varying the
particle size distribution and the nature of the pair inter-
actions while optimizing the swap Monte Carlo algorithm.
Our main result, summarized in Fig. 1, is the discovery that
particular combinations of parameters yield both excellent
glass-forming ability and a dramatic decrease of the
computer time needed to obtain thermalized configurations
at low temperatures. This insight has already led to some
new results on related phenomena, such as jamming [51]
and the Gardner transition [52].
As shown in Fig. 1, we systematically change the size

distribution, using a variety of discrete and continuous
mixtures, we vary the softness of the pair repulsion and its
additivity, and we add attractive forces. For each case, we
determine both the temperature regime where the model is
structurally unstable (shown with red symbols) and the
temperature regime where the disordered fluid state is
stable at equilibrium (shown with blue symbols). The
vertical axis represents the temperature T, scaled by the
location of the corresponding mode-coupling crossover,
TMCT. Although somewhat arbitrary, this rescaling dem-
onstrates the efficiency of the thermalization because
conventional computer simulations typically fail to reach
equilibrium in the regime T=TMCT < 1. Despite the
differences between systems, several of them can be
thermalized in the supercooled liquid state at significantly
lower temperatures than ordinary simulations. We demon-
strate that this temperature regime corresponds, for some of
these models, to a range of relaxation times of more than
12 decades, which implies that we can access, in equilib-
rium, a temperature regime that is even lower than the
experimental glass transition temperature Tg. We show that
this corresponds to a speed-up of the thermalization of
about 10 orders of magnitude at Tg.
The two key factors enabling such progress are the use of

an appropriate size polydispersity to prevent both crystal-
lization (when polydispersity is too small) and phase
separation (when it gets too large), and a particle size
distribution that allows for a large acceptance rate for
particle swaps, in turn leading to a fast thermalization and
equilibrium sampling of phase space.
The outline of the article is as follows. Section II is

dedicated to the simulation strategy and technicalities.
Results for two families of systems (mixtures and

continuous polydisperse systems) are reported and dis-
cussed, respectively, in Secs. III and IV. We give a physical
insight on swap dynamical relaxation and heterogeneities
in Sec. V. Section VI deals with the introduction of a model
designed to maximize the algorithm efficiency. Finally,
Sec. VII presents our conclusions and offers further
perspectives for future work.

II. DETAILS OF THE SIMULATIONS

A. Algorithm, interactions, and size distributions

We simulate systems of N particles in a cubic box of side
L with periodic boundary conditions [54]. Throughout the
paper, we compare results obtained from two kinds of
simulation methods: standard Monte Carlo simulations in
the canonical ensemble [55] and swap Monte Carlo sim-
ulations [36,37]. Both simulation algorithms involve the
same displacement moves, in which we pick up one particle
at random and attempt to translate it by a displacement
vector randomly drawn in a cube of linear size δl. The move
is accepted using the Metropolis acceptance rule, which
ensures that detailed balance is obeyed at each temperature
T. For each model, the typical jump length δl is fixed to a
fraction of the average particle diameter, which results in an
acceptance rate ranging typically from about 60% at high
temperatures to 30% at low temperatures. This approach to
simulating glass formers has been validated by direct
comparison with molecular-dynamics results for the spe-
cific case of a binary mixture [56].
In addition to displacement moves, during a swap

Monte Carlo simulation, we also attempt to exchange
the diameters of two randomly chosen particles. The
diameter exchange is again accepted based on the
Metropolis criterion. At every Monte Carlo step, such a
“swap move” is attempted with probability p. We empha-
size that swap moves preserve detailed balance and thus
guarantee an equilibrium sampling of phase space [18]. In
other words, despite the “nonphysical” nature of the swap
moves (in an experiment, particles would not exchange
their diameters spontaneously), the swap Monte Carlo
dynamics enables a proper sampling of the equilibrium
thermodynamic properties of the model. In previous
implementations of the swap Monte Carlo dynamics,
particle swaps were described as particles exchanging their
positions, instead of their diameters [37]. Both descriptions
are, of course, fully equivalent, but our choice offers the
advantage that single-particle dynamics can be followed in
time because particles do not make arbitrarily large jumps
during the swap moves. Standard time correlation functions
based on particle displacements can thus be measured in
swap and ordinary Monte Carlo simulations in the exact
same way. Dynamic measurements are a crucial tool to
assess the thermalization of our swap simulations, just as
they are for standard simulations of supercooled liquids.
One Monte Carlo sweep is then defined as N consecutive
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attempts to either displace or swap particle diameters, and
one such sweep will represent our time unit in the
following.
In this work, we study three different classes of systems,

with particle size distributions as sketched in Fig. 1. They
are either discrete or continuous mixtures. Discrete mix-
tures are characterized by a particle size distribution PðσÞ
of the form

PðσÞ ¼
Xm
α¼1

xαδðσ − σαÞ; ð1Þ

wherem is the total number of components, xα indicates the
fractional composition of each species, and σα is the
diameter of species α. Within the class of continuously
polydisperse systems, we focus on a specific kind of size
dispersity, which scales as the inverse of the occupied
volume:

PðσÞ ¼ A
σ3

; σ ∈ ½σmin; σmax�; ð2Þ

where A is a normalizing constant and σmin and σmax are the
minimum and the maximum diameter values, respectively.
This functional form ensures that the volume fraction
occupied by particles within a given size bin is constant.
Such a scaling property has been shown to enhance the
glass-forming ability in discrete mixtures [57], but we have
not tested this hypothesis in great detail for the present
systems.
Finally, we introduce a second type of continuous particle

size distribution, which combines the salient features of
both discrete and continuous mixtures. Thus, we call this a
“hybrid” distribution; see Fig. 1. Mathematically, the dis-
tribution reads

PðσÞ ¼
Xm
α¼1

xαθðbα − jσ − σαjÞ; ð3Þ

where θðxÞ is the Heaviside function and xα is defined as
before. In this approach, each component of the “mixture” is
characterized by a flat particle size distribution of width bα.
The goal is to construct models that combine advantages of
both discrete mixtures, which are typically good glass
formers, and continuous distributions, for which swap
dynamics is very efficient.
We quantify the degree of polydispersity of a system by

the normalized root-mean-square deviation

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ2i − hσi2

p
hσi ; ð4Þ

where the brackets indicate an average of the particle size
distribution. In the following, we use hσi ¼ R

PðσÞσdσ as
the unit length for each model studied.

We model the interactions between two particles i and j
via a soft repulsive pair potential of the type

vðrijÞ ¼
�
σij
rij

�
n
þ FðrijÞ; ð5Þ

where n is an exponent controlling the softness of the
repulsive potential and FðrijÞ is a function that smooths
the potential at the cutoff distance rcut, beyond which the
potential is set to zero. Unless otherwise specified, we
use [50]

FðrijÞ ¼ c0 þ c2

�
rij
σij

�
2

þ c4

�
rij
σij

�
4

: ð6Þ

The coefficients c0, c2, and c4 ensure the continuity of the
potential up to the second derivative at the cutoff distance
rcut ¼ 1.25σij. Additionally, we studied a polydisperse
model where particles interact with the Lennard-Jones
potential

vðrijÞ ¼
�
σij
rij

�
12

−
�
σij
rij

�
6

þ cLJ; ð7Þ

for which we simply cut off and shift the pair potential at
the cutoff distance rcut ¼ 2.5σij.
Finally, to ensure a high structural stability in our

models, we introduce a generalized nonadditive interaction
rule for the cross diameters σij in the pair interaction, which
reads

σij ¼
σi þ σj

2
ð1 − ϵjσi − σjjÞ: ð8Þ

Systems characterized by ϵ ¼ 0 and ϵ ≠ 0 will be referred
to as additive and nonadditive systems, respectively.
Nonadditivity is another ingredient that has been widely
used to enhance glass-forming ability in simple binary
models [58], and it is a consequence of the band structure of
the electronic density of states in metallic alloys [59].
Physically, the nonadditive rule in Eq. (8) implies that
particles with identical diameters interact as before but that
small and large particles can have a larger overlap than for
additive systems.

B. Physical observables

In this section, we introduce the basic observables used
to characterize the structure and dynamics of the models
studied. We use them to monitor the equilibration and the
stability of the fluids under supercooled conditions and to
quantify and compare the degree of thermalization
achieved by both standard and swap simulations.
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We systematically compute the structure factor [60],

SðkÞ ¼ 1

N
hρkρ−ki; ð9Þ

where ρk is the Fourier transform of the microscopic
density at wave vector k. The behavior of SðkÞ at small
wave-number provides information on possible long-range
density fluctuations and will be checked to identify signals
of instability of the homogeneous fluid. Since we deal with
size-disperse systems, we compute partial structure factors
associated with each subpopulation. In the case of con-
tinuously polydisperse systems, we group particles of
comparable size into families labeled by an index α, for
which we compute the partial structure factor SααðkÞ. A
strong increase of SααðkÞ at small k values is associated
with phase separation or demixing, and we have monitored
this quantity systematically in our models.
Besides particle demixing, the main instability overcome

is, of course, crystallization. To detect the presence of
crystalline local order, we measure the sixfold bond-
orientational order parameter [61]

Q6 ¼
*
1

N

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

13

X6
m¼−6

���� 1

NbðiÞ
XNbðiÞ

j¼1

Y6mðrijÞ
����
2

vuut +
; ð10Þ

where Y6mðrijÞ are spherical harmonics. The sum over 1 <
j < NbðiÞ runs over the neighbors of particle i in a sphere
of radius corresponding to the minimum of the distribution
function of rescaled interparticle distances, gðrij=σijÞ. We
inspect the time and temperature variation of Q6, as well as
that of the potential energy e, to check whether the systems
are stable against crystallization.
We provide a systematic characterization of both self-

dynamics and collective dynamics of the models. This
enables us to quantify the degree to which swap simulations
enhance thermalization compared to standard Monte Carlo
dynamics. We note that while standard Monte Carlo
dynamics [56] can be used to mimic overdamped
Brownian dynamics, as appropriate for a colloidal suspen-
sion [4], the microscopic dynamics of swap simulations is
not physical. We emphasize, however, that the particles’
trajectories remain well defined because the swap moves
only exchange the particle diameters not their positions.
Thus, even though the microscopic dynamics is nonphysi-
cal, time-dependent correlation functions still quantify the
time scale over which individual particles diffuse (for self-
correlation functions) and over which the density fluctua-
tions relax (for collective correlations). Time correlation
functions will be used in the following to determine
whether the system has been efficiently thermalized at a
given state point.
We characterize the single-particle dynamics through the

self-part of the intermediate scattering function

Fsðk; tÞ ¼ hfsðk; tÞi ¼
�
1

N

X
j

eik·½rjðtÞ−rjð0Þ�
�
; ð11Þ

where the wave number k corresponds to the first peak of
the total structure factor SðkÞ. Notice that since the particle
diameter changes during the course of the simulations, the
sum in Eq. (11) runs over all particles, the distinction
between large and small particles being immaterial. The
structural relaxation time τα is then defined as the value
at which Fsðk; ταÞ ¼ e−1, following common practice.
We use the relaxation time τα measured for standard
Monte Carlo simulations to locate the mode-coupling
crossover at T ¼ TMCT, which we take as a relevant
temperature scale for computer simulations. In order to
obtain TMCT, we fit the standard dynamics (without swap)
in the interval τ0 < τα < 103τ0 with a power-law diver-
gence [62],

τα ∝ ðT − TMCTÞ−γ: ð12Þ

When discussing the dynamics of our models, we also use
other functional forms to describe the temperature evolu-
tion of the relaxation time. Awell-known functional form is
the Vogel-Fulcher-Tamman (VFT) law [1],

τα ¼ τ∞ exp

�
A

T − T0

�
; ð13Þ

where τ∞, A, and T0 are fitting parameters. Because this
functional form describes a dynamic singularity at a finite
temperature T ¼ T0, it produces a very steep temperature
dependence. A less pronounced temperature dependence is
obtained with the parabolic law [63],

τα ¼ τ0∞ exp

�
A0
�
1

T
−

1

T1

�
2
	
; ð14Þ

where τ0∞, A0, and T1 are again free parameters. Notice that
no dynamic singularity is predicted from Eq. (14) since T1

captures the onset of slow dynamics and not the divergence
of the relaxation time at low temperatures. A final form that
we use is the Arrhenius law,

τα ¼ τ00∞ exp

�
A00

T

�
; ð15Þ

with τ00∞ and A00 two fitting parameters.
Using these functional forms will be useful below to

estimate the range of relaxation times that swap dynamics
allows us to access. Our analysis shows that the VFT law
presumably overestimates the growth of the relaxation
time, whereas the Arrhenius law underestimates it, the
parabolic law falling somewhere in between. Thus, the
combination of all three fitting functions provides an
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estimate of the actual physical behavior and a sensible
confidence interval in low-temperature extrapolations.
The relaxation of collective density fluctuations is

measured via the time-dependent overlap function

FoðtÞ ¼
�
1

N

X
i;j

θða − jriðtÞ − rjð0ÞjÞ
�
; ð16Þ

using a cutoff distance a ¼ 0.3. This quantity provides
similar information as the coherent intermediate scattering
function at wave vector k ¼ 2π=a, but it is computationally
more advantageous because it presents smaller statistical
fluctuations. From this function, we define a relaxation
time τo for the decorrelation of collective density fluctua-
tions, such that FoðτoÞ ¼ e−1.
For selected models, we computed a number of addi-

tional static and dynamical observables with the aim of
understanding microscopic processes taking place during
the swap Monte Carlo simulations. These more specific
observables are described later in Sec. V.

C. Efficiency of swap moves

Because the swap Monte Carlo move is conceptually
very simple, there are very few parameters that can be
adjusted to optimize its efficiency. We discuss how to
achieve maximal efficiency in the present section.
The extent to which swap moves accelerate the sampling

of configuration space during a Monte Carlo simulation
must depend on the frequency used to attempt such moves,
which is given by the probability p. There are two obvious
limiting cases. For p ¼ 0, one recovers the dynamics of a
standard Monte Carlo simulation without swap moves. For
p ¼ 1, instead, only swap moves are attempted; the particle
positions are never updated, so by construction, structural
relaxation cannot take place. The optimal choice for p is
thus the one that minimizes the structural relaxation time τα
of the system with respect to p.
We illustrate the optimization procedure for a continu-

ously polydisperse particle system interacting via a soft
repulsive potential as in Eq. (5) with n ¼ 12, with a
nonadditivity ϵ ¼ 0.2. This model is further discussed in
Sec. IV C. The general trend found for this model is
representative of the three classes of systems we inves-
tigated and is shown in Fig. 2, where we report the
structural relaxation time of the system versus p at a
constant temperature, T ¼ 0.101. We normalized the
relaxation time by the corresponding value in the absence
of swap moves at p ¼ 0. At this particular temperature, we
observe that the structural relaxation time becomes almost
3 orders of magnitude faster compared to standard dynam-
ics already for very small values of p, i.e., p of the order of
a few percent. We observe a relatively broad minimum
around p ≈ 0.2 before τα starts to grow again and diverges
for p ¼ 1 as τα ∼ ð1 − pÞ−1, when particles stop diffusing

for the trivial reason mentioned above. From such a graph,
we deduce that p ≈ 0.2 is the optimal value for the
probability to perform swap moves. We find that this value
is fairly robust when temperature is changed or across
different models, which presumably stems from the fact
that the minimum reported in Fig. 2 is relatively flat.
Another remarkable feature of this figure is the very steep
decrease of τα observed for even very small values of p,
suggesting that even a fairly small amount of swap moves
are in fact sufficient to enormously facilitate the structural
relaxation of the system.
Efficiency considerations should also take into account

the CPU time needed to perform a swap move as opposed
to a standard displacement. An attempt to swap diameters
entails the computation of the local energy variation
between the new and the old configurations for two
particles, which is twice what is needed for an ordinary
displacement move involving only one particle. However,
we found that the optimum value for p barely changes even
when taking this additional effect into account. In terms of
CPU time, one MC sweep with p ¼ 0.2 takes only 20%
longer on average than a standard sweep with p ¼ 0. This
should be contrasted with the orders of magnitude of gain
achieved in terms of structural relaxation time.
Another major advantage of the swap Monte Carlo

algorithm is that both its implementation and its efficiency
are insensitive to the number of particles in the system, N.
This contrasts strongly with the replica exchange method,
which scales very poorly with N [26–29].
In general, the acceptance ratio of the Monte Carlo

moves decreases upon lowering temperature or increasing
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FIG. 2. The relaxation time τα as a function of the swap attempt
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Monte Carlo simulations when p ¼ 0. A broad minimum
indicates that p ≈ 0.20 optimizes the efficiency of the swap
Monte Carlo algorithm. The inset shows the probability distri-
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particles studied in Sec. IV C, with ϵ ¼ 0.2 and T ¼ 0.101.
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the density. Similarly, the acceptance ratio of swap moves
decreases when the size difference Δσ ¼ jσ1 − σ2j of the
two selected particles increases because a large particle will
not easily fit into the hole occupied by a small one. As will
be clear in the following, the efficiency of swap moves is
highest in continuously polydisperse systems, where the
diameter difference between any two particles can be
arbitrarily small. In these systems, it is pertinent to avoid
attempting exchanges when Δσ is too large because the
swap move is then essentially always rejected [47]. This
point is illustrated in the inset of Fig. 2, where we show
PðΔσÞ, the probability distribution of acceptance rates
for swap moves between pairs of particles with a size
difference Δσ for the same parameters as in the main frame
of the figure. We notice that the acceptance rate decays
exponentially fast with Δσ and becomes vanishingly small
when Δσ ≳ 0.25. Following Ref. [47], we therefore dis-
regard swaps between particles with a diameter difference
larger than a certain cutoff. Here, we choose Δσmax ¼ 0.2,
which we found to be a reasonable trade-off. We implement
this threshold value in a way that preserves detailed
balance. In practice, we always choose two particles
at random, but we directly reject the swap without
evaluating any energy difference if Δσ exceeds the chosen
cutoff value.

D. Equilibration and metastability

Simulations of glass-forming liquids must be long
enough to ensure equilibrium sampling of the observables
of interest and yet short enough to avoid crystallization or
more complex forms of structural ordering. Simple models
such as binary mixtures or weakly polydisperse systems
have been shown to crystallize over sufficiently long times
[43,44,47,64–66]. Computer simulations of glass-forming
materials thus always represent a narrow compromise
between those two limits, which both need to be addressed
carefully.
These issues become particularly severe when employing

enhanced sampling algorithms, such as swap Monte Carlo
moves that are precisely constructed to promote a more
efficient exploration of phase space. For instance, crystal-
lization of two-component mixtures of repulsive spheres has
been reported in swap Monte Carlo simulations [47,48,67].
The ground-state of polydisperse repulsive particles was
studied both with swap Monte Carlo simulations [43] and in
the semi-grand canonical ensemble [64,65]. These studies
found that for sufficiently high polydispersity, the stable
structure is a fractionated crystal, where the system presents
multiple crystals, each involving a fraction of the system’s
overall particle size distribution. However, as noticed in
Ref. [64], the free energy cost of forming an interface
between distinct phases is generally high, and crystallization
may be difficult to observe in practice.
The general conclusion to be drawn from these earlier

works is that a model considered as a good glass-forming

system when studied using conventional simulation tech-
niques may turn out to be a very poor model when using an
enhanced simulation technique that is able to probe a much
wider range of temperatures. Indeed, we find that many
previously studied types of glass-forming models do not
withstand basic stability criteria when the swap technique is
applied, forcing us to develop novel numerical models in
addition to the optimization of the swap Monte Carlo
method.
To make a consistent comparison of the glass-forming

ability of the studied models in standard and swap
simulations, we follow a rigorous and identical equilibra-
tion protocol for all our models. First, we obtain static and
dynamical properties of the system by means of standard
Metropolis Monte Carlo simulations in the NVT ensemble
[55]. From these simulations, we extract the average
potential energy value, the structure factors, and the
structural relaxation times. For each model, we determine
TMCT using Eq. (12), which will serve as a reference
temperature scale to compare the degree of supercooling
across different models. This is not an ideal choice, but it
offers the advantage that extrapolation of the relaxation
times to low temperatures is not needed.
SwapMonte Carlo simulations start from a configuration

equilibrated at the onset temperature To [53], followed by
an instantaneous quench to the target temperature T. The
following criteria are used to determine whether the system
has reached equilibrium at T. First, we monitor the
potential energy e per particle. We inspect both its
instantaneous value as a function of time, eðt; TÞ, to detect
aging, and its time average as a function of temperature,
heiðTÞ, to detect possible discontinuities or change of slope
in the equation of state of the liquid. Second, we ensure
that the total mean-squared displacement Δr2ðtÞ ¼
h1=NP

i½riðtÞ − rið0Þ�2i has reached a value at least larger
than 6. This specific value is relatively immaterial as this
criterion only conveniently allows us to distinguish state
points where particle displacements are large over the
numerical time window, from those where particle dynam-
ics is essentially arrested. Finally, we look at the self-
incoherent scattering function. For this quantity, we check,
within statistical fluctuations, both the absence of aging and
the complete decorrelation to zero at long times. Once
equilibration has been reached, we perform a first set of
simulations to obtain a rough estimate of the structural
relaxation time τα in the presence of swap moves. After this
is done, the system is simulated over a total of 200τα to
measure static and dynamic properties over a sufficiently
wide time window. Notice that this thermalization pro-
cedure is rather demanding, and thermalization thus
requires that we are able to perform simulations over a
time window which is 2 orders of magnitude longer than
the structural relaxation time. We emphasize that such a
procedure is not specific to the presence of the swap moves.
We think that simulations of supercooled liquid should
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follow similar strict rules to claim that equilibration, as well
as a proper sampling of phase space, has been achieved.
Almost every system we simulated eventually displays

some form of structural instability at sufficiently low
temperatures, such as nucleation of an ordered phase or
long-wavelength density fluctuations and demixing. These
instabilities are detected via the observables introduced in
the previous section. To decide whether a given state point
remains in a metastable disordered fluid state, we use the
following criterion. We perform five independent simula-
tions along the lines described above. If at least one among
the five samples shows an instability over a time window of
200τα, then we classify this state point as unstable and the
system is a poor glass former at this temperature. The
precise meaning of “instability” is system dependent and
will be specified in each studied case in Secs. III and IV.
This criterion is rather strict, as there could still be room for
achieving thermalization and performing equilibrium sam-
pling while avoiding structural instability, but this is
dangerous as fluctuations related to ordering could interfere
with the physics of the metastable disordered state. In
addition, we find that when a state point is deemed unstable
using our criterion, then lower temperatures are also
unstable, and the instability rapidly becomes so severe
that further studies cannot be safely performed. Thus,
changing the details of our criterion would simply shift
the range of “metastable” temperatures by a very small
amount, and our conclusions would not be affected.
We first directly compare the thermalization efficiency

of standard and swap simulations in Fig. 3. Starting
from a high-temperature configuration, we progressively
quench the system down to zero temperature using a
constant cooling rate γ ¼ dT=dt, with values changing

logarithmically over a broad interval (2.5 × 10−5,
2.5 × 10−9). We further average our results using
ten independent initial configurations. For standard
Monte Carlo simulations, we retrieve the expected behavior
where departure from the equilibrium equation state arises
at lower temperatures for a lower cooling rate, as signaled
by a rate dependence of the energy. Using swap simu-
lations, we obtain the very same equation of state at
equilibrium and a similar rate-dependent behavior at low
temperatures. The major difference between the two sets of
simulations is that swap simulations clearly fall out of
equilibrium at considerably lower temperatures than ordi-
nary Monte Carlo simulations. The agreement of the two
sets of curves when they both probe equilibrium is an
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FIG. 3. Potential energy per particle in simulations with differ-
ent cooling rates γ using both standard and swap Monte Carlo
dynamics. Both dynamics produce consistent results at high
temperatures, but the swap dynamics remains at equilibrium
down to much lower temperatures than the standard one. The
system is the soft repulsive system of nonadditive particles
studied in Sec. IV C, with ϵ ¼ 0.2.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t

0

0.2

0.4

0.6

0.8

1

F
s(k

,t
)

(a)

Standard

S
w

ap

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t

0

0.2

0.4

0.6

0.8

1

F o
(t

)

(b)

FIG. 4. Swap dynamics in a soft repulsive system of non-
additive particles studied in Sec. IV C with ϵ ¼ 0.2. (a) Self-
incoherent scattering Fsðk; tÞ computed, respectively, on the first
(solid lines) and second (dashed lines) halves of the simulation
run. Results for standard dynamics without swap for the lowest
temperature are shown with a dotted line. (b) Collective overlap
correlation function FoðtÞ. In both panels, temperatures are
T ¼ 0.25, 0.175, 0.125, 0.092, 0.075, 0.065, 0.062, 0.058, and
0.0555, from left to right. Swap Monte Carlo simulations fully
decorrelate both single-particle and collective density fluctua-
tions in a regime where standard Monte Carlo simulations may be
fully arrested.

NINARELLO, BERTHIER, and COSLOVICH PHYS. REV. X 7, 021039 (2017)

021039-8



indication that swap dynamics has been correctly imple-
mented and that it provides the correct sampling of phase
space. The second information gained from this set of data
is the clear indication that the swap Monte Carlo algorithm
extends the regime where equilibrium studies are possible
by a large amount and is able to produce highly stable glass
configurations.
To validate the equilibration protocol discussed at the

beginning of this section,we show in Fig. 4(a) the incoherent
scattering function for the same system as in Fig. 2 (see also
Sec. IV C) evaluated over the first and the second halves of
the simulation at various temperatures. As we can see, the
two sets of curves agree within statistical uncertainty over a
wide range of temperatures, demonstrating the absence of
aging. For the lowest temperature at which thermalization
with swap moves is achieved, we show the corresponding
relaxation function obtained without swap, which quickly
decays to a plateau that extends over the last 6 decades of
the simulation. This shows that without swap moves, the
dynamics is fully arrested at these low temperatures, and
no equilibrium simulations can presently be performed in
this regime with conventional computational techniques.
In Fig. 4(b), we show the collective overlap function,

Eq. (16), which decorrelates to a density-dependent plateau
at long times, as expected in ergodic equilibrium simu-
lations. The two plots of Fig. 4 underline the fact that swap
Monte Carlo simulations fully decorrelate both single-
particle and collective density fluctuations in a regime
where standard Monte Carlo simulations may be fully
arrested and therefore represent an efficient and reliable
method to sample the configuration space.

III. RESULTS FOR DISCRETE MIXTURES

A. Binary mixtures

Simple binary mixtures of repulsive spheres were the first
computermodels for supercooled liquids simulated using the
swap Monte Carlo method [36,37]. Here, we focus on the
“historical” 50∶50 binary mixture introduced long ago by
Bernu et al. [68], which has been frequently used since its
introduction. The pair interaction is given by Eqs. (5) and (8)
with ϵ ¼ 0 and FðrijÞ ¼ cαβ, where α, β ¼ A, B are species
indices. The size ratio is σA=σB ¼ 1.2, resulting in a
polydispersity δ ¼ 9.1%. The potential is cut off and shifted
at a distance rcut ¼

ffiffiffi
3

p
, a specific value thatwas often used in

previous studies [37,47,67].We simulateN ¼ 1024 particles
at the number density ρ ¼ 1.
As already demonstrated before [67], swap moves help

to accelerate sampling in this system, even though their
acceptance rates is relatively low, of order a ∼ 10−2. We
confirm this finding in Fig. 5, where we compare the
structural relaxation time τα measured during standard and
swap Monte Carlo simulations. Over the range of temper-
atures at which the system can be equilibrated according to
our criteria (see Sec. II D), swap moves result in a speedup

of about 2 orders of magnitude at the lowest temperature.
Notice that contrary to published analysis [46], we find that
the efficiency of the swap over the standard Monte Carlo
method is strongly temperature dependent, and efficiency
increases rapidly as temperature decreases.
Unfortunately, however, the temperature range that can

be analyzed with this system does not change dramatically
when swap moves are introduced. In fact, even using
standard MC, the system crystallizes at the lowest studied
temperature and becomes unstable when T < 0.202, which
is marginally larger than the location of the mode-coupling
crossover, TMCT ≈ 0.199. Notice that earlier, incorrect
determinations of the mode-coupling crossover temper-
ature of this system have misleadingly suggested that
temperatures well below TMCT could be simulated with
this system. In reality, TMCT represents the lowest temper-
ature that can be safely studied, swap moves merely
providing a more efficient way of producing thermalized
configuration in the temperature regime T > TMCT. In other
words, swap MC accelerates the dynamics of the system
but does not allow the exploration of a temperature regime
that is not already accessible with ordinary simulations.
In the inset of Fig. 5, we show the time series of the

potential energy of a sample at T ¼ 0.2, where rapid
crystallization is observed when swap dynamics is
employed. We note that crystallization in this model is well
documented and has been studied in detail in small samples
[47,69]. Since complex strategies would be needed to detect
and filter out crystallized configurations [67] already near
the mode-coupling crossover, we conclude that this “his-
torical”model can indeed be efficiently simulated using the
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FIG. 5. Relaxation times τα of standard (black empty points)
and swap (red solid squares) simulations for the binary mixture of
soft repulsive spheres studied in Sec. III A. The speedup offered
by the swap moves is obvious, but the system is unstable below
T ¼ 0.202 where it crystallizes, and temperatures below the
mode-coupling temperature TMCT ¼ 0.199 cannot be studied.
The inset shows a time series of the potential energy for standard
(black) and swap (red) simulations at T ¼ 0.2, and we see
that crystallization is easily observed when swap moves are
introduced.
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swap Monte Carlo method but is too poor a glass former to
fruitfully explore novel physical regimes.
Within the realm of simple binary mixtures, it is difficult

to make further progress using swap Monte Carlo simu-
lations because, to increase the structural stability of the
system, one would need to increase the size ratio (for
instance, using the more stable σA=σB ¼ 1.4 well-studied
model), but this would imply that the already-very-low
acceptance rate for swap moves would become vanishingly
small and swap would thus not be a useful method.
Therefore, the trade-off between stability and swap effi-
ciency leaves very little room for a drastic improvement of
simulation techniques when binary mixture models of glass
formers are used. Another option is to introduce nonaddi-
tivity in the interactions, as, for instance, in the classic Kob-
Andersen mixture [58]. Rather than for binary mixtures, we
explore this possibility for a different family ofmodels based
on continuously polydisperse particles (see Sec. IV).

B. Ternary mixture

Given the limits demonstrated above for binary mixtures,
a natural strategy is to increase the number of components
in the model. Adding more chemical components is indeed
a commonly used method to improve the glass-forming
ability of metallic alloys. In addition, by increasing the
number of components, one can simultaneously increase
the polydispersity, and thus the glass-forming ability of the
model, while preserving the swap efficiency by introducing
particles with size ratios that are small enough for swap
moves to be frequently accepted.
This strategy was recently followed in Ref. [50], where a

ternary mixture of soft spheres was introduced and studied
using swap Monte Carlo dynamics. The potential used in
that work can be cast in the form of Eq. (5) with a softness
parameter n ¼ 12 and FðrijÞ as in Eq. (6), with a cutoff
distance rcut ¼ 1.25σij. We simulated systems with N ¼
1500 particles at the number density ρ ¼ 1.1, as in the
original version of the model [50]. The size ratio between
two species is σA=σB ¼ σB=σC ¼ 1.25, which is slightly
larger than for the binary mixture studied above in Sec. III
A, and compositions xA ¼ 0.55, xB ¼ 0.30, and xc ¼ 0.15,
which ensures that all species roughly occupy the same
fraction of the total volume. The corresponding size
polydispersity is δ ≈ 17%, so we can expect a smaller
tendency for the system to crystallize. Simultaneously, we
also expect the acceptance of the swap moves to be much
smaller than for the binary mixture. In agreement with
Ref. [50], we find that the acceptance rate for swaps is of
the order a ∼ 10−5 at low temperatures. To speed up the
simulations, we therefore only attempt swap moves
between species ðA;BÞ and ðB;CÞ separately because
the probability of accepting swaps between pairs of ðA;CÞ
particles is negligible.
Despite the low acceptance rate, itwas claimed inRef. [50]

that swap moves allow for a dramatic speedup of the

thermalization in this model. In the reduced units described
above, we locate the mode-coupling crossover temperature
near TMCT ≈ 0.288, and Gutierrez et al. claim to have
achieved thermalization down to T ¼ 0.22 ≈ 0.76TMCT.
Based on dynamic scaling arguments, they estimate that
the relaxation time at T ¼ 0.22 is τα=τ0 ≈ 1015, where τ0 is
thevalue of the relaxation timenear the onset temperatureT0.
Thus, the claim is that swap Monte Carlo provides an
increase in the accessible window of relaxation times of
about 10 orders of magnitude as compared to standard
molecular-dynamics simulations [50].
We have repeated and extended these simulations using

standard and swap Monte Carlo dynamics. In Fig. 6, we
present the temperature evolution of the structural relax-
ation times for both these dynamics. We confirm that
despite the very low acceptance rate of the swap moves, the
speedup of the dynamics produced by these rare swaps is
important. For instance, at the lowest temperature simulated
by standard Monte Carlo, T ¼ 0.29, the relaxation time is
reduced by a factor of about 102 when swap moves are
introduced. Following the evolution of τα using swap
moves, we find, however, that τα becomes too large to
be accurately measured for T ≤ 0.24, and particles in fact
barely move over the entire simulation performed at
T ¼ 0.22. Therefore, we conclude that our swap
Monte Carlo simulations fail to thermalize the model for
T ≤ 0.24. In Ref. [50], thermalization was tested by
reweighting the probability distribution functions of the
potential energy. We could reproduce this thermalization
test in our work, thus demonstrating that this test fails to
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FIG. 6. Relaxation times τα of standard (black empty points)
and swap (red solid squares) simulations for the ternary mixture
of soft repulsive spheres studied in Sec. III B. The speedup
offered by the swap moves is obvious, but the system is unstable
below T ¼ 0.26 ≈ 0.9TMCT where it demixes and crystallizes.
Disconnected squares are a rough estimate of τα obtained using
short simulations in the unstable region. Stable and equilibrated
states can be accessed down to T ≈ 0.26 < TMCT ¼ 0.288,
extending the dynamic range by about 2 orders of magnitude
as compared to standard simulations.
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detect the lack of thermalization and proper sampling for
the lowest studied temperatures. Measuring the structural
relaxation time and the relaxation dynamics is thus a more
accurate and more discriminating thermalization test than
techniques based on global static observables only.
In addition to the lack of thermalization at low temper-

atures, we also find signatures of structural instability of the
fluid at even higher temperatures, T ≤ 0.26. Below this
temperature, our criteria for the absence of crystallization or
demixing are no longer fulfilled, and the system is
eventually unstable within the window of 200τα that we
use to assess stability. Using shorter time windows before
the system crystallizes, we obtain a rough estimate of the
relaxation time τα in the unstable regime, and we show
these results as disconnected squares in Fig. 6. In Ref. [50],
the glass-forming ability of the model was not discussed,
but there may be evidence of ordering in the reported peak
of the specific heat. An alternative reason for the absence of
ordering in the data of Ref. [50] is that the performed
simulations covered a smaller time window of about
106–107 Monte Carlo sweeps, whereas we simulate up
to 109 sweeps in our work. Of course, preventing ordering
through shorter simulations implies that thermalization
becomes more difficult to achieve, and an accurate sam-
pling of phase space is then problematic.
Comparing the stable results for the ternary mixture to

the ones of the binary mixture in Fig. 5, it is clear that the
efficiency of swap Monte Carlo is essentially preserved and
that thermalization and metastability of the fluid branch
have indeed been extended to temperatures below TMCT,
although the gain is far less spectacular than the one
claimed in Ref. [50], once thermalization and structural
stability are more precisely characterized.
We studied more carefully the structural properties of the

ternary mixture using partial structure factors, and we show
some representative results in Fig. 7 for SCCðkÞ at various
temperatures. At high temperatures, T > 0.30, we find that
the structure factor resembles the one found for ordinary
glass-forming models, with a strong first diffraction peak
corresponding to the interparticle distance and a featureless
plateau at lower wave vectors. In the low-temperature
regime, where swap Monte Carlo is mandatory to achieve
thermalization, 0.26 < T ≤ 0.29 ≈ TMCT, we find that
SCCðkÞ increases more strongly as k decreases towards
0, which suggests that composition fluctuations are already
quite strong in this regime. Even for these state points,
which we deemed “stable” based on our stability criterion,
longer simulations show that these fluctuations can trigger
a demixing in the system, as illustrated for T ¼ 0.267 in
Fig. 7. We have obtained similarly demixed configurations
for temperatures up to T ¼ 0.27, showing that stability is a
real issue in this model. Finally, for T ≤ 0.26, the system
always demixes within our simulation time, which produ-
ces a strong low-k peak in the structure factor (see Fig. 7).
When the particles are segregated, they then easily

crystallize, and we obtain configurations such as the ones
shown in the inset of Fig. 7. We conclude that maintaining
this system in a metastable fluid state at low temperatures,
T ≤ 0.26 ≈ 0.9TMCT, is actually very difficult because
(i) thermalization becomes prohibitively difficult and
(ii) simulations longer than the thermalization time in this
regime produce demixed and ordered configurations.
Finally, to more quantitatively assess the gain in effi-

ciency obtained for this ternary mixture, we have fitted our
dynamic relaxation data from standard Monte Carlo sim-
ulations to various fitting formula commonly used in the
glass literature. Using both a Vogel-Fulcher fit, Eq. (13),
which presumably overestimates the data at low T, and a
parabolic singularity-free formula, Eq. (14), we consis-
tently obtain that the relaxation time at T ¼ 0.26 is about
τα ≈ 109. This result is 2 orders of magnitude slower than
the lowest temperature simulated without the swap moves
(see Fig. 6). At this low temperature, T ¼ 0.26, the
relaxation time using swap moves is τα ≈ 5 × 105, so the
thermalization speedup due to swap moves is about 3
orders of magnitude.
Therefore, we confirm that the ternary mixture intro-

duced in Ref. [50] can be equilibrated at temperatures
below the mode-coupling crossover, and we have estimated
that this corresponds to an extension of the accessible
dynamic regime of about 2 decades compared to standard
simulations. This achievement thus competes favorably
with the other computational approaches described in
the Introduction, but it still does not allow for an explora-
tion of glass physics much closer to the experimental glass
transition, which we achieve below for continuous
polydispersity.
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FIG. 7. Partial structure factor SCCðqÞ for small particles in the
ternary mixture of Sec. III B. It is featureless at high enough
temperatures, T ¼ 0.350, and displays strong composition fluc-
tuations at low k in the fluid at T ¼ 0.267, which may eventually
lead to a demixed state at long times. For T ≤ 0.26, the system is
demixed, as shown for T ¼ 0.256. The inset shows a represen-
tative snapshot of a demixed and partially crystallized system
at T ¼ 0.256.
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C. Five-component mixtures

Because ternary mixtures offered only limited success,
we tried to improve both swap move acceptance and the
metastability of the liquid phase by performing an explor-
atory study using two different five-component mixtures.
We again adjusted the concentration of the various species
so that each component roughly occupies the same volume,
and we chose the size ratio between the different families to
be small enough that swap moves are accepted with a
reasonable acceptance rate.
We studied two systems with diameters roughly linearly

spaced between σmin ¼ 0.847 and σmax ¼ 1.333 for a
polydispersity δ ¼ 16%, and between σmin ¼ 0.826 and
σmax ¼ 1.771 for a polydispersity δ ¼ 23%. Thanks to the
reduced size ratio between individual components, the
swap acceptance rate increased considerably as compared
to the binary and ternary mixtures studied above, and it
ranged between a ≈ 10% and a ≈ 20% depending on
temperature. However, both models displayed a strong
tendency to demix during swap Monte Carlo simulations,
and it proved impossible to equilibrate these systems well
below TMCT following the criteria described above.
We have clearly not exhausted all possible discrete

models of glass formers, as the parameter space becomes
very large when the number of components increases. It is
possible that some parameter combination provides both a
rapid thermalization and a good glass-forming ability, and
more work would be needed to explore this hypothesis in a
more systematic manner, as done, for instance, in the
context of simplified models of bulk metallic glasses [70].

IV. CONTINUOUSLY POLYDISPERSE SYSTEMS

A. Why continuous polydispersity?

The difficulties highlighted in the previous sections arise
from the interplay of several competing effects. Reducing
the diameter difference between species improves the
acceptance of swap moves and thus accelerates thermal-
ization, but the resulting reduced polydispersity makes the
system prone to crystallization. Additionally, we found that
simple multicomponent mixtures show an important ten-
dency to demixing at low temperatures.
To tackle these issues at once, we considered a class of

models characterized by a continuous particle size distri-
bution PðσÞ. In such systems, swap moves are more likely
to be accepted because there always exist pairs of particles
whose diameters are sufficiently close to one another. We
found that the succession of a large number of successful
swaps between pairs with similar diameters actually facil-
itates the thermalization of the system. Physically, the end
result is that the diameter of each particle performs a kind of
random walk in diameter space. An efficient exploration of
the diameter distribution seems to be the key for efficient
thermalization, as discussed further below in Sec. V.

In addition, by choosing a sufficiently high degree of
polydispersity, it may be possible to stabilize the liquid
against crystallization and fractionation. Therefore, well-
chosen continuous particle size distributions seem able to
solve all problems encountered in Sec. III for discrete
mixtures at once.
In this section, we study models in which particles

interact via Eq. (5), with the cutoff function FðrijÞ given by
Eq. (6) and a cutoff distance rcut ¼ 1.25σij. We simulate
N ¼ 1500 particles at ρ ¼ 1. We also fix the particle size
distribution to be of the form given by Eq. (2) and vary
parameters such as the pair potential and its additivity. This
particle size distribution is controlled by a unique param-
eter, the size ratio σmax=σmin or, equivalently, the size
polydispersity δ. Using insight from preliminary studies on
hard sphere systems [51], we fix σmax=σmin ¼ 2.219, which
implies δ ≈ 23%. This observation is in qualitative agree-
ment with the earlier results of Fernandez et al. [43], who
simulated repulsive spheres with a flat size dispersion and
found an optimal stability for polydispersities in the
interval 20%–30%. In these models, the acceptance of
swap moves is typically very high, a ∼ 20%–30%, and
does not change dramatically with temperature.

B. Influence of the particle softness

Our first analysis of models with continuous polydisper-
sity concerns the role of the particle softness. Previous
studies have found that softness can have a nontrivial
impact on glass properties, such as fragility [71] and glass-
forming ability [57]. Here, we simulated polydisperse soft
particles, varying the softness exponent n using the values
n ¼ 8, 12, 18, and 24. We focus on a continuously
polydisperse model with additive interactions, ϵ ¼ 0. In
the limit where n → ∞, the model becomes equivalent to
the hard sphere model studied in Ref. [51], which displays
excellent stability and efficient thermalization. Therefore,
the present family of models appears as the natural
extension of these hard sphere results to soft potentials.
In Fig. 8, we show the structural relaxation times as a

function of the temperature for different softness exponents
obtained from both standard and swap Monte Carlo sim-
ulations. Temperatures are scaled by the corresponding
mode-coupling temperature TMCT of each model, so differ-
ent systems can be represented in the same graph. In all
these systems, swap moves speed up thermalization sig-
nificantly. As the exponent n increases, i.e., as repulsive
forces get steeper, it becomes possible to equilibrate the
system at increasingly lower temperatures relative to TMCT.
In addition, as for discrete mixtures, the models pre-

sented in this section also have a tendency to demix at low
temperatures. We have again carefully checked the low-k
behavior of the partial structure factors, which informs us
about the presence of large composition fluctuations.
Despite the improved stability, we found that the system
may still demix at low enough temperatures during the
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swap Monte Carlo simulations. For these unstable state
points, we again use shorter simulations to obtain a rough
estimate of the relaxation time, and we show these data
using disconnected symbols in Fig. 8. Regarding the
structural stability of the models, there is again a clear
trend with the softness exponent n. We find that softer
systems are more prone to structural instability than harder
ones. We emphasize that this result is most likely system
specific since the opposite trend was found in other models
of glass formers [57,72].
Combining the effect of a more efficient thermalization

and a better stability of the fluid state, we conclude that
models with larger n values represent the best choice of
parameters within the present family, the system with
n ¼ 24 being stable and efficiently thermalized down to
T ≈ 0.6TMCT (see Fig. 8). The trend that we find suggests
that a system of polydisperse hard spheres with n ¼ ∞,
such as the one recently simulated in Ref. [51], might
actually prove to be the best glass former in this class of
systems, with continuous polydispersity, repulsive inter-
actions, and additive interactions.

C. Nonadditive interactions

To suppress the tendency to demixing while preserving a
continuous form of polydispersity, we have introduced
nonadditivity in the potential by modifying the sum rule for
particle diameters, as described in Eq. (8). Nonadditive
interactions are known to stabilize the liquid in metallic
alloys [57,58]. Moreover, this effect has been demonstrated

explicitly in nonadditive hard spheres [73,74]. Physically,
choosing ϵ > 0 frustrates phase separation because par-
ticles of different diameters can now stay closer to one
another than in the additive case with ϵ ¼ 0. To study the
effect of nonadditivity, we set the softness exponent to
n ¼ 12, and we vary ϵ using ϵ ¼ 0.0, 0.1, 0.2, and 0.3. Note
that some results for the case ϵ ¼ 0.2 have already been
presented in Sec. II, when discussing the details of the swap
algorithm and the thermalization checks.
Figure 9 shows the structural relaxation times obtained

by varying the degree of nonadditivity. As in the previous
section, we scale the temperatures by the measured TMCT
for each model. For comparison, we also redraw the results
for the additive system (ϵ ¼ 0) with n ¼ 12. Regarding
thermalization efficiency, we find that nonadditivity
improves the performance of the swap algorithm, as lower
temperatures relative to TMCT can be studied when ϵ > 0,
but it is not easy to provide a detailed physical under-
standing of this result.
Analysis of the low-k behavior of the partial structure

factors SααðkÞ shows that phase separation is strongly
suppressed by the nonadditivity for both ϵ ¼ 0.1 and
0.2. At low temperatures, however, the system can crys-
tallize, as detected from drops in the time series of the
energy and from the appearance of well-defined peaks in
the structure factor, and we could frequently observe these
crystallization events for ϵ ¼ 0.2 and 0.3. For ϵ ¼ 0.1, the
liquid remains stable down to the lowest temperature that
we could equilibrate with the swap Monte Carlo. This is in
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FIG. 8. Relaxation times for continuously polydisperse systems
of repulsive soft spheres with different softness exponents n ¼ 8,
12, 18, and 24. Temperatures are scaled by TMCT to allow direct
comparison between models, with TMCT ¼ 0.143, 0.267, 0.468,
and 0.662, respectively. Open symbols represent the standard
Monte Carlo dynamics, and closed symbols show the swap
algorithm, for which unconnected symbols represent structurally
unstable state points where only a rough estimate of τα is obtained
in short simulations. A larger n yields better efficiency and better
structural stability.
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FIG. 9. Relaxation times for systems with continuous poly-
dispersity, n ¼ 12, and different nonadditivity parameters ϵ.
Temperatures are scaled by TMCT to allow direct comparison
between models, with TMCT ¼ 0.267, 0.176, 0.104, and 0.0534,
respectively. Open symbols represent the standard Monte Carlo
dynamics, and closed symbols show the swap algorithm, for
which unconnected symbols represent structurally unstable state
points where only a rough estimate of τα is obtained in short
simulations. Awell-chosen amount of nonadditivity, ϵ ≈ 0.1–0.2,
considerably improves the efficiency of thermalization and the
structural stability.
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fact the only model among the eleven models studied in this
paper that perfectly fulfills our equilibration and stability
criteria throughout the entire accessible temperature range.
The existence of an optimal nonadditivity parameter ϵ

for glass-forming ability presumably results from a com-
petition between demixing, which takes place when ϵ ¼ 0,
and crystallization, for large ϵ. We suggest that these two
distinct paths to ordering actually compete for ϵ ¼ 0.1–0.2,
which results in an enhanced frustration and thus a higher
structural stability. Similar physical arguments have been
proposed in Ref. [70] to explain the glass-forming ability of
simple nonadditive mixtures.
Whereas the additive model with n ¼ 12was not the best

choice of softness in the previous section, we find that
including nonadditivity significantly improves both the
efficiency of the swap algorithm and the structural stability
of this model. We suggest that models with larger n
(including hard spheres) with nonadditive diameters would
be even better choices.
It is interesting to contrast the results for the n ¼ 12 soft

repulsion using a continuous size distribution and a
nonadditivity ϵ ¼ 0.1 to the results obtained for the binary
mixture in Sec. III A for the same pair potential. The
conclusion is that the thermalization and stability limits
have been decreased from T ≈ TMCT for the binary
mixture down to T ≈ 0.5TMCT for the present system.
This represents a major methodological improvement that
we try to quantify in terms of time scales in the next
subsection.

D. Experimental time scales are matched by simulations

In the previous section, we showed that by optimizing
the additivity and the form of the pair potential, temper-
atures as low as T ≈ 0.5TMCT could be thermalized using
swap Monte Carlo in the metastable fluid state. Because
ordinary simulations stop near T ≈ TMCT, one may wonder
how large the corresponding gain is in terms of structural
relaxation times. It is relatively easy to answer this question
when the improvement is modest, but this becomes a
delicate task in our case, as thermalization is achieved in a
temperature regime where the standard dynamics is com-
pletely frozen in our observation window and where
equilibrium time scales can only be obtained by extrapo-
lation. Extrapolating time scales down to the lowest
temperatures where the swap Monte Carlo method can
thermalize may depend sensitively on the fitting procedure,
and it therefore requires some care.
We have devised a robust strategy that answers the

following question for each model: Is the thermalization
speedup due to the swap Monte Carlo algorithm large
enough to fill the eight-decade gap between ordinary
simulations and experiments? To answer this question
for a given model, we employ ordinary Monte Carlo
simulations to access a range of relaxation times up to
τα=τ0 ≈ 104, where τ0 represents the value of τα at the onset

of glassy dynamics. In experiments [5], the glass temper-
ature Tg corresponds to the value τα=τ0 ≈ 1012, which we
take as our practical definition of Tg. Using the various
functional forms described in Sec. II B, we realized
that estimating the location of Tg from numerical mea-
surements of τα is actually possible with modest uncer-
tainty. More precisely, for a given model, we use all
three functional forms in Eqs. (13)–(15) to estimate the
location of Tg from the definition ταðTgÞ=τ0 ¼ 1012.
Despite the qualitative differences between these functional
forms, the range of Tg values is reasonably small, typically

ΔTg=Tg ¼ ðTVFT
g − TArrhenius

g Þ=ð2Tparabolic
g Þ ≈ 12%, with

minor variations from one model to the other. Because
the VFT law tends to overestimate the increase τα and the
Arrhenius law underestimates it, these two forms respec-
tively provide an upper and a lower bound to the real
location of Tg, while estimates from the parabolic law
usually fall between those two bounds. Elmatad et al. [63]
have shown that the parabolic law accounts for the variation
of relaxation times of glass-forming liquids over a broad
range of temperatures, ranging from the onset down to the
laboratory glass transition. We therefore expect our para-
bolic extrapolation to provide a reasonable determination of
Tg, and the other two temperatures to provide a solid
estimate of the interval of confidence.
We illustrate this procedure in Fig. 10(a) where we show

the temperature evolution of ταðTÞ from standard
Monte Carlo dynamics for the nonadditive model studied
in Sec. IV C, using an Arrhenius representation. We fit
these Monte Carlo dynamic data and estimate three differ-
ent locations for Tg, which delimit the range of possible
values for the location of Tg, highlighted with the vertical
dashed lines. We then show the evolution of the relaxation
time for metastable fluid states when swap Monte Carlo
moves are used in the same Arrhenius representation. We
find that the swap relaxation time remains modest in the
vicinity of Tg, τα=τ0 ≈ 102 − 103 and that this particular
system can be thermalized and kept metastable at temper-
atures even below the experimental glass temperature Tg.
This finding has several important consequences.

(i) The speedup of the thermalization at Tg is of about
10 (�1) orders of magnitude, implying that com-
puter simulations can now comfortably study that
temperature regime in thermal equilibrium.

(ii) The maximal speedup obtained with the swap
Monte Carlo is in fact much larger than these 10
orders of magnitude because temperatures lower
than Tg can be thermalized, but estimating that gain
becomes very sensitive to the chosen extrapolation.

(iii) For selected models, we can now access a temper-
ature regime that even experiments cannot reach,
thus opening a novel observational window on the
physics of glasses in a regime that has never been
probed before, either experimentally or numerically.
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To quantify the performance of the swap algorithm, we
estimate the range of Tg values for each model studied in
this section and use these fitted values to construct an
Angell plot, representing the logarithm of the relaxation
times as a function of the scaled inverse temperature, Tg=T
[see Fig. 10(b)]. In practice, we use the value given by the
parabolic fit, which falls in the middle of the fitted range,
and show the corresponding uncertainty, estimated from
VFT and Arrhenius fits, with the vertical dashed lines in
Fig. 10(b). StandardMonte Carlo simulations typically stop

near T=Tg ≈ 1.3–1.5, in the vicinity of the mode-coupling
crossover. For most models, the swap algorithm performs
so well that the thermalization time at Tg remains modest,
τα=τ0 ≈ 102. This corresponds to a thermalization speedup
at Tg of 10 orders of magnitude. As mentioned before,
models with soft potentials and additive interactions are
prone to structural instability, and some of them are not
stable down to T ¼ Tg. However, for several models, we
find that thermalization and fluid metastability can be
maintained below Tg.
The discovery of such glass-forming models associated

with an efficient algorithm to thermalize them represents
the main achievement of our work.

V. MICROSCOPIC INSIGHTS INTO
THE SWAP DYNAMICS

A. Dynamics of particle diameters

The previous sections demonstrated that swap
Monte Carlo moves can enhance thermalization by several
orders of magnitude, the effect being most spectacular in
continuously polydisperse systems, for which swap moves
have a very high acceptance rate. In this section, we shed
some light on the microscopic mechanisms that are
responsible for this acceleration. We carry out this analysis
for a nonadditive polydisperse model with ϵ ¼ 0.2 intro-
duced in Sec. IV C.
Previously, it has been suggested that the swap moves

increase the particle mobility because they allow the
particles to escape the cage formed by their neighbors
[37,50] after a nonlocal swap move. This view seems
correct when one considers that particles exchange their
positions because a caged particle indeed appears to jump
instantaneously to a novel position. However, the swapped
particle is actually replaced by another particle which then
occupies the caged position itself, and it jumps to a position
where another particle is caged, too. Therefore, it is not
clear that the cage is affected at all after a swap move,
and this simple explanation cannot explain the speedup of
the dynamics.
This conclusion is more easily grasped when one

considers, as we do, that particles simply exchange their
diameters during a swap move, without changing position.
In that case, the diameter of each caged particle slowly
fluctuates in time. For continuous polydisperse systems,
these time fluctuations take the form of a random walk in
diameter space. Therefore, we conclude that it is rather the
slow wandering of the diameter of each particle that allows
the system to relax more efficiently towards equilibrium. A
naive physical explanation would be that a caged particle
with a large diameter could start diffusing by shrinking its
radius, thus being able to squeeze and escape through a
small channel. We now demonstrate that the physics is
actually more complicated and more collective than this
naive image.
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FIG. 10. (a) Relaxation times for the nonadditive model with
n ¼ 12 and ϵ ¼ 0.2 for standard and swap Monte Carlo dynam-
ics. The standard dynamics is fitted with the VFT, parabolic, and
Arrhenius laws, as shown with lines, which are used to estimate
the location of the experimental glass temperature Tg, as shown
with vertical dashed lines. For this system, the swap dynamics is
able to provide stable and thermalized configurations at temper-
atures below Tg. (b) Relaxation times obtained from standard
(open symbols) and swap (filled symbols) dynamics for various
size polydisperse models of various softness (n) and nonaddi-
tivity (ϵ) are shown in an Arrhenius form with rescaled temper-
ature Tg=T, where Tg is estimated as in (a). For all models, the
thermalization speedup near Tg is of about 10 orders of
magnitude, some models being structurally stable down to
temperatures below Tg.
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To see this, let us start with some qualitative observations
on the time evolution of the diameter of a tagged particle.
We show two typical time series of σiðtÞ for two different
particles in Fig. 11. We rescale the time axis by τα to better
appreciate how much the particle diameter changes over a
relaxation time of the system. On short time scales, the
diameter fluctuates around its initial value, while at longer
times, it changes and eventually visits all values allowed by
the particle size distribution. At low temperatures, these
relaxation events occur suddenly and appear as jumps.
Overall, this behavior strongly resembles the typical
features of glassy dynamics known from real-space analy-
sis of single-particle displacements, very much mimicking
the cage effect and hopping motion. To reinforce this
analogy, we show the time series of the particle displace-
ments for the same two tagged particles in Fig. 11. As
expected, they display periods of immobility separated by
rapid jumps.
The comparison of the two panels reveals that some of

the sudden jumps in diameter space occur at similar times
as the sudden jumps of the particle in real space, which
indicates that diameter dynamics can trigger diffusion.
However, we can also detect jumps occurring in real space
without clear counterparts in diameter space, and vice
versa. These observations suggest that changing the diam-
eter of a single particle is not necessarily enough to trigger a
rearrangement, and they also suggest that changes in the
neighborhood of one particle may be enough to trigger a
displacement. Overall, the physical picture is that relaxa-
tion in these supercooled states is a collective process, and

the efficient thermalization with swap cannot be explained
on the basis of a simple single-particle argument.
To quantify the correlation between diameter and posi-

tion dynamics, we define a time correlation associated with
the time evolution of the diameters. We define the follow-
ing autocorrelation function for diameter fluctuations:

CσðtÞ ¼ hcσðtÞi ¼
�P

iδσiðtÞδσið0ÞP
iδσ

2
i ð0Þ

�
; ð17Þ

where δσiðtÞ ¼ σiðtÞ − hσi. This function is normalized so
that it evolves from unity when t ¼ 0 to zero at large times
when diameters become completely uncorrelated from their
initial values. The temperature variation of this function is
shown in Fig. 12(a). By lowering the temperature, CσðtÞ
develops a plateau after an initial short time decay and
eventually decorrelates at longer times. This confirms the
previous qualitative observations that the diameters remain
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FIG. 11. Time series of individual displacement ΔrðtÞ and
diameter value σðtÞ for two tagged particles in the nonadditive
model of Sec. IV C with ϵ ¼ 0.2 at T ¼ 0.0555. Intermittent
diffusion in real and diameter space is observed, with strong
correlations between ΔrðtÞ and σðtÞ highlighted with dashed
lines, but we also observe many events in one observable that
have no counterpart in the other, indicating that the correlation
between the two observables is nonlocal.
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FIG. 12. Nonadditive model of Sec. IV Cwith ϵ ¼ 0.2. (a) Time
autocorrelation of particle diameters CσðtÞ measured during the
swap dynamics for temperatures, as in Fig. 4. (b) Relaxation
times τα, τσ , and τo as a function of temperature, with τσ and τo
rescaled to coincide with τα at T ¼ 0.175 (shown with the
horizontal bar). The three time scales obviously have the same
temperature dependence.
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“caged” around some initial value before complete
decorrelation.
Let us define the diameter decorrelation times τσ as the

value of time such that CσðτσÞ ¼ e−1. In Fig. 12(b), we
compare the temperature evolution of three different
relaxation times for single-particle motion τα, for single-
particle diameter τσ, and for collective density fluctuations
τo. We absorb the observable dependence of these three
time scales by rescaling them at a single temperature where
the relaxation is fast, namely, T ¼ 0.175. The striking
result of these measurements is that single-particle dis-
placements, density fluctuations, and diameter fluctuations
all relax on the same time scale. Because diffusion is fully
arrested when the diameters do not fluctuate, we conclude
that it is the efficient dynamics in diameter space that drives
the structural relaxation in position space and, therefore, the
efficient thermalization of the system.
A further intriguing observation about the role of

diameter fluctuations stems from the data shown in
Fig. 4, where time correlation functions for standard and
swap dynamics are compared at the same very low temper-
ature, where even the swap dynamics is very slow. In that
case, one observes that the plateau height related to short-
time vibrational motion is different in the two dynamics, the
amplitude of these vibrations being much larger when the
swap dynamics is used. This observation implies that at
short times, the small fluctuations in particle diameters act
as an additional degree of freedom that allows each particle
to perform back and forth caged motion over a typical
distance that is larger than in the standard dynamics. These
larger in-cage fluctuations suggest a possible “softening” of
local cages, which seems to correlate well with an accel-
eration of the dynamics. Such a correlation between short-
time motion and structural relaxation is often discussed in
the context of glass-forming models [75–78], and it would
be interesting to study it further in the present context.

B. Spatially heterogeneous dynamics

The correspondence between the time scales for diameter
and position dynamics, accompanied by a lack of strong
correlation at the single particle level, suggests that the
physics of diffusion in real and diameter space is co-
operative in nature. For instance, diffusive events could
happen more easily in a spatial region where the diameter
dynamics has been particularly efficient. This hypothesis
suggests that we investigate the existence of spatial
correlations of the dynamical relaxations.
To illustrate this point qualitatively, we show in Fig. 13

two typical configurations at a temperature T ¼ 0.0555.
We measure the dynamics between an arbitrary initial time
t ¼ 0 and a later time t ¼ ταðTÞ=2. In Fig. 13(a), we show
the particles having the 10% largest displacements in real
space over this time lag, whereas in Fig. 13(b), we show the
particles having the 10% largest displacements in diameter
space. Particles are drawn using rescaled final diameter

values. We observe a close similarity between regions of
faster diffusing particles and regions of particles with large
diameter changes, but we also recognize that the correlation
does not hold at the particle level. Thus, we conclude that
diameter changes and structural relaxation may affect each
other in a nonlocal fashion.
The spatial correlations of diameter fluctuations can be

characterized using the multipoint functions introduced to
study cooperative motion in supercooled liquids [79]. The
generic expression of the dynamical susceptibility related
to a time-dependent observable OðtÞ is

χO4 ðtÞ ¼ N½hO2ðtÞi − hOðtÞi2�: ð18Þ

It quantifies the extent of spatial correlations associated
with the local observable O over a time scale t [79]. Here,
we measure dynamic susceptibilities associated with both
the self-part of density fluctuations, χd4ðtÞ with OðtÞ ¼
fsðk; tÞ [see Eq. (11)], and with diameter fluctuations, χσ4ðtÞ
with OðtÞ ¼ cσðtÞ [see Eq. (17)]. These functions provide
information on the spatially heterogeneous dynamics of
particle displacements and of diameter changes, and they
typically display a peak around the time scales τα and τσ,
respectively. In Fig. 14, we report the height of these two
peaks, χd�4 and χσ�4 , as a function of the temperature. In
addition, we also measure and report the behavior of χd�4 for
the standard Monte Carlo dynamics.
This figure provides two main pieces of information.

First, we notice that the temperature dependence of χd�4 in
standard and swap simulations is very different. The
behavior for standard Monte Carlo is as reported before
[80], where χd�4 increases rapidly from a value χd�4 ≈ 1when
the temperature is decreased below the onset To ≈ 0.18 to a
value χd�4 ≈ 12 when approaching TMCT, in a way that
mirrors the evolution of the relaxation time τα, as demon-
strated in Fig. 14. The traditional interpretation is that
dynamics becomes spatially correlated over larger length

FIG. 13. Snapshots of the 10% of particles with (a) the largest
displacements and (b) the largest diameter change, computed
between times t ¼ 0 and t ¼ τα=2 for T ¼ 0.0555. There is a
clear correlation between the spatial regions where dynamics in
real and diameter spaces are fast, but the correlation is weak at the
single-particle level.
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scales as the temperature is lowered. A striking observation
is that the swap dynamics near TMCT displays essentially no
spatial dynamic correlations. By construction, swap moves
can affect the dynamics of the system but not its equilib-
rium static properties. Therefore, we conclude that the
growth of the spatial correlations detected by χd�4 for T >
TMCT in standard dynamics is mostly of dynamic, rather
than structural, origin. This finding, which agrees qualita-
tively with previous conclusions [81,82], may also explain
why the swap algorithm can be very efficient: If spatial
correlations have a strong structural component, then a
strong numerical acceleration would likely necessitate the
introduction of a more collective algorithm.
The second key point from Fig. 14 is that both quantities

χd�4 and χσ�4 with swap dynamics are quantitatively very
close, which confirms that fluctuations in real and in
diameter spaces are strongly correlated. Even though the
correlation is not strong at the local scale, diameter
fluctuations display the same temperature evolution as
dynamic heterogeneities. In addition, both quantities follow
the growth of the swap relaxation time, the swap algorithm
becoming slow at low enough temperatures, at which
important spatial correlations of the diameter dynamics
are needed to relax to system towards equilibrium.

VI. IDEAS FOR THE FUTURE DESIGN
OF GLASS-FORMING MODELS

In this section, we build on the detailed level of under-
standing of the swap mechanism reached in the previous
sections to propose novel directions and ideas to design
new glass-forming models for which the swap Monte Carlo
approach could be very efficient.

A. “Hybrid” models for binary mixtures

A large number of models studied in the past were based
on discrete mixtures [58,68,83], as studied in Sec. III. We
concluded that the swap method was not well suited for
binary mixtures because a large acceptance rate for the
swap seems incompatible with a good structural stability.
We now show that it is possible to construct models that
have the characteristics of binary mixtures and reasonable
stability and that can be efficiently simulated using the
swap algorithm.
Our idea is to introduce what we call a “hybrid” particle

size distribution, as sketched in Fig. 1. These distributions
are composed of two main peaks that are a good repre-
sentation of an A-B binary mixture. In order to have a good
glass-forming ability, we choose an equal concentration of
particles in these two peaks, and, more importantly, we
choose a size ratio that is large enough to avoid the
crystallization observed otherwise. Because such a large-
size ratio implies that ðA;BÞ swap moves are always
rejected, we introduce a third specie in the model, asso-
ciated with a flat continuous distribution of particle sizes
that smoothly connects the two main peaks of the binary
mixture. The main idea is that a particle belonging to one of
the two main components can be swapped with particles
belonging to the intermediate third specie, and it can then
slowly tunnel through to reach the other specie. In other
words, whereas a direct particle exchange between A and B
is unlikely, the addition of the interpolating specie facil-
itates such exchanges, which can then happen via a large
number of intermediate swaps that all have a large
acceptance rate.
In practice, we introduce two species (A, B) with flat con-

tinuous polydispersity around two average diameter values
(σA, σB) such that σB=σA ¼ 1.6. We add a third specie, C,
with an average diameter value σC ¼ ðσA þ σBÞ=2, which
continuously interpolates between small and large diameters.
Each specie contains roughly 1

3
of the particles. The final

size distribution is described by Eq. (3), with the chosen
parameters xA ¼ 0.33, xB ¼ 0.34, xC ¼ 0.33, σA ¼ 0.76,
σB ¼ 1.23, σC ¼ 1.00, bA ¼ 0.04, bB ¼ 0.04, and
bC ¼ 0.26. The two-body potential is given by Eqs. (5)
and (6), with n ¼ 12 and a cutoff distance of rcut ¼ 1.25σij.
We perform simulations with N ¼ 1000 at ρ ¼ 1.3. With
these parameters, the polydispersity is δ ¼ 20%.
Results for the relaxation times are presented in Fig. 15.

As usual, we use disconnected points to represent unstable
state points for which short simulations are used to estimate
τα. For this system, again, we observe that equilibration is
easily attainable for temperatures below TMCT, and resis-
tance to ordering is ensured down to relatively low temper-
atures, T ≈ 0.75TMCT. However, at lower temperatures, the
system again presents instabilities because of the tendency
towards phase separation, which we observe through low-k
values of the structure factor. Preliminary results indicate
that using nonadditive interactions will most certainly
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stabilize the system down to even lower temperatures, but
the main goal of this section has nevertheless been reached.
We have indeed designed a model that is structurally
similar to an equimolar binary mixture with size ratio
1.6, but it can be efficiently studied using the swap
algorithm down to T ¼ 0.75TMCT via the introduction of
a third, intermediate specie. Using the same fitting pro-
cedure as above, we estimate that these low temperatures
allow us to access a total dynamic range of about
τα=τ0 ≈ 108, so the swap Monte Carlo method already
allows the exploration of a novel temperature regime
corresponding to an increase in relaxation times of about
3–4 orders of magnitude as compared to standard
Monte Carlo simulations. It would be interesting to study
hybrid variants of discrete mixtures, in which the concen-
tration of specie C is small enough to be considered as a
small perturbation of the original model. Work in this
direction is in progress.

B. Lennard-Jones interactions

Up to now, we have studied pair potentials describing
repulsive soft spheres with inverse power-law repulsion of
various softness. However, more realistic pair interactions
including attractive forces are often used in studies of
supercooled liquids. Perhaps the most studied pair inter-
action is the Lennard-Jones potential [58], which contains a
soft power-law repulsion with exponent n ¼ 12, combined
with a soft power-law attraction with exponent n ¼ 6
[see Eq. (7)].
In this final study, we test whether Lennard-Jones inter-

actions can also be efficiently studied using the swap

MonteCarlo algorithm.To this end,we start fromtheprevious
“hybrid”model studied in Sec. VI A and include a power-law
attraction. Because the potential is now longer-ranged, we
use a larger cutoff rcut ¼ 2.5σij and shift the potential by
the constant cLJ to ensure the continuity of the potential at
the cutoff. All other parameters are equal to the ones
employed in the hybrid repulsive model in Sec. VI A.
We again perform a comparison of the standard and swap

dynamics for this Lennard-Jones system and present the
results along with the ones of the corresponding repulsive
case in Fig. 15. We find that including attractive forces
modifies both dynamics very little, apart from a rescaling of
the temperature scale: The mode-coupling crossover tem-
perature shifts from 0.680 to 0.543 when including attrac-
tive forces [84]. As a result, the above conclusions
regarding stability and thermalization efficiency directly
carry over to this Lennard-Jones system. Our main con-
clusion is therefore that our “feasibility study” is successful
and that glass-forming models with Lennard-Jones inter-
actions and a binarylike size distribution can be devised and
studied down to very low temperatures using the swap
algorithm. Such models will most certainly prove useful in
future studies of the glass transition.

VII. PERSPECTIVES

In this article, we established that a number of glass-
forming models with various pair interactions, particle size
distributions, and degree of nonadditivity can be efficiently
simulated using a simple swap Monte Carlo algorithm and
remain excellent glass formers down to very low temper-
atures. For some models, we have been able to thermalize
the metastable fluid down to temperatures that are lower
than the laboratory glass transition, which represents the
current experimental limit for molecular liquids. Therefore,
our paper not only fills the 8-orders-of-magnitude gap
between ordinary simulations and experimental work, but it
actually goes beyond state-of-the-art experiments and
demonstrates that both static and short-time dynamical
properties can now be studied in computer simulations in a
novel temperature regime. In addition to static quantities,
by using thermalized configurations obtained with the swap
method as initial conditions for trajectories generated
without swap, we believe it is possible to substantially
extend the dynamic window for structural relaxation, which
may shed new light on the glassy dynamics as well.
Our achievements are summarized in Fig. 1, but through-

out the article, we have suggested several ways in which
our approach could be extended to devise different or more
realistic models of glass-forming materials. We have also
suggested ways in which the algorithm itself could be
improved, and we have described several paths that remain
to be explored in future work. We expect that these results
will trigger much research activity towards these goals.
Obtaining thermalized states in simple models of

supercooled liquids at temperatures comparable to the

0.8 1.2 1.6 2
T/TMCT

10
3

10
4

10
5

10
6

10
7

τ α
Repulsive
LJ

FIG. 15. Relaxation times for repulsive and Lennard-Jones
potentials with a hybrid particle size distribution. Temperatures
are scaled by TMCT to allow direct comparison between models,
with TMCT ¼ 0.680 and 0.543 for repulsive and LJ potentials,
respectively. Open symbols represent the standard Monte Carlo
dynamics, closed symbols the swap algorithm, for which un-
connected symbols represent structurally unstable state points
where only a rough estimate of τα is obtained in short simulations.
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experimental glass transition paves the way to a number of
novel studies because essentially all simulation work
published over the past 30 years could be performed again
over a previously inaccessible temperature regime. Some
works along these lines have already been published
[51,52], and others are currently in progress regarding
the thermodynamic properties of deeply supercooled
liquids, their local structure, vibrational and mechanical
properties, and the existence of a Gardner transition in soft
glasses.
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