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Applications with Security Needs

Applications: smart cards, computers, Internet, telecommunications,
set-top boxes, data storage, RFID tags, WSN, smart grids. . .
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Cryptographic Features

Objectives:

• Confidentiality

• Integrity

• Authenticity

• Non-repudiation

• . . .

Cryptographic primitives:

• Encryption

• Digital signature

• Hash function

• Random numbers generation

• . . .

Implementation issues:

• Performances: speed, delay, throughput, latency

• Cost: device (memory, size, weight), low power/energy consumption,
design

• Security: protection against attacks
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Symmetric / Private-Key Cryptography

A BM

E D

k

Ek(M)

k

Dk(Ek(M)) =M

• A : Alice, B : Bob

• M: plain text/message

• E : encryption/ciphering algorithm, D: decryption/deciphering
algorithm

• k : secret key

to be shared by A and B

• Ek (M): encrypted text

• Dk (Ek (M)): decrypted text

• E : eavesdropper/spy
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Advanced Encryption Standard (AES)

Established by NIST
in 2001

Symmetric encryption

Block size: 128 bits

key length #round

128 10
192 12
256 14

Based on substitution-
permutation
network

Image source: http://fr.wikipedia.org/

NIST: National Institute of Standards and Technology
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AES Round Operations

Images source: http://fr.wikipedia.org/
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Asymmetric / Public-Key Cryptography

A BM

E D

k

Ek(M)

k

k ′

Dk ′(Ek (M)) =M

E

• k : B’s public key (known to everyone including E)

• Ek (M): ciphered text

• k ′: B’s private key (must be kept secret)

• Dk ′(Ek(M)): deciphered text
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RSA Asymmetric Cryptosystem (1/2)

Published in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman [17]

Key generation (Alice side)

• Choose two large prime integers p and q

• Compute the modulus n = pq

• Compute ϕ(n) = (p − 1)(q − 1)

• Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

• Compute d = e−1 mod ϕ(n)

• Private key (kept secret by Alice): d and also p, q, ϕ(n)

• Public key (published): (n, e)
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RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 10/62



Modular Exponentiation

Computation of operations such as : ab mod n

ab = a× a× a× a× . . .× a× a× a︸ ︷︷ ︸
a appears b times

Order of magnitude of exponents: 2size of exponent  21024 . . . 22048 . . . 24096

Fast exponentiation principle:

ab = (a2)
b
2 when b is even

= a× (a2)
b−1

2 when b is odd

Least significant bit of the exponent: bit = 0 even and bit = 1 odd
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Square and Multiply Algorithm

input : a , b , n where b = (bt−1bt−2 . . . b1b0)2

output : ab mod n

r = 1
f o r i from 0 to t − 1 do

i f bi = 1 then
r = r · a mod n

e n d i f
a = a2 mod n

endfor
return r

This is the right to left version (there exists a left to right one)
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Hardware Accelerators for Elliptic Curve Crypto.

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

GF(p) or GF(2m) operations
operation modulo large prime (GF(p))
or irreducible polynomial (GF(2m))
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Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
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Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value
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Side Channel Attacks (SCAs) (2/2)

A B

E D

M

k

Ek (M)

k

Dk (Ek (M)) =M

E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations
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What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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Simple Power Analysis (SPA)

Source: [11]

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 19/62



Simple Power Analysis (SPA)

Source: [11]

Arnaud Tisserand. CNRS – Lab-STICC. Embedding Crypto in SoCs: Threats and Protections 19/62



Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces
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Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis
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Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis
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Electromagnetic Radiation Analysis

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe
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Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks
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Fault Injection Attacks

Objective: alter the correct functioning of a system “from outside”

Fault effects examples:

• modify a value in a register

• modify a value in the memory hierarchy

• modify an address (data location or code location)

• modify a control signal (e.g. status flag, branch direction)

• skip/modify the instruction decoding

• delay/advance propagation of internal control signals

• etc.

Also called perturbation attacks
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Fault Injection Techniques

Typical techniques:

• perturbation in the power supply voltage

• perturbation of the clock signal

• temperature (over/under-heating the chip)

• radiation or electromagnetic (EM) disturbances

• exposing the chip to intense lights or beams

• etc

Accuracy:

• time: part of clock cycle, clock cycle, code block (instruction sequence)

• space: gate, block, unit, core, chip, package

• value: set to a specific value, bit flip, stuck-at 0 or 1, random
modification
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Perturbation on the Power Supply
Principle:

controlled
power
supply

time

voltage

• Nominal power supply (e.g. ≈ [0.7, 1.2] V for current technologies)

• Non-nominal constant power supply (e.g. 0.7 V instead of 1.2 V)

• Glitches (dips, spikes) in the power supply at some selected moments
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Under Powering Example
Source: paper [19] presented at EDCC 2008 conference

Setup: 130 nm smart card (1.2 V nominal VDD) with AES crypto-processor

Measurement campaign: triples (msg, key, cypher) recorded for 100 VDD

in [775, 825] mV over 20,000 encryptions with comparison to a (RTL)
simulation for one byte corruption in the state matrix at various rounds

Observed behavior is compatible with setup violation model on a critical
path (bell shape due to only one or multiple paths)
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Power Glitching Example
Source: FDTC 2008 conference paper [18]

Setup: AVR microcontroller with RSA implementation

Attack result: a power glitch causes to skip some instruction
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Perturbation on the External Clock
Principle:

time

voltage

CLK

• Normal clock (at a given frequency, duty cycle ≈ 50%)

• Clock with a modified duty cycle
• Glitched clock
• Etc.
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Perturbation on the External Clock
Principle:

time

voltage

CLK

MCLK

GCLK

glitches

• Normal clock (at a given frequency, duty cycle ≈ 50%)
• Clock with a modified duty cycle
• Glitched clock
• Etc.
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Glitchy Clock Generation Example
Source: paper [10] published in J. Crypto. Eng. 2011

Setup: Virtex-II Pro FPGA (on SASEBO card) used to generate a
“glitchy” clock for several programmable time parameters
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Clock Glitch Attack Example

Source: paper [1] presented at FDTC 2011 conference

Setup: AVR ATMega 163 microcontroller @ 1MHz

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 EOR R15,R5 0010 0100 1111 0101

glitch 59 ns i + 1 NOP 0000 0000 0000 0000

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 SER R18 1110 1111 0010 1111

glitch 61 ns i + 1 LDI R18,0xEF 1110 1110 0010 1111
glitch 60 ns i + 1 SBC R12,R15 0000 1000 0010 1111
glitch 59 ns i + 1 NOP 0000 0000 0000 0000
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mode glitch period cycle instruction opcode (bin)

normal - i TST R12 0010 0000 1100 1100
normal - i + 1 BREQ PC+0x02 1111 0000 0000 1001
normal - i + 2 SER R26 1110 1111 1010 1111

glitch 57 ns i + 2 LDI R26,0xEF 1110 1110 1010 1111
glitch 56 ns i + 2 LDI R26,0xCF 1110 1100 1010 1111
glitch 52 ns i + 2 LDI R26,0x0F 1110 0000 1010 1111
glitch 45 ns i + 2 LDI R16,0x09 1110 0000 0000 1001
glitch 32 ns i + 2 LD R0,Y+0x01 1000 0000 0000 1001
glitch 28 ns i + 2 LD R9,Y 1000 0000 0000 1000
glitch 27 ns i + 2 LDI R16,0x09 1110 0000 0000 1001
glitch 15 ns i + 2 BREQ PC+0x02 1111 0000 0000 1001
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Electromagnetic Perturbations

Principle:

circuit
pulse
gen-

erator

Y

X

Z

• large antenna

• micro-antenna

with motorized (X,Y,Z) stage/table
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Electromagnetic Attack Example
Source: article [12] presented at FDTC 2013 conference

Setup: 32-b Cortex-M3 ARM microprocessor (CMOS 130 nm SoC at
56 MHz), magnetic antenna with pulses in [-200, 200] V and [10, 200] ns
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Loaded value: 12345678

Pulse voltage [V] Loaded value Occurrence rate [%]
170 1234 5678 100
172 1234 5678 100
174 9234 5678 73
176 FE34 5678 30
178 FFF4 5678 53
180 FFFD 5678 50
182 FFFF 7F78 46
184 FFFF FFFB 40
186 FFFF FFFF 100
188 FFFF FFFF 100
190 FFFF FFFF 100
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Lights / Lasers

Principle:

circuit

• large illuminated area (flash light with microscope)

• small “spot” (laser with variable locations)
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Differential Fault Analysis

Most of time, exploiting only one fault does not provide enough information

• Accurately injecting fault is difficult

• The fault causes a few perturbations

Then, use statistical correlation(s)
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Safe Error Attack

Principle: exploit the link (or the lack of link) between injected fault(s)
during “useful” (or “useless”) operations and the final result

time

o1 o2 o3 o4 o5

o3 o4 o5

end

o3 o4o3 o4
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Safe Error Attack Example in Asymmetric Crypto

for i from 0 to n − 1 do

if si = 1 then

v ← f (v , . . .)

v ← g(v , . . .)

Useless or dummy operations are a bad idea
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Fault Attack Example: Bit Flip on RSA Decryption

A B

E D

k ′ k

M
C = Ek (M)

flip(di )

Dk(C) =M

• choose a plaintext message M
• encrypt M into C = Ek(M)

• inject a fault by fliping di for a random i (d is the secret key)

• compute MM = c2i di

c2i di

• test:
I M
M = 1

c2i mod N =⇒ di = 1

I M
M = c2i

mod N =⇒ di = 0

• retry for several i (=⇒ get small parts of d , then mathematical
attacks)
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Many other fault attacks. . .
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Countermeasures

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . . )

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . . )
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Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1
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Circuit Logic Styles
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1
r0

valid

Important overhead: silicon area and local storage (registers)
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Circuit-Level Protections for Arithmetic Operators

References: [8] and [9]
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Countermeasure: Architecture

Increase internal parallelism:

• replace one fast but big operator

• by several instances of a small but slow one

ar
ch

i.
A

op

ar
ch

i.
B

op1

op2

op3

op4

time

op op op op op op op op

op

op

op

op

op

op

op

op
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Protected Multipliers

Unprotected
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 200  225  250
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Protected

Overhead:
Area/time < 10 %

References:
PhD D. Pamula [13]
Articles: [16], [15],
[14]
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Protected ECC Accelerator
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Warning: old dedicated accelerator (similar behavior is expected for our new one)
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Arithmetic Level Countermeasures

Redundant number system =

• a way to improve the performance of some operations

• a way to represent a value with different representations

k

R1(k)

[R1(k)]P

R2(k)

[R2(k)]P

R3(k)

[R3(k)]P

R4(k)

[R4(k)]P

R5(k)

[R5(k)]P

R6(k)

[R6(k)]P

R7(k)

[R7(k)]P

. . .

. . .

Important property: ∀i [Ri (k)]P = [k]P

Proposed solution: use random redundant representations of k
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Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1 kt−2

. . . k2 k1 k0 t explicit digits

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

kn−1

an−1

bn−1

. . .

. . .

. . .

k1

a1

b1

k0

a0

b0

n (2, 3)−terms

explicit “digits”

explicit ranks

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Randomized DBNS Recoding of the Scalar k

encryption

signature

etc
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[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules
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On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

DBNS is redundant ⇒ security ↗
DBNS is sparse ⇒ 20–30 % speed ↗

Ref: [7] Chabrier, Pamula & Tisserand.
Asilomar 2009
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Hardware Implementation of RNS for ECC (1/2)
RNS: Residue Number System

• Base B = (m1,m2, . . . ,mk ) of k relatively prime moduli

• Size of the base: k

A = {a1, a2, . . . , ak}, ∀i ai = A mod mi

Operations:
A± B = (|a1 ± b1|m1 , . . . , |ak ± bk |mk

)

A× B = (|a1 × b1|m1 , . . . , |ak × bk |mk
)
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Hardware Implementation of RNS for ECC (2/2)

Rower 1

w

w

mod3

Rower 2

w

w

mod3

. . .

. . .

Rower n

w
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mod3
Cox mod3
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. . .

...
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w
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w w
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w w
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channel n

w w
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. . .

. . .

CTRL
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. . .
...

CTRL
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local reg.
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Arithmetic Unit
(6 pipeline stages)

{rst, mode, . . .}

ww

w

w w

IN
w

OUT
w

mod3

OUT mod3
2

cmp
w

= 1̂ = −̂1

precomp.
mult.

≈ 2n × w w

@1

precomp.
ri (×2)

@2

dl
o
g
2
r i
e

precomp.
add.

38 × w

@3

w

Optimized algorithms and implementations for GF(p) operations:

• fast operations: inversion [3], modular multiplication [5], patterns [4]

• PhD Thesis Karim Bigou [2]

• hybrid positio-residues (HPR) representation [6]
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Comparison ECC 256 vs HECC 128 (1/2)
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On average HECC is 40 % faster than ECC for a similar silicon cost
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Comparison ECC 256 vs HECC 128 (2/2)
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Conclusion

• Side channel and fault attacks are serious threats

• Attacks are more and more efficient (many variants)

• Security analysis is mandatory at all levels (specification, algorithm,
operation, implementation)

• Security = trade-off between performances, robustness and cost

• Security = func( secret value, attacker capabilities )

• security = computer science + microelectronics + mathematics

Current works examples:

• Methods/tools for automating security analysis

• Circuit reconfiguration (representations, algorithms)

• Circuits with reduced activity variations

• Representation of numbers with error detection/correction “codes”

• Design space exploration

• CAD tools with security improvement capabilities
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Our Long Term Objectives
Study the links between:

• cryptosystems

• arithmetic algorithms

• Fq, pts representations

• architectures & units

• circuit optimisations

to ensure

• high security against
I theoretical attacks
I physical attacks

• low design cost

• low silicon cost

• low energy(/power)

• high performances

• high flexibility

area 1

delay 1

energy 1

security 1
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The end, questions ?

Contact:

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

• CNRS, Lab-STICC Laboratory
University South Brittany (UBS),
Centre de recherche C. Huygens, rue St Maudé, BP 92116,
56321 Lorient cedex, France

Thank you
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