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This work is devoted to the exploration of new procedures for the development of subgrid-

scale (SGS) models in the context of large-eddy simulation (LES) of a passive scalar. The

starting idea is to combine the optimal estimator theory with machine-learning procedures.

The concept of optimal estimator is then used to determine the most accurate set of input

parameters (also called features in machine-learning terminology) to be used when deriving a

model of the SGS scalar flux. The SGS model can be defined as a surrogate model built from

this set of parameters by training an artificial neural network (ANN) on a database built by

the filtering of direct numerical simulation (DNS) results. This procedure leads to a model

with good structural performance. This allows to perform LES very close to the filtered DNS

results, and showing an improvement in comparison with algebraic models. However, this first

procedure does not control the functional performance of the SGS model and the model can fail

when the flow configuration is different from the training DNS database. Another procedure

is then proposed, where the functional form is imposed and the ANN used only to define the

model coefficients. The training step is an optimization based on a multi-objective genetic

algorithm allowing to simultaneously control the structural and functional performances of

the generated model. The model obtained from this second procedure proves to be more
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robust, leading to accurate LES for different mixing conditions. This work is thus a first step

to establish the concept of optimal estimator associated with machine-learning procedures as

a useful tool for SGS model development.

Keywords: LES, subgrid-scale scalar flux modeling, optimal estimator, surrogate function,

artificial neural network (ANN), multi-objective genetic algorithm (MOGA)

1. Introduction

Various applications need to solve a scalar equation simultaneously with the govern-

ing flow equations. In these applications, the scalar can represent the temperature

field or the concentration of chemical species in combustion, mixing, or heat trans-

fer studies. Owing to the large range of motion scales in turbulent flows, the direct

numerical simulation (DNS) of realistic applications is not yet available because

of significant computational cost. To overcome this limitation, the LES technique

proposes to explicitly solve only the large scales of the flow and to model the small-

est scales. This separation between resolved large scales and modeled small scales

is performed by a filtering operation. The filtered transport equation for a passive

scalar takes the form of the instantaneous advection-diffusion equation applied to

the resolved passive scalar and also includes a SGS scalar flux divergence, which

has to be modeled to perform LES. The SGS model is an algebraic expression

using resolved (large-scales) quantities as input parameters, which is expected to

correctly predict the SGS term and its effects on the resolved field.

Two main strategies exist for developing SGS models: functional and structural

strategies [1]. The functional modeling strategy considers the action of the subgrid

term on the transported quantity and not the unknown term itself. It can introduce

for instance a dissipative term, producing a similar effect while not necessarily dis-

playing the same spatial structure. In the context of passive scalar LES, the usual

functional modeling strategy is based on the definition of an eddy-diffusivity DT
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to model the SGS scalar flux. Moin et al. [2] introduced a dynamic model for DT ,

similarly to the dynamic Smagorinsky model used to model the eddy viscosity [3].

This dynamic eddy-diffusivity model will be denoted DED from now on.

Conversely, the structural modeling strategy makes use of the known structure

of the unknown SGS term to develop the best local approximation for this SGS

term. A classical way to develop such a model is to rely on formal mathematical

developments. For example, the gradient model [4] is based on the Taylor series

expansion of a canonical class of filtering kernel. More recently, Wang et al. [5] have

proposed to extend the DED model based on mathematical properties of tensor

invariants and also using a dynamic procedure close to the procedure proposed by

Germano et al. [3]. The dynamic nonlinear tensorial diffusivity (DNTD) model de-

veloped by these authors can be considered as a nonlinear extension of the dynamic

eddy-diffusivity model, derived following a structural modeling strategy.

In the spirit of these different modeling strategies, SGS models can also be as-

sessed in terms of functional and structural performances [6, 7]. The structural

performance is defined as the model’s ability to locally describe the SGS unknown

term appearing in the resolved equation (here, the SGS scalar flux divergence).

Langford and Moser [8] propose the quadratic error between the exact and the

modeled term as the relevant modeling error to consider in LES to measure the

structural performance. The functional performance measures the model’s ability

to reproduce the effect of the SGS term on the transported quantity, and not the

SGS term itself. For SGS scalar flux models, the functional performance can be

measured by the model’s ability to well reproduce the grid-scales/subgrid-scales

(GS/SGS) transfer between the resolved scalar variance and the SGS scalar vari-

ance. This transfer is controlled by the SGS scalar dissipation rate, which should

therefore be correctly reproduced by the SGS model to achieve an accurate LES



May 19, 2017 Journal of Turbulence LES˙OE

4 Taylor & Francis and I.T. Consultant

[9]. Both model performance measurements, structural or functional, require the

exact SGS quantities and are thus performed in the framework of a priori test

where DNS results are filtered to obtain an exact evaluation of SGS terms.

Since structural performance measurement is based on the evaluation of a

quadratic error, a possible strategy to improve SGS models can be built upon

a systematic reduction of this error. Within the LES context, a modeling error

decomposition can be proposed, which relies on the concept of optimal estimator

[10] in the framework of the optimal estimation theory [11]. The optimal estimator

concept forecasts that any model built on a given set of parameters will display

a quadratic error higher than a minimal value, called the irreducible error. The

total modeling error is thus split into the irreducible error and the formal error.

The irreducible error is the part of the modeling error which results from the set

of parameters chosen to write the model, whereas the formal error is the part of

the modeling error which results from the functional form chosen to link these

parameters when approximating the SGS term. This error decomposition provides

valuable information on the SGS models used in LES. First, the total error can be

assessed for each model to see which one yields the best results as far as the model-

ing of the unknown SGS term is concerned. The most suitable set of parameters to

model the SGS term can also be determined by comparing the irreducible error for

different models. The set of parameters with the smallest irreducible error will be

the best candidate to design a model. Finally, the optimal estimator theory informs

to what extent a model based on a fixed set of parameters can be improved. Indeed,

a quadratic error for a given model found much higher than its irreducible part

means the formal error is important and a modeling improvement can be expected

from a better choice of functional form while keeping the same set of parameters.

This concept has already been used as an analysis tool to improve existing mod-
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els [6, 7, 12, 13]. In the present work, this modeling error decomposition will be

directly used to derive a new SGS model.

The starting point retained in this work to develop accurate SGS models is

to take advantage of the growing available computational resources, which allow

to generate a large DNS database. In the field of big data processing, the DNS

database associated with explicit filtering can be used to better understand SGS

model performance but also to devise an accurate SGS model by learning from

this DNS database. Probably one of the first application of a machine-learning

approach to the development of turbulence closures and more particularly SGS

models can be found in the work of Sarghini et al. [14], where an artificial neu-

ral network (ANN) is trained and validated using the flowfields provided by the

scale-similarity model [15] in order to model the turbulent viscosity coefficient.

Milano and Koumoutsakos [16] used turbulent channel flow DNS results in order

to train an ANN for reconstructing the near wall flow. Recently, Tracey et al.

[17] used supervised learning algorithms to reproduce RANS results obtained with

the one-equation Spalart-Allmaras model, retained as truth model, without knowl-

edge of the structure, functional form and coefficients of this model. Noteworthy

in the field of physics-informed RANS modeling is also the work of Wang et al

[18] where a machine learning technique based on random forest is applied to train

RANS Reynolds stresses from DNS databases. Whatever the turbulence modeling

context (RANS or LES), applying machine-learning to derive improved models re-

quire to carefully select the features set processed by the algorithm as well as the

target outputs. Singh and Duraisamy [19] have thus developed a data-informed

approach which allows to quantify errors and uncertainties in the functional form

of turbulence closure models. The information provided by this field inversion pro-

cedure can next be used as input to machine learning algorithms in lieu of deficient
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modeling terms. Parish and Duraisamy [20] combine the previous field inversion

and machine learning to propose a novel data-driven predictive modeling recently

applied to the prediction of turbulent channel flow. In the field of RANS model-

ing, Ling et al. [21] have proposed a novel neural network architecture to embed

key physical modeling properties, namely Galilean invariance, into the predicted

output, namely the Reynolds stress anisotropy tensor. This methodology has been

generalized in [22] to physical systems with invariance properties. As far as SGS

modeling is concerned, autonomic closures have been studied by King et al. [23],

which rely on a general nonparametric relation (a Volterra series) to represent the

unclosed quantity in terms of resolved variables. This adaptative, self-optimizing

approach was successfully applied to a priori tests but remain to be assessed on a

posteriori tests.

After a brief review of the LES framework for the transport of a passive scalar

in Section 2, two SGS modeling procedures are presented which combine optimal

estimator theory and machine learning. The optimal estimator theory is used in

a first step so as to identify the relevant features which are processed in a second

step by the machine learning algorithm (ANN), using structural and / or functional

performance as target outputs. The first modeling procedure described in Section

3 is based on the sole improvement of the structural performance. The optimal

estimator is used to determine an appropriate set of input parameters. The model

is then derived by building a surrogate model based on this set of parameters,

using a classical ANN training. It is established that such an ANN model exhibits

good performances, in comparison with the DNTD and the DED models, but the

model can fail if it is used on different mixing conditions in comparison with the

condition of the DNS database used for the training step. A second improved

modeling procedure is then proposed in Section 4, which retains the algebraic
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expression of the DNTD model but computes the model coefficient with an ANN.

In order to take into account both structural and functional performance of the new

model, the training procedure of the ANN relies on a multi-objective optimization

algorithm. The model thus obtained leads to accurate LES for different mixing

conditions but leads to an over-prediction of the mixing process when applied to a

plane jet flow configuration with features far from the DNS database used for the

ANN training.

2. Review of LES framework for the transport of a passive scalar

The separation between resolved large scales and modeled small scales is performed

by a filtering operation, which takes the form of an integration on the overall

domain D :

f̄(~x, t) =

∫

~y∈D

f(~y, t)G(~x − ~y)d~y, (1)

to obtain the large-scale resolved field f̄ at point ~x from the turbulent field f , with

G the filter kernel. The filtered transport equation for a passive scalar, Z, is given

by

∂Z̄

∂t
+ ūi

∂Z̄

∂xi
=

ν

Sc

∂2Z̄

∂x2i
−

∂Ti

∂xi
, (2)

where Z̄ is the resolved passive scalar, ūi is the component of the filtered velocity

in the direction xi, ν is the kinematic viscosity, and Sc is the molecular Schmidt

number. The SGS scalar flux divergence, ∂Ti/∂xi, with Ti = uiZ− ūiZ̄, is the SGS

term which must be modeled to perform LES.

In the context of passive scalar LES, the usual functional modeling strategy

makes use of an eddy-diffusivity, DT , to model the SGS scalar flux as Ti =

−DT∂Z̄/∂xi. The dynamic eddy-diffusivity (DED) model proposed by Moin et
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al. [2] is defined as :

TDED
i = −DT

∂Z̄

∂xi
= C∆̄2|S̄|

∂Z̄

∂xi
, (3)

with ∆̄ the filter size, |S̄| =
(
2S̄ij S̄ij

)1/2
the norm of the filtered strain rate tensor,

S̄ij , and C the dynamic coefficient.

Following a structural modeling strategy, Wang et al. [5] have extended the DED

model into a dynamic nonlinear tensorial diffusivity (DNTD) model. According to

the theory of tensor invariants and functions, a vector-valued function Ti can be

decomposed by Noll’s formula [24] in a second-order symmetric tensor Mij and a

vector vi. From this formula, a general form of the SGS scalar flux can be written

as

Ti = f1vi + f2Mijvj + f3MikMkjvj , (4)

where f1, f2, and f3 are coefficients. In this decomposition, there is not a unique

choice to define vi and Mij. It is proposed in [5] to define vi equal to ∆̄2|S̄|∂Z̄/∂xi.

With this definition, the coefficients and the symmetric tensor, Mij , have to be

dimensionless. Mij can be generally defined as Mij = M∗
ij/|M

∗|, with M∗
ij a di-

mensional symmetric tensor. Wang et al. propose to take M∗
ij equal to S̄ij and to

compute coefficients with a dynamic procedure close to the procedure proposed by

Germano et al. [3], yielding the DNTD model :

TDNTD
i = χ1∆̄

2|S̄|
∂Z̄

∂xi
+ χ2∆̄

2S̄ik
∂Z̄

∂xk
+ χ3∆̄

2 S̄ikS̄kl

|S̄|

∂Z̄

∂xl
, (5)

with χ1, χ2, and χ3 the dynamic coefficients. Note that by keeping only the first

term of the RHS in Eq. (5), the DED model is recovered.

The structural performance of a SGS scalar flux model is defined as the model’s

ability to locally describe the SGS scalar flux divergence. Meanwhile, the functional

performance of a SGS scalar flux models can be measured by the model’s ability
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to well reproduce the grid-scales/subgrid-scales (GS/SGS) transfer between the

resolved scalar variance, Z̄2, and the SGS scalar variance, Z2 − Z̄2. This transfer

is controlled by the SGS scalar dissipation rate, −Ti∂Z̄/∂xi [25, 26], a usually

positive term on average but with possibly negative local value characterizing an

inverse transfer (backscatter).

A possible strategy to improve models can be based on a systematic reduction

of the quadratic error measuring the structural performance. Denoting h the SGS

term to model and g(φ) a model for h, based on a given set of input parameters φ,

the quadratic error writes

ǫQ = 〈(h− g (φ))2〉. (6)

In this definition, the brackets indicate a statistical average over a suitable ensem-

ble. The optimal estimator concept forecasts that any model g, built on the set of

parameters φ, will display a quadratic error higher than the minimal value, ǫirr,

also called the irreducible error and defined by the optimal estimation theory as

ǫirr = 〈(h− 〈h|φ〉)2〉 ≤ ǫQ, (7)

where 〈h|φ〉 is the expectation of the exact quantity h conditioned with the set

of parameters φ used to derive the model. The quantity 〈h|φ〉 is thus called the

optimal estimator of h for the set of parameters φ because no model using only

φ as set of parameters can lead to a smaller error. From the optimal estimator

concept, the total modeling error ǫQ can be split into an irreducible error ǫirr and

a formal error ǫform as follows :

〈(h− g (φ))2〉
︸ ︷︷ ︸

ǫQ

= 〈(h− 〈h|φ〉)2〉
︸ ︷︷ ︸

ǫirr

+ 〈(〈h|φ〉 − g (φ))2〉
︸ ︷︷ ︸

ǫform

, (8)

Identifying the set of parameters φ which yields the smallest irreducible error pro-
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vides, in a first step, the best candidate to design a model. This approach will be

followed next in paragraph 3.1. In a second step, the formal error resulting from the

functional form chosen to link this selected set of parameters φ can be minimized

using an artificial neural network, as detailed in paragraph 3.2. Both structural and

functional performance of a SGS scalar flux model will be simultaneously taken into

account when building another machine-learning based SGS model in Section 4.

3. SGS model built from an artificial neural network

In this section, a first strategy to develop SGS models is described. This strategy

is based on a DNS database, used to extract exact filtered quantities. In this work,

the flow configuration of the DNS database consists of a forced scalar field in a

forced homogeneous isotropic turbulence. The DNS is generated from a standard

pseudo-spectral code, and the simulation domain is discretized using 2563 grid

points on a domain of length 2π. A statistical steady flow is achieved by using a

random forcing scheme [27]. The scalar field is initialized between 0 and 1 [28], and

to achieve a steady state for the scalar, a forcing scheme is also applied to low-

wave number modes in Fourier space [26, 29]. The Schmidt number is taken equal

to 0.7 and the Reynolds number based on the Taylor microscale is around 95 at

the stationary state. The parameters are chosen to ensure all the dissipative scales

of the turbulence are simulated [30], thus such that kmaxη ≈ kmaxηB ≈ 1.5, where

kmax is the maximal wavenumber in the box, and η and ηB are respectively the

Kolmogorov and Batchelor scales. From DNS data, LES quantities are emulated

with an explicit spectral cutoff filter at several ratios ∆̄/∆, with ∆ the DNS grid

size. The code and the flow configuration are similar to those used in previous

works [6, 7, 12, 13].
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3.1. Determination of the set of input parameters

The optimal estimator theory is first used to determine an appropriate set of pa-

rameters to develop the model (i.e., the set of parameters leading to the smallest

irreducible error). The irreducible error will be low if a large set of uncorrelated

parameters is used [31]. Starting from the Noll’s formula, Eq. (4), various sets of

parameters can be proposed, depending on the choices made to define the sym-

metric tensor Mij and the vector vi. In this work, the vector vi is kept equal to

∆̄2|S̄|∂Z̄/∂xi, as proposed by Wang et al. [5], and only the definition of Mij is

discussed. Future works could be devoted to investigate alternative choices for vi

as well. Moreover, in Eq. (4), f1, f2, and f3 are coefficients depending on principal

invariants of Mij and vi defined as IM =Mii, IIM =MijMji, IIIM =MikMklMli,

Iv=vivi, IMv=viMikvk, and IIMv=viMikMkjvj [24]. Thus, neglecting the spatial

derivatives of coefficients, a set of parameters, φ, to model the SGS scalar flux

divergence, ∂Ti/∂xi, can be defined as

φ =

{

IM , IIM , IIIM , Iv, IMv, IIMv ,
∂vi
∂xi

,
∂Mijvj
∂xi

,
∂MikMkjvj

∂xi

}

. (9)

At this stage, various choices can be made to define the symmetric tensor, M∗
ij ,

based on the filtered velocity gradients [32]. A first choice can be M∗
1,ij = S̄ij , as

proposed for the DNTD model [5]. A second one can be M∗
2,ij = ∂ūi/∂xk∂ūj/∂xk,

considering the gradient model [4]. Other choices can also beM∗
3,ij= S̄ikΩ̄jk+Ω̄ikS̄jk

and M∗
4,ij = Ω̄ikΩ̄jk. The two last propositions come from the decomposition of

M∗
2,ij , using the filtered strain rate tensor, S̄ij , and the filtered rotation rate tensor,

Ω̄ij .

These propositions yield various sets of input parameters to write a model for

the SGS scalar flux divergence. The set of parameters φl is defined as the set

of parameters given by Eq. (9) using M∗
l,ij to define the symmetric tensor. To
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Figure 1. Evolution of the normalized irreducible errors as a function of the filter width for various set of

parameters: ǫirr,1 (red line), ǫirr,2 (green line), ǫirr,3 (black line), and ǫirr,4 (blue line).

determine the most appropriate set, the irreducible error of each set of parameters is

now computed on the DNS database. The irreducible error of the set of parameters

φl is defined as

ǫirr,l =

〈(
∂Ti

∂xi

DNS

−

〈
∂Ti

∂xi

DNS
∣
∣
∣
∣
φl

〉)2
〉

, (10)

where ∂TDNS
i /∂xi represents the exact divergence of the SGS scalar flux extracted

from the filtered DNS database, and a spatial averaging is used owing to the flow

configuration. The evolution with the filter width of various irreducible errors, cor-

responding to the various proposed set of parameters, is shown in Fig. 1. In this fig-

ure, the irreducible errors are normalized by the statistical variance of ∂TDNS
i /∂xi.

All the normalized irreducible errors decrease with the increase of the filter width.

However, the irreducible error of the set of parameters φ1, i.e., using only the fil-

tered strain rate tensor,S̄ij , to defineM∗
ij is much smaller than the other ones for all

filter sizes. This observation leads to conclude the set of parameters φ1 is the best

candidate to develop a SGS model. The next step is to determine an appropriate

link between the parameters of this set, leading to a weak formal error in Eq. (8),

so as to ensure a weak total quadratic error for the proposed model.
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3.2. Formal error reduction using an artificial neural network

In this second step, only the set of parameters φ1 is considered. Owing to the

divergence-free condition, the first invariant of Mij is equal to zero, and because of

the dimensionless form of the symmetric tensor Mij , the second invariant is con-

stant. The set of parameters φ1 is thus made of seven parameters only taken as input

for developing a surrogate model to approximate one output (i.e. ∂Ti/∂xi). When

considering the use of the machine-learning procedure from the DNS database and

taking into account the amount of data to process, an artificial neural network

(ANN) appears to be one of the most robust approach, as identified from the liter-

ature review provided in the Introduction. The ANN retained in the present study

is described in Appendix A.

To avoid issues with dimensional consistency, the ANN procedure is applied

on dimensionless inputs and output. The dimensionless inputs are built from the

physical inputs by subtracting their average and normalizing with their root mean

square. The dimensionless output is normalized by the root mean square of ∂vi/∂xi,

to generate a dimensional quantity a posteriori. The use of dimensionless parame-

ters allows for a more efficient training process. Moreover, it is also expected that

this will favor the development of a well-performing ANN model on a broader range

of turbulent mixing conditions.

The DNS database is divided into two distinct parts : the training database

and the test database, corresponding to different grid points. The optimization

procedure of the ANN parameters is performed on the training database with the

objective to decrease the training error, defined as the quadratic error of the ANN

model on this database. Moreover, at each optimization step, a generalized error is

also defined as the quadratic error of the ANN on the test database. Figure 2 shows

both training and generalized errors as a function of the iterations of the ANN



May 19, 2017 Journal of Turbulence LES˙OE

14 Taylor & Francis and I.T. Consultant

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0  500  1000  1500  2000  2500  3000  3500  4000

iteration

ǫ∗
Figure 2. Evolution of the training error (solid line) and the generalized error (dashed line) as functions

of the iterations of ANN training stage.

training stage. The generalized error presents a minimum error while the training

error is still decreasing. The selected result corresponds to the iteration leading to

this minimal generalized error. Beyond this iteration, the over-fitting phenomenon

occurs and the ANN model is specifically linked with the training database [33].

A surrogate model, denoted ANN model, is then generated. Some a priori tests

are now performed to check the training accuracy, and some a posteriori tests are

also carried out to validate the overall procedure. Comparisons of the ANN model

performance with other models will be presented below.

3.3. A priori measurement of model performance

The previously generated ANN model is compared with the DNTD and DED mod-

els through a priori tests relying on the use of the DNS database. In this work,

the dynamic procedure for the DED model is the classic procedure using the Ger-

mano identity [3], extended for the SGS scalar flux [2] and taking into account the

modification proposed by Lilly [34]. For the DNTD model, the procedure proposed

by Wang et al. [5] is used. For both models, an averaging is performed over homo-

geneous directions. The models quadratic errors are displayed in Figure 3(a) for

various filter sizes, along with the irreducible errors, to assess whether the errors

are mainly caused by the set of variables retained to derive the model or from the
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Figure 3. A priori measurements of the structural and functional model performance for DED (cyan

line), DNTD (green line) and ANN (red line) models. (a) Normalized quadratic errors as a function of the

filter width. The normalized irreducible errors are also shown for comparison (dashed line). (b) Mean SGS

dissipation as a function of the filter width. The black line shows the SGS dissipation given by the filtered

DNS data.

algebraic relationship, as already evoked for the error decomposition, Eq. (8). A

satisfactory performance of the generated ANN model is made clear because this

model displays a quadratic error that remains close to the irreducible error, showing

that the convergence of the ANN training is good. Meanwhile, the DED model also

yields a quadratic error close to the irreducible error, thus hinting that the dynamic

procedure is well adapted for this case; however, the high level of quadratic error

observed for the DED model hints that the number of input parameters for this

model is too limited. Conversely, the DNTD model displays a large gap between

its (low) quadratic error and its irreducible error, leading to conclude the dynamic

procedure is probably not efficient in this case. Overall the ANN model appears to

serve an accurate surrogate function for the optimal estimator.

To assess the functional performance, the prediction of the models for the SGS

scalar dissipation rate is now analyzed. Figure 3(b) compares the mean SGS scalar

dissipation rate of the models with the exact evaluation extracted from DNS

database. The DNTD model displays a strong under-prediction of the SGS dis-

sipation magnitude, which can lead to unstable simulations. Conversely, the DED

model appears as weakly over-dissipative. The ANN model predicts a global SGS
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Figure 4. Joint probability density function (J-PDF) between the exact and modeled normalized SGS

transfer terms, for DED (cyan line) and ANN (red line) models and for two different filter sizes. The

isocontours are in the range 10−5 to 10−1 with a logarithm scale.

dissipation in good agreement with DNS data. This is an encouraging result be-

cause the SGS model development procedure does not directly take into account

the functional performance. However, the model tends to underpredict the SGS

dissipation magnitude for some filter widths. This can lead to unstable LES with

an accumulation of the scalar variance at the smallest resolved scale. Figure 4

compares the joint probability density function (J-PDF) between the exact and

modeled normalized SGS transfer terms (including SGS dissipation and SGS diffu-

sion) for the DED and ANN models. All the transfers are normalized by the root

mean square of the exact SGS transfers. A better local correlation with the exact

term is found for the ANN model, showing that the GS/SGS transfers are better

localized with the ANN model than with the DED model.

3.4. A posteriori tests

A posteriori tests are now performed to validate the overall model development

procedure leading to the ANN model. The flow configuration is a forced homoge-

neous isotropic turbulence, similar to the DNS database previously described. The
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a posteriori tests consist of LES of passive scalars on 643 grid points, using DED,

DNTD, and ANN models. The results are compared with filtered DNS still per-

formed on 2563 grid points. To avoid modeling errors interaction, the velocity field

is solved by DNS in all cases [7]. Two mixing conditions are considered. The first

test corresponds to a restart of the DNS database after a spectral interpolation

of the scalar field on the LES grid, and keeping the scalar forcing scheme. Then,

the ANN model is compared with exactly the same mixing condition as the DNS

database used for its generation. The second test corresponds to a random initial-

ization of the scalar field [28] and the scalar is not forced. This permits testing

the ANN model in another mixing process, where no global equilibrium is enforced

and where a decay of the scalar variance is thus expected.
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Figure 5. Forced scalar case: evolution of the resolved scalar variance (a) and scalar enstrophy (b) with

time, and scalar variance spectrum (c). The models are compared with filtered DNS (a,b) or full DNS (c).

DNS (black line), DED model (cyan line), DNTD model (green line) and ANN model (red line).

The results of the first test case, corresponding to the mixing condition of the



May 19, 2017 Journal of Turbulence LES˙OE

18 Taylor & Francis and I.T. Consultant

training DNS database, are displayed in Fig. 5. The LES results are in agreement

with the a priori analysis. Figure 5(a) shows the time evolution of the predicted

resolved scalar variance during the mixing process for various LES models. The

resolved scalar variance behavior is compared with the filtered DNS result. As ex-

pected, the under-dissipative behavior of the DNTD model leads quickly to a large

over-prediction of the resolved scalar variance in comparison with the filtered scalar

variance extracted from the DNS. The weak under-estimation of scalar variance is

found for the DED model in agreement with the over-dissipation observed for this

model in a priori test. As expected, the ANN model leads to an evolution of the

resolved scalar variance very close to the filtered DNS result. To characterize the

smallest resolved scales behavior, figure 5(b) shows the evolution of the resolved

scalar enstrophy [35], 〈 ∂Z̄∂xi

∂Z̄
∂xi

〉. The good behavior of the ANN model is confirmed.

Note that the gap between the DNTD model and the filtered DNS result is more

important for the scalar enstrophy, showing that the DNTD model fails mainly

at the smallest resolved scales. This is confirmed by the scalar variance spectra,

Fig. 5(c), which shows an unphysical accumulation at these scales for the DNTD

model. The over-dissipation of the DED model leads to an under-estimation of the

scalar variance spectrum at the smallest scales. Finally, the good performance of

the ANN model is confirmed, with a spectrum in good agreement with the DNS

data for all the resolved scales.

Figure 6 shows the same statistics as Fig. 5 for the second test case: unforced

scalar evolution starting from a random initialization. Without forcing, the scalar

variance decays in time since no production term is present to compensate dissi-

pation term, Fig. 6(a). Moreover, because the initial scalar field is only composed

of large scales, the first stage of the scalar mixing consists of a growth of the scalar

enstrophy. This stage corresponds to the generation of smaller mixing scales due
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Figure 6. Unforced scalar with random scalar initialization case: evolution of the resolved scalar variance

(a) and scalar enstrophy (b) with time, and scalar variance spectrum (c). The models are compared with

filtered DNS (a,b) or full DNS (c). DNS (black line), DED model (cyan line), DNTD model (green line)

and ANN model (red line).

to the transport by the velocity field. After this stage, the scalar enstrophy de-

creases due to the dissipation process, Fig. 6(b). For DNTD and DED models, the

conclusions are to the ones made for the first test case. A large over-prediction

of the scalar variance and of the scalar enstrophy is found for the DNTD model

due to an under-prediction of the dissipation at the smallest scales. Conversely, a

weak over-dissipation of the DED model leads to a weak under-prediction of the

scalar variance and enstrophy in comparison with filtered DNS results. However,

the good agreement between the ANN model and the filtered DNS results observed

in the first test case, is no longer found in this second test case. Indeed, the ANN

model leads to a behavior similar to the DNTD model, even though the negative

effects are less pronounced. The over-estimation of the statistical values (variance

and enstrophy) shows that the model eventually fails, leading to unphysical accu-
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mulation of scalar variances at the smallest resolved scales, Fig. 6(c). This seems

to indicate that the ANN model developed from a given DNS database can not be

successfully used for other mixing conditions.

4. SGS model built from multi-objective optimization

To develop a more robust model, i.e. a model able to deal with flow conditions that

differ from the training DNS database, a second (improved) strategy is proposed,

which takes into account the functional performance during the model development

process.

4.1. Determination of model coefficients based on multi-objective

optimization

In the previous section, the ANN model has been developed as a surrogate model

without any assumption on the relationship between the set of input parameters.

However, the Noll’s decomposition, Eq. (4), already fixed an algebraic relation

(which has been ignored in the previous section). This relation is the starting

point of the DNTD model [5]. On the other hand, the DNTD model has displayed

very weak structural performance with a total quadratic error much larger than its

irreducible error (Fig. 3). This probably means that the dynamic procedure is not

efficient to compute model coefficients. The new procedure conserves the algebraic

expression but evaluates the model coefficients from a machine-learning procedure.

As already stated in the introduction, Noll’s formula applied to the modeling

of the SGS scalar flux allows to write a complete and irreducible nonlinear tensor

diffusivity model [5], as

TAC
i = g1∆̄

2|S̄|
∂Z̄

∂xi
+ g2∆̄

2S̄ik
∂Z̄

∂xk
+ g3∆̄

2 S̄ikS̄kl

|S̄|

∂Z̄

∂xl
. (11)
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From now on, this model is denoted AC for ‘adaptative coefficients’ because the

coefficients g1, g2 and g3 are defined from a machine-learning procedure, instead

of a dynamic procedure as involved by the DNTD model. As already explained,

the model coefficients depend on a set of parameters defined from the principal

invariants of Mij = S̄ij/|S̄| and vi = ∆̄2|S̄| ∂Z̄∂xi

. However, due to the flow configu-

ration, the first invariant of Mij is zero and the second one is a constant, the set of

parameters is thus defined as, φ = {IIIM , Iv, IMv, IIMv}, with IIIM =MikMklMli,

Iv=vivi, IMv=viMikvk, and IIMv=viMikMkjvj. A surrogate model based on an

ANN is then computed to define the vectorial relation between the vector of the

model coefficients g = (g1, g2, g3) and the set of input parameter φ. The ANN is

composed of 4 input variables (the input parameters, φ) and 3 output variables

(the model coefficient, g). Its topology is a two-layer perceptron composed of two

hidden layers with 8 and 5 neurons, respectively. The training stage determines

the best set of ANN parameters (noted ωij,n and bk,n on Fig. A1). Note that with

this ANN topology, there are 103 parameters to determine. For convenience a set

of ANN parameters is noted p, and the vector of model coefficients computed from

this set is noted g|
p
.

The new determination process of the ANN parameters is performed to guarantee

simultaneously the structural and the functional performances of the AC model.

The structural performance is measured by defining the normalized quadratic error

as first criterion to minimize,

c1(∆̄/∆,p) =

〈(
∂Ti

∂xi

DNS
− ∂Ti

∂xi

AC
)2
〉

〈(
∂Ti

∂xi

DNS
)2
〉

−
〈
∂Ti

∂xi

DNS
〉2

. (12)

A second criterion is defined for the functional performance, as the relative error

between the mean exact SGS scalar dissipation and the mean SGS scalar dissipation
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provided by the model,

c2(∆̄/∆,p) =

∣
∣
∣
∣
∣
∣

〈

TDNS
i

∂Z̄
∂xi

〉

−
〈

TAC
i

∂Z̄
∂xi

〉

〈

TDNS
i

∂Z̄
∂xi

〉

∣
∣
∣
∣
∣
∣

. (13)

Both criteria are defined at a given filter size. The objectives of the training stage

(noted Ob1 and Ob2, respectively) are then respectively defined from these criteria

as the minimization of the maximum value of c1 and c2 over the filter size. The

training stage is then a bi-objective optimization yielding a set of Pareto-optimal

solutions p
∗ such that p

∗ = min
p

[Ob1(p), Ob2(p)], with Ob1(p) = max
∆̄

(c1) and

Ob2(p) = max
∆̄

(c2). For the bi-objective problem under consideration, a set p
∗ of

ANN parameters will be Pareto optimal if there is not another set p such that

Obi(p) ≤ Obi(p
∗) for i = 1, 2 and Obi(p) < Obi(p

∗) for at least one value of

i. In other words, p∗ will be Pareto-optimal if it is not dominated by any other

parameter set in the solution space. The objectives Ob1 and Ob2 are conflicting, in

the sense it is not possible to improve (decrease) one of these objectives without

degrading (increasing) the other one. As a consequence, the Pareto-optimal set

for the simultaneous minimization of Ob1 and Ob2 will include an infinite number

of trade-off solutions, which do not dominate each other but dominate all the

other parameter sets. When plotted in the objective space, namely the (Ob1, Ob2)

plane, the trade-off optimal solutions form a Pareto front (see Fig. 8). The Non-

dominated Sorting Genetic Algorithm (NSGA) (see [36] for more details on this

well-established multi-objective genetic algorithm) is used to efficiently explore

the solution space and provide a set of well-spread optimal solutions along the

Pareto front. Figure 7 summarizes the global optimization algorithm. A random

population of individuals p is first generated. For each individual p, the model

coefficient g|
p
and the model TAC

i are computed for ∆̄/∆ = {4, 8, 12, 16} and

both c1 and c2 criteria defined by (12) and (13) are computed for each filter size
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Optimization algorithm

ANN parameters
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φ = {IIIM , Iv , IMv, IIMv} v,Mv,M2v

TAC
i
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∆̄/∆

population generation

Figure 7. Schematic view of the modeling procedure based on the multi-objective optimisation of the

ANN parameters
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to yield the corresponding objective functions Ob1 and Ob2. Once a population of

individuals p has been computed, the available values of the objective functions

and the parameter values are used by the multi-objective genetic algorithm to

efficiently explore the design space (of dimension 103). Individuals are sorted based

on their rank of dominance, which allows to take simultaneously into account both

objectives Ob1 and Ob2. A new population of designs is generated by applying

selection, crossover and mutation operators to the current population. The process

is iterated until no new Pareto-optimal designs are found by the algorithm.

4.2. A priori tests: optimization results
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Figure 8. Representation of the individuals of the optimization procedure in the 2D objectives plan. The

points represent the individuals of the optimal Pareto front and the grey level represent the rank of the

Pareto fronts.

The described procedure is applied on the previously presented DNS database.

The genetic algorithm optimization of the 103 parameters of the ANN has been

performed by evolving a population of 1000 individuals during 1304 generations,

yielding over 106 distinct designs. The large population size has been selected

because of the large number (103) of design parameters. Figure 8 shows the results

of the optimization procedure in the objective plane. The grey level shows the rank

of Pareto fronts and the points represent the 230 individuals of the optimal Pareto

front (rank equal to 1). It is interesting to note that the existence of the optimal
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Pareto front clearly shows that the structural and functional performances can

appear as antagonist objectives for the development of SGS models.
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Figure 9. Measurements of the structural (a) and functional (b) models performances for individuals

selected from the Pareto front (blue lines). The performances are compared with the ANN model (red

line) and the DED model (cyan line). The SGS scalar dissipation given by filtered DNS is also shown for

comparison (black line). The individual used to define the AC model is identified by the blue solid line.

Additional processing has been performed to select the individual in the Pareto

front, which will be used to define the final AC model. First, all the individuals

leading to structural performance worst than the DED model are neglected. In

order to further avoid Pareto-optimal individuals too specifically linked with the

training database, the remaining optimal individuals, with structural performance

better than the DED model, are also computed on a test database derived from

the training database but with velocity and scalar fields uncorrelated with those

of the training database. Only the designs that are still Pareto-optimal for the test

database are eventually considered. This refined selection process eventually leaves

11 Pareto-optimal designs, the structural and functional performance of which are

displayed in Fig. 9 These performances are compared with the performances of the

ANN model developed in section 2 and the DEDmodel. Note that the DNTDmodel

is no longer considered in this section, because the ANN model has been found with

better performances of the DNTD model in previous section. As expected, the ANN

model has the best structural performance because only this performance was taken
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into account during its training stage. In other words, the ANN model corresponds

to a design point located on the upper left end of the Pareto front displayed in

Fig. 8. However, the new models computed from the 11 selected individuals of

the Pareto front also allow a significant improvement of structural performance in

comparison with the DED model. In term of functional performance, these new

models lead to a weak over-estimation of the SGS dissipation in the range of filter

size used for the a posteriori tests, ∆̄/∆ < 8. This over-estimation is less important

than for the DED model, and it can avoid the unstable behavior observed with the

ANN model. Finally, the one individual with the best structural performance is

selected to define the AC model, which is the next used in a posteriori tests.

4.3. A posteriori tests

A posteriori tests are finally performed to validate the second procedure based on

ANN trained by using a MOGA, and leading to the AC model. The tests are the

ones previously described in section 2.4 when assessing the ANN model. Passive

scalar LES on 643 grid points are thus performed for two different conditions. The

first case is exactly the case of the training data base: forced scalar and established

scalar field, whereas the second case is a unforced scalar with random initial scalar

field. Note that the AC model is compared with the DED model only for clarity.

Results provided by the ANN model are available in Fig. 5 and 6.

Figure 10 shows the results for the first test case, which corresponds exactly

to the mixing configuration of the training database. As expected, the results are

similar to the ANN model results presented in section 2.4. The AC model also

leads to a temporal evolution of the scalar variance and enstrophy very close to the

filtered DNS. This confirms the ability of machine-learning procedure to reproduce

the exact SGS scalar flux in the same condition as the training stage. This allows
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Figure 10. Forced scalar case: evolution of the resolved scalar variance (a) and scalar enstrophy (b) with

time, and scalar variance spectrum (c). The models are compared with filtered DNS (a,b) or full DNS (c).

DNS (black line), DED model (cyan line) and AC model (blue line).

for example to correct the unphysical behavior observed with the DNTD model

(see Fig. 5) or the weak over-dissipation due to the DED model.

Figure 11 shows the scalar statistics for the second test case corresponding to

the unforced scalar with random initial field. In section 2.4, it has been seen that

the ANN model generated unphysical behavior at the smallest scales for this flow

configuration. The better control of the functional performance offered by the AC

model allows to correct this behavior of the ANN model. No accumulation at the

smallest resolved scales is observed on the scalar variance spectrum computed for

the AC model. This avoids the over-estimation of the scalar variance and enstrophy

observed with the ANN model. Note that since the AC model has been defined

so as to favor a weak over-estimation of magnitude of the SGS scalar dissipation,

this allows to avoid unphysical accumulation, but leads in the same time to a weak
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Figure 11. Unforced scalar with random scalar initialization case: evolution of the resolved scalar variance

(a) and scalar enstrophy (b) with time, and scalar variance spectrum (c). The models are compared with

filtered DNS (a,b) or full DNS (c). DNS (black line), DED model (cyan line) and AC model (blue line).

under-estimation at the smallest resolved scales as shown by the under-estimation

of the scalar enstrophy. Nevertheless, the AC model appears as the best compromise

for this configuration, allowing to correct the unphysical behavior of the ANN and

DNTD models, and being less dissipative than the DED model.

(a) (b)

Figure 12. Contour of scalar from DNS results during the plane jet transition toward a turbulent state at

tH/∆U ≈ 8 (a) and tH/∆U ≈ 14 (b).The scalar is between 0 (blue) and 1 (red).
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To further test the SGS model built from the multi-objective optimization pro-

cess, a temporal turbulent plane jet flow configuration is also considered. This flow

configuration includes transition stages and mean shear regions and is thus very

far from the DNS database used to build the model. The flow problem is similar to

the one studied by Silva and Pereira [37], with a computational domain periodic

in the three spatial directions. The temporal evolution of the flow generated by an

initial plane jet velocity profile is studied. The initial velocity and scalar profiles

are described by a classic hyperbolic-tangent profile [37]. The molecular viscosity,

ν, is defined to yield a Reynolds number ReH = ∆UH/ν equal to 10, 000, where

H is the plane jet inlet slot width and ∆U = U1 − U2 is the velocity difference

between the initial jet velocity, U1, and the co-flow velocity, U2. The scalar value

is initially 1 in the jet and 0 in the co-flow and the molecular Schmidt number is

0.7. The computational box size is defined such that (Lx, Ly, Lz) = (4H, 6H, 4H),

with x, y and z, respectively the streamwise, normal and spanwise directions. For

the DNS, the grid size is selected in such a way the numbers of grid points in

the 3 space directions are NDNS
x × NDNS

y × NDNS
z = 1024 × 1536 × 1024 grid

points. The LES of the passive scalar is performed on a coarser mesh made of

NLES
x × NLES

y × NLES
z = 128 × 192 × 128 grid points (1 out of 8 points is re-

tained in the DNS grid along each direction). Note that, as for the previous tests,

the velocity field is still solved by DNS and the filtered velocity is used for scalar

transport in order to avoid modeling errors interaction between velocity and scalar

fields. Contours of the scalar field at two different times of the transition process

are displayed in Fig. 12. Scalar statistics are reported in Fig. 13 at similar times.

Both SGS models lead to stable LES with mean scalar profiles in good agreement

with the filtered DNS data (see Fig. 13 (a)). However, the resolved scalar variance

profiles for the AC model are significantly under-predicted in comparison with fil-
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Figure 13. Mean scalar profile of the temporal jet at tH/∆U = 0, at tH/∆U ≈ 8 and at tH/∆U ≈ 14

(a). Profile of the resolved scalar variance, 〈Z̄′2〉, at tH/∆U ≈ 8 (b) and at tH/∆U ≈ 14 (c). The DED

model (cyan line) and AC model (blue line) are compared with filtered DNS results (black line).

tered DNS results (see Fig. 13 (b) and (c)). An under-prediction is also found with

the DED model but remains much less pronounced. This observation means that

the AC model over-predicts the SGS scalar dissipation in this configuration. The

over-estimation of the SGS dissipation leads to an over-prediction of the mixing

process. This is shown by the probability density function (PDF) of the resolved

scalar computed for different locations toward the jet shear layer, from the center

of the jet to the co-flow region (see Fig. 14). Indeed, for all locations, the peak of

the PDF is larger at the most probable value of Z̄, whereas the probability of the

extrema is smaller for the AC model in comparison with the filtered DNS. Thus,

even though stable LES are obtained with the AC model for this flow configuration,

modeling improvement appears necessary. Note that machine-learning-assisted tur-

bulence modeling is still in a rather early stage of development. Improvement can
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Figure 14. Probability density function (PDF) of the resolved scalar computed at tH/∆U ≈ 14, for

different locations toward the jet shear layer: y/H = 0 (a), y/H = 0.25 (b), y/H = 0.5 (c) and y/H = 0.75

(d). The models, DED model (cyan line) and AC model (blue line), are compared with filtered DNS (black

line).

be expected from using more complex ANN topology (see for instance the work of

Ling et al. [21]) and/or from using training database built from a wider range of

flow configurations. It is still an open question to know whether such procedure

can successfully model SGS terms for any flow configuration. Future works will

be devoted to answer this question which is ultimately linked with the assumed

universality of SGS models.

5. Conclusion

This work has been devoted to the formulation and the assessment of new strategies

to develop SGS models. The proposed modeling procedures are first based on an

improvement of the structural performance of the SGS model, measured by the
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quadratic error between the exact (filtered DNS) SGS term and the model. In the

framework of the optimal estimation theory, this modeling error can be split into

the error resulting from the parameters used to write the model on one hand and

the error resulting from the algebraic relation used to link these input parameters

on the other hand. The optimal set of parameters is determined in a preliminary

step thanks to the optimal estimator concept. Then, two strategies have been

proposed to derive optimal SGS models using this selected set of parameters. The

first strategy has been to directly use the artificial neural network technique to

design a surrogate model, by minimizing the modeling error, i.e. improving only

the structural performance. The second strategy has been to conserve the functional

form given by Noll’s formula and to determine coefficients by using the artificial

neural network technique combined with a bi-objective optimisation technique to

develop a model improving both structural and functional performances.

Both proposed strategies have been applied in the context of LES of turbulent

mixing, to the modeling of the SGS scalar flux. The models developed from these

procedures have been compared with classic algebraic SGS models. The first pro-

cedure based on ANN technique only leads to result very close to the reference

results in comparison with classic SGS models. However, this first procedure fails

for mixing conditions different from the mixing condition occurring in the training

database used to generate the ANN. This eventually leads to unphysical behavior

of the scalar field. The second procedure allows to correct this behavior. The un-

physical behavior observed with the first strategy is avoided and the new model is

found both more robust and leading to an improvement in comparison with classic

SGS model. The second strategy differs from the first one by two main factors:

(i) the functional form was imposed and (ii) the functional performance was taken

into account in the optimization process. Future works will be devoted to better
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understand which factor is preponderant to improve the model capability.

This contribution appears as a first step to establish the optimal estimator con-

cept associated with machine-learning procedures as useful tools for SGS model

development. In this first step, a simple flow configuration (forced HIT) has been

considered, allowing to use spectral method. This leads to a clear definition of the

filter kernel and guarantees the same filter kernel is applied during the training

stage and a posteriori (LES) test. Moreover, this also allows to neglect interaction

between modeling and numerical errors. Future works will be devoted to extend

the proposed approach for SGS model developments to more complex flows devoid

of these simplifications.
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Appendix A. Description of the Artificial Neural Network used in the study

The ANN is a nonlinear surrogate function between inputs and output, meaning

that the linear relation in Eq. (4) is no longer taken into account. The most efficient

ANN topology in this work is a two-layer perceptron with a back-propagation

training algorithm composed of two hidden layers and fifteen neurons per hidden

layer (Fig. A1). The activation functions are of sigmoid type. The jth neuron of

the first layer, denoted Nj,1, is defined as

Nj,1 = tanh

(
7∑

l=1

ωjl,0φ1,l + bj,0

)

, (A1)

with φ1,l the lth parameter of the set of parameters, φ1. The ith neuron of the

second layer, denoted Ni,2, is then defined as

Ni,2 = tanh





15∑

j=1

ωij,1Nj,1 + bi,1



, (A2)

yielding the following non-linear expression for the output, g(φ1),

g(φ1) =

15∑

i=1

ω1i,2Ni,2 + b1,2. (A3)

In these definitions, ωij,n and bk,n are the ANN parameters. ωij,n represents the

weights linking the neuron Nj,n (or input) to the neuron Ni,n+1 (or output) in the

nth layer and bk,n is the bias of the nth layer to the kth neuron of this layer. Given

this surrogate function, the ANN technique consists of a priori learning the model

from the DNS database. The learning procedure is a ‘training’, to optimize the

ANN parameter, ωij,n and bk,n, in order to minimize the quadratic error of the

ANN model. The optimization is based on the RPROP algorithm [38].
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Figure A1. ANN topology used for training.
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