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This work is devoted to the exploration of new procedures for the development of subgridscale (SGS) models in the context of large-eddy simulation (LES) of a passive scalar. The starting idea is to combine the optimal estimator theory with machine-learning procedures.

The concept of optimal estimator is then used to determine the most accurate set of input parameters (also called features in machine-learning terminology) to be used when deriving a model of the SGS scalar flux. The SGS model can be defined as a surrogate model built from this set of parameters by training an artificial neural network (ANN) on a database built by the filtering of direct numerical simulation (DNS) results. This procedure leads to a model with good structural performance. This allows to perform LES very close to the filtered DNS results, and showing an improvement in comparison with algebraic models. However, this first procedure does not control the functional performance of the SGS model and the model can fail when the flow configuration is different from the training DNS database. Another procedure is then proposed, where the functional form is imposed and the ANN used only to define the model coefficients. The training step is an optimization based on a multi-objective genetic algorithm allowing to simultaneously control the structural and functional performances of the generated model. The model obtained from this second procedure proves to be more

Introduction

Various applications need to solve a scalar equation simultaneously with the governing flow equations. In these applications, the scalar can represent the temperature field or the concentration of chemical species in combustion, mixing, or heat transfer studies. Owing to the large range of motion scales in turbulent flows, the direct numerical simulation (DNS) of realistic applications is not yet available because of significant computational cost. To overcome this limitation, the LES technique proposes to explicitly solve only the large scales of the flow and to model the smallest scales. This separation between resolved large scales and modeled small scales is performed by a filtering operation. The filtered transport equation for a passive scalar takes the form of the instantaneous advection-diffusion equation applied to the resolved passive scalar and also includes a SGS scalar flux divergence, which has to be modeled to perform LES. The SGS model is an algebraic expression using resolved (large-scales) quantities as input parameters, which is expected to correctly predict the SGS term and its effects on the resolved field.

Two main strategies exist for developing SGS models: functional and structural strategies [START_REF] Sagaut | Large eddy simulation for incompressible flows : an introduction[END_REF]. The functional modeling strategy considers the action of the subgrid term on the transported quantity and not the unknown term itself. It can introduce for instance a dissipative term, producing a similar effect while not necessarily displaying the same spatial structure. In the context of passive scalar LES, the usual functional modeling strategy is based on the definition of an eddy-diffusivity D T to model the SGS scalar flux. Moin et al. [START_REF] Moin | A dynamic subgrid-scale model for compressible turbulence and scalar transport[END_REF] introduced a dynamic model for D T , similarly to the dynamic Smagorinsky model used to model the eddy viscosity [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF]. This dynamic eddy-diffusivity model will be denoted DED from now on.

Conversely, the structural modeling strategy makes use of the known structure of the unknown SGS term to develop the best local approximation for this SGS term. A classical way to develop such a model is to rely on formal mathematical developments. For example, the gradient model [START_REF] Clark | Evaluation of subgrid-scale models using an accurately simulated turbulent flow[END_REF] is based on the Taylor series expansion of a canonical class of filtering kernel. More recently, Wang et al. [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF] have proposed to extend the DED model based on mathematical properties of tensor invariants and also using a dynamic procedure close to the procedure proposed by Germano et al. [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF]. The dynamic nonlinear tensorial diffusivity (DNTD) model developed by these authors can be considered as a nonlinear extension of the dynamic eddy-diffusivity model, derived following a structural modeling strategy.

In the spirit of these different modeling strategies, SGS models can also be assessed in terms of functional and structural performances [START_REF] Fabre | Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator[END_REF][START_REF] Balarac | A dynamic regularized gradient model of the subgrid-scale scalar flux[END_REF]. The structural performance is defined as the model's ability to locally describe the SGS unknown term appearing in the resolved equation (here, the SGS scalar flux divergence). [START_REF] Langford | Optimal LES formulations for isotropic turbulence[END_REF] propose the quadratic error between the exact and the modeled term as the relevant modeling error to consider in LES to measure the structural performance. The functional performance measures the model's ability to reproduce the effect of the SGS term on the transported quantity, and not the SGS term itself. For SGS scalar flux models, the functional performance can be measured by the model's ability to well reproduce the grid-scales/subgrid-scales (GS/SGS) transfer between the resolved scalar variance and the SGS scalar variance. This transfer is controlled by the SGS scalar dissipation rate, which should therefore be correctly reproduced by the SGS model to achieve an accurate LES Taylor & Francis and I.T. Consultant [START_REF] Kang | Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder[END_REF]. Both model performance measurements, structural or functional, require the exact SGS quantities and are thus performed in the framework of a priori test where DNS results are filtered to obtain an exact evaluation of SGS terms.

Langford and Moser

Since structural performance measurement is based on the evaluation of a quadratic error, a possible strategy to improve SGS models can be built upon a systematic reduction of this error. Within the LES context, a modeling error decomposition can be proposed, which relies on the concept of optimal estimator [START_REF] Moreau | Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models[END_REF] in the framework of the optimal estimation theory [START_REF] Deutsch | Estimation Theory[END_REF]. The optimal estimator concept forecasts that any model built on a given set of parameters will display a quadratic error higher than a minimal value, called the irreducible error. The total modeling error is thus split into the irreducible error and the formal error.

The irreducible error is the part of the modeling error which results from the set of parameters chosen to write the model, whereas the formal error is the part of the modeling error which results from the functional form chosen to link these parameters when approximating the SGS term. This error decomposition provides valuable information on the SGS models used in LES. First, the total error can be assessed for each model to see which one yields the best results as far as the modeling of the unknown SGS term is concerned. The most suitable set of parameters to model the SGS term can also be determined by comparing the irreducible error for different models. The set of parameters with the smallest irreducible error will be the best candidate to design a model. Finally, the optimal estimator theory informs to what extent a model based on a fixed set of parameters can be improved. Indeed, a quadratic error for a given model found much higher than its irreducible part means the formal error is important and a modeling improvement can be expected from a better choice of functional form while keeping the same set of parameters. This concept has already been used as an analysis tool to improve existing mod-els [START_REF] Fabre | Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator[END_REF][START_REF] Balarac | A dynamic regularized gradient model of the subgrid-scale scalar flux[END_REF][START_REF] Balarac | Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators[END_REF][START_REF] Vollant | A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation[END_REF]. In the present work, this modeling error decomposition will be directly used to derive a new SGS model.

The starting point retained in this work to develop accurate SGS models is to take advantage of the growing available computational resources, which allow to generate a large DNS database. In the field of big data processing, the DNS database associated with explicit filtering can be used to better understand SGS model performance but also to devise an accurate SGS model by learning from this DNS database. Probably one of the first application of a machine-learning approach to the development of turbulence closures and more particularly SGS models can be found in the work of Sarghini et al. [START_REF] Sarghini | Neural networks based subgrid scale modeling in large eddy simulations[END_REF], where an artificial neural network (ANN) is trained and validated using the flowfields provided by the scale-similarity model [START_REF] Bardina | Improved subgrid-scale models for large-eddy simulation[END_REF] in order to model the turbulent viscosity coefficient. [START_REF] Milano | Neural network modeling for near wall turbulent flow[END_REF] used turbulent channel flow DNS results in order to train an ANN for reconstructing the near wall flow. Recently, Tracey et al. [START_REF] Tracey | A machine learning strategy to assist turbulence model development[END_REF] used supervised learning algorithms to reproduce RANS results obtained with the one-equation Spalart-Allmaras model, retained as truth model, without knowledge of the structure, functional form and coefficients of this model. Noteworthy in the field of physics-informed RANS modeling is also the work of Wang et al [START_REF] Wang | Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[END_REF] where a machine learning technique based on random forest is applied to train RANS Reynolds stresses from DNS databases. Whatever the turbulence modeling context (RANS or LES), applying machine-learning to derive improved models require to carefully select the features set processed by the algorithm as well as the target outputs. Singh and Duraisamy [START_REF] Singh | Using field inversion to quantify functional errors in turbulence closures[END_REF] have thus developed a data-informed approach which allows to quantify errors and uncertainties in the functional form of turbulence closure models. The information provided by this field inversion procedure can next be used as input to machine learning algorithms in lieu of deficient Taylor & Francis and I.T. Consultant modeling terms. Parish and Duraisamy [START_REF] Parish | A paradigm for data-driven predictive modeling using field inversion and machine learning[END_REF] combine the previous field inversion and machine learning to propose a novel data-driven predictive modeling recently applied to the prediction of turbulent channel flow. In the field of RANS modeling, Ling et al. [START_REF] Ling | Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[END_REF] have proposed a novel neural network architecture to embed key physical modeling properties, namely Galilean invariance, into the predicted output, namely the Reynolds stress anisotropy tensor. This methodology has been generalized in [START_REF] Ling | Machine learning strategies for systems with invariance properties[END_REF] to physical systems with invariance properties. As far as SGS modeling is concerned, autonomic closures have been studied by King et al. [START_REF] King | Autonomic closure for turbulence simulations[END_REF], which rely on a general nonparametric relation (a Volterra series) to represent the unclosed quantity in terms of resolved variables. This adaptative, self-optimizing approach was successfully applied to a priori tests but remain to be assessed on a posteriori tests.

Milano and Koumoutsakos

After a brief review of the LES framework for the transport of a passive scalar in Section 2, two SGS modeling procedures are presented which combine optimal estimator theory and machine learning. The optimal estimator theory is used in a first step so as to identify the relevant features which are processed in a second step by the machine learning algorithm (ANN), using structural and / or functional performance as target outputs. The first modeling procedure described in Section 3 is based on the sole improvement of the structural performance. The optimal estimator is used to determine an appropriate set of input parameters. The model is then derived by building a surrogate model based on this set of parameters, In order to take into account both structural and functional performance of the new model, the training procedure of the ANN relies on a multi-objective optimization algorithm. The model thus obtained leads to accurate LES for different mixing conditions but leads to an over-prediction of the mixing process when applied to a plane jet flow configuration with features far from the DNS database used for the ANN training.

Review of LES framework for the transport of a passive scalar

The separation between resolved large scales and modeled small scales is performed by a filtering operation, which takes the form of an integration on the overall

domain D : f ( x, t) = y∈D f ( y, t)G( x -y)d y, (1) 
to obtain the large-scale resolved field f at point x from the turbulent field f , with

G the filter kernel. The filtered transport equation for a passive scalar, Z, is given by

∂ Z ∂t + ūi ∂ Z ∂x i = ν Sc ∂ 2 Z ∂x 2 i - ∂T i ∂x i , (2) 
where Z is the resolved passive scalar, ūi is the component of the filtered velocity in the direction x i , ν is the kinematic viscosity, and Sc is the molecular Schmidt number. The SGS scalar flux divergence, ∂T i /∂x i , with al. [START_REF] Moin | A dynamic subgrid-scale model for compressible turbulence and scalar transport[END_REF] is defined as :

T i = u i Z -ūi Z,
T DED i = -D T ∂ Z ∂x i = C ∆2 | S| ∂ Z ∂x i , (3) 
with ∆ the filter size, | S| = 2 Sij Sij 1/2 the norm of the filtered strain rate tensor, Sij , and C the dynamic coefficient.

Following a structural modeling strategy, Wang et al. [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF] have extended the DED model into a dynamic nonlinear tensorial diffusivity (DNTD) model. According to the theory of tensor invariants and functions, a vector-valued function T i can be decomposed by Noll's formula [START_REF] Noll | Representations of certain isotropic tensor functions[END_REF] in a second-order symmetric tensor M ij and a vector v i . From this formula, a general form of the SGS scalar flux can be written as

T i = f 1 v i + f 2 M ij v j + f 3 M ik M kj v j , (4) 
where f 1 , f 2 , and f 3 are coefficients. In this decomposition, there is not a unique choice to define v i and M ij . It is proposed in [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF] to define v i equal to ∆2 | S|∂ Z/∂x i .

With this definition, the coefficients and the symmetric tensor, M ij , have to be dimensionless. M ij can be generally defined as Germano et al. [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF], yielding the DNTD model :

M ij = M * ij /|M * |
T DN T D i = χ 1 ∆2 | S| ∂ Z ∂x i + χ 2 ∆2 Sik ∂ Z ∂x k + χ 3 ∆2 Sik Skl | S| ∂ Z ∂x l , (5) 
with χ 1 , χ 2 , and χ 3 the dynamic coefficients. Note that by keeping only the first term of the RHS in Eq. ( 5), the DED model is recovered.

The structural performance of a SGS scalar flux model is defined as the model's ability to locally describe the SGS scalar flux divergence. Meanwhile, the functional performance of a SGS scalar flux models can be measured by the model's ability to well reproduce the grid-scales/subgrid-scales (GS/SGS) transfer between the resolved scalar variance, Z2 , and the SGS scalar variance, Z 2 -Z2 . This transfer is controlled by the SGS scalar dissipation rate, -T i ∂ Z/∂x i [START_REF] Jiménez | Subgrid scale variance and dissipation of a scalar field in large eddy simulations[END_REF][START_REF] Da Silva | Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations[END_REF], a usually positive term on average but with possibly negative local value characterizing an inverse transfer (backscatter).

A possible strategy to improve models can be based on a systematic reduction of the quadratic error measuring the structural performance. Denoting h the SGS term to model and g(φ) a model for h, based on a given set of input parameters φ, the quadratic error writes

ǫ Q = (h -g (φ)) 2 . ( 6 
)
In this definition, the brackets indicate a statistical average over a suitable ensemble. The optimal estimator concept forecasts that any model g, built on the set of parameters φ, will display a quadratic error higher than the minimal value, ǫ irr , also called the irreducible error and defined by the optimal estimation theory as

ǫ irr = (h -h|φ ) 2 ≤ ǫ Q , ( 7 
)
where h|φ is the expectation of the exact quantity h conditioned with the set of parameters φ used to derive the model. The quantity h|φ is thus called the optimal estimator of h for the set of parameters φ because no model using only φ as set of parameters can lead to a smaller error. From the optimal estimator concept, the total modeling error ǫ Q can be split into an irreducible error ǫ irr and a formal error ǫ form as follows :

(h -g (φ)) 2 ǫQ = (h -h|φ ) 2 ǫirr + ( h|φ -g (φ)) 2 ǫform , (8) 
Identifying the set of parameters φ which yields the smallest irreducible error pro-Taylor & Francis and I.T. Consultant vides, in a first step, the best candidate to design a model. This approach will be followed next in paragraph 3.1. In a second step, the formal error resulting from the functional form chosen to link this selected set of parameters φ can be minimized using an artificial neural network, as detailed in paragraph 3.2. Both structural and functional performance of a SGS scalar flux model will be simultaneously taken into account when building another machine-learning based SGS model in Section 4.

SGS model built from an artificial neural network

In this section, a first strategy to develop SGS models is described. This strategy is based on a DNS database, used to extract exact filtered quantities. In this work, the flow configuration of the DNS database consists of a forced scalar field in a forced homogeneous isotropic turbulence. The DNS is generated from a standard pseudo-spectral code, and the simulation domain is discretized using 256 3 grid points on a domain of length 2π. A statistical steady flow is achieved by using a random forcing scheme [START_REF] Alvelius | Random forcing of three-dimensional homogeneous turbulence[END_REF]. The scalar field is initialized between 0 and 1 [START_REF] Eswaran | Direct numerical simulations of the turbulent mixing of a passive scalar[END_REF], and to achieve a steady state for the scalar, a forcing scheme is also applied to lowwave number modes in Fourier space [START_REF] Da Silva | Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations[END_REF][START_REF] Lagaert | Hybrid spectral-particle method for the turbulent transport of a passive scalar[END_REF]. The Schmidt number is taken equal to 0.7 and the Reynolds number based on the Taylor microscale is around 95 at the stationary state. The parameters are chosen to ensure all the dissipative scales of the turbulence are simulated [START_REF]Pope Turbulent Flows[END_REF], thus such that

k max η ≈ k max η B ≈ 1.5,
where k max is the maximal wavenumber in the box, and η and η B are respectively the Kolmogorov and Batchelor scales. From DNS data, LES quantities are emulated with an explicit spectral cutoff filter at several ratios ∆/∆, with ∆ the DNS grid size. The code and the flow configuration are similar to those used in previous works [START_REF] Fabre | Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator[END_REF][START_REF] Balarac | A dynamic regularized gradient model of the subgrid-scale scalar flux[END_REF][START_REF] Balarac | Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators[END_REF][START_REF] Vollant | A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation[END_REF].

Determination of the set of input parameters

The optimal estimator theory is first used to determine an appropriate set of parameters to develop the model (i.e., the set of parameters leading to the smallest irreducible error). The irreducible error will be low if a large set of uncorrelated parameters is used [START_REF] Papoulis | Probability, random variables, and stochastic processes[END_REF]. Starting from the Noll's formula, Eq. ( 4), various sets of parameters can be proposed, depending on the choices made to define the symmetric tensor M ij and the vector v i . In this work, the vector v i is kept equal to ∆2 | S|∂ Z/∂x i , as proposed by Wang et al. [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF], and only the definition of M ij is discussed. Future works could be devoted to investigate alternative choices for v i as well. Moreover, in Eq. ( 4), f 1 , f 2 , and f 3 are coefficients depending on principal invariants of M ij and v i defined as [START_REF] Noll | Representations of certain isotropic tensor functions[END_REF]. Thus, neglecting the spatial derivatives of coefficients, a set of parameters, φ, to model the SGS scalar flux divergence, ∂T i /∂x i , can be defined as

I M = M ii , II M = M ij M ji , III M = M ik M kl M li , I v = v i v i , I M v = v i M ik v k , and 
II M v = v i M ik M kj v j
φ = I M , II M , III M , I v , I M v , II M v , ∂v i ∂x i , ∂M ij v j ∂x i , ∂M ik M kj v j ∂x i . (9) 
At this stage, various choices can be made to define the symmetric tensor, M * ij , based on the filtered velocity gradients [START_REF] Lund | Parameterization of subgrid-scale stress by the velocity gradient tensor[END_REF]. A first choice can be M * 1,ij = Sij , as proposed for the DNTD model [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF]. A second one can be

M * 2,ij = ∂ ūi /∂x k ∂ ūj /∂x k ,
considering the gradient model [START_REF] Clark | Evaluation of subgrid-scale models using an accurately simulated turbulent flow[END_REF]. Other choices can also be M * 3,ij = Sik Ωjk + Ωik Sjk and M * 4,ij = Ωik Ωjk . The two last propositions come from the decomposition of M * 2,ij , using the filtered strain rate tensor, Sij , and the filtered rotation rate tensor, Ωij .

These propositions yield various sets of input parameters to write a model for the SGS scalar flux divergence. The set of parameters φ l is defined as the set of parameters given by Eq. ( 9) using M * l,ij to define the symmetric tensor. ∆/∆ normalized ǫ irr,l Figure 1. Evolution of the normalized irreducible errors as a function of the filter width for various set of parameters: ǫ irr,1 (red line), ǫ irr,2 (green line), ǫ irr,3 (black line), and ǫ irr,4 (blue line).

determine the most appropriate set, the irreducible error of each set of parameters is now computed on the DNS database. The irreducible error of the set of parameters φ l is defined as All the normalized irreducible errors decrease with the increase of the filter width.

ǫ irr,l = ∂T i ∂x i DN S - ∂T i ∂x i DN S φ l 2 , (10) 
However, the irreducible error of the set of parameters φ 1 , i.e., using only the filtered strain rate tensor, Sij , to define M * ij is much smaller than the other ones for all filter sizes. This observation leads to conclude the set of parameters φ 1 is the best candidate to develop a SGS model. The next step is to determine an appropriate link between the parameters of this set, leading to a weak formal error in Eq. ( 8), so as to ensure a weak total quadratic error for the proposed model.

Formal error reduction using an artificial neural network

In this second step, only the set of parameters φ 1 is considered. Owing to the divergence-free condition, the first invariant of M ij is equal to zero, and because of the dimensionless form of the symmetric tensor M ij , the second invariant is constant. The set of parameters φ 1 is thus made of seven parameters only taken as input for developing a surrogate model to approximate one output (i.e. ∂T i /∂x i ). When considering the use of the machine-learning procedure from the DNS database and taking into account the amount of data to process, an artificial neural network (ANN) appears to be one of the most robust approach, as identified from the literature review provided in the Introduction. The ANN retained in the present study is described in Appendix A.

To avoid issues with dimensional consistency, the ANN procedure is applied on dimensionless inputs and output. The dimensionless inputs are built from the physical inputs by subtracting their average and normalizing with their root mean training stage. The generalized error presents a minimum error while the training error is still decreasing. The selected result corresponds to the iteration leading to this minimal generalized error. Beyond this iteration, the over-fitting phenomenon occurs and the ANN model is specifically linked with the training database [START_REF] Lodwich | Evaluation of robustness and performance of Early Stopping Rules with Multi Layer Perceptrons[END_REF].

A surrogate model, denoted ANN model, is then generated. Some a priori tests are now performed to check the training accuracy, and some a posteriori tests are also carried out to validate the overall procedure. Comparisons of the ANN model performance with other models will be presented below.

A priori measurement of model performance

The previously generated ANN model is compared with the DNTD and DED models through a priori tests relying on the use of the DNS database. In this work, the dynamic procedure for the DED model is the classic procedure using the Germano identity [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF], extended for the SGS scalar flux [START_REF] Moin | A dynamic subgrid-scale model for compressible turbulence and scalar transport[END_REF] and taking into account the modification proposed by Lilly [START_REF] Lilly | A proposed modification of the Germano subgrid-scale closure method[END_REF]. For the DNTD model, the procedure proposed by Wang et al. [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF] is used. For both models, an averaging is performed over homogeneous directions. The models quadratic errors are displayed in Figure 3 To assess the functional performance, the prediction of the models for the SGS scalar dissipation rate is now analyzed. dissipation in good agreement with DNS data. This is an encouraging result because the SGS model development procedure does not directly take into account the functional performance. However, the model tends to underpredict the SGS dissipation magnitude for some filter widths. This can lead to unstable LES with an accumulation of the scalar variance at the smallest resolved scale. Figure 4 compares the joint probability density function (J-PDF) between the exact and modeled normalized SGS transfer terms (including SGS dissipation and SGS diffusion) for the DED and ANN models. All the transfers are normalized by the root mean square of the exact SGS transfers. A better local correlation with the exact term is found for the ANN model, showing that the GS/SGS transfers are better localized with the ANN model than with the DED model.

A posteriori tests

A posteriori tests are now performed to validate the overall model development procedure leading to the ANN model. The flow configuration is a forced homogeneous isotropic turbulence, similar to the DNS database previously described. The a posteriori tests consist of LES of passive scalars on 64 3 grid points, using DED, DNTD, and ANN models. The results are compared with filtered DNS still performed on 256 3 grid points. To avoid modeling errors interaction, the velocity field is solved by DNS in all cases [START_REF] Balarac | A dynamic regularized gradient model of the subgrid-scale scalar flux[END_REF]. Two mixing conditions are considered. The first test corresponds to a restart of the DNS database after a spectral interpolation of the scalar field on the LES grid, and keeping the scalar forcing scheme. Then, the ANN model is compared with exactly the same mixing condition as the DNS database used for its generation. The second test corresponds to a random initialization of the scalar field [START_REF] Eswaran | Direct numerical simulations of the turbulent mixing of a passive scalar[END_REF] and the scalar is not forced. This permits testing the ANN model in another mixing process, where no global equilibrium is enforced and where a decay of the scalar variance is thus expected. However, the Noll's decomposition, Eq. ( 4), already fixed an algebraic relation (which has been ignored in the previous section). This relation is the starting point of the DNTD model [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF]. On the other hand, the DNTD model has displayed very weak structural performance with a total quadratic error much larger than its irreducible error (Fig. 3). This probably means that the dynamic procedure is not efficient to compute model coefficients. The new procedure conserves the algebraic expression but evaluates the model coefficients from a machine-learning procedure.

As already stated in the introduction, Noll's formula applied to the modeling of the SGS scalar flux allows to write a complete and irreducible nonlinear tensor diffusivity model [START_REF] Wang | A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection[END_REF], as

T AC i = g 1 ∆2 | S| ∂ Z ∂x i + g 2 ∆2 Sik ∂ Z ∂x k + g 3 ∆2 Sik Skl | S| ∂ Z ∂x l . ( 11 
)
From now on, this model is denoted AC for 'adaptative coefficients' because the coefficients g 1 , g 2 and g 3 are defined from a machine-learning procedure, instead of a dynamic procedure as involved by the DNTD model. As already explained, the model coefficients depend on a set of parameters defined from the principal

invariants of M ij = Sij /| S| and v i = ∆2 | S| ∂ Z ∂xi .
However, due to the flow configuration, the first invariant of M ij is zero and the second one is a constant, the set of parameters is thus defined as, The new determination process of the ANN parameters is performed to guarantee simultaneously the structural and the functional performances of the AC model.

φ = {III M , I v , I M v , II M v }, with III M = M ik M kl M li , I v = v i v i , I M v = v i M ik v k , and 
II M v = v i M ik M kj v j . A
The structural performance is measured by defining the normalized quadratic error as first criterion to minimize,

c 1 ( ∆/∆, p) = ∂Ti ∂xi DN S -∂Ti ∂xi AC 2 ∂Ti ∂xi DN S 2 -∂Ti ∂xi DN S 2 . ( 12 
)
A second criterion is defined for the functional performance, as the relative error between the mean exact SGS scalar dissipation and the mean SGS scalar dissipation provided by the model, 

c 2 ( ∆/∆, p) = T DN S i ∂ Z ∂xi -T AC i ∂ Z ∂xi T DN S i ∂ Z ∂xi . (13) 
Ob 2 (p) = max ∆ (c 2 )
. For the bi-objective problem under consideration, a set p * of ANN parameters will be Pareto optimal if there is not another set p such that Ob i (p) ≤ Ob i (p * ) for i = 1, 2 and Ob i (p) < Ob i (p * ) for at least one value of i. In other words, p * will be Pareto-optimal if it is not dominated by any other parameter set in the solution space. The objectives Ob 1 and Ob 2 are conflicting, in the sense it is not possible to improve (decrease) one of these objectives without degrading (increasing) the other one. As a consequence, the Pareto-optimal set for the simultaneous minimization of Ob 1 and Ob 2 will include an infinite number of trade-off solutions, which do not dominate each other but dominate all the other parameter sets. When plotted in the objective space, namely the (Ob 1 , Ob 2 ) plane, the trade-off optimal solutions form a Pareto front (see Fig. 8). The Nondominated Sorting Genetic Algorithm (NSGA) (see [START_REF] Deb | Multi-Objective Optimization using Evolutionary Algorithms[END_REF] for more details on this well-established multi-objective genetic algorithm) is used to efficiently explore the solution space and provide a set of well-spread optimal solutions along the Pareto front. Results provided by the ANN model are available in Fig. 5 and6. for example to correct the unphysical behavior observed with the DNTD model (see Fig. 5) or the weak over-dissipation due to the DED model. To further test the SGS model built from the multi-objective optimization process, a temporal turbulent plane jet flow configuration is also considered. This flow configuration includes transition stages and mean shear regions and is thus very far from the DNS database used to build the model. The flow problem is similar to the one studied by Silva and Pereira [START_REF] Silva | Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[END_REF], with a computational domain periodic in the three spatial directions. The temporal evolution of the flow generated by an initial plane jet velocity profile is studied. The initial velocity and scalar profiles are described by a classic hyperbolic-tangent profile [START_REF] Silva | Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[END_REF]. The molecular viscosity, tered DNS results (see Fig. 13 (b) and (c)). An under-prediction is also found with the DED model but remains much less pronounced. This observation means that the AC model over-predicts the SGS scalar dissipation in this configuration. The over-estimation of the SGS dissipation leads to an over-prediction of the mixing process. This is shown by the probability density function (PDF) of the resolved scalar computed for different locations toward the jet shear layer, from the center of the jet to the co-flow region (see Fig. 14). Indeed, for all locations, the peak of the PDF is larger at the most probable value of Z, whereas the probability of the extrema is smaller for the AC model in comparison with the filtered DNS. Thus, even though stable LES are obtained with the AC model for this flow configuration, modeling improvement appears necessary. Note that machine-learning-assisted turbulence modeling is still in a rather early stage of development. Improvement can be devoted to answer this question which is ultimately linked with the assumed universality of SGS models.

= {III M , I v , I M v , II M v } v, M v, M 2 v T AC i {c 1 , c 2 } {Ob 1 , Ob 2 } ∆/∆ population generation

Conclusion

This work has been devoted to the formulation and the assessment of new strategies to develop SGS models. The proposed modeling procedures are first based on an improvement of the structural performance of the SGS model, measured by the Taylor & Francis and I.T. Consultant quadratic error between the exact (filtered DNS) SGS term and the model. In the framework of the optimal estimation theory, this modeling error can be split into the error resulting from the parameters used to write the model on one hand and the error resulting from the algebraic relation used to link these input parameters on the other hand. The optimal set of parameters is determined in a preliminary step thanks to the optimal estimator concept. Then, two strategies have been proposed to derive optimal SGS models using this selected set of parameters. The (i) the functional form was imposed and (ii) the functional performance was taken into account in the optimization process. Future works will be devoted to better understand which factor is preponderant to improve the model capability.

This contribution appears as a first step to establish the optimal estimator concept associated with machine-learning procedures as useful tools for SGS model development. In this first step, a simple flow configuration (forced HIT) has been considered, allowing to use spectral method. This leads to a clear definition of the filter kernel and guarantees the same filter kernel is applied during the training stage and a posteriori (LES) test. Moreover, this also allows to neglect interaction between modeling and numerical errors. Future works will be devoted to extend the proposed approach for SGS model developments to more complex flows devoid of these simplifications. 

  using a classical ANN training. It is established that such an ANN model exhibits good performances, in comparison with the DNTD and the DED models, but the model can fail if it is used on different mixing conditions in comparison with the condition of the DNS database used for the training step. A second improved modeling procedure is then proposed in Section 4, which retains the algebraic expression of the DNTD model but computes the model coefficient with an ANN.

  is the SGS term which must be modeled to perform LES. In the context of passive scalar LES, the usual functional modeling strategy makes use of an eddy-diffusivity, D T , to model the SGS scalar flux as T i = -D T ∂ Z/∂x i . The dynamic eddy-diffusivity (DED) model proposed by Moin et Taylor & Francis and I.T. Consultant

  where ∂T DN S i /∂x i represents the exact divergence of the SGS scalar flux extracted from the filtered DNS database, and a spatial averaging is used owing to the flow configuration. The evolution with the filter width of various irreducible errors, corresponding to the various proposed set of parameters, is shown in Fig. 1. In this figure, the irreducible errors are normalized by the statistical variance of ∂T DN S i /∂x i .

  square. The dimensionless output is normalized by the root mean square of ∂v i /∂x i , to generate a dimensional quantity a posteriori. The use of dimensionless parameters allows for a more efficient training process. Moreover, it is also expected that this will favor the development of a well-performing ANN model on a broader range of turbulent mixing conditions.The DNS database is divided into two distinct parts : the training database and the test database, corresponding to different grid points. The optimization procedure of the ANN parameters is performed on the training database with the objective to decrease the training error, defined as the quadratic error of the ANN model on this database. Moreover, at each optimization step, a generalized error is also defined as the quadratic error of the ANN on the test database.

Figure 2 .

 2 Figure 2. Evolution of the training error (solid line) and the generalized error (dashed line) as functions of the iterations of ANN training stage.

Figure 3 .

 3 Figure 3. A priori measurements of the structural and functional model performance for DED (cyan line), DNTD (green line) and ANN (red line) models. (a) Normalized quadratic errors as a function of the filter width. The normalized irreducible errors are also shown for comparison (dashed line). (b) Mean SGS dissipation as a function of the filter width. The black line shows the SGS dissipation given by the filtered DNS data.

Figure 3 ( 8 -Figure 4 .

 384 Figure 4. Joint probability density function (J-PDF) between the exact and modeled normalized SGS transfer terms, for DED (cyan line) and ANN (red line) models and for two different filter sizes. The isocontours are in the range 10 -5 to 10 -1 with a logarithm scale.

Figure 5 .Fig. 5 (

 55 Figure 5. Forced scalar case: evolution of the resolved scalar variance (a) and scalar enstrophy (b) with time, and scalar variance spectrum (c). The models are compared with filtered DNS (a,b) or full DNS (c). DNS (black line), DED model (cyan line), DNTD model (green line) and ANN model (red line).

Figure 6 Figure 6 . 4 . 1 .

 6641 Figure6shows the same statistics as Fig.5for the second test case: unforced

  surrogate model based on an ANN is then computed to define the vectorial relation between the vector of the model coefficients g = (g 1 , g 2 , g 3 ) and the set of input parameter φ. The ANN is composed of 4 input variables (the input parameters, φ) and 3 output variables (the model coefficient, g). Its topology is a two-layer perceptron composed of two hidden layers with 8 and 5 neurons, respectively. The training stage determines the best set of ANN parameters (noted ω ij,n and b k,n on Fig.A1). Note that with this ANN topology, there are 103 parameters to determine. For convenience a set of ANN parameters is noted p, and the vector of model coefficients computed from this set is noted g| p .

  Both criteria are defined at a given filter size. The objectives of the training stage (noted Ob 1 and Ob 2 , respectively) are then respectively defined from these criteria as the minimization of the maximum value of c 1 and c 2 over the filter size. The training stage is then a bi-objective optimization yielding a set of Pareto-optimal solutions p * such that p * = min p [Ob 1 (p), Ob 2 (p)], with Ob 1 (p) = max ∆ (c 1 ) and

Figure 7

 7 summarizes the global optimization algorithm. A random population of individuals p is first generated. For each individual p, the model coefficient g| p and the model T AC i are computed for ∆/∆ = {4, 8, 12, 16} and both c 1 and c 2 criteria defined by (12) and (13) are computed for each filter size

Figure 7 .

 7 Figure 7. Schematic view of the modeling procedure based on the multi-objective optimisation of the ANN parameters

4. 2 . 2 Figure 8 .Figure 9 .Fig. 8 .

 22898 Figure 8. Representation of the individuals of the optimization procedure in the 2D objectives plan. The points represent the individuals of the optimal Pareto front and the grey level represent the rank of the Pareto fronts.

4. 3 .

 3 A posteriori tests A posteriori tests are finally performed to validate the second procedure based on ANN trained by using a MOGA, and leading to the AC model. The tests are the ones previously described in section 2.4 when assessing the ANN model. Passive scalar LES on 64 3 grid points are thus performed for two different conditions. The first case is exactly the case of the training data base: forced scalar and established scalar field, whereas the second case is a unforced scalar with random initial scalar field. Note that the AC model is compared with the DED model only for clarity.

Figure 10 showsFigure 10 .

 1010 Figure10shows the results for the first test case, which corresponds exactly

Figure 11 showsFigure 11 .

 1111 Figure11shows the scalar statistics for the second test case corresponding to

Figure 12 .

 12 Figure 12. Contour of scalar from DNS results during the plane jet transition toward a turbulent state at tH/∆U ≈ 8 (a) and tH/∆U ≈ 14 (b).The scalar is between 0 (blue) and 1 (red).

ν,Figure 13 .

 13 Figure 13. Mean scalar profile of the temporal jet at tH/∆U = 0, at tH/∆U ≈ 8 and at tH/∆U ≈ 14 (a). Profile of the resolved scalar variance, Z′2 , at tH/∆U ≈ 8 (b) and at tH/∆U ≈ 14 (c). The DED model (cyan line) and AC model (blue line) are compared with filtered DNS results (black line).

Figure 14 .

 14 Figure 14. Probability density function (PDF) of the resolved scalar computed at tH/∆U ≈ 14, for different locations toward the jet shear layer: y/H = 0 (a), y/H = 0.25 (b), y/H = 0.5 (c) and y/H = 0.75 (d). The models, DED model (cyan line) and AC model (blue line), are compared with filtered DNS (black line).

  first strategy has been to directly use the artificial neural network technique to design a surrogate model, by minimizing the modeling error, i.e. improving only the structural performance. The second strategy has been to conserve the functional form given by Noll's formula and to determine coefficients by using the artificial neural network technique combined with a bi-objective optimisation technique to develop a model improving both structural and functional performances. Both proposed strategies have been applied in the context of LES of turbulent mixing, to the modeling of the SGS scalar flux. The models developed from these procedures have been compared with classic algebraic SGS models. The first procedure based on ANN technique only leads to result very close to the reference results in comparison with classic SGS models. However, this first procedure fails for mixing conditions different from the mixing condition occurring in the training database used to generate the ANN. This eventually leads to unphysical behavior of the scalar field. The second procedure allows to correct this behavior. The unphysical behavior observed with the first strategy is avoided and the new model is found both more robust and leading to an improvement in comparison with classic SGS model. The second strategy differs from the first one by two main factors:

7 N 1 , 1 N i, 1 N 15 , 1 N 1 , 2 N i, 2 N 15 2 Figure

 7111151122152 Figure A1. ANN topology used for training.
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The ANN is a nonlinear surrogate function between inputs and output, meaning that the linear relation in Eq. ( 4) is no longer taken into account. The most efficient ANN topology in this work is a two-layer perceptron with a back-propagation training algorithm composed of two hidden layers and fifteen neurons per hidden layer (Fig. A1). The activation functions are of sigmoid type. The j th neuron of the first layer, denoted N j,1 , is defined as

with φ 1,l the l th parameter of the set of parameters, φ 1 . The i th neuron of the second layer, denoted N i,2 , is then defined as

yielding the following non-linear expression for the output, g(φ 1 ),