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Abstract

In this work we propose and analyze a novel Hybrid High-Order discretization of a class of
(linear and) nonlinear elasticity models in the small deformation regime which are of common use
in solid mechanics. The proposed method is valid in two and three space dimensions, it supports
general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary ap-
proximation order, and the resolution cost can be reduced by statically condensing a large subset
of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local
principle of virtual work inside each mesh element, with interface tractions that obey the law of
action and reaction. A complete analysis covering very general stress-strain laws is carried out,
and optimal error estimates are proved. Extensive numerical validation on model test problems
is also provided on two types of nonlinear models.

1 Introduction

In this work we develop and analyze a novel Hybrid High-Order (HHO) method for a class of (linear
and) nonlinear elasticity problems in the small deformation regime.

Let Q < R, d € {2, 3}, denote a bounded connected open polyhedral domain with Lipschitz boundary
I' := 00 and outward normal n. We consider a body that occupies the region €2 and is subjected
to a volumetric force field f € L2(€;R?). For the sake of simplicity, we assume the body fixed on
I’ (extensions to other standard boundary conditions are possible). The nonlinear elasticity problem
consists in finding a vector-valued displacement field u : Q — R? solution of

—V.o(-,Vsu) =f in Q, (1a)
u=0 onT, (1b)

where V denotes the symmetric gradient. The stress-strain law o : Q x RE<? — R&x? is assumed to
satisfy regularity requirements closely inspired by [27], including conditions on its growth, coercivity,
and monotonicity; cf. Assumption 1 below for a precise statement. Problem (1) is relevant, e.g., in
modeling the mechanical behavior of soft materials [45] and metal alloys [41]. Examples of stress-

strain laws of common use in the engineering practice are collected in Section 2.

The HHO discretization studied in this work is inspired by recent works on linear elasticity [20] (where
HHO methods where originally introduced) and Leray—Lions operators [15,16]. It hinges on degrees
of freedom (DOFs) that are discontinuous polynomials of degree k > 1 on the mesh and on the mesh
skeleton. Based on these DOFs, we reconstruct discrete counterparts of the symmetric gradient and
of the displacement by solving local linear problems inside each mesh element. These reconstruction
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operators are used to formulate a local contribution composed of two terms: a consistency term
inspired by the weak formulation of problem (1) with Vg replaced by its discrete counterpart, and
a stabilization term penalizing cleverly designed face-based residuals. The resulting method has
several advantageous features: (i) it is valid in arbitrary space dimension; (ii) it supports arbitrary
polynomial orders > 1 on fairly general meshes including, e.g., polyhedral elements and nonmatching
interfaces; (iii) it satisfies inside each mesh element a local principle of virtual work with numerical
tractions that obey the law of action and reaction; (iv) it can be efficiently implemented thanks to
the possibility of statically condensing a large subset of the unknowns for linearized versions of the
problem (encountered, e.g., when solving the corresponding system of nonlinear algebraic equations by
the Newton method). For a numerical comparison between HHO methods and standard conforming
finite element methods in the context of scalar diffusion problems see [21]. Additionally, as shown by
the numerical tests of Section 6, the method is robust with respect to strong nonlinearities.

In the context of structural mechanics, discretization methods supporting polyhedral meshes and
nonconforming interfaces can be useful for several reasons including, e.g., the use of hanging nodes
for contact [7,48] and interface elasticity [32] problems, the simplicity in mesh refinement [43] and
coarsening [3] for adaptivity, and the greater robustness to mesh distorsion [12] and fracture [36].
The use of high-order methods, on the other hand, can classically accelerate the convergence in the
presence of regular exact solutions or when combined with local mesh refinement. Over the last
few years, several discretization schemes supporting polyhedral meshes and/or high-order have been
proposed for the linear version of problem (1); a non-exhaustive list includes [4,20,22,23,42,46,47].
For the nonlinear version, the literature is more scarce. Conforming approximations on standard
meshes have been considered in [30, 31], where the convergence analysis is carried out assuming
regularity for the exact displacement field w and the constraint tensor o (-, Vsu) beyond the minimal
regularity required by the weak formulation. Discontinuous Galerkin methods on standard meshes
have been considered in [40], where convergence is proved for d = 2 assuming u € H™1(Q; R?) for
some m > 2, and in [6], where convergence to minimal regularity solutions is proved for stress-strain
functions similar to [5]. General meshes are considered, on the other hand, in [5] and [11], where the
authors propose a low-order Virtual Element method, whose convergence analysis is carried out for
nonlinear elastic problems in the small deformation regime (more general problems are considered
numerically). In [5], an energy-norm convergence estimate in h (with h denoting, as usual, the
meshsize) is proved when uw € H?(Q;R?) under the assumption that the function 7 + o (-, 7) is
piecewise C'! with positive definite and bounded differential inside each element. A closer look at the
proof reveals that properties essentially analogous to the ones considered in Assumption 12 below are
in fact sufficient for the analysis, while C''-regularity is used for the evaluation of the stability constant.
Convergence to solutions that exhibit only the minimal regularity required by the weak formulation
and for stress-strain functions as in Assumption 1 is proved in [27] for Gradient Schemes [26]. In this
case, convergence rates are only proved for the linear case. We note, in passing, that the HHO method
studied here fails to enter the Gradient Scheme framework essentially because the stabilization term
is not embedded into the discrete symmetric gradient operator; see [18].

We carry out a complete analysis for the proposed HHO discretization of problem (1). Existence of
a discrete solution is proved in Theorem 7, where we also identify a strict monotonicity assumption
on the stress-strain law which ensures uniqueness. Convergence to minimal regularity solutions u €
H}(Q;RY) is proved in Theorem 9 using a compactness argument inspired by [15,27]. More precisely,
we prove for monotone stress-strain laws that (i) the discrete displacement field strongly converges
(up to a subsequence) to w in LI(;RY) with 1 < ¢ < +o0if d =2 and 1 < ¢ < 6 if d = 3; (ii) the
discrete strain tensor weakly converges (up to a subsequence) to Viu in L%(Q, R4*?). Notice that
our results are slightly stronger than [27, Theorem 3.5] (cf. also Remark 3.6 therein) because the
HHO discretization is compact as proved in Lemma 18. If, additionally, strict monotonicity holds for
o, the strain tensor strongly converges and convergence extends to the whole sequence. An optimal
energy-norm error estimate in A**! is then proved in Theorem 14 under the additional conditions
of Lipschitz continuity and strong monotonicity on the stress-strain law; cf. Assumption 12. The
performance of the method is investigated in Section 6 on a complete panel of model problems using
stress-strain laws corresponding to real materials.



The rest of the paper is organized as follows. In Section 2 we formulate the assumptions on the stress-
strain function o, provide several examples of models relevant in the engineering practice, and write
the weak formulation of problem (1). In Section 3 we introduce the notation for the mesh and recall a
few known results. In Section 4 we discuss the choice of DOFs, formulate the local reconstructions, and
state the discrete problem along with the main results, collected in Theorems 7,9, and 14. In Section 5
we show that the HHO method satisfies on each mesh element a discrete counterpart of the principle
of virtual work, and that interface tractions obey the law of action and reaction. Section 6 contains
numerical tests, while the proofs of the main results are given in Section 7. Finally, Appendix A
contains the proofs of intermediate technical results. This structure allows different levels of reading.
In particular, readers mainly interested in the numerical recipe and results may focus primarily on
the material of Sections 2-6.

2 Setting and examples

For the stress-strain function, we make the following

Assumption 1 (Stress-strain function I). The stress-strain function o : Q x R¥X¢ — RZX? is a

sym Sym

Caratheodory function, namely
o (x,-) is continuous on ngxrr‘f for a.e. ¢ € Q, (2a)
o (-, T) is measurable on  for all T € ]ngxn‘f, (2b)

and it holds o (-,0) € L2(Q; R¥*4). Moreover, there exist real numbers &, ¢ € (0, +o0) such that, for

a.e. xe€ ), and all m,n € ]ngxrff, the following conditions hold:

lo(@,7) — o (2,0)|axa < T|Taxa, (growth) (2¢)
o(x,7): 7= 0|73 (coercivity) (2d)
(o(x,7)—0o(x,m)) : (T—n) =0, (monotonicity) (2e)

where 7 : 1 := Z?,j:l 7 mig and ||7]3, =T T

We next discuss a number of meaningful models that satisfy the above assumptions.

Example 2 (Linear elasticity). The linear elasticity model corresponds to
o(-,Vsu) = C(-)Vsu,

where C' is a fourth order tensor. Being linear, the previous stress-strain relation clearly satisfies
Assumption 1 provided that C is uniformly elliptic. A particular case of the previous stress-strain
relation is the usual linear elasticity Cauchy stress tensor

o(Vsu) = Ar(Vsu)l g+ 2uVu, (3)
where tr(7) := 7 : I and A, u € R are Lamé’s parameters.

Example 3 (Hencky—Mises model). The nonlinear Hencky—Mises model of [31,38] corresponds to
the stress-strain relation

o (Vi) = Adev(Vow)) tr(Veu)I4 + 2i(dev(Veu)) Viu, (4)

where A and /i are the nonlinear Lamé’s scalar functions and dev : R&X? — R defined by dev(r) =
tr(72) — L tr(7)? is the deviatoric operator. Conditions on A and /i such that o satisfies Assumption 1

can be found in [2,5].

Example 4 (An isotropic damage model). The isotropic damage model of [10] corresponds to the
stress-strain relation

o(,Vsu) = (1 - D(Vu))C(-)Vu, (5)

where D : ngxn‘f — R is the scalar damage function. If there exists a continuous and bounded function

f:[0,400) — [a,b] for some 0 < a < b, such that s € [0, +00) — sf(s) is non-decreasing and, for all

TeRIXY D(7) =1 — f(|]), the damage model constitutive relation satisfies Assumption 1.



In the numerical experiments of Section 6 we will also consider the following model, relevant in
engineering applications, which however does not satisfy Assumption 1 in general.

Example 5 (The second-order elasticity model). The nonlinear second-order isotropic elasticity
model of [14,34,35] corresponds to the stress-strain relation

o(Vsu) = A tr(Vsu)l; + 2uVu
+ Btr((Vsu)*)I4 + 2B tr(Vau)Veu + Ctr(Vou)? I, + A(Vu)?,  (6)

where A and p are the standard Lamé’s parameter, and A, B, C € R are the second-order moduli.

Remark 6 (Energy density functions). Examples 2, 3, and 5, used in numerical tests of Section 6, can
be interpreted in the framework of hyperelasticity. Hyperelasticity is a type of constitutive model
for ideally elastic materials in which the stress-strain relation derives from a stored energy density

function ¥ : Rg;n‘f — R, namely

or
The stored energy density function leading to the linear Cauchy stress tensor (3) is

A
Uin (7) = 5 tr(1)? + ptr(r?), (7)
while, in the Hencky—Mises model (4), it is defined such that
Ui (7) 1= 5 tr(7)? + B(dev(r)). (8)

Here o € (0,+00), while ® : [0, +00) — R is a function of class C? satisfying, for some positive
constants Cq, Cs, and Cj,

Ci<®(p)<a , [p@(p))<Ce and () +200"(0) > Cy Vpe[0, ).  (9)

Deriving the energy density function (8) yields the stress-strain relation (4) with nonlinear Lamé’s
functions fi(p) := ®'(p) and A(p) := o — &’ (p). Taking o = A + p and B(p) = pp in (8) leads to the
linear case. Finally, the second-order elasticity model (6) is obtained by adding third-order terms to
the linear stored energy density function defined in (7):

Una(r) = %tl‘(T)2 + ptr (7'2) + %tr('r)?’ + Btr(7) tr(7?) + gtr(r3). (10)

The weak formulation of problem (1) that will serve as a starting point for the development and
analysis of the HHO method reads

Find w € H} (Q;R?) such that a(u,v) = J f-v YveH}QRY, (11)
Q

where H{ (€; R9) is the zero-trace subspace of H!(2;R?) and the function a : H} (; RY) x H (Q; R?) —
R is such that
a(v,w) := J o(x,Vsv(x)): Viw(x)de.
Q

Throughout the rest of the paper, to alleviate the notation, we omit the dependence on the space
variable  and the differential do from integrals.

3 Notation and basic results

We consider refined sequences of general polytopal meshes as in [26, Definition 7.2] matching the
regularity requirements detailed in [24, Definition 3|. The main points are summarized hereafter.
Denote by H < R} a countable set of meshsizes having 0 as its unique accumulation point, and let



(Th)hen be a refined mesh sequence where each 7}, is a finite collection of nonempty disjoint open
polyhedral elements T" with boundary 0T such that Q = UTeTh T and h = maxrey, hy with hr
diameter of T'.

For each h € H, let F}, be a set of faces with disjoint interiors which partitions the mesh skeleton, i.e.,
Upe 7 = UTeTh OT. A face F is defined here as a hyperplanar closed connected subset of Q with
positive (d—1)-dimensional Hausdorfl measure such that (i) either there exist distinct 77,75 € T,
such that F' < 071 n 075 and F is called an interface or (ii) there exists T' € T, such that F' < 0T n T
and F is called a boundary face. Interfaces are collected in the set F, and boundary faces in ]-',Eb’ , SO
that F, := F. U FP. For all T € Ty, Fr := {F € Fj, | F < 0T} denotes the set of faces contained in
JT and, for all F' € Fr, npp is the unit normal to F' pointing out of T'.

Mesh regularity holds in the sense that, for all h € H, T, admits a matching simplicial submesh ¥,
and there exists a real number ¢ > 0 such that, for all h € H, (i) for any simplex S € T}, of diameter
hs and inradius rg, ohg < rg and (ii) for any T' € T, and all S € Ty such that S < T, phr < hg.

Let X be a mesh element or face. For an integer [ > 0, we denote by P!(X;R) the space spanned
by the restriction to X of scalar-valued, d-variate polynomials of total degree I. The L2-projector
mhe : LY(X;R) — PY(X;R) is defined such that, for all v e L'(X;R),

J (thv —v)w =0 Vw e P(X;R). (12)
p's

When dealing with the vector-valued polynomial space P!(X; R?) or with the tensor-valued polynomial
space P/(X; R?*4), we use the boldface notation m’ for the corresponding L2?-orthogonal projectors
acting component-wise.

On regular mesh sequences, we have the following optimal approximation properties for 7TlT (for a
proof, cf. [19, Lemmas 1.58 and 1.59] and, in a more general framework, [16, Lemmas 3.4 and 3.6]):
There exists a real number Cypp, > 0 such that, for all s € {0,...,l+ 1}, all he H, all T € T, and all
ve H(T;R),

2|v — 7r£[1)|Hm(T;R) < Capphy "'V 5o (75m) VYm e {0,...,s}, (13a)

and, if s > 1,

s—m—1
|v77ré~U|Hm(]:T;R) < Capphp Vg5 (7iw) Vm e {0,...,s —1}. (13b)

Other useful geometric and functional analytic results on regular mesh sequences can be found in [19,
Chapter 1] and [15,16].

At the global level, we define broken versions of polynomial and Sobolev spaces. In particular, for an
integer | > 0, we denote by P!(75,;R), P!(Ty,; R?), and P!(T;,; R4*?), respectively, the space of scalar-
valued, vector-valued, and tensor-valued broken polynomial functions on 7, of total degree [. The
space of broken vector-valued polynomial functions of total degree [ on the trace of the mesh on the
domain boundary T is denoted by P!(FP; R?). Similarly, for an integer s > 1, H*(Tp; R), H*(Ty; RY),
and H*(Tp; R¥*?) are the scalar-valued, vector-valued, and tensor-valued broken Sobolev spaces of
index s.

Throughout the rest of the paper, for X = €, we denote by ||-|x the standard norm in L?(X;R),
with the convention that the subscript is omitted whenever X = ). The same notation is used for
the vector- and tensor-valued spaces L?(X;R%) and L%(X;R%*9).

4 The Hybrid High-Order method

In this section we define the space of DOFs and the local reconstructions, and we state the discrete
problem along with the main results (whose proof is postponed to Section 7).
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Figure 1: Local DOFs for k = 1 (left) and k = 2 (right). Shaded DOFs can be locally eliminated by static condensation
when solving linearized versions of problem (21).

4.1 Degrees of freedom

Let a polynomial degree k > 1 be fixed. The DOFs for the displacement are collected in the space

Uj = ( X IF”“(T;Rd)> x ( X IP’f(F;Rd>>,

TeTh FeFy,

see Figure 1. Observe that naming U Z the space of DOFs involves a shortcut: the actual DOFs
can be chosen in several equivalent ways (polynomial moments, point values, etc.), and the specific
choice does not affect the following discussion. Details concerning the actual choice made in the
implementation are given in Section 6 below.

For a generic collection of DOFs in Uf, we use the classical HHO underlined notation v, :=
((vr)reTs, (vF)Fer,). We also denote by vj, € P¥(T;;R?) and vr, € P*(FP;RY) (not underlined)
the broken polynomial functions such that

(vn)r =vr YT'e€T, and (vrn)p=vr VFE}'}Z.

The restrictions of Qﬁ and v;, to a mesh element 7" are denoted by Ql% and vy = ('UT, (vF)Fe ]-‘T),
respectively. The space U Z is equipped with the following discrete strain semi-norm:

1/2
vy, =< v ?,T> ; e = Veor|F + Y} hp'|vr — vz} (14)
TeTh FeFr

The DOFs corresponding to a given function v € H*(Q; R?) are obtained by means of the reduction
map I7 : H'(Q;R?) — U} such that

Liv = ((mpo)rer,, (T5v) per,) (15)

where we remind the reader that 7% and 7% denote the L?-orthogonal projectors on P*(T;R?%) and
Pk (F; R%), respectively. For all mesh elements T € Ty, the local reduction map I%. : H'(T;R%) — U%,
is obtained by a restriction of IY, and is therefore such that for all v € H'(T;RR%)

LItv = (mhv, (7o) pery ). (16)

4.2 Local reconstructions

We introduce symmetric gradient and displacement reconstruction operators devised at the element
level that are instrumental in the formulation of the method.

Let a mesh element T" € T;, be fixed. The local symmetric gradient reconstruction operator

GkT UT H]PJk( RdXd)

Sym



is obtained by solving the following pure traction problem: For a given local collection of DOFs
vy = (vr, (vF)rery) € U%, find GS’TQT e PH(T;REX%) such that, for all T e P*(T;RIX%),

sym sym

J Glrop:T = —J vr - (V1) 2 f vp - (TRTF) (17a)
T T FeFr

vaT T+ ) J (vp —vr) - (TRrFR). (17b)

FeFr

The right-hand side of (17a) is designed to resemble an integration by parts formula where the role
of the function represented by the DOFs in vy is played by vr inside the volumetric integral and by
(vp)Fer, inside boundary integrals. The reformulation (17b), obtained integrating by parts the first
term in the right-hand side of (17a), highlights the fact that our method is nonconforming, as the
second addend accounts for the difference between v and vr.

The definition of the symmetric gradient reconstruction is justified observing that, using the defini-
tions (16) of the local reduction map I’ and (12) of the L2-orthogonal projectors 7wk and 7% in (17a),
one can prove the following commuting property: For all T' € T;, and all v € H(T;R%),

GkTITv = wh (V). (18)

As a result of (18) and (13), GsTl? has optimal approximation properties in P*(T; RZx4).

sym

From G§,T7 one can define the local displacement reconstruction operator
k+l Uk Pk+1(T; Rd)

such that, for all v, € U%, V.rk o, is the orthogonal projection of GSTQT on V,PEHT;RY)
P*(T; RdXd) and rigid-body motions are prescribed according to [20, Eq. (15)]. More precisely, we let

sSym

r¥ o, be such that for all w e PF+1(T;R?) it holds
J (Verktlop — G pwg) : Vaw =0
T

and, denoting by Vg the skew-symmetric part of the gradient operator, we have

k+1
J Ty QT:f vr, j Verkflop = ] J (nrr®@vp —vF@nNrF).
T T

FeFr

Notice that, for a given vy € U ]%, the displacement reconstruction TI%HQT is a vector-valued poly-

nomial function one degree higher than the element-based DOFs vr. It was proved in [20, Lemma 2]
that 51 I% has optimal approximation properties in P¥+1(T;R%).

In what follows, we will also need the global counterparts of the discrete gradient and displacement
operators G ht U — Pk(ﬁ“Rg;rg) and ri*1 . UF — PRL(TRY) defined setting, for all v, € UF
and all T e 77“

(Gf,hﬂh)lT = Gf,TQTa (T’Ifflﬂh)\T = TI;“JrlQT' (19)

4.3 Discrete problem

We define the following subspace of Q’Z strongly accounting for the homogeneous Dirichlet boundary
condition (1b):
Uko={v, e U} lvr =0 vFe R}, (20)

and we notice that the map |-||,5, defined by (14) is a norm on QZ}O. The HHO approximation of
problem (11) reads:

Find u,, € QZ,O such that ap(wy,,v,) = Ap(uy,v;) + sp(uy,v,) = J. o, Yoy, e QZ”O, (21)
Q



where the consistency contribution Ay, : QZ X Qﬁ — R and the stability contribution sy, : QZ X Qﬁ —
R are respectively defined setting

Ap(uy,vy,) = JQO'(va,hHh) : Gf,hﬂhv (22)
sn(wy,vy) = Y, sr(up,vp), with sp(up,vp)i= ), hlf Afpur - Ajpvp.  (23)
TeTh FeFr FJFR

The scaling parameter v > 0 in (23) can depend on @ and ¢ but is independent of the meshsize h.
In the numerical tests of Section 6 we take v = 2y for the linear (3) and second-order (6) models and
v = 2/(0) for the Hencky—Mises model (4). In sr, we penalize in a least-square sense the face-based
residual A% : UY — PF(F;R?) such that, for all T € Ty, all v, € Uk, and all F € Fr,

Afpop = ”]}‘(TIQC"HQT —vp) — WIJC“(T;JFIQT —vr). (24)
This particular choice ensures that A? r vanishes whenever its argument is of the form I ’%w with
w € PFT1(T; R?), a crucial property to obtain an energy-norm error estimate in h**!; cf. Theorem 14.
Additionally, s, is stabilizing in the sense that the following uniform norm equivalence holds (the
proof is a straightforward modification of [20, Lemma 4]; cf. also Corollary 6 therein): There exists
a real number 1 > 0 independent of h such that, for all v; € Qﬁ,o,

- k
Ui 1||ﬂh||§,h < HGs,th”2 + su(vy, ) < 77Hyh|‘g,h' (25)

By (2d), this implies the coercivity of ay.
4.4 Main results

In this section we collect the main results of this paper. The proofs are postponed to Section 7. We
start by discussing existence and uniqueness of the discrete solution.

Theorem 7 (Existence and uniqueness of a discrete solution). Let Assumption 1 hold and let (Tr)nen
be a regular mesh sequence. Then, for all h € H, there exists at least one solution wu, € Qﬁ,o to
problem (21). Additionally, if the stress-strain function o is strictly monotone (i.e., if the inequality
in (2e) is strict for T # 1), the solution is unique.

Proof. See Section 7.1. O

Remark 8 (Strict monotonicity of the stress-strain function). The strict monotonicity assumption is
fulfilled, e.g., by the Hencky—Mises model (4) and by the damage model (5) when D(7) = 1— f(|7]),
with f continuous, bounded, and such that [0, +o0) 3 s — sf(s) is strictly increasing. We observe, in
passing, that the strict monotonicity is weaker than the strong monotonicity (27b) used in Theorem 14
to prove error estimates.

We then consider the convergence to solutions that only exhibit the minimal regularity required by
the variational formulation (11).

Theorem 9 (Convergence). Let Assumption 1 hold, let k > 1, and let (Tp)pen be a regular mesh
sequence. Further assume the existence of a real number Cx > 0 independent of h but possibly
depending on 1, o, and on k such that, for all v, € Qﬁo,

[onll + Vaonl < Cxlwyfen, (26)

where V}, denotes the broken gradient on H(Tp,;RY). For all h € H, let u,, € QZ,O be a solution to
the discrete problem (21) on Ty,. Then, for all ¢ such that1 < ¢ <+ ifd=2o0r1<qg<6ifd=3,
as h — 0 it holds, up to a subsequence,

e uj, — u strongly in LI(Q;RY),
® Gf,h@h — Vgu weakly in L?(€; R4,



where u € H}(Q;R?) solves the weak formulation (11). Moreover, if we assume strict monotonicity
for o (i.e., the inequality in (2e) is strict for T # n), it holds that

D Gf}hgh — Vgu  strongly in L%(Q; RI*9).

Finally, if the solution to (11) is unique, convergence extends to the whole sequence.

Proof. See Section 7.2. O

Remark 10 (Existence of a solution to the continuous problem). Notice that a side result of the
existence of discrete solutions proved in Theorem 7 together with the convergence results of Theorem 9
is the existence of a solution to the weak formulation (11).

Remark 11 (Discrete Korn inequality). In Proposition 20 we give a proof of the discrete Korn in-
equality (26) based on the results of [8], which require further assumptions on the mesh. While we
have the feeling that these assumptions could probably be relaxed, we postpone this topic to a future
work. Notice that inequality (26) is not required to prove the error estimate of Theorem 14.

In order to prove error estimates, we stipulate the following additional assumptions on the stress-strain
function o .

Assumption 12 (Stress-strain relation IT). There exist real numbers o*, o, € (0, 400) such that, for

a.e. ¢ €, and all 7,1 € RE<,
lo(x, ) — o(x,n)|axa < o* |7 — 1] axd, (Lipschitz continuity) (27a)
(o(x,7) —o(x,n)): (T —n) = 04| — 1|3, (strong monotonicity) (27b)

Remark 13 (Lipschitz continuity and strong monotonocity). It has been proved in [2, Lemma 4.1] that,
under the assumptions (9), the stress-strain tensor function for the Hencky—Mises model is strongly
monotone and Lipschitz-continuous, namely Assumption 12 holds. Also the isotropic damage model
satisfies Assumption 12 if the damage function in (5) is, for instance, such that D(|7|) = 1—(1+|7|)~=.

Theorem 14 (Error estimate). Let Assumptions 1 and 12 hold, and let (Tp)nen be a regular mesh
sequence. Let u be the unique solution to (1). Let a polynomial degree k = 1 be fixed, and, for all
h € H, let u, be the unique solution to (21) on the mesh Tn. Then, under the additional regularity
u e H**2(T;RY) and o (-, Vou) € HF1 (T RYD) it holds

IVsu — GEpap|l + sn(wy, )" < CR Y ([ulrve g may + |0 (-, Vsw) [ (g maxay) - (28)

where C' is a positive constant depending only on 2, k, the mesh regularity parameter o, the real
numbers @, o, o*, o, appearing in (2) and in (27), and an upper bound of | f|.

Proof. See Section 7.3. O

Remark 15 (Locking-free error estimate). The proposed scheme, although different from the one
of [20], is robust in the quasi-incompressible limit. The reason is that, as a result of the commuting
property (18), we have 7k (V.v) = tr(G’f’Tlgv). Thus, considering, e.g., the linear elasticity stress-
strain relation (3), we can proceed as in [20, Theorem 8] in order to prove that, when u € H**2(T;,; R9)
and V-u € H**1(T;;R), and choosing v = 2, it holds

(21)"*[Vsu = Gy < OB (2pla] s (75, may + AV -ul i (7;,m))

with real number C > 0 is independent of A, i and A\. The previous bound leads to a locking-free
estimate; see [20, Remark 9]. Note that the locking-free nature of polyhedral element methods has
also been observed in [46] for the Weak Galerkin method and in [4] for the Virtual Element method.



5 Local principle of virtual work and law of action and reaction

We show in this section that the solution of the discrete problem (21) satisfies inside each element a
local principle of virtual work with numerical tractions that obey the law of action and reaction. This
property is important from both the mathematical and engineering points of view, and it can simplify
the derivation of a posteriori error estimators based on equilibrated tractions; see, e.g., [1,39]. It is
worth emphasizing that local equilibrium properties on the primal mesh are a distinguishing feature
of hybrid (face-based) methods: the derivation of similar properties for vertex-based methods usually
requires to perform reconstructions on a dual mesh.

Define, for all T' € T, the space
Dir = X PH(ERY),
F€.7:T

as well as the boundary difference operator 8%, : U% — D% such that, for all v, € U%.,
85rvr = (8pvp)Fer, == (VF — V1) Fer, -

The following proposition shows that the stabilization can be reformulated in terms of boundary
differences.

Proposition 16 (Reformulation of the local stabilization bilinear form). For all mesh element T € Tp,
the local stabilization bilinear form s defined by (23) satisfies, for all up, vy € Ql},

st(up,vr) = ST((07Q§TET)> (O7QSTQT))' (29)

Proof. Let a mesh element T € Tj, be fixed. Using the fact that 75" Ixvr = vy for all vy € PF(T)¢
(thls because X1 IE is a projector on P*+1(T;RY), cf. [20, Eq. (20)]) together with the linearity of
! it is inferred that, for all F' € Fr, the face-based residual defined by (24) satisfies

AIZC“FQT = i (r kH(O 5aTQT) - 61;79T) - 7TT7']7€“+1(0 ‘saTUT) ATF(O 9 TUT)
for all v € Ql% Plugging this expression into (23) yields the assertion. O

Define now the boundary residual operator EST : Q; — QST such that, for all vy € Q? 7 ESTQT —
(RI;“FQT)Fe]-‘T satisfies

- 2 J RTFUT ap = s7((0, 5aT'UT) (0, a5r)) Vaur EQ’;T' (30)
FeFr

Problem (30) is well-posed, and computing R? pUp requires to invert the boundary mass matrix.

Lemma 17 (Local principle of virtual work and law of action and reaction). Denote by u;, € Qlfl’o a
solution of problem (21) and, for all T € T, and all F € Fr, define the numerical traction

Trp(up) = —mho(, Gf,TﬂT)nTF + R’%FHT-

Then, for all T € T;, we have the following discrete principle of virtual work: For all vy € P*(T;R%),

JT (GTU'T) Vsvr + Z JTTF'UIT 'UT—ff v, (31)

FeFr

and, for any interface F' € Fr, n Fr,, the numerical tractions satisfy the law of action and reaction:

Tr,r(ur)+Tr,r(ug,) = 0. (32)

10



Figure 2: Triangular, hexagonal-dominant, Voronoi, and nonmatching quadrangular meshes for the numerical tests.
The triangular and nonmatching quadrangular meshes were originally proposed for the FVCA5 benchmark [33]. The
(predominantly) hexagonal was used in [22]. The Voronoi mesh family was obtained using the PolyMesher algorithm
of [44].

Proof. For all T € Ty, use the definition (17) of GiTQT with 7 = W?O’CGQTQT) in Aj, and the
rewriting (29) of s together with the definition (30) of R%j to infer that it holds, for all v, € U},

J fon = Ap(uy,,vy,) + sn(uy,,vy,) =
Q

Z (J o, GS,TMT) :Vsur + Z (mho (-, GE,TMT)nTF - RI%FMT) (v — UT)) )
T€77L T FG]‘_T F

where to cancel 7%, inside the first integral in the second line we have used the fact that Vivr €
Pk=Y(T;R?*4) for all T € Tj,. Selecting v,, such that vy spans P¥(T;R9) for a selected mesh element
T € T, while v = 0 for all 77 € T,\{T} and vy = 0 for all F' € F}, we obtain (31). On the
other hand, selecting v;, such that vy = 0 for all T € T, vr spans IP”“(F; Rd) for a selected interface
F e Fr, n Fr,, and v = 0 for all F' € Fp\{F} yields (32). O

6 Numerical results

In this section we present a comprehensive set of numerical tests to assess the properties of our method
using the models of Examples 2, 3, and 5 (cf. also Remark 6). Note that an important step in the
implementation of HHO methods consists in selecting a basis for each of the polynomial spaces that
appear in the construction. In the numerical tests of the present section, for all T € Ty,, we take as a
basis for P¥(T; R?) the Cartesian product of the monomials in the translated and scaled coordinates
(h;l(xi — xTvi))lsisd’ where @7 is the barycenter of T'. Similarly, for all F' € F}, we define a basis
for P¥(F; R?) by taking the monomials with respect to a local frame scaled using the face diameter
hr and the middle point of F. Further details on implementation aspects are given in [20, Section
6.1].

6.1 Convergence for the Hencky—Mises model

In order to check the error estimates stated in Theorem 14, we first solve a manufactured two-
dimensional hyperelasticity problem. We consider the Henky—Mises model with ®(p) = u(e™” + 2p)
and o = A+p in (8), so that conditions (9) are satisfied. This choice leads to the following stress-strain
relation:

o (Vsu) = (A — ) + pe™ 9V tr (Vo) I g + (2 — e” 9V V) )Wy, (33)

We consider the unit square domain € = (0,1)? and take p = 2, A = 1, and an exact displacement u
given by

u(z) = (sin(mz)sin(ras), sin(rzy) sin(rzs)).
The volumetric load f = —V-0(Vu) is inferred from the exact solution w. In this case, since the
selected exact displacement vanishes on I'; we simply consider homogeneous Dirichlet conditions. We

consider the triangular, hexagonal, Voronoi, and nonmatching quadrangular mesh families depicted
in Figure 2 and polynomial degrees k ranging from 1 to 4. The nonmatching mesh is simply meant

11



to show that the method supports nonconforming interfaces: refining in the corner has no particular
meaning for the selected solution. The initialization of our iterative linearization procedure (Newton
scheme) is obtained solving the linear elasticity model. This initial guess leads to a 40% reduction of
the number of iterations with respect to a null initial guess. The energy-norm orders of convergence
(OCV) displayed in the third column of Tables 1-4 are in agreement with the theoretical predictions.
In particular, it is observed that the optimal convergence in h**! is reached for the triangular,
nonmatching Cartesian, and hexagonal meshes for 1 < k < 3, whereas for £k = 4 the asymptotic
convergence order does not appear to have been reached in the last mesh refinement. It can also
be observed in Table 2 that the convergence rate exceeds the estimated one on the locally refined
Cartesian mesh for £ = 1 and k = 2. For the sake of completeness, we also display in the fourth column
of Tables 1-4 the L2-norm of the error defined as the difference between the L?-projection mfu of the
exact solution on P*(7;;R%) and the broken polynomial function w; obtained from element-based
DOFs, while in the fifth column we display the corresponding observed convergence rates. In this
case, orders of convergence up to h**2 are observed.

ommm —(),2 1 =

(a) Description (b) o1,1 (c) o1,2 (d) o292

6.2 Tensile and shear test cases

n=

on=T
I I

(1,1)

n
on=0

T2

1.5 ==

Figure 3: Tensile test description and resulting stress components for the linear case. Values in 10°Pa

| .
(07 O) L»an u=0

0.8 mmmmn

(a) Description (b) 1,1 (c) o1,2 (d) 2,2

on=0
on=0

Figure 4: Shear test description and resulting stress components for the linear case. Values in 10°Pa

We next consider the two test cases schematically depicted in Figures 3 and 4. On the unit square
domain 2, we solve problem (1) considering three different models of hyperelasticity (see Remark 6):

(i) Linear. The linear model corresponding to the stored energy density function (7) with Lamé’s
parameters

A =11 x 10°Pa, pu = 82 x 10*Pa. (34)
(ii) Hencky-Mises. The Hencky—Mises model (4) obtained by taking ®(p) = u(£ + (1 + p)"?) and
a = A+ pin (8), with A, as in (34) (also in this case conditions (9) hold). This choice leads to

o (Vo) = (A5

5~ 5(1 +dev(Vau)) ") tr(Veu) Ly + p(1 + (1 +dev(Vou)) ™) Vou. (35)

12



§ . 4 I3'2

(a) Linear (b) Hencky—Mises (¢) Second order

Figure 5: Tensile test case: Stress norm on the deformed domain. Values in 10°Pa

The Lamé’s functions of the previous relation are inspired from those proposed in [5, Section
5.1]. In particular, the function ji(p) = p(1 + (1 + dev(Vsu))~7?) corresponds to the Carreau
law for viscoplastic materials.
(iii) Second-order. The second-order model (6) with Lamé’s parameter as in (34) and second-order
moduli
A =11 x 10°Pa, B = —48 x 10°Pa, C = 13.2 x 10°Pa.

These values correspond to the estimates provided in [34] for the Armco Iron. We recall that the
second-order elasticity stress-strain relation does not satisfy in general the assumptions under
which we are able to prove the convergence and error estimates. In particular, we observe that
the stored energy density function defined in (10) is not convex.

The bottom part of the boundary of the domain is assumed to be fixed, the normal stress is equal
to zero on the two lateral parts, and a traction is imposed at the top of the boundary. So, mixed
boundary conditions are imposed as follows

u=0 on{zxel, zy =0} (36a)
on=Ton {xel zy =1}, (36b)
on=0 on{xel z =0}, (36¢)
on=0 on{xel, x; =1} (36d)

For the tensile case, we impose a vertical traction at the top of the boundary equal to T =
(0,3.2 x 10°Pa). This type of boundary conditions produces large normal stresses (i.e., the diag-
onal components of o) and minor shear stresses (i.e., the off-diagonal components of o). It can be
observed in Figure 3, where the components of the stress tensor are depicted for the linear case.
In Figure 5 we plot the stress norm on the deformed domain obtained for the three hyperelasticity
models. The results of Fig. 3, 4, 5, and 6 are obtained on a mesh with 3584 triangles (corresponding
to a typical mesh-size of 3.84 x 1073) and with polynomial degree k = 2. Obviously, the symmetry
of the results is visible, and we observe that the three displacement fields are very close. This is
motivated by the fact that, with our choice of the parameters in (34) and in (35), the linear model
exactly corresponds to the linear approximation at the origin of the nonlinear ones. The maximum
value of the stress concentrates on the two bottom corners due to the homogeneous Dirichlet condition
that totally locks the displacement when z; = 0. The repartition of the stress on the domain with
the second-order model is visibly different from those obtained with the linear and Hencky—Mises
models. At the energy level, we also have a higher difference between the second-order model and
the linear one since |Ejip — Epm |/Ein = 0.44% while |Ey, — Egna|/Eiin = 4.45%, where E, is the total
elastic energy obtained by integrating over the domain the strain energy density functions defined
by (7), (8), and (10):

E, := J U,, with e e {lin,hm,snd}.
Q
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(a) Linear (b) Hencky—Mises (c) Second order

Figure 6: Shear test case: Stress norm on the deformed domain. Values in 10*Pa

The reference values for the total energy, used in Figure 7 in order to assess convergence, are obtained
on a fine Cartesian mesh having a mesh-size of 1.95 x 1072 and k = 3.

For the shear case, we consider an horizontal traction equal to T' = (4.5 x 10*Pa, 0) which induces the
stress pattern illustrated in Figure 4. The computed stress norm on the deformed domain is depicted
in Figure 6, and we can see that the displacement fields associated with the three models are very
close as for the tensile test case. Here, the maximum values of the stress are localized in the lower
part of the domain near the lateral parts. Unlike the tensile test, the difference between the three
models is tiny as confirmed by the elastic energy equal to 3180 J, 3184 J, and 3190 J respectively.
The decreasing of the energy difference in comparison with the previous test can be explained by the
fact that the value of the Neumann boundary data on the top is divided by a factor 7 in order to
obtain maximum displacements roughly equal to 15%.

7 Analysis

We collect here the proofs of the results stated in Section 4.4. To alleviate the notation, from this
point on we abridge into a < b the inequality a < Cb with real number C > 0 independent of h.

7.1 Existence and uniqueness

Proof of Theorem 7. 1) FEuxistence. We follow the argument of [13, Theorem 3.3]. If (E, (-, )g, || &)
is a Euclidean space and ® : E — F is a continuous map such that % — +w, as |z|g — 40,
then @ is surjective. We take £/ = Q’fho, endowed with the inner product

(VpWy)en == ), (L Vor: Vaor + )] % L(vp —wvr) - (wp — wT)> ;

TeTh FeFr

and we define ® : wa — Q;i,o such that, for all v, € on, (D(vy), wp,)en = an(vy,, w,,) for all
w, eU Z,0~ The coercivity (2d) of o together with the norm equivalence (25) yields (®(v},),v),)e.n =
min{1, o }n~ v, |?, for all v, € Qlii,m so that @ is surjective. Let now y, € Qﬁ,o be such that
(Y, Wp)en = §o f - wy, for all wy, € Q’Z,O. By the surjectivity of ®, there exists u,, € Ql}i,o such that
®(uy,) =y, By definition of ¢ and y, , u, is a solution to the problem (21).

2) Uniqueness. Let wy, 1, 5 € Qﬁ,o solve (21). We assume w,, ; # 1w, , and proceed by contradic-
tion. Subtracting (21) for w, 5 from (21) for w, , it is inferred that ap(w, ;,v;) — a(wy, 5,v,) =0
for all v, € Qﬁ,o Hence in particular, taking v;, = w;, ; — w;, o we obtain that

ah(ﬂh,pﬂm - Hh,z) - ah('l_"h,zv'l_"h,l - "_l'h,2) =0

14
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(e) Second-order, tensile test
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(b) Linear, shear test
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(d) Hencky—Mises, shear test
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(f) Second-order, shear test

Figure 7: Energy vs h, tensile and shear test cases
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On the other hand, owing to the strict monotonicity of o and to the fact that the bilinear form s, is
positive semidefinite, we have that

ah(@h,lv@h,l - Hh,z) - ah(gh,%ﬂh,l - 2}1,2)

k k k
= L (0'('7 Gs,hﬂh,l) —o(, Gs,hﬂh,z)) : Gs,h(ﬂh,l - th) + Sh(ﬂh,l —Up o, Up 1 — Eh,z) > 0.
Hence, u;, ; = uy, 5 and the conclusion follows. O

7.2 Convergence

This section contains the proof of Theorem 9 preceeded by a discrete Rellich-Kondrachov Lemma
(cf. [9, Theorem 9.16]) and a proposition showing the approximation properties of the discrete sym-
metric gradient Gy .

Lemma 18 (Discrete compactness). Let the assumptions of Theorem 9 hold. Let (v,)new € (Qﬁ,o)he’;{,
and assume that there is a real number C' = 0 such that

[vpllen < C VheH. (37)

Then, for all q such that 1 < ¢ < 40 ifd =2 or 1 < q < 6 if d = 3, the sequence (Vp)pep €
(P*(Th; R ey is relatively compact in LI(%;RY).  As a consequence, there is a function v €
L R?Y) such that as h — 0, up to a subsequence, vy, — v strongly in L1(Q;R?).

Proof. In the proof we use the same notation for functions in L?(Q;R?) < L'(€;R?) and for their
extension by zero outside Q. Let (vy,)pen € (Uﬁ o)hen be such that (37) holds. Define the space of

integrable functions with bounded variation BV(Rd = {v e L} R%4RY) | |v|py < +0}, where
d
ol = Yysww [ 060 | @e C2EERN 0l <1
i=1 R

Here, 0;¢ denotes the i-th column of V. Let ¢ € C(R%RY) with | 1o gare) < 1. Integrating
by parts and using the fact that > ;.- > pe . §p(vF - @)nrr = 0, we have that

J v - Oich = Zf (V) vr)i = — 3 (f (Vor) @)+ Y f (v ¢~ vr- ¢>><nTF)>

TeTh TeTh FeFr
(J Z‘ V’UT ]Z“F Z J Z| ’UF—’UT ’I’LTF) |>
TeTh FeFr

where, in order to pass to the second line, we have used |||, (gers) < 1. Therefore, summing over

i€ {l,...,d}, observing that, for all T € T, and all F' € Fr, we have Zle |(nrr)i| < d”?, and using
the Lebesgue embeddings arising from the Holder inequality on bounded domain, leads to

1 1
lonley € D] <T|d/2|VUTT + Y IFI2 ve —UT|F> :
TeTh FeFr

where |-|4 denotes the d-dimensional Hausdorff measure. Moreover, using the Cauchy—Schwarz in-
equality together with the geometric bound |F|q—1hr < |T|4, we obtain that

1/2
lonlley < 190)° ( > [WUT% + ), hptlor - UT|%D :

TeTh FeFr

Thus, using the discrete Korn inequality (26), it is readily inferred that

lvaley < llvplen < 1. (38)
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Owing to the Helly selection principle [29, Section 5.2.3|, the sequence (vp)ren is relatively compact
in L'(R% R?) and thus in L'(;R?). It only remains to prove that the sequence is also relatively
compact in L9(;RY), with 1 < ¢ < +wifd =2o0r 1 < g < 6if d = 3. Owing to the discrete
Sobolev embeddings [17, Proposition 5.4] together with the discrete Korn inequality (26), it holds,
withr =q¢+ 1ifd =2 and r =6 if d = 3, that

1/2
Jonllr @ume) < (Z l|wT%+ 3 hF1|vF—vT|%]> <1

TeTs FeFr

Thus, we can complete the proof by means of the interpolation inequality [9, Remark 2 p. 93]. For

all h, b’ € H we have with 0 := q(r 1) € (0,1),

|lon — ’Uh/HLq(Q Rd) S |vp — vp HLl(Q ]Rd)”vh - U HLr QR) > < |vn — v HLl(Q R

Therefore, up to a subsequence, (v )ney is a Cauchy sequence in L9(€2;R?), so it converges. O

The following consistency properties of the symmetric gradient operator Gf’h defined by (19) play a
fundamental role in the proof of Theorem 9.

Proposition 19 (Consistency of the discrete symmetric gradient operator). Let (Tp)nen be a regular
mesh sequence, and let Gf,h be as in (19) with G;T defined by (17) for all T € Tp,.

1) Strong consistency. For all v € H'(Q;R?%) with I} defined by (15), it holds as h — 0

nyhlﬁv — Vv strongly in L*(; R, (39)

2) Sequential consistency. For all h € H and all T € H' (;RL%Y), denoting by ~,,(T) the normal
trace of T on ', it holds
) =0, (40)

Proof. 1) Strong consistency. We first assume that v € H?(Q;R?). Owing to the commuting
property (18) and the approximation property (13a) with m = 1 and s = 2, it is inferred that
|GE TIT’U - Vr < thHHz(T ;rd)- Squaring, summing over T' € T, and taking the square root of
the resultlng inequality gives

J Gf,hgh T 4o, (Vo) — J UL b Y (T)
Q r

lim max
h—0 \ v, eUk, |v,[c,n=1

|GE L Lo — Voo || < hl[v] 2 o;ra.- (41)

If v e H'(Q; R?) we reason by density, namely we take a sequence (v.)c~o = H?(2;R?) that converges
to v in H'(Q;R?) as ¢ — 0 and, using twice the triangular inequality, we write

|G Liv — Voo < |GELL (v — v + |G Lhve = Vo | + [ Vi(v — v, (42)

By (41), the second term in the right-hand side tends to 0 as h — 0. Moreover, owing to the
commuting property (18) and the H!-boundedness of 71']%, one has

1/2 1/2
|GERT (v — o) = <Z |7 Vs (v J%) (Z [Vs(v |T> <[ Vs(w —wvo)l.

TeTh TeTh

Therefore, taking the supremum limit as o — 0 and then the supremum limit as ¢ — 0, concludes
the proof of (39) (notice that the order in which the limits are taken is important).
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2) Sequential consistency. In order to prove (40) we observe that, by the definitions (19) of Gf,h
and (17b) of G% 1 one has, for all T € H'(Q;R%Xd) and all v, € U},

Sym
k R k .
J Gy T = Z J Gorvp: T
Q T

TeTh

= Z J (G]:,TQT —Vur): (T —797) + Z J (G;TQT — Vur): ThT + Z Vsvr: T
TeTh T

TeT, VT Ter; 9T
=T+ Z Z J (vp —v7) - (FpT)nTE + Z Vor: T
TeT;, FeFr VF TeT, 9T
=% + Z Z J (vp —vr) - (FPT — T)npp — Z J vr - (V1) + Z J vr - (Trr)
TeTn FeFr F TeTs T FE]-}L) rF
5% o (V) [ onn (o)
Q r
(43)

In the fourth line, we used an element-wise integration by parts together with the relation

Z Z JF’UF-(TTLTF) = Z vp - (Tnpr +Tnnr) =0,

TeT) FeFrnFi reFi VF

where for all F € Fi, T1,Ts € Tp, are such that F < 0Ty n dT». Owing to (43), the conclusion
follows once we prove that |T; + Ta| < h|vy, |l 7] a1 (rexe). By (13a) (with m = 0 and s = 1) we
have |7 — w97 |1 < hy|7| g1 (r,raxa) and thus, using the Cauchy-Schwarz and triangle inequalities
followed by the norm equivalence (25),

1/2 1/2
%] < ( > IGE vy — stT%> < Dl - FOTTQT)

TeTh TeTh

(44)

1/
<h (HGSthHQ + v, Sh) H"'HHl(Q;Rdxd) < hllvg[en ‘T”Hl(Q;RdXd)-

In a similar way, we obtain an upper bound for 5. By (13b) (with m = 0 and s = 1), for all F' € Fr,
we have |7 — w57 F < hr11/12HTHH1(T;]Rd><d) < th/vZHTHHl(T;Rdxd) and thus, using the Cauchy—Schwarz
inequality,

|To| < Z Z hZZH’UF - UTHFHTHHl(T;RdXd) < hllvg[en |THH1(Q;]R‘1X‘1)- (45)
TeTn FEFT
Owing to (44) and (45), the triangle inequality |7 + T2| < |T1] + |T2| yields the conclusion. O

We are now ready to prove convergence.

Proof of Theorem 9. The proof is subdivided into four steps: in Step 1 we prove a uniform a priori
bound on the solutions of the discrete problem (21); in Step 2 we infer the existence of a limit for
the sequence of discrete solutions and investigate its regularity; in Step 3 we show that this limit
solves the continuous problem (11); finally, in Step 4 we prove strong convergence.

Step 1: A priori bound. We start by showing the following uniform a priori bound on the sequence
of discrete solutions:

lwpen < C£I (46)

where the real number C' > 0 only depends on Q,0,7, 9, and k. Making v;, = w;, in (21) and using
the coercivity property (2d) of o in the left-hand side together with the Cauchy—Schwarz inequality
in the right-hand side yields

-
> (UGf,TuTIQTJr >, }LF|A§"FUT|QF‘> < [ £l

TeTh FeFp
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Owing to the norm equivalence (25), and using the discrete Korn inequality (26) to estimate the
right-hand side of the previous inequality, it is inferred that

n~ min(L, o) w2, < [ unl < Cxf
Dividing by |wy, | yields (46) with C = nmin(1,0) 'Ck.

Step 2: Existence of a limit and regularity. Let 1 < ¢ < +w0 ifd =2o0r1 < ¢qg < 6 if
d = 3. Owing to the a priori bound (46) and the norm equivalence (25), the sequences (HuhHE,h)heH
and (||G§,hth)heH are uniformly bounded. Therefore, Lemma 18 and the Kakutani theorem [9,
Theorem 3.17| yield the existence of u € LI(£2; R?) and G € L?(£; R%*?) such that as h — 0, up to a
subsequence,

uy, — u strongly in L7(€; R?) and nyhgh — G weakly in L?(Q; R™*%). (47)

This together with the fact that w, r = 0 on I, shows that, for any 7 € H'(£); R‘Siyxnﬁl)

ng:T+u-(V~7-)

= lim f Glou, T +u, (V1) — J UnT  Vn(T) (48)
h—0|Jq r
< lim mas [ Gl 4o (V1) = [ onr () ) <o
hleﬂ ”vh HE n=11JQ ' r

To infer the previous limit we have used the uniform bound (46) on |u, e, and the sequential
consistency (40) of Gf’h. Applying (48) with 7 € CX(Q;RE:Y) leads to §, G : 7+ u - (V-7) = 0,
thus G = Vsu in the sense of distributions on 2. As a result, owing to the isomorphism of Hilbert
spaces between H'({;R?) and {v € L2(;RY) | Vv € L2(€; ]RdXd)} proved in [28, Theorem 3.1], we

sym

have w € H*(Q;R?). Using again (48) with 7 € H'(Q;R%%?) and integrating by parts, we obtain

§p () -y, (7) = 0 with y(u) denoting the trace of w. As the set {v,,(7) : 7 € H'({;RL%Y)} is dense
in L2(I'; R?), we deduce that v(u) = 0 on I'. In conclusion, with convergences up to a subsequence,

u e H} (Q;RY), uj, — u strongly in LY(Q;R?), and Gf}hgh — Vu weakly in L?(Q;R4*9).

Step 3: Identification of the limit. Let us now prove that w is a solution to (11). The growth
property (2¢) on o and the bound on (|G huhH)hGH ensure that the sequence (a(-,Gshgh))heH
is bounded in L2(€; ngxn‘f) Hence, there exists n € L?(£); R‘Siyxlff) such that, up to a subsequence as
h — 0,

o Gf,hﬂh) — 1 weakly in L*(Q;R*?). (49)

Plugging into (21) v, = Iy ¢, with ¢ € C*(Q;R?), gives
| oGl Ghtio = | £omho—siw.Lio) (50)

with 7w} denoting the L?-projector on the broken polynomial spaces P¥(7;; R?) and s;, defined by (23).
Using the Cauchy—Schwarz inequality followed by the norm equivalence (25) to bound the first factor,
we infer

|sn(wy, Ihd)| < sn(wy w,) Psn (L, Ird) " < (Lo, 1) ">, (51)

It was proved in [20, Eq. (35)] using the optimal approximation properties of r?“l ’} that it holds
forall he H, all T € Ty, all v € H**2(T;R%), and all F € Fr that

hip | AL L | e < WY 0] grse rpa), 2
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with A% .. defined by (24). As a consequence, recalling the definition (23) of s, we have the following
convergence result:

Yo e H'(QRY) 0 H*(TisRY),  lim sy, (Lyv, Liv) = 0. (53)

Recalling the a priori bound (46) on the discrete solution and the convergence property (53), it follows
from (51) that |sh(gh,l’,§q§)| — 0 as h — 0. Additionally, by the approximation property (13a) of
the L?-projector, one has ﬂ'qu — ¢ strongly in L?(€;R%) and, by virtue of Proposition 19, that
Gfﬁ;iiqb — V¢ strongly in L?(Q; R9*4). Thus, we can pass to the limit h — 0 in (50) and obtain

| niva=] 1o (54)

By density of C*(Q; R?) in H{ (€; R?), this relation still holds if ¢ € H}(€2;R?). On the other hand,
plugging v, = u,;, into (21) and using the fact that sp(u;,u;) = 0, we obtain

. k .k
T}L = f O'(-’ GS,}LE}L) . GS,}LEh < J f - Up.
Q Q

Thus, using the previous bound, the strong convergence u;, — u, and (54), it is inferred that
limihsff-u:fnzvsu. (55)
h—0 9] 9]

We now use the monotonicity assumption on o and the Minty trick [37] to prove that n = o (-, Vsu).
Let A € L?(£; R%*?) and write, using the monotonicity (2e) of o, the convergence (49) of o (-, nyhgh),
and the bound (55),

< Jin ([ (@ Ghum) = o A) s (G~ M) < [ (10 A) (Vau-A). 60

h—0
Applying the previous relation with A = Vi u £tVv, for t > 0 and v € H}(Q;R?), and dividing by
t, leads to
0< if (n—o(-,Vsu FtVev)) : Vyv.
Q
Owing to the growth property (2c) and the Caratheodory property (2a) of o, we can let ¢ — 0

and pass the limit inside the integral and then inside the argument of o. In conclusion, for all
v e H(Q;RY), we infer

Lo(-,vsu) Vo= Ln Vo= Lﬁw

where we have used (54) with ¢ = v in order to obtain the second equality. The above equation
shows that nn = o (-, Vsu) and that u solves (11).

Step 4: Strong convergence. We prove that if o is strictly monotone then Gfﬁh/gh — Viu
strongly in L2(Q; R?*4). We define the function Dy, : 2 — R such that
Dy, = (o (-, Gshﬂh) —0o(-,Vsu)): (Gg,h@h - Vsu).

For all h € H, the function D), is non-negative as a result of the monotonicity property (2e) and,
by (56) with A = Vu, it is inferred that lim,—¢ §, D» = 0. Hence, (Dy)nen converges to 0 in L'(€)
and, therefore, also almost everywhere on 2 up to a subsequence. Let us take T € 2 such that the
above mentioned convergence hold at . Developing the products in Dy, and using the coercivity and
growth properties (2d) and (2¢) of o, one has

- k — — 1k - - _
Di(T) = a|GE (@) Gxa — 27| Gt (@) axa| Vsru(@) | axa + | Vs (@) [3ca-
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Since the right hand side is quadratic in HG;c U, (Z) | dxa and (Dp,(T)) ney is bounded, we deduce that
also (Gshgh(f))heﬁ is bounded. Passing to the limit in the definition of Dy (%) yields

(o(z,Lz) — o(Z,Vsu(x))) : (Lz — Vsu(T)) =0,

where Lz is an adherence value of (nyhgh(f))he%. The strict monotonicity assumption forces

Lz = V,u(T) to be the unique adherence value of (Gf’hgh(f))heg, and therefore the sequence
converges to this value. As a result,

Gf’hgh — Vsu a.e. on Q. (57)

Using (55) together with Fatou’s Lemma, we see that

lim [ o(,G¥u,): GF L u, = J o(,Vsu): Vu.
o0 , : o

Moreover, owing to (57), (o (, Gshgh) : Gf’hgh)heH is a non-negative sequence converging almost
everywhere on ). Using [25, Lemma 8.4] we see that this sequence also converges in L!(Q) and,
therefore, it is equi-integrable in L'(Q). Thus, the coercivity (2d) of o ensures that (Gf,hgh)he;q is
equi-integrable in L?(£2; R?*9) and Vitali’s theorem shows that

Gshﬂh — Vu strongly in LQ(Q;Rdxd)' -

7.3 Error estimate

Proof of Theorem 14. For the sake of conciseness, throughout the proof we let @, = I Zu and use
the following abridged notations for the constraint field and its approximations:

s:=0(,Vsu) and, for all T € Ty, ¢7 := o’(~,G§7TgT) and ¢ := o (-, GQT@T).
First we want to show that (28) holds assuming that
lwn, = @ llen < R (lwl vz g may + Is | aees (75, maxay) - (58)

Using the triangle inequality, we obtain

Haf,hﬂh - V| + Sh(ﬂhaﬂh)l/z < HGsh(Hh —ay,)| + sn(w), — 8y, u;, — @h)l/z
k ~ ~ ~ 1 (59)

+ |GS iy, — Vu| + sp(ay,, wy) /2,
Using the norm equivalence (25) followed by (58) we obtain for the terms in the first line of (59)

HGf,h(ﬂh — )| + sn(w, — Uy, wp, — G,)"° < RET! (]l grivz (7 may + sl rier (75, maxay) -

For the terms in the second line, using the approximation properties of Gsh resulting from (18)
together with (13a) for the first addend and (52) for the second, we get

A~

HGf,h@h — Vou| + sp(@y,, @,)"” < th”uHH’v+2(n;Rd)~

It only remains to prove (58), which we do in two steps: in Step 1 we prove a basic estimate in terms
of a conformity error, which is then bounded in Step 2.

Step 1: Basic error estimate. Using for all T € T, the strong monotonicity (27b) with 7 =
Gf,T@T and n = Gf)TgT, we infer

PPN ~ [P
IGE @~ w5 Y | @rsr): Gl —up)
TeTh T
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Owing to the norm equivalence (25) and the previous bound, we get

i, - w2, < Y f Sr — 1) Gl (@ — ) + sn (@ — . By — )
TeTh

= an(Up,, w), —uy) — L I (wy, —up).

where we have used the discrete problem (21) to conclude. Hence, dividing by |u; — uy, |, and
passing to the supremum in the right-hand side, we arrive at the following error estimate:
|y, sup En(wp), (60)

EhEQﬁ,o’ HQh [[e,n=1

with conformity error such that, for all v, € Q’fho,

Z J ST ! TUT J;Z f-on+ Sh(@hyﬂh)- (61)

TeTh

Step 2: Bound of the conformity error. We bound the quantity &(v;,) defined above for a
generic v, € Qﬁ,w Denote by %1, To, and T3 the three addends in the right-hand side of (61).

Using for all T’ € Ty, the definition (17) of Gf)T with 7 = w3y, we have that

T = Z (LCT Vsur + Z f ﬂ'TCTnTF (v F_'UT)> (62)

TGTh FE]:T

where we have used the fact that Vivr € PF=1(T;R*?) together with the definition (12) of the
orthogonal projector to cancel 7% in the first term.

On the other hand, using the fact that f = —V-¢ a.e. in ) and integrating by parts element by
element, we get that

To=— ), (Lc Vor+ ) J snrp - (UF—UT)>, (63)

TETh FG]‘-T

where we have additionally used that ¢|7, n7, r + 1, r = 0 for all interfaces F' < 011 n 0T, and
that vp vanishes on T' (cf. (20)) to insert v into the second term.

Summing (62) and (63), taking absolute values, and using the Cauchy—Schwarz inequality to bound
the right-hand side, we infer that

(64)

1/2
IT1 + T < ( > (Is =SzlF + hrlls — ﬂ'%T%ﬂ) v

TeTh

It only remains to bound the first factor. Let a mesh element T" € T, be fixed. Using the Lipschitz
continuity (27a) with 7 = GQT@T and 7 = V u and the optimal approximation properties of GSTL 4
resulting from (18) together with (13a) with m = 1 and s = k + 2, leads to

Is = Srlr < [Vsu = GErtig |z < B ] g riza), (65)

which provides an estimate for the first term inside the summation in the right-hand side of (64).
To estimate the second term, we use the triangle inequality, the discrete trace inequality of [19,
Lemma 1.46], and the boundedness of 7% to write

7

Pls — mher|or < [7h(s — )z + hiZlls — whslor < |ls — Srlr + hils — whe]ar.
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The first term in the right hand side is bounded by (65). For the second, using the approximation

properties (13b) of % with m = 0 and s = k + 1, we get h ls — whcllor < hF 6| s (praxay so
that, in conclusion,

hlls — whr|or < BEY (w2 (rmay + Is | moer (rmaxay) - (66)
Plugging the estimates (65) and (66) into (64) finally yields
1+ Tl € (ot + I e (nmaeay) 25 fen (67)

It only remains to bound T3 = sp, (4, v;,). Using the Cauchy—Schwarz inequality, the definition (23)
of sy, the approximation property (52) of Alfp r, and the norm equivalence (25), we infer

1/2
[Tl = ( Z Z |ATFUT|F> 5h(£h7ﬁh)l/2 S th”uHHk”(Th; (68)
TeTh Fe]-'T
Using (67) and (68), we finally get that, for all v, € Qi,m
En(vy) < hEH (||UHHk+2(Th;Rd) + HCHHHl(Th;Rdxd)) v (69)
Thus, using (69) to bound the right-hand side of (60), (58) follows. O

A Technical results

This appendix contains the proof of the discrete Korn inequality (26).

Proposition 20 (Discrete Korn inequality). Assume that the mesh further verifies the assumption
of [8, Theorem 4.2] if d =2 and [8, Theorem 5.2] if d = 3. Then, the discrete Korn inequality (26)
holds.

Proof. Using the broken Korn inequality [8, Eq. (1.22)] on H!(7s;R?) followed by the Cauchy—
Schwarz inequality, one has

2
ol + [Vonl? < [Vaponl? + S hptlfonlel3 + sup (f v(vw-vn(m))
o mEP! (T3, [v,,(m)|r=1 \JT
< IVaronP + ) bt lloleld + S fomelB
Fe]—‘l Fe]’-‘b
(70)

For an interface F' € Fr, n Fr,, we have introduced the jump [v;]F := vy, — vr,. Thus, using the
triangle inequality, we get |[vn]r|rF < |vF —vr |F + |vF — v1,||F. For a boundary face F € FP such
that ' € Fp n Fp, for some T € Tj, we have, on the other hand, |vj p|r = |vp — vr|F since vp =0
(cf. (20)). Using these relations in the right-hand side of (70) and rearranging the sums leads to

lonl® +1¥nonl® < 35 | IVsorld+ D0 hp'lor —vrle |+ Y hitlor —vnelt
TeTh FeFrnFi FeFl

< max{l,do} ] (stT|2T + Y hp'lvr —le%> ;

TeTh FeFr

where dg denotes the diameter of 2. Owing to the definition (14) of the discrete strain seminorm,
the latter yields the assertion. O
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Table 1: Convergence results on the triangular mesh family. OCV stands for order of convergence.

h IVsu — Gf,hﬂhH OCV  |mfu —up| OCV
E=1
3.07-1072 5.59 - 102 — 7.32-1073 —
1.54 - 1072 1.51-1072 1.9 1.05-1073 2.81
7.68-1073 3.86-1073 1.96 1.34-107*  2.96
3.84-1073 1.01-1073 1.93 1.7-107° 2.98
1.92-103 2.59-10~* 1.96 2.15-107%  2.98
k=2
3.07-1072 1.3-1072 — 1.47-1073 —
1.54 - 102 1.29.103 335  6.05-107°  4.62
7.68-1073 2.11-107* 2.6 5.36-1076  3.48
3.84-1073 2.73-1075 2.95 3.6-1077 3.9
1.92-1073 3.42-106 3 2.28-1078%  3.98
k=3
3.07-1072 2.81-1073 — 2.39-107* —
1.54 - 1072 3.72-1074 2.93 1.95-1075 3.63
7.68-1073 2.16-107° 4.09 547-1077 5.14
3.84-1073 1.43-10° 392 1.66-1078%  5.04
1.92-103 9.51-10°8 391 5.34-10710  4.96
k=4
3.07-1072 1.37-1073 — 1.13-10~¢ —
1.54 - 102 5.97-10° 454 3.04-107% 524
7.68-1073 1.76 - 106 507 4.09-107%  6.19
3.84-1073 6.46- 1078 477 7.64-1071° 574
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Table 2: Convergence results on the locally refined mesh family. OCV stands for order of convergence.

h IVeu — GE | OCV  |7fu —uy| OCV
E=1
0.25 0.13 — 1.9.-1072 —
0.13 2.64 102 228 254-107° 2.9
6.25- 1072 4.97-1073 241 322-107% 298
3.12-1072 9.14-10~* 244  4.12-1075  2.96
1.56 - 102 1.67-10~% 245 521-107% 298
k=2
0.25 1.88 - 1072 — 3.79-1073 —
0.13 5.05-1073 1.9 3.55-107%  3.42
6.25- 1072 6.51-10~4 296  2.92-107° 3.6
3.12-1072 6.83-107° 3.25 1.89-107%  3.94
1.56 - 102 6.23-106 3.45 1.19-10=7  3.99
k=3
0.25 7.84-1073 — 1.41-1073 —
0.13 1.09-103 2.85 7.5-107° 4.23
6.25- 1072 8.22-107° 3.73 3.93-107%  4.25
3.12-1072 5.64-106 3.86 1.45-1077  4.75
1.56 - 102 3.44-1077 4.04 5.23-107° 4.79
k=4
0.25 4.35-1073 — 4.68-107* —
0.13 3.65-10~* 358 3.19-107°  3.87
6.25- 1072 1.5-107° 4.6 6.02-10"7  5.73
3.12-1072 5.78 1077 469 1.03-107% 5.86
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Table 3: Convergence results on the hexagonal mesh family. OCV stands for order of convergence.

h IVsu — Gf,hﬂhH OCV  |mfu —up| OCV
E=1
6.3-102 0.22 — 2.75- 102 —
3.42-1072 3.72-1072 2.89 3.73-107%  3.27
1.72 - 102 717-1073 2.4 4.83-107* 297
8.59-1073 1.44-1073 231 6.14-1075 297
4.3-1073 2.4-1074 2.59 7.7-1076 3
k=2
6.3-1072 2.68-10~2 — 3.04-1073 —
3.42-1072 7.01-1073 2.2 3.56-107%  3.51
1.72 1072 1.09- 1073 271  3.31-1075  3.46
8.59-10~3 1.41-10~4 295 253.10°¢ 3.7
4.3-1073 1.96-107° 2.85 1.72-1077  3.89
k=3
6.3-1072 1.11-1072 — 1.08-1073 —
3.42-1072 1.92-1073 287 9.29-107° 4.02
1.72 - 102 2.79-107* 281 6.13-10°%  3.95
8.59-1073 2.54-107° 345 2.88-1077 44
4.3-1073 1.61-10~9 399 1.24-107%  4.55
k=4
6.3-1072 5.53-1073 — 4491074 —
3.42-1072 5.76 - 10~* 3.7 3.07-107°  4.39
1.72 - 1072 6.29-107° 322 1.21-10°¢ 4.7
8.59-1073 2.21-10°6 482 2.69-107% 548
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Table 4: Convergence results on the Voronoi mesh family. OCV stands for order of convergence.

h IVsu — Gf,hﬂhH OCV  |mfu —up| OCV
k=1
6.5- 102 8.82-1072 — 1.55- 1072 —
3.15-1072 1.49 - 1072 2.45 2.29-1073 2.64
1.61- 102 3.63-1073 2.1 3.01-107%  3.02
9.09-1073 8.68-10~* 2.5 3.95-1075 355
4.26-1073 2.04-107* 1.91  497-107% 274
k=2
6.5-1072 1.43-102 — 2.63-1073 —
3.15-1072 4.03-1073 1.75  253-100* 3.23
1.61-10~2 4781074 3.18 2.22-107°  3.63
9.09-1073 6.7-107° 344  145-107% 477
4.26-1073 9.08-106 264 9.07-107%  3.66
k=3
6.5-1072 7.12-1073 — 9.08-10~% —
3.15-1072 8.34-10~4 296  6.78-107°  3.58
1.61 - 102 7.03-107° 3.69 3.18-107%  4.56
9.09-1073 4.17-10°6 494 9.67-107%  6.11
4.26-1073 2.42-.1077 3.76 3.15-107%  4.52
k=4
6.5-1072 3.25-1073 — 3.68-10~* —
3.15-1072 2.94.107* 332 214-107° 3.93
1.61-1072 9.86-1076 506 4.34-1077  5.81
9.09-1073 3.47-1077 585  6.74-107°  7.29
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