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In monitoring active volcanoes, the magma overpressure is one of the key parameters

used in forecasting volcanic eruptions. This parameter can be inferred from the ground

displacements measured on the Earth’s surface by applying inversion techniques.

However, in most studies, the huge amount of information about the behavior of

the volcano contained in the temporal evolution of the deformation signal is not fully

exploited by inversion. Our work focuses on developing a strategy in order to better

forecast the magma overpressure using data assimilation. We take advantage of the

increasing amount of geodetic data [i.e., Interferometric Synthetic Aperture Radar (InSAR)

and Global Navigation Satellite System (GNSS)] recorded on volcanoes nowadays

together with the wide-range availability of dynamical models that can provide better

understanding about the volcano plumbing system. Here, we particularly built our

strategy on the basis of the Ensemble Kalman Filter (EnKF). We forecast the temporal

behaviors of the magma overpressures and surface deformations by adopting a simple

and generic two-magma chamber model and by using synthetic GNSS and/or InSAR

data. We prove the ability of EnKF to both estimate the magma pressure evolution and

constrain the characteristics of the deep volcanic system (i.e., reservoir size as well as

basal magma inflow). High temporal frequency of observation is required to ensure the

success of EnKF and the quality of assimilation is also improved by increasing the spatial

density of observations in the near-field. We thus show that better results are obtained by

combining a few GNSS temporal series of high temporal resolution with InSAR images

characterized by a good spatial coverage. We also show that EnKF provides similar

results to sophisticated Bayesian-based inversion while using the same dynamical model

with the advantage of EnKF to potentially account for the temporal evolution of the

uncertain model parameters. Our results show that EnKF works well with the synthetic

cases and there is a great potential in using the method for real-time monitoring of

volcanic unrest.
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1. INTRODUCTION

Tracking the migration of magma as it propagates to the Earth’s
surface is crucial in eruption forecasting as well as in volcanic
hazard assessment. When magma accumulates at shallow depth
or propagates toward the surface, it induces seismicity as well
as surface displacements, such that geophysical signals recorded
at volcanoes have long been used to infer magma path and
magma plumbing system characteristics (e.g., Swanson et al.,
1983; Voight et al., 1998; Aoki et al., 1999; Roult et al., 2012;
Sigmundsson et al., 2015). Recently the ability of geodesy to
provide continuous and spatially extensive evolution of surface
displacements during inter-eruptive periods has been drastically
improved as a consequence of the increasing number of
continuous Global Navigation Satellite System (GNSS) networks
installed on volcanoes (e.g., Geirsson et al., 2012; Peltier et al.,
2016) together with the improvement of the availability of
Synthetic Aperture Radar (SAR) data (i.e., better spatial coverage,
improved spatial and temporal resolution of SAR data from
new satellite missions) (e.g., Pinel et al., 2014). This progress
allows to characterize the geometry of magmatic plumbing
systems underlying volcanoes in terms of reservoir shapes,
depths and numbers. In particular, at some specific volcanoes,
deep magmatic reservoirs, which had been ignored so far, are
evidenced (e.g., Elsworth et al., 2008; Chadwick et al., 2011;
Bagnardi and Amelung, 2012; Hautmann et al., 2014; Tiampo
et al., in press). However, most of the models used to interpret
geodetic data are kinematic and cannot provide information
on the pressure within the magmatic system, which is the key
parameter to control the timing of magma reservoir rupture as
well as the ability of magma to reach the surface and thus to feed
an eruption. Besides, the difficulty to determine independently
the size of a magma chamber and its pressure change has
been recognized for many years (McTigue, 1987; Segall, 2013).
Basically, the same displacement field is expected from a small
pressure change affecting a large magma reservoir and from a
large pressure change experienced in a small magma chamber.
However, consequences are not the same as the latter case is
more prone to end in a short-term eruption. The good point
is that the temporal evolution of the displacement field should
help deciphering between those two cases, considering similar
magma and crustal rheologies, the pressurization of a small
chamber being much quicker than for a large one. One limitation
of this approach, as recently demonstrated by Segall (2016), is
that the temporal evolution actually results from a convolution
between the history of a pressure source and the magma and
crustal rheology (Reverso et al., 2014). It follows that additonal
observations such as gravity data might be useful to discriminate
both effects.

In addition to the recent progress in geodetic observations,
several dynamical models of magmatic system evolution have
been recently derived. They provide an interpretation of
the temporal evolution of geodetic data as well as seismic
observations considering either the rheology of the encasing
medium (Nooner and Chadwick, 2009; Carrier et al., 2014; Got
et al., 2017) or the evolution of the magma inflow at the bottom
(Lengliné et al., 2008; Pinel et al., 2010; Reverso et al., 2014).

The latter type of models has proven to be useful in recovering
information of the deepest part of the magma plumbing system,
such as the size of the deep storage zone as well as the bottom
magma inflow (Reverso et al., 2014), which is always quite
difficult to constrain. Segall (2013) has nicely demonstrated the
interest to combine deformation data and a physics-based model
of the plumbing system with a Bayesian-based approach in order
to forecast eruptions. In particular, the Markov Chain Monte
Carlo method was applied with success to Mount St Helens
(Anderson and Segall, 2011, 2013). As noticed by Segall (2013), a
limitation of this approach is that it cannot account for epistemic
uncertainties. Another limitation is potentially that it is not
efficient to estimate model parameters evolving through time.
Also, the challenge remains in accommodating incoming data
and using them efficiently. Inversion methods are data intensive
(i.e., uses all observations from the beginning) and typically
requires expensive calculations at each observation period, hence
may not be suitable for real-time eruption forecasting. To
address these issues, data assimilation–a common method used
in ocean-weather forecasting and monitoring–is here applied as
a way to combine volcano deformation data and physics-based
models.

Data assimilation is a time-stepping process that combines
models, observations and a priori information based on error
statistics to forecast the state of a dynamical system. It was
initially developed in ocean-atmosphere science (e.g., Talagrand
and Courtier, 1987; Talagrand, 1997; Houtekamer and Mitchell,
2005; Yan et al., 2014), and has gained popularity in many
other fields of geosciences such as vegetation and soil moisture
(e.g., Reichle et al., 2007; Barbu et al., 2011), natural resource
exploration (e.g., Lorentzen et al., 2001; Geir et al., 2003; Gu
and Oliver, 2005; Chen and Oliver, 2010; Zoccarato et al., 2016)
and geomagnetism (e.g., Fournier et al., 2007, 2010; Kuang
et al., 2010; Gillet et al., 2015). Many assimilation algorithms
are already available nowadays. Among them, is the Kalman
Filter (KF). It was first introduced by Kalman (1960) and was
regarded as the greatest achievement in estimation theory and
control systems applications of the twentieth century, enabling
the precise and efficient navigation of spacecrafts in the solar
system (Grewal and Andrews, 2008). In earthquake research,
KF has been used to determine fault slip evolutions (Segall
and Matthews, 1997; McGuire and Segall, 2003; Bartlow et al.,
2014; Bekaert et al., 2016). At active volcanoes where nonlinear
processes are typical, variants of KF have been used in order to
solve nonlinear equations. For example, Fournier et al. (2009)
used unscented KF to track the magma recovery at Okmok,
but the strategy is strongly dependent on assumptions such
as initialization task and selection of hyperparameters that
are typically problem-dependent (Julier and Uhlmann, 2004;
Shirzaei and Walter, 2010). Shirzaei and Walter (2010) coupled
genetic algorithm with KF to monitor volcano source at Campi
Flegrei, which requires rerunning of KF for several times. In
all these studies in the Earth Science field, the KF is used as
a temporal filter without considering any forward dynamical
model. So far, the application to volcanology of the KF based on
a dynamical model has been restricted to one study (i.e., Gregg
and Pettijohn, 2016) using a forward model accounting for a

Frontiers in Earth Science | www.frontiersin.org 2 June 2017 | Volume 5 | Article 48

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Bato et al. Assimilation of Deformation Data for Eruption Forecasting

viscous rheology of the encasing medium. However, the model
parameter controlling the temporal evolution of the medium
and the crustal viscosity was in this study considered as a fixed
parameter, thus limiting the interest of considering the temporal
evolution of the system. Also, their approach was based on a
finite element model which limits the application to real-time
forecasting and their joint assimilation of GNSS and InSAR data
was still problematic.

In this work, our main goal is to test the ability of Ensemble
Kalman Filter (EnKF) to quantify the magma pressure evolution
at depth from surface displacement data and thus to forecast
pressure-based volcanic eruptions. As a first attempt, we focus
on a specific dynamical model that well-describes the behavior
of several often erupting basaltic volcanoes. We developed an
efficient approach to assimilate GNSS and InSAR data into a two-
magma reservoir model, which is a simple and generic dynamical
model for the magma plumbing system, in order to forecast the
overpressures and to constrain two model parameters related to
the deepest part of the reservoir system. We begin by briefly
discussing the two-magma reservoir model of Reverso et al.
(2014) in Section 2, then reviewing the fundamentals of the EnKF
approach in Section 3, followed by the experiment setup and the
step-by-step implementation of our EnKF strategy in Section 4.
We then present two synthetic cases (i.e., case A and case B) when
considering the magma inflow at the bottom of the system as
well as the size of the deepest reservoir as uncertain and given
two kinds of initial conditions about the uncertain parameters
(i.e., biased or unbiased distribution). In particular, case A is
about state estimation wherein we only track the behavior of
the overpressures, while case B demonstrates state-parameter
estimation where the uncertain model parameters are estimated
in parallel with the overpressures. In the discussion part, we
tackle the effects of the spatial and temporal characteristic of
the datasets (i.e., GNSS-like and InSAR-like data) used during
the assimilation and how far-field data affect the performance of
assimilation. We also compare the performance of EnKF with
a Bayesian-based inversion. Then we present the advantages
and limitations of the dynamical model we considered as
well as the possibility of applying data assimilation to other
types of models. Lastly, we discuss the ease of implementing
our strategy and the future of EnKF for real-time volcano
monitoring.

2. FORWARD DYNAMICAL MODEL

We use the two-magma reservoir model proposed by Reverso
et al. (2014). This model consists of two reservoirs embedded
in an elastic medium and connected by a hydraulic pipe. The
deeper reservoir is assumed to be fed by a constant magma
inflow, which corresponds to the bottom boundary condition
of the system. The magma is assumed to be incompressible.
This model, presented on Figure 1, is characterized by a set
of geometrical and rheological parameters listed in Table 1 and
solves for the temporal evolution of the magma overpressures,
1Ps and 1Pd, for the shallow and the deep reservoirs,
respectively. As shown by Reverso et al. (2014), this simple

FIGURE 1 | Schematic sketch of the two chamber model, modified after

Reverso et al. (2014). The magma inflow rate at the bottom chamber Qin and

the radius of the deep reservoir ad are the two parameters considered to be

uncertain in this study. Observations (vertical and horizontal displacements) are

recorded at the surface at a given location S characterized by its distance r

from the center of the volcanic system C. Rs =
√

r2 + Hs2 and

Rd =
√

r2 + Hd
2 are distances between S and the shallow and deep

reservoirs, respectively.

model provides a consistent explanation for the temporal
evolution of the post-eruptive displacement measured at
Grímsvötn volcano, Iceland after the three last eruptions
(1998, 2004, and 2011). The initial and transient exponential
behavior is due to the refilling of the shallow reservoir by
the deeper one after the eruption. Then, once the system
has been readjusted, a constant displacement rate is observed
due to the constant magma inflow at the bottom of the
system.

In this model, the values of the overpressure within the
shallow and deep reservoirs, respectively,1Ps and1Pd, at a given
time ti+1 are derived from their values at the previous time step
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TABLE 1 | Model parameters and true values assigned for the synthetic case.

Parameters Description Value Unit

GEOMETRY

ac Radius of the conduit 1.6 m

ad Radius of the deep reservoir 2.2 km

as Radius of the shallow reservoir 2.0 km

Hd Depth of the deep reservoir 35.0 km

Hs Depth of the shallow reservoir 3.0 km

γd 1.0 for Mogi point source,

8(1− ν)/3π for sill

1.0

γs 1.0 for Mogi point source,

8(1− ν)/3π for sill

8(1− ν)/3π

αd 1.0 for Mogi point source,

(4Hd
2)/(πRd

2) for sill

1.0

αs 1.0 for Mogi point source,

(4Hs
2)/(πRs

2) for sill

(4Hs
2)/(πRs

2)

PHYSICS

G Shear modulus 81.9 GPa

ν Poisson’s ratio 0.25

µ Viscosity 2000.0 Pa s

ρ Density contrast, (ρr − ρm) 300.0 kg m−3

g Gravity 9.81 m s−2

BASAL CONDITION

Qin Magma flow rate in the deep

reservoir

0.02 km3 yr−1

INITIAL CONDITIONS

1Ps0 Value of the shallow chamber

overpressure at t0

0.0 Pa

1Pd0 Value of the deep chamber

overpressure at t0

0.0 Pa

The bold parameters are the ones which are considered as uncertain in this study.

ti using the following discrete time-step equations (see equations
derived in Appendix A of Reverso et al., 2014):

1Psti+1
− 1Psti

ti+1−ti
= Gac

4

8µγsHcas3
((ρr − ρm)gHc+1Pdti −1Psti ) (1)

1Pdti+1
− 1Pdti

ti+1 − ti
= G

γdπad3
Qin −

γsas
3

γdad3

1Psti+1
− 1Psti

ti+1 − ti
(2)

The shapes (i.e., spherical or sill-like) of the shallow and
deep reservoirs are characterized by two geometrical constants,
respectively, γs and γd (Reverso et al., 2014). The discrete formula
stays valid as long as the time interval 1t = ti+1 − ti remains
small compared to the time constant τ of the system given by

τ = 8µHcas
3ad

3γsγd
Gac4(as3γs+ad

3γd)
(Reverso et al., 2014). Note that when

the bottom magma inflow rate Qin is set to zero and the deep
reservoir is sufficiently large when compared to the shallower one
(ad/as ≈ ∞), this model corresponds to the case of a unique
magma reservoir fed by a deep magma source which remains
at constant pressure as previously proposed for several basaltic
volcanoes (Lengliné et al., 2008). This model can also represent
the upper part of more complex plumbing systemmade of a large

number of magma reservoirs lying at increasing depth. It thus
benefits from the advantage of being both generic and simplistic.

Based on the Mogi model (Mogi, 1958), the radial uR and
vertical uz displacements observed at the surface can be expressed
using:

uR(r, ti) = (1− v)

G
r
(

αs
as

3

R3s
1Psti + αd

ad
3

R3
d

1Pdti

)

(3)

uz(r, ti) = (1− v)

G

(

Hsαs
as

3

R3s
1Psti +Hdαd

ad
3

R3
d

1Pdti

)

(4)

The shapes (i.e., spherical or sill-like) of the shallow and
deep reservoirs are characterized by two geometrical constants,
respectively αs and αd (Reverso et al., 2014). Provided that one
has access to the deformation fields related to the activity of the
volcano (i.e., inferred from GNSS observations and/or InSAR),
Equations (3) and (4) create a link between the dynamical model
and the observations, necessary for data assimilation.

3. DATA ASSIMILATION: ENSEMBLE
KALMAN FILTER

On one hand, forecasts given by a dynamical model incorporate
errors due to the choices or limitations related to the
model physics and parameters: including errors associated
with assumptions, theory and/or conceptualizations within the
underlying equations, errors due to the computational grid
and its discretization, numerical errors related to the time-
step or numerical methods used to solve the mathematical
equations, and errors associated with the model parameters. On
the other hand, uncertainties are also present in the observations
due to the instrument itself, different perturbations during
data acquisition, and noise generated during pre- and post-
processing of data. Moreover, in most cases, observation is
not spatially nor temporally complete because of the limitation
in data acquisition. Data assimilation takes advantage of the
complementary information provided by the dynamical model
and the observations. It corrects model forecasts whenever
observations are available in order to provide model state
trajectory as accurate as possible. In ocean-atmosphere science,
it has become the common approach for monitoring and
forecasting.

Ensemble Kalman Filter is an ensemble-based stochastic
data assimilation technique developed by Evensen (1994) and
Evensen (2003) as an alternative route to solve the limitations
of the classic Kalman Filter. The main characteristic lies on the
use of N-ensemble of realizations to construct a Monte Carlo
approximation of the mean and covariance of the state vector
(i.e., vector containing all the model parameters to be improved
by data assimilation).

We adopted the EnKF method in this paper. In general, the
assimilation is divided into two steps: (1) the forecast step and
(2) the update step (also known as the analysis step). The EnKF
begins with the ensemble generation. N realizations (ensembles)
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of uncertain model parameters are performed according to an a
priori distribution. Then, Monte Carlo simulation is performed
while running forward the dynamical model for each ensemble
member, resulting to the ensemble of model state forecast X,

i.e., X =











x1,1 x1,2 x1,Nn

x2,1
. . .

...
...

xNx ,1 ... xNx ,Nn











where Nx is the number of

state variables and Nn is the ensemble size, and the associated
covariance error Pf .

In the following section we further describe the EnKF scheme
and equations based on Evensen (1994, 2003).

3.1. Forecast Step
The forecast is carried out by the model integration under the
control of the model operator that represents the physical process
governing the system. The model state at the current instance is
forecasted from the model state at previous instance according to
the model operator as expressed in Equation (5).

X
f
ti+1

= MXa
ti
+ qti (5)

f and a: denote the forecast and analysis, respectively, M: the
model operator derived from Equations (1) and (2) that relates
the state of the system at time, ti to ti+1 (see Appendices A,B),
and q: the model error. Initial conditions of the model state
variables are necessary to start the model.

At each time step, the error covariance Pf of themodel forecast
which is an Nx × Nx matrix can be obtained using:

Pf = (Xf − Xf )(Xf − Xf )T (6)

3.2. Update Step
The update stage consists of correction of the model forecasts by
the observations in order to obtain a more precise estimation of

the model state. The observations D, i.e., D =









d1
d2
...
dNm









where

Nm is the total number of observations, can be anything that are
related to the true model state x† by the observation operatorH.

D = Hx† + ǫ (7)

Note that the observation error ǫ allows the derivation of the
error covariance of the observations R, i.e., R = E(ǫǫT).

Updating Xf is straightforward and can be performed by first
computing the Kalman gain K using Equation (8). The Kalman
gain simply represents the magnitude of which the incoming
observation corrects the model estimates in Equation (5).

K = PfHT(HPfHT + R)−1 (8)

To formalize the update, we use Equation (9).

Xa = Xf + K(D−HXf ) (9)

The result of the update is called the analysis Xa. It is the linear
sum of the model forecast and the correction introduced by
the observation given the difference between the observations
and model forecasts. In general, the analysis must be at least
statistically as accurate as any of the individual observation or the
model forecast.

Lastly, the error covariance of the analysis Pa is calculated
using Equation (10).

Pa = (Xa − Xa)(Xa − Xa)T (10)

4. EXPERIMENT SET-UP

We will now describe in detail how the assimilation
experiments are implemented. The state variables are the
magma overpressures 1Ps and 1Pd within the shallow and
deep magma reservoirs, respectively. The observations are the
vertical and the radial surface displacements observed at a given
time ti and at a given distance r from the axis of symmetry
of the system. From a model simulation with a given set of
parameters listed in Table 1 (see Section 4.1), we generate a set
of synthetic observations and then using these observations and
considering two of the parameters as uncertain, we perform the
assimilation as described in Section 4.2 and compare the derived
overpressures and model parameters obtained in two synthetic
cases (i.e., state-only, state-parameter).

4.1. Generating Synthetic Observation
We perform a model simulation to produce synthetic data by
setting each model parameter to a given value as defined in
Table 1. In data assimilation, this step is referred to as the
true run. These values are chosen such that they are consistent
with the case of Grímsvötn volcano in Iceland. In particular,
at Grímsvötn Volcano, the shallow storage zone has been well
characterized by seismic and geodetic studies (Alfaro et al.,
2007; Hreinsdóttir et al., 2014). Other geometrical parameters
are chosen in consistent with the study of Reverso et al. (2014).
The value taken for the shear modulus G however, represents
an upper bound for the lower part of the crust (Auriac et al.,
2014). This large value results in largemagma overpressure values
but it does not influence the interpretation of the assimilation
technique.

To produce the synthetic overpressures, the analytical solution
of Reverso et al. (2014) to the differential Equations (1) and (2)

are used, i.e., x† =
[

1P†
s

1P†

d

]

:

1P†
sti

= A(1− e−
ti
τ )+ GQin

π(as3γs + ad3γd)
ti + 1P†

st0
(11)

1P†

dti
= γsA

γd
(1− e−

ti
τ )+ GQin

π(as3γs + ad3γd)
ti + 1P†

dt0
(12)

with A = ad
3γd

as3γs+ad
3γd

[1P†

dt0
− 1P†

st0
+ (ρr − ρm)gHc −

8γsQinµHcas
3

πac4(as3γs+ad
3γd)

]. The resulting overpressures are considered as

the true values and are then used as input in Equations (3) and
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(4) in order to generate synthetic displacements d†
m, i.e., d

†
m =

[

u†
Rm

u†
zm

]

.

The observation is then generated by adding a white Gaussian
noise, i.e., N (µu = 0, σ 2

u ), to the synthetic displacements, where
σu represents the instrument precision along the radial and
vertical directions. We use the typical GNSS instrument errors
that are 1 and 10 mm for uR and uz , respectively.

Figure 4 shows the observations (vertical and radial
displacements) generated at various distances from the volcanic
center (i.e., r = 1 to 4.9 km). Notice that for all the radial
displacements and for those vertical displacements that are
nearest to the volcano axis (i.e., r = 1 to 2.5 km), it is very
difficult to discern the synthetic observation because the
amplitude of the noise is very small relative to the signal.
Note that in the results part (Section 5) we use a total of 80
observations (i.e., Nm = 80) to define the observation vector D,
which comprises the vertical and radial displacements, uniformly
(every 100 m) located at distance r = 1 to 4.9 km away from the
volcano axis. The effect of the number of observations used as
well as the frequency of incoming observations are discussed in
Section 6.1.1.

4.2. Assimilation Strategy: Using EnKF
The state variables are the overpressures 1Ps and 1Pd and we
consider two parameters, the radius of the deep reservoir ad and
the basal magma inflow rate Qin as uncertain. We focused on
these particular parameters characterizing the deeper part of the
magma plumbing system because they are the most difficult to
recover using surface displacement data.

The time interval 1t is fixed to 2 days, which is much
smaller than the true time constant τ (i.e., τ = 0.11 yr). The
start of the assimilation begins just after an eruption when the
reservoirs are refilling and terminates after 500 time-steps (i.e.,
tf ∼ 2.74 yr). The initial values of magma overpressures are set
to zero (SeeTable 1), assuming that both reservoirs had been fully
depressurized by the previous eruption (i.e., the magma pressures
within the reservoirs equal the surrounding lithostatic one). The
frequency of available observation fobs is usually fixed to one;
meaning that at each assimilation step (i.e., every 2 days) there is
always an available observation. In the case where no observation
(fobs = 0) is available, the model forecast cannot be corrected by
the observation. This particular case is hereafter called the free
run and is presented for comparison.

Two cases are considered here: case (A) where we only forecast
the state variables and case (B) where the state variables and
the two uncertain parameters (ad and Qin) are both estimated.
We used the classic EnKF where the observations are perturbed
prior to assimilation (Burgers et al., 1998). Below we describe in
detail the practical implementation of EnKF as summarized in
Figure 2:

1. We start by defining an initial ensemble of 1,000 members.
For ensemble generation, two distributions are considered
for the uncertain parameters: (1) using a truncated-Gaussian
distribution wherein the mean of each distribution is centered
on the true value of the uncertain parameters (hereafter called

unbiased) and (2) using a Gaussian-prior distribution that
does not include the true value of the uncertain parameters,
the mean of each distribution being very far from their true
values (hereafter called biased).

2. For each of the ensemble members:

a. We run the forward model step-by-step from the initial
condition until the data assimilation step ti+1. The state
vector is built depending on which case is being tested. See
Appendices A,B for the state-only estimation and state-
parameter estimation, respectively.

Tip 1: When performing either state-only estimation or
state-parameter estimation, an inflation factor ρinfl ∈ [0, 1]
can be multiplied to the ensemble of state variables, i.e.,
Xf = (1+ρinfl)X

f , to prevent the ensemble from collapsing
to a single value. For all the synthetic cases performed
(Section 5), we used an inflation factor equal to 0.1 at each
assimilation step.

Tip 2: In state-parameter estimation using EnKF, the
parameters are only updated by the covariance between
them and the state variables. When doing so, we
randomly perturb the uncertain parameters by adding
noise, N (0,α2

p), where αp is the additive inflation. This
would help the filter to explore more possible values since
their values do not change during the forecast step, i.e.,

p
f
ti+1 ,n = pati ,n. In our synthetic cases, we used an additive
inflation of αad = 5 and αQin = 0.005 to tune the uncertain
parameters during the assimilation. These are derived from
empirical observations after several adjustments.

b. The error covariance of the forecast Pf is computed using
Equation (6).

c. We perturb the field observation vector using:

d̂m = dm + η (13a)

D̂ = [d̂1, d̂2, ..., d̂Nm ] (13b)

where η is a random variable with distributionN (0,R).
d. The state vector is then updated using Equation (9),

replacing D with D̂ :

Xa = Xf + K(D̂−HXf ) (14)

Tip 3: Resample the analysis state vector Xa using the
strategy proposed by Evensen (2009) before moving to the
next data assimilation time step if the updated values of the
uncertain parameters fall beyond or exceed the boundary
conditions.

e. The error covariance of the analysis Pa is obtained using
Equation (10).

5. RESULTS

5.1. Synthetic Case A: State Estimation
The first test case tracks only the evolution of the overpressures
in the shallow and deep reservoirs, i.e., Equation (A1), given
an initial condition where the distributions of the uncertain
parameters are unbiased (Figure 3C) or biased (Figure 5C).
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FIGURE 2 | The step-by-step EnKF strategy that we implemented in this study. The broken borders and lines imply that the step is optional.

In both cases, the EnKF performed well in forecasting
the shallow and deep overpressures toward the end of the
assimilation as evidenced by the red line (i.e., EnKF) that
closely follows the black broken line (i.e., true value) in
Figures 3, 5. In fact for the shallow overpressure, even with
a poor knowledge about the uncertain parameters, the EnKF
was able to catch almost perfectly the true overpressure.
Unsurprisingly, the overpressure forecast for the deep reservoir
is more likely affected by poor parameter initialization because
the displacement induced by the deeper chamber is smaller, such
that its overpressure is indirectly constrained by the dynamical
model and consequently more influenced by the two uncertain
parameters.

In Figure 5B, the result of EnKF is found closer to the free
model forecast (i.e., results in green, labeled as free run) at the
start of the experiment when the prior information about the
uncertain parameters is far from their true values (see inset
2 for a magnified version). The model error seems smaller at

the beginning as compared to the observation error, hence, the
contribution of the model forecast is found to dominate the
process. As the experiment goes on, the model error increases
tremendously (i.e., the mean overpressure from the free run
deviates away from the true overpressure) but thanks to the small
measurement error, the analysis was able to converge closer to
the true state of the system. Although overpressure estimation
may have been unsuccessful toward the end of the assimilation,
still, the resulting error differences between the true values and
the EnKF-estimates are very small (i.e., 0.69% and 4.25% for the
shallow and deep reservoirs, respectively). Note that this error
difference may increase if the assimilation window is extended.
The failure of estimation is due to the observation operator that
relates the model and the observation, since it incorporates an
uncertain parameter ad which is fixed to a bad value in this
case.

In Table S1, we present the summary of the synthetic
results after performing the experiments for the state estimation
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FIGURE 3 | The evolution of the overpressures after performing the state estimation (A,B) given that the initial ensemble of the uncertain parameters (C) are

non-Gaussian, centered on their true values (black broken lines). In (A,B) the black broken line represents the true value of the overpressures. The green ones

represent the model forecasts where the green solid line is the mean, the dark green fill is the spread (1σ ) and the light green fill covers the full extent of the ensemble

(i.e., [min, max]). The red ones represent the result of EnKF where the red solid line is the mean, the dark red fill is the spread (1σ ) and the light red is the full extent of

the ensemble. Notice that the spread of the ensemble is very narrow for the assimilation case (∼104–106).

case. As expected, there is a significantly higher percentage
of error when the model is freely propagated forward
in time without the correction of the observations (free
run).

We estimated the displacements using the overpressures
derived from the assimilation run, i.e., applying Equations
(3) and (4). Figures 4, 6 show 10 out of the 80 combined
radial and vertical displacements used during the assimilation.
Notice that in the case where the uncertain parameters are well
constrained (i.e., Figure 3C), the displacements are correctly
forecasted even at distances where the signal-to-noise ratio
starts to weaken (i.e., vertical displacements at r ≥ 3 km, see
Figure 4) . However, in the case of poorly initialized parameters
(i.e., Figure 5C), forecasting the displacement is not favorable
especially along the vertical component (Figure 6) where the
result worsens as one goes farther away from the volcano
axis.

There are two possible ways to solve the issue in forecasting
the displacement: (1) extend the state vector X incorporating

the model-forecasted displacements, i.e., X =
[

xf

df

]

, where

df = Hxf or (2) extend the state vector incorporating the
uncertain parameters (i.e., Equation A4). We opted for the
second strategy because it will not only improve the field
observation estimates but will also allow us to properly estimate
the overpressures and to be able to constrain and gain more
knowledge about the uncertain parameters. Furthermore, in
performing the first option, the computational cost can increase
significantly when we increase the number of observations used
during the assimilation, i.e., using InSAR data.

5.2. Synthetic Case B: State-Parameter
Estimation
Parameter estimation is very challenging especially when the
parameters have no direct link to field observations and if
there are no means to compare them to the actual values. The
characteristics of the deep magmatic reservoir for example is
poorly known in volcanology since it is buried very deep (i.e.,>10
km) into the Earth.

We followed the same initial conditions performed in the
first case given that: (1) the uncertain parameters are “unbiased”
or have truncated-normal distributions, centered on their true
values (Figure 3C) and (2) the uncertain parameters are “biased”
or have normal distributions but are not centered on their
true values (Figure 7C). We used the augmented state vector
in Equation (A4) to include the uncertain parameters in the
forecasting.

Results show that the filter tracks almost perfectly the true
behavoir of the overpressures given the two different types of
parameter initialization as shown for example in Figure 7, where
the prior distributions of ad and Qin are biased. In fact, the final
values of the overpressures have as little as 0.0 − 0.01% and
0.04− 0.06% error difference with respect to their true values for
the shallow and deep overpressures, respectively.

In Figure 8, we plotted ad and Qin at each assimilation
step given two different a priori assumptions for the uncertain
parameters. Notice how the EnKF-estimated parameters
converged well near their true values regardless of how they
were initialized. In fact, at the beginning of the assimilation,
the filter immediately recognizes its supposed trajectory hence
decreases ad and Qin allowing convergence to their true values.
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FIGURE 4 | The EnKF-estimated displacements after performing assimilation via state estimation (i.e., blue solid line) given that the prior distribution of the uncertain

parameters are close to their true values (Figure 3C). The synthetic displacements used as D during assimilation are the noisy red lines that are more evident in the

vertical component at far-field distances. The black broken lines correspond to the true values.

Interestingly, we find Qin more sensitive to the estimation than
ad as evidenced by the steep drop at the start especially when the
prior parameter distribution is biased. To a greater extent, it fell
beyond the true value but eventually recuperates and adjusts to
its correct behavior. In Table S2 we summarized the results of
synthetic case B, showing that there is a very good fit between the
EnKF-estimated state variables and model parameters and their
true values.

Figure 9 confirms our initial recommendation that
augmenting the state vector to include the uncertain parameters
in the estimation will correctly forecast the radial and vertical
displacements.

6. DISCUSSION

6.1. Influence of Spatial and Temporal
Resolutions
6.1.1. High Spatial Resolution vs. High Temporal

Resolution Dataset
Our results show the huge potential of EnKF in forecasting
the overpressures and displacements as well as in estimating

the uncertain model parameters. However, having 40 near-field
GNSS stations that will provide 80 observations every 2 days
is often not the case for most volcanoes. In Figure 10 we show
how EnKF performs when the number of observations is varied
using two types of dataset: (1) a GNSS-like dataset and (2) an
InSAR-like dataset. The GNSS-like dataset is composed of 10
observations (i.e., five radial and five vertical displacements)
located at distance r = 1 − 5 km away from the volcano axis
and is uniformly spaced every 1 km. The InSAR-like data is an
11 × 11 grid centered on zero-axis (i.e., r = 0 as the volcano
axis) with two components (i.e., vertical and radial directions)
that have spatial resolutions of 1 km. This provides a total of
242 observations located at distance r = 1 to 5

√
2 km away

from the volcano axis. Each of the datasets is assimilated every
2 days (fobs = 1), consistent with the time interval of the model.
We use a prior distribution which is Gaussian and not centered
on the true values for the uncertain parameters (Figure 7C)
because it is the most realistic andmost critical case. Our findings
show that both datasets are able to track the true behavior of
the shallow and deep overpressures. However, when it comes to
estimating the uncertain model parameters, only the InSAR-type
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FIGURE 5 | The evolution of the overpressures after performing the state estimation (A,B) given that the initial ensemble of the uncertain parameters (C) are

Gaussian, not centered on their true values (black broken lines). The insets provide a magnified image of the overpressures at the beginning of the assimilation. In

(A,B) as well as in the insets, the black broken line represents the true value of the overpressures; the green ones represent the result of the free run where the green

solid line is the mean, the dark green fill is the spread (1σ ) and the light green fill covers the full extent of the ensemble (i.e., [min, max]); the red ones represent the

result of EnKF where the red solid line is the mean, the dark red fill is the spread (1σ ) and the light red is the full extent of the ensemble. Notice that the spread of the

ensemble is very narrow for the assimilation case (∼104–106).

data were able to allow convergence of Qin and ad to their true
values.

The challenge remains with the availability of InSAR data
every 2 days. At the time of writing, only the Sentinel-1 satellite
has the capability to provide radar data as frequent as every 6–
12 days. TerraSAR-X can provide data every 11 days whereas
COSMO SkyMed’s routine return period can acquire data every
8 days by using different satellites in its constellation. To be
more realistic, we then assimilated the InSAR-like dataset every
12 days (fobs = 1/6) and kept the frequency of available GNSS
data to 2 days (fobs = 1). This means that for the InSAR-
like data, the model forecasts are only corrected every 12 days.
Figure 11 illustrates that the InSAR-like data failed to recover
the true behavior of the overpressures toward the end of the
assimilation. More precisely, it failed to recover the exponential
part of the system or during the time when the shallow reservoir
is refilled by the deep one after an eruption. As a consequence

of the poor overpressure forecast at the beginning, parameter
estimation cannot be performed because their resulting posterior
distributions are physically meaningless (i.e., negative radius of
the deep reservoir). Performing the resampling option cannot
even solve the issue. Take note that in EnKF, uncertain model
parameters are only updated by the sample covariance between
them and the state variables (i.e., in this case, the overpressures),
and that the model evolution for them is simply an identity.

Given the aforementioned results, we know that the advantage
of using GNSS data to capture the behavior of the overpressures
is its high temporal resolution, in which it is possible to obtain
daily observations that can be used for assimilation. InSAR data
on the other hand, are less frequent to acquire but provide
better spatial information about the surface deformations and
constraints on the uncertain parameters. In order to exploit the
advantages of both dataset, we jointly assimilated the GNSS-
like and InSAR-like data. Figure 12 shows how the evolution of
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FIGURE 6 | The EnKF-estimated displacements after performing assimilation via state estimation (i.e., blue solid line) given that the prior distribution of the uncertain

parameters are far from their true values (Figure 5C). The synthetic displacements used as D during the assimilation are the noisy red lines that are more evident in

the vertical component at far-field distances. The black broken lines correspond to the true values.

the overpressures is well captured and how the uncertain model
parameters converged to their true values. In fact for this case, in
as early as ∼6 months of jointly assimilating GNSS and InSAR,
it may already be possible to forecast the long term overpressure
values that can later tell whether a critical overpressure–unique
for each volcano–will most likely be achieved.

Retrieving the three-dimensional (3D) displacement vector
using InSAR is not always possible and most of the time,
only the line-of-sight (LOS) displacement is available. In the
Supplementary Materials, we show that the joint assimilation of
GNSS and InSAR in either ascending or descending LOS view can
still capture the temporal behavior of the overpressures as well as
estimate the two uncertain model parameters, thereby allowing
the possibility of near-real time forecasting.

6.1.2. Including Far-Field Data
While InSAR data can cover up to hundreds of kilometers with
one swath, most volcanoes are small in size and thus volcano
deformation signals may cover only a small portion in the image.
In Figure S3 we plot the radial and vertical displacements as a
function of the distance from the volcano axis given the values
of the parameters in Table 1. As one goes farther away from
the volcano axis (i.e., r is increased), the deformation signal

weakens and almost decays to zero. Decomposing the source
of deformation, we find that the near-field signals are mostly
related to the shallow reservoir whereas at farther distances (i.e.,
>16 km and >10 km for the radial and vertical displacements,
respectively), the signals became dominated by the deep one.
Given this, one can infer that far-field data can bring more
information about the deep reservoir but note also that as one
goes farther away from the volcano axis, the signal-to-noise
ratio also weakens. Thus, when assimilating InSAR data, it is
important to know the effect of including far-field data in order
to avoid spikes in the root mean square error (RMSE) between
the forecasted and the synthetic surface deformation associated
with the use of InSAR especially when coupled with GNSS data
as previously performed by Gregg and Pettijohn (2016).

To do so, we generated an 11 × 11 grid InSAR-like dataset
with two components (i.e., vertical and radial directions), giving
a total of 242 data points. However, unlike in the previous
section where we assimilate near-field observations that are
equally spaced every 1 km, here, we use non-uniform spacing
and intentionally limit the number of far-field points to avoid
overwhelming the dataset with noise. In Figure 13A, we plotted
the location of these observations. Figures 13B,C show the
estimated overpressures and the uncertain parameters after
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FIGURE 7 | The evolution of the overpressures after performing the state-parameter estimation (A,B) given that the prior distributions of the uncertain parameters

(C) are Gaussian, not centered on their true values (black broken lines). In (A,B) the black broken line represents the true value of the overpressures; the green ones

represent the result of the free run where the green solid line is the mean overpressure, the dark green fill is the spread (1σ ) and the light green fill covers the full extent

of the ensemble (i.e., [min, max]); the red ones represent the result of EnKF where the red solid line is the mean, the dark red fill is the spread (1σ ) and the light red is

the full extent of the ensemble. Notice that the spread of the ensemble is very narrow for the assimilation case.

assimilating near-field and far-field observations every 2 days.
Results show that while the true overpressures are correctly
forecasted, the uncertain parameters failed to converge to their
true values. In fact, the estimated uncertain parameters worsen
when we compare them to the InSAR results in Figure 10 where
we only assimilated near-field data. Perturbing the uncertain
parameters was not even helpful. Cropping the InSAR data, then
downsampling using quadtree (e.g., Simons et al., 2002; Sudhaus
and Sigurjón, 2009) and/or placing weights on each pixel may be
useful in the future in order to allow strategical assimilation of
both near-field and far-field data.

We emphasize that all these discussions are based on specific
set of parameters we chose for the synthetic case. In particular, the
influence of the spatial and temporal resolution strongly depends
on the time constant, τ = 0.11 years and reservoir depths set to
3 and 35 km for the shallow and deep reservoirs, respectively.

6.1.3. Defining the Observation Error Covariance, R
In this study, we added a white Gaussian noise to generate all
the observations. This is one of the fundamental assumptions
and a common approach in data assimilation that implies
the use of diagonal observation error covariance, R, during
the computation. Even in many operational weather forecast
centers, this simplification is adopted in order to facilitate the
implementation on one hand and to ensure the quality of the
results on the other hand. In the case of complex data noise, it
is usually difficult to precisely characterize the error. Using non-
reliable information of observation errors in the computation
may worsen the results. Here, we adopted a simple observation
error covariance, but in practice, the error variance can be

increased in order to take into account the part of error not
represented by the error covariance used.

Spatially correlated noise can be present, especially in the case
of InSAR data where atmospheric noise are usually embedded in
the data. The spatial correlation can change the results depending
on the quality, quantity and the distribution of the data points.
Bekaert et al. (2016) suggest that neglecting InSAR covariance
should be avoided as it may result to treating spatially correlated
atmospheric noise as part of the signal. In the future, InSAR
variance-covariance shall be applied when dealing with real case
data. Furthermore, the approach presented by Brankart et al.
(2009) and Ruggiero et al. (2016) can be considered.

6.2. Comparing with Inversion
When performing the comparison between EnKF and inversion,
we want to make sure first that the model and the a priori
information that we used are the same and are suitable for the two
techniques. For example, if we start from a parameter distribution
which does not cover the true values of the uncertain parameters
(e.g., Figure 5C), the inversion will not work. On the other hand,
if we start from a uniform distribution as we used to do in
inversion, the EnKF estimation will not be the optimal solution
since it requires a prior assumption that is Gaussian in nature.
We then built the prior distributions for ad andQin (Figure 14B)
that agrees with the prerequisites of both the assimilation and
inversion.

Gregg and Pettijohn (2016) have previously compared
data assimilation with inversion using two different models–
a viscoelastic assumption for EnKF and an elastic one for the
inversion. In our case, to be fair and consistent, the same forward
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FIGURE 8 | The EnKF-estimated uncertain parameters after performing state-parameter estimation given that the prior distributions of the uncertain parameters are

(A) unbiased or (B) biased. The solid red line is the mean value of the uncertain parameters. The dark-shaded red and pink colors represent the spread (1σ ) and the

[min,max] of the ensemble, respectively. The true values are the black broken lines.

dynamical model (the two-magma-chamber model) is applied to
the two techniques.

For the EnKF, we performed the state-parameter estimation
strategy similar to that in synthetic case B. Whereas, we
implemented a Bayesian-based estimation, i.e., Markov Chain
Monte Carlo (MCMC), for the inversion. MCMC is most
useful in cases where models are non-linear and expressing an
analytical solution is not possible (Segall, 2013). Note that we
used 80 synthetic observations (i.e., 40 radial and 40 vertical
displacements) that are uniformly (every 100 m) located at a
distance r = 1 − 4.9 km with frequency of available observation
consistent with the time interval (i.e., 1t = 2 days; fobs = 1) for
the two techniques.

In performing MCMC, the posterior distribution of the
uncertain parameters is sampled given their a priori distribution
using the forward model and a proposed likelihood distribution.
Models are selected based on the Metropolis-Hastings rules,
which always accept models that fit better to observations than

the previous iteration and randomly accept those that do not fit to
avoid being trapped to a localminima (Segall, 2013). For example,
at ti, a set of ad and Qin values are drawn from their initial
distributions, generating model forecasts using the two-chamber
model. These model forecasts are then compared to the GNSS
and/or InSAR data and are always accepted if the fit is better
than the last sampling iteration, creating the so-called Markov-
Chain. The sampling iteration can be performed thousand to
million times in order to build a full posterior distribution. In our
case, we performed 11,000 MCMC sampling iterations at each
time-step and burned-in the first 10,000 so that in the end we
have a similar ensemble size (e.g., 1,000) to that of the EnKF.
Take note that unlike in EnKF which is sequential and only uses
incoming observations to capture the temporal evolution of the
overpressures, MCMC utilizes all the observations from t0 up to
the preferred time of observation ti. We performed up to 400
time-steps with interval similar to that in EnKF (i.e., 1t = 2
days).
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FIGURE 9 | Ten of the 80 EnKF-estimated displacements after performing assimilation via state-parameter estimation (i.e., blue solid line) given that the prior

distributions of the parameters are biased (Figure 7C). The synthetic observations used as D during assimilation are the noisy red lines that are more evident in the

vertical component at far-field distances. The black broken lines correspond to the true values of the displacements.

Figure 14A presents the resulting overpressures after
performing EnKF and MCMC. The shallow overpressure is
well-estimated by the two approaches, whereas the overpressures
in the deep reservoir both started from a deviated value but
eventually converged to their true values. The MCMC-estimates
are also found smoother than the EnKF-forecasts especially in the
deep reservoir. Since EnKF always assumes that the dynamical
model is uncertain and needs to be corrected by incoming
observations, it then tends to closely follow the behavior of the
observations, hence we observe a noisier estimation with EnKF.
It follows that MCMC cannot account for epistemic model errors
or those uncertainties related to processes not included in the
physical forward model (Segall, 2013).

If we observe how the uncertain parameters are estimated
by the two techniques in Figure 14C, we will find that both
are able to estimate accurately the true values, but MCMC
is faster to converge. Take note however, that the uncertain
parameters we used in this study are static parameters. In
the case of an evolving model parameter, which could be the
case for the basal magma inflow (i.e., Poland et al., 2012),
the inversion may not be the optimal method to use for
estimation.

6.3. Toward More Realistic Physics-Based
Models
The model that we used here is a highly simplified view on
how a volcano plumbing system works based on idealized
assumptions (e.g., elastic medium in a homogeneous half-space,
incompressible magma). It can be implemented easily for real-
time forecasting of effusive eruptions as contrary to the finite
element model of Gregg and Pettijohn (2016). Although we only
considered two uncertain model parameters (ad and Qin) in
this study, since they are the most difficult to constrain using
geodetic data through conventional approach, future work can
be extended to explore other parameters such as the depth and
the shape of the reservoirs and the strength of the hydraulic
connection between them.

In addition to the simplicity and specificity of the model that
we tested, we base the potentiality assessment of data assimilation
on a synthetic case that is consistent with observations recorded
at a specific volcano –Grímsvötn in Iceland. In fact, similar
deformation behavior has been observed at other basaltic
volcanoes: Kilauea and Mauna Loa in Hawaii (Lengliné et al.,
2008, Westdahl Volcano (Lu et al., 2003), and Axial Seamount
Volcano (Nooner and Chadwick, 2009) such that it can be
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FIGURE 10 | Influence of the spatial density of observations on the assimilation: GNSS (10 observations that are assimilated every time-step, fobs = 1, with distance

to the volcanic center ranging from 1 to 5 km) vs. InSAR-like dataset (242 observations that are assimilated every time-step, fobs = 1, with distance to the volcanic

center ranging from 1 to 5
√
2 km). (A,B) illustrates the estimated overpressures and uncertain parameters, respectively, given that the initial conditions of the uncertain

parameters are similar to those of in Figure 5C. The insets in (A) provide a closer look on the overpressures at the beginning of the assimilation. The light blue and red

shades correspond to the spreads (1σ ). Note that for the overpressures, the spreads are difficult to discern since they are very small when compared to the scale of

the plot. The black broken lines represent the true values.

accepted as generic for this type of frequently erupting volcanoes.
However, except for Axial Seamount, the time constant derived
at other places are larger than the one observed at Grímsvötn
(Reverso et al., 2014). This parameter is expected to only
influence the impact of the temporal frequency of available
observations. In the case of Grímsvötn, it is indeed expected to
be more restrictive regarding the importance of a high temporal
resolution dataset. It was beyond the scope of this first paper
to modify the parameters chosen for the synthetic case, but a
systematic exploration of the dimensionless parameters will be
required in further studies.

We emphasize that the focus of this work is to give a
preliminary assessment of how EnKF can be utilized in eruption
forecasting rather than validating the dynamical model that we
considered. Unlike in the field of ocean-atmosphere science
where models are more advanced and established, realistic and
generic physics-based models of volcanoes are still in progress.
However, one of the main interests in using data assimilation
is that it takes into account the fact that models are not perfect
and are mostly based on the simplification of the complex reality.
This is represented by the model error, q, as depicted in Equation
(5). Evensen (2003) have shown that the model error can be

Frontiers in Earth Science | www.frontiersin.org 15 June 2017 | Volume 5 | Article 48

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Bato et al. Assimilation of Deformation Data for Eruption Forecasting

FIGURE 11 | Influence of the frequency of observations on the assimilation: GNSS (10 observations that are assimilated every time step, fobs = 1, with distance to

the volcanic center ranging from 1 to 5 km) vs. InSAR-like dataset (242 observations that are assimilated every 12 days, fobs = 1/6, with distance to the volcanic

center ranging from 1 to 5
√
2 km). Since parameter estimation is not possible to perform when InSAR dataset is used (see text), only the estimated overpressures are

presented. Note that the initial conditions of the uncertain parameters are similar to those of in Figure 5C. The insets provide a closer image of the overpressures at

the beginning of the assimilation. The light blue and red shades correspond to their spread (1σ ). Note that these values are difficult to discern since they are very small

when compared to the scale of the plot. The black broken lines represent the true values.

accounted in the EnKF scheme using the following expression:

P
f
ti+1

= MPatiM
T + Qti (15)

where Qti = q2ti is the model covariance. P
f
ti+1

represents the
accumulated model errors from the beginning of the assimilation
until the instant ti+1. In order to overcome the difficulty in
quantifying directly the model error at each time-step, the EnKF
represents the model error by an ensemble of model state
generated from a large number of perturbations of uncertain
model parameters. The model error covariance P in the EnKF
practice is an approximation of the real model error. In case
of infinite ensemble members, P is considered to equal the
real model error. For this reason, a large ensemble size is
always required. Any dynamical model can actually be used
in data assimilation as long as there is a link between the
model and the observations and the model can be restarted
at any instant. However, take note that models that are too
far from the reality would result in large model errors that
would be difficult or impossible to correct by the observations,
especially when the condition of the observations is not good
enough (i.e., in terms of quantity, distribution and accuracy).
The use of more realistic physics-based models that could better
interpret field observations such as those that could account for
magma rheology and compressibility (e.g., Rivalta and Segall,
2008; Anderson and Segall, 2011, 2013; Segall, 2016; Got et al.,
2017) are then highly encouraged. Data assimilation can also
be extended to models representing other plumbing mechanism
such as magma reservoirs recharged by dikes at depth (e.g.,
Karlstrom et al., 2009) or even those eruptions that are related
to dike intrusions.

6.4. Implications to Real-Time Volcano
Monitoring
While parameter-estimation allows us to gain more knowledge
about the plumbing system and the behavior of the volcano, in
real-time crisis, one of the key variables to infer an impending
effusive eruption is the overpressure. The EnKF strategy
presented here uses a simple dynamical model that can be easily
integrated with large amount of real-time geodetic data, allowing
to quickly and accurately track the value of the overpressures
both in short-term and long-term periods. Assuming a statistic
distribution for the threshold magma overpressure leading to
reservoir wall rupture, based on previous eruption for instance,
the updated overpressure provided by EnKF can be used to
estimate the timing of an impending eruption. Although the
critical overpressure value is not always known, especially for
volcanoes that do not erupt frequently, it depends on the rock
strength that can be estimated and on the local stress field
strongly influenced by the edifice geometry (Pinel and Jaupart,
2003).

Another important challenge of the assimilation approach is
the availability of frequent data. Although for GNSS we can
obtain daily observations, InSAR data are less frequent and are
still dependent on the quality of interferograms produced. Also,
in reality, the 3D-displacement field vector from InSAR are not
always retrievable due to the satellite’s acquisition geometry.
Furthermore, while we only used deformation data alone, the
observation vector can include gas emission and seismic data
for a more deterministic approach in forecasting (i.e., seismic
data in particular can be used to estimate the timing of an
eruption), as long as they can be related to the dynamical model
used.
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FIGURE 12 | The estimated overpressures (A) and uncertain parameters (B) after jointly assimilating GNSS (10 observations that are assimilated every time-step,

fobs = 1, with distance to the volcanic center ranging from 1 to 5 km) and InSAR-like observations (242 observations that are only assimilated every 12 days,

fobs = 1/6, with distance to the volcanic center ranging from 1 to 5
√
2 km). The initial conditions of the uncertain parameters are similar to those of in Figure 5C. The

inset in (A) provides a magnified view of the overpressures at the start of the assimilation. The pink shade corresponds to the spread (1σ ). The black broken lines

represent the true values.

Interestingly, when it comes to near-real time monitoring,
it may be possible to use inversion and data assimilation
jointly in order to accommodate vast amount of incoming
data. MCMC allows faster forecasting of non-evolving model
parameters whereas EnKF via state-estimation is easy to
implement and only requires incoming observations. Meaning,
the uncertain model parameters can be first constrained
by MCMC and the overpressures will then be forecasted
using EnKF via state-estimation strategy (e.g., synthetic
case A).

7. CONCLUSIONS AND PERSPECTIVES

Our work presents a simple yet efficient model-data fusion
strategy using data assimilation (i.e., EnKF) that can be
applied to real-time volcano monitoring. Synthetic GNSS
and/or InSAR data are assimilated to a simple yet generic
dynamical model (i.e., two-chamber model) to mainly forecast
the overpressures–one of the key parameters when assessing
volcanic eruptions. The EnKF method is tested on two
synthetic cases: (A) state-estimation and (B) state-parameter
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FIGURE 13 | (A) The locations of the 242 observations (i.e., 121 radial and 121 vertical points) in gray dots and their corresponding displacement values at t = 10.

The observations are assimilated every time-step such that fobs = 1. Note that the x and y axis are in kilometers. The EnKF-estimated (B) overpressures and (C)

uncertain parameters after performing state-parameter estimation using the observations in (A). We used a biased prior distribution for the uncertain parameters like in

Figure 5C or Figure 7C. Note that the pink shades represent the spread (1σ ) of the estimation. The true values are the black broken lines.

estimation using different a priori information about the
uncertain model parameters. This technique allowed us to
provide posterior distributions of the overpressures and the
uncertain model parameters at each time step. Our results

show that the filter can successfully track the evolution of
the overpressures both in the shallow and deep reservoirs
using near-field observations if the prior assumptions about
the uncertain parameters are well defined or if the uncertain
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FIGURE 14 | Comparison between the EnKF-estimated and MCMC-estimated (A) overpressures and (C) uncertain model parameters given the prior distributions of

ad and Qin in (B). For the two techniques, we used 80 synthetic observations (i.e., combined radial and vertical displacements) located uniformly, every 100 m, at

r = 1−4.9 km and are available every time-step. The light blue and pink shades represent the spread (1σ ) of the estimation. The true values are the black broken lines.

parameters are also estimated along with the state variables
(overpressures).

Based on the specific case considered in this study, frequent
but spatially sparse observations like GNSS are more likely to
recover the true evolution of the overpressures than with an
infrequent but spatially dense dataset (e.g., InSAR). Although,
using an InSAR-like data will better constrain the uncertain
model parameters. While Gregg and Pettijohn (2016) pointed
that the assimilation of InSAR creates spikes in the RMSE
between the forecasted and the synthetic displacements when
coupled with GNSS, our strategy presents a successful joint

assimilation of these datasets for the first time, allowing to exploit
both the high temporal characteristic of GNSS and the high
spatial characteristic of InSAR. An important point to consider
is the use of far-field data. While far-field displacements can
provide more information about the deep reservoir, they can
generate noisier and less accurate forecasts because of their
weaker signal-to-noise ratio. Future work must be dedicated
to strategically balance them with near-field observations when
used for assimilation (i.e., resampling by quadtree and/or
imposing weights on the data points). Although, we did not
investigate the effect of spatially correlated noise especially in
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InSAR data, we acknowledge the need to apply InSAR variance-
covariance matrix especially in real data as suggested by Bekaert
et al. (2016).

The ability of the EnKF and sophisticated Bayesian inversion
(MCMC) to constrain parameters of a dynamical model are
similar. Both techniques can thus be used to forecast the temporal
evolution of magma overpressure through time. Although the
use of MCMC allows faster convergence of the uncertain model
parameters to their true values, the advantage of data assimilation
is clearly to improve the forecasts in near real-time by updating
the parameter estimations (thus accounting for the temporal
variations of the parameters) based on incoming observations.
Interestingly, it may also be possible to combine both techniques
in which MCMC will be used to first constrain the non-evolving
model parameters followed by applying EnKF in order to forecast
only the state variables (e.g., overpressures).

The strategy that we have developed here aims to give a
preliminary assessment of EnKF as a tool to assess volcanic
unrest. While our framework is simple, it offers a great potential
in using the method toward a more deterministic approach in
eruption forecasting and better understanding of the magma
plumbing system. The use of more sophisticated physics-based
models as well as other types of datasets such as gas emission and
seismic data are highly encouraged for future studies. In terms of
the real case application of the strategy to Grímsvötn volcano,
additional uncertain model parameters such as the depth of

the deep reservoir and the hydraulic strength between the two
reservoirs should be accounted.
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APPENDIX

A. The Overpressures as State Variables
The state vector, X, can be expressed as:

X =
[

1Ps
1Pd

]

(A1)

where 1Ps is the overpressure in the shallow reservoir and 1Pd
is the overpressure in the deep reservoir.

From Equations (1) and (2), if we let, C1 = Gac
4

8µγsHcas3
, A1 =

(ρr − ρm)gHc, A2 = GQin

γdπad
3 and C2 = γsas

3

γdad
3 , then we can write

the dynamical model as:

[

1Psti+1

1Pdti+1

]

=
[

1− C11t C11t
C1C21t 1− C1C21t

] [

1Psti
1Pdti

]

+
[

C1A11t
(A2 − C1C2A1)1t

]

(A2)

where the model operator,M =
[

1− C11t C11t
C1C21t 1− C1C21t

]

.

The relationships of the surface displacements and the
overpressures are described by Equations (3) and (4), if we let

Ŵ = 1−ν
G , Ds = αs

a3s
R3s

and Dd = αd
ad

3

R3
d

, then we can rewrite them

into a matrix of the form:

[

uRti
uzti

]

=
[

ŴDsr ŴDdr
ŴDsHs ŴDdHd

] [

1Psti
1Pdti

]

(A3)

where the observation vector, D =
[

uRti
uzti

]

and the observation

operator, H =
[

ŴDsr ŴDdr
ŴDsHs ŴDdHd

]

. Note that r are the GNSS

locations of the observations (i.e., distance at the surface to the
center of the volcanic system) and, Hs and Hd are the depths of

the shallow and deep reservoirs, respectively (see Figure 1). The

observation error covariance, R =
[

σ 2
uR

0
0 σ 2

uz

]

, in which σuR and

σuz are the typical GNSS instrument error values equal to 1 and
10 mm, respectively.

B. The Overpressures and the Uncertain
Parameters in the State Vector
Let the state vector be expressed as:

X =









1Ps
1Pd
ad
Qin









(A4)

where 1Ps is the overpressure in the shallow reservoir, 1Pd is
the overpressure in the deep reservoir, ad is the radius of the deep
reservoir and Qin is the basal magma inflow rate. We rewrite the
dynamical model into matrix form, i.e.,











1Psti+1

1Pdti+1

adti+1

Qinti+1











=









1− C11t C11t 0 0
C1C21t 1− C1C21t 0 0

0 0 1 0
0 0 0 1

















1Psti
1Pdti
adti
Qinti









+









C1A11t
(A2 − C1C2A1)1t

0
0









(A5)

such that the model operator is now M =








1− C11t C11t 0 0
C1C21t 1− C1C21t 0 0

0 0 1 0
0 0 0 1









. On the other hand, D and

R will stay the same but the observation operator needs to be
modified in order to be consistent with the equations. Hence, it

should take the form,H =
[

ŴDsr ŴDdr 0 0
ŴDsHs ŴDdHd 0 0

]

.
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