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Abstract. We describe here a simple model for the interaction between
leukemic cells and the autologous immune response in chronic phase
chronic myelogenous leukemia (CML). This model is a simplified version
of the model we proposed in [Clapp et al., Cancer Research, 75:4053-
4062, 2015]. Our simplification is based on the observation that certain
key characteristics of the dynamics of CML can be captured with a three
compartments model: two for the leukemic cells (stem cells and mature
cells) and one for the immune response. We characterize the existence
of steady states and their stability for generic forms of immunosuppres-
sive effects of leukemic cells. We provide a complete co-dimension one
bifurcation analysis. Our results show how clinical response to tyrosine
kinase inhibitors treatment is compatible with the existence of a stable
low-disease, treatment-free steady state.

1 Introduction

Chronic myeloid leukemia is a clonal disease that arises from a discrete pop-
ulation of hematopoietic stem cells residing in the bone marrow harmed by a
single fusion gene, BCR-ABL, encoding for a deregulated tyrosine kinase ac-
tivity responsible for the disease [7]. Unlike most cancers, the measurement of
the BCR-ABL transcripts can quantify precisely the tumor load and its evo-
lution throughout time under targeted therapies (i.e. tyrosine kinase inhibitors
(TKI)). The first-in-class TKI Imatinib (Glivec R©/Gleevec R©, Novartis) is a tar-
geted therapy that inhibits the deregulated tyrosine kinase activity of ABL in



leukemic cells, and induces within 18 hours cell death by apoptosis [9]. This TKI
and the other TKIs derived since 2005 from IM revolutionized the paradigms of
treatment of CML and transformed this disease from a mostly fatal illness into a
life-long indolent pathology [16]. However, in most cases, under TKI, the disease
remains detectable at low levels. It is rare when CML becomes undetectable,
possibly cured. After stopping targeted therapies, most patients relapse and re-
quire a new TKI treatment. Yet, recent clinical trials [14, 17, 20] have shown
that a long TKI treatment duration may result with remission after treatment
withdrawal, and, in some cases, although detectable levels of transcripts might
reappear, patients may end up in an indolent detectable disease not requiring
further treatments.

There is increased evidence that such remissions (so-called treatment-free re-
missions) do not require disease eradication [19]. Such coexistence of low-level
leukemic cell load and non-active relapse suggest the occurrence of leukemic
cell control mechanisms. In CML, it is well-known that the autologous or allo-
geneic immune responses against the tumor have a critical importance in dis-
ease cure or long-term control. In an autologous setting, complete hematologic
and cytogenetic remission, even in accelerated phase CML, has been observed
after generating ex-vivo autologous leukemia-reactive cytotoxic T-lymphocyte
infusions [8]. Nowadays, in successful treatment-free remission setting, elevated
counts of natural killer cells [10] and plasmacytoid dendritic cells [1] at time of
TKI withdrawal have been observed, supporting the hypothesis that the autol-
ogous immune system might play a critical role in controlling the disease after
TKI withdrawal.

Several mathematical models of the dynamics of CML during treatment and
after treatment cessation have provided insight into the mechanism of remission
and relapse. We briefly comment on some of these models. For a more compre-
hensive review of mathematical models for CML we refer to [4].

Michor et al. used a mathematical model to explain the failure of complete
eradication of the disease under TKI treatments by the development of resistance
[15]. Komarova and Wodarz proposed a model that incorporates the stem cell
ability to become quiescent and to develop resistance to treatment [13]. An
alternative model was proposed by Roeder et al. [18]. There, an agent-based
model in which the fate of each cell is stochastically determined, according to
its characteristics and its environment. The model describes the competition of
leukemic stem cells versus disease-free stem cells in the bone marrow, and the
effect of TKIs on competition [18]. The potential long-term effect of immune
response was studied by Kim et al. in [12] by adding an immune compartment
to the model of [15].

Recently, we proposed a model describing the interactions between leukemic
cells and the autologous immune system in IM-treated patients [6] (see also [5]).
The model was motivated by an observation that many patients who otherwise
responded well to IM therapy still showed variations in their BCR-ABL tran-
scripts. Our modeling results suggested that, at diagnosis, a patient’s leukemic
load is able to partially or fully suppress immune response developed in a ma-



jority of patients towards the CML clone(s). IM therapy drives the residual
leukemic cell population into the ”immune window”, allowing the patient’s au-
tologous immune cells to expand and eventually mount an efficient recognition of
the residual leukemic burden. This drives the leukemic load below this immune
window, allowing the residual leukemic population to partially recover until an-
other weaker immune response is initiated. Thus, we suspect that the autologous
immune response may explain the oscillations in the BCR-ABL transcripts reg-
ularly observed in patients on IM.

In this paper we propose a new model for describing the interaction between
leukemic cells and the autologous immune system in chronic phase CML. This
model is a simplified version of our original model from [6], in which we re-
duce the number of equations and simplify some of the interaction terms. Our
simplification is based on the observation that certain key characteristics of the
dynamics of CML can be captured with a three compartments model: two for
the leukemic cells (proliferating stem cells and mature cells) and one for the
immune response.

The new model is sufficiently accessible to allow us to conduct mathematical
analysis. Indeed, we characterize the existence of steady states and their stability
for generic forms of immunosuppressive effects of leukemic cells, and provide a
complete co-dimension one bifurcation analysis. Our results show how clinical
response to TKI treatment is compatible with the existence of a stable low-
disease, treatment-free steady state.

The structure of this manuscript is as follows. In Section 2 we briefly overview
the mathematical model of [6] after which we introduce our new model (4). The
positive steady states of the system (4) are characterized in Section 2. A stability
analysis of these steady states in conducted in Section 3. This section includes
our main Theorems, Theorem 1 and 2, which describe the bifurcation diagrams
of the steady states. Applications of the stability analysis are given in Section 4,
and a concluding discussion is provided in Section 6.

2 The Model

2.1 The Clapp et al. model

The mathematical model of Clapp et al. described the dynamics of the inter-
action between cancer cells and the immune response in CML [6]. This model
is given as a system of five ODEs, describing the dynamics of four states for
the leukemic cells (quiescent and cycling stem cells, progenitor cells, and mature
cells), and the dynamics of the immune response.

Let y0 and y1 represent the concentration of quiescent and cycling leukemic
stem cells, respectively, y2 the concentration of progenitor cells, y3 the concen-
tration of mature leukemic cells, and z the concentration of active immune cells.



The model of [6] is written as the following system of ODEs:

y′0 = b1y1 − a0y0 −
µy0z

1 + εy2
3

,

y′1 = a0y0 − b1y1 + ry1

(
1− y1

K

)
− d1y1 −

µy1z

1 + εy2
3

,

y′2 =
a1

inh1
y1 − d2y2 −

µy2z

1 + εy2
3

,

y′3 =
a2

inh2
y2 − d3y3 −

µy3z

1 + εy2
3

,

z′ = s− dz +
αy3z

1 + εy2
3

.

(1)

The model equations (1) describe transitions between leukemic populations (at
rates b1, a0, a1 and a2). The different populations have associated death rates
(d1, d2, d3 and d). The cycling stem cells are assumed to grow logistically with
growth rate r and carrying capacity K. The last terms in the first four equations
in (1) represent the death of leukemic cells caused by an immune response. The
mass action term µyiz represents the killing of leukemic cells by the immune
system, where µ is the maximal rate (per immune cell) at which an immune cell
will engage and kill a leukemic cell.

The last equation in (1) represents the concentration of autologous immune
cells. The first term, s, is a constant source term for the immune cells, who die at
rate d. The mass action term αy3z represents the expansion (proliferation) of the
immune cell pool in response to its leukemia stimulus, which occurs with maximal
rate per leukemic cell. Only the contributions of the mature leukemic cells y3 to
immune stimulation are included since they are a much larger population than
the immature leukemic cells.

This model is based on assuming that immunosuppression acts in two ways.
First, mature leukemic cells inhibit the expansion of immune cells. In the last
equation, the immune cell expansion term αy3z is divided by 1 + εy2

3 , where the
constant ε determines the strength of the immunosuppression. Second, mature
leukemic cells are assumed to decrease the killing capacity µ of activated immune
cells, also by a factor of 1 + εy2

3 . By implementing immunosuppression in this
way, Clapp et al. encoded an autologous immune response that is effective only
with intermediate levels of leukemic cells. When the leukemic load is small, only
a small number of immune cells is stimulated to respond. On the other hand,
although large leukemic loads provide a stronger stimulus, the leukemic cells
are able of suppressing the efficacy of the immune system. Thus, the immune
response will be negligible when the leukemic load is either very small, at levels
undetectable by the immune system, or very large, at levels that overwhelm and
suppress the immune system. A strong immune response can occur only when
the leukemic load y3 is at an intermediate level, within a range [ymin, ymax], the
so-called immune window. The immune window is defined as the range of y3



for which the rate of immune stimulation exceeds the death rate. The param-
eters inh1 and inh2 represent the inhibition of leukemic cell amplification by
TKI treatment. TKI therapy may be used to drive the leukemic load into this
immune window, allowing the autologous immune system to assist the drug in
the elimination of the residual leukemic cells.

2.2 Introducing a simplified model

In [6] we provided no theoretical analysis of the model (1). Analysis of the model
in its full generality is beyond the reach of this paper. Instead, we introduce in
this subsection a reduced model which captures some of the essential features of
the original model.

Our main simplification is to reduce the original system to three ODEs,
keeping only two states for the leukemic cells. In addition, we assume that im-
munosuppression does not directly suppress the killing capacity µ of immune
cells. These assumptions make the theoretical analysis accessible.

Let y1 represent the concentration of cycling stem cells, y2 the concentration
of mature leukemic cells, and z the concentration of immune cells. We consider
the following system of ODEs:

y′1 = ry1

(
1− y1

K

)
− d1y1 − µy1z,

y′2 =
a1

kinh
y1 − d2y2 − µy2z,

z′ = s− f(y2)z.

(2)

We note that the system (2) is a simplified version of system (1). We also note
that y2 in the system (2) plays the role of y3 in the system (1). The parameter a1

is the product of the stem cell differentiation rate and the amplification factor
between stem and mature cells. The effect of the treatment is represented by
dividing a1 by an inhibition coefficient kinh. The parameters r and K are the
cycling stem cells growth rate and carrying capacity, respectively. The natural
death rates of each population are given by d, d1, d2, and µ is the probability
that an immune cell will interact with a leukemic cell and kill it.

The function f represents the net suppression effect of the leukemic cells on
the immune system. It mixes the natural death rate of immune cells d = f(0),
the competitive (immune response) and the immunosuppressive effect of cancer
cells. The suppression rate f can take negative values; in this case, immune
response outbalances immunosuppression.

In all what follows, we assume

f ∈ C2(R+),

and
∃Y > 0, f ′ < 0, on [0, Y ), f ′ > 0, on (Y,+∞) (3)



In other words, we assume f to be strictly decreasing for low amount of cancer
cells and strictly increasing for high amount of cancer cells (its monotonicity
changes exactly once). An immediate important consequence of this hypothesis
is the following result:

Proposition 1 (Zeros of f) Let f ∈ C2(R+) satisfy (3), then either

1. f has no zero on R+,
2. f has one zero ymin ∈ (0, Y ],
3. f has two zeros ymin ∈ (0, Y ) and ymax ∈ (Y,+∞)

The notations used in this proposition will be kept throughout the manuscript.
In order to eliminate the parameter d1 from (2), we make a change of variables

rnew ← rold − d1 and Knew ← (rnew/rold)Kold. We also set a1 ← a1/kinh. This
leads to the following system:

y′1 = ry1

(
1− y1

K

)
− µy1z,

y′2 = a1y1 − d2y2 − µy2z,

z′ = s− f(y2)z.

(4)

3 Steady states for the simplified model

We want to determine the positive steady states of the system (4). We start with
a simple characterization.

Proposition 2 The system (4) always has a unique, disease-free non-negative
steady state (0, 0, s

f(0) ). Other positive steady states are given by the solutions to

the equations

ȳ1 =
(r + d2)ȳ2

a1 + r
K ȳ2

, (5)

z̄ =
s

f(ȳ2)
. (6)

Here, ȳ2 is a positive zero of the function P given by

P (X) = f(X)(X −M) +
µs

d2

(
M
d2

r
+X

)
, (7)

with M = a1K
d2

, such that f(ȳ2) > 0. For any positive steady state, we have

0 < ȳ2 ≤M. (8)



Proof. The steady states of (4) are the solutions of the nonlinear system:
0 = ry1

(
1− y1

K

)
− µy1z,

0 = a1y1 − d2y2 − µy2z,

0 = s− f(y2)z.

(9)

The point (0, 0, s
f(0) ) is always a steady state. It corresponds to the disease-free

steady state, where the leukemic cell populations vanish and the immune system
is maintained at a basal, surveillance level s

f(0) .

The positivity of all coefficients provides bounds for ȳ1 and ȳ2:

ȳ1 ≤ K, ȳ2 ≤
a1K

d2
:= M.

Other steady states can be found by:
µz = r

(
1− y1

K

)
,

µy2z = a1y1 − d2y2,

f(y2)z = s,

(10)

which leads to:

ȳ1 =
(r + d2) ȳ2

a1 + r
K ȳ2

, (11)

and
z̄ =

s

f(y2)
. (12)

As we are looking for non-negative steady states, equation (12) implies that
f(ȳ2) must be non-negative. Since the steady state values ȳ1 and z̄ are uniquely
determined by ȳ2, and we reduce the problem to an equation on ȳ2 alone. For
ȳ1, we have

1− ȳ1

K
=

M − ȳ2

M + r
d2
ȳ2
.

Then, equations (10) and (12) imply:

µs

f(ȳ2)
= r

M − ȳ2

M + r
d2
ȳ2
,

which means that,

µs

r

(
M +

r

d2
ȳ2

)
= f(ȳ2)(M − ȳ2).

This leads to the desired equation for ȳ2:

f(ȳ2)(ȳ2 −M) +
µs

d2

(
M
d2

r
+ ȳ2

)
= 0.



The following lemma provides the location of the steady states with respect to
the zeros of f .

Lemma 1. Keeping the notations of Proposition 1, positive steady states of the
system satisfy ȳ2 ∈ (0, ymin], or ȳ2 ∈ [ymax,+∞).

Let (C1) denote the condition

(C1) : d >
µs

r
.

Proposition 3 Assume (C1) is satisfied, there exists a disease steady state for
(4) such that ȳ2 ∈ (0,M). Moreover, if f vanishes and (with notation of Propo-
sition 1) ymin < M , there is a unique steady state for (4) that satisfies

0 < ȳ2 < ymin < M.

All other steady states satisfy y2 ≥ ymax and y2 < M .

Proof. Assuming (C1), we have

P (0) = −
(
d− µs

r

)
M < 0,

P (M) =
µs

d2

(
d2

r
+ 1

)
M > 0.

Thus, P changes sign in the interval (0,M), which implies, from Proposi-
tion 2 that there is a steady state with ȳ2 ∈ (0,M). Moreover, f(ȳ2) must be
positive, so the solution for ȳ2 corresponds to a positive steady state, according
to Proposition 2.

Keeping the notations of proposition 1, assume ymin ∈ (0,M). Because
f(0) = d is positive, f(y2) stays positive for y2 < ymin. From the definition
of P in (7), we have P (ymin) > 0. Since P (0) < 0 and since ymin < M , P
admits at least one zero ȳ2 ∈ (0, ymin).

To prove uniqueness, we highlight the fact that P is monotonous on [0; ymin]:

P ′(X) = f(X) + f ′(X)(X −M) + θ

is positive on [0; ymin], since function f stays positive and strictly decreasing.

Moreover, at the unique zero ȳ2 < ymin, f(ȳ2) is still positive, and Proposi-
tion 2 ensures that ȳ2 corresponds to a positive steady state x̄ = (ȳ1, ȳ2, z̄).

When (C1) is satisfied, the smallest disease steady state (in terms of y2) is
denoted as the low disease steady state. When d = µs

r , P (0) = 0, and the low
disease steady state becomes disease-free. For d ≤ µs

r , the steady state becomes
negative, and does not exists anymore.



4 A stability analysis

In order to draw a complete picture of the dynamics of the system (4), it is
important to characterize the stability of the steady states. Because the system
is bounded (positive cell concentrations cannot grow unbounded), we expect
the system to converge either to a stable steady state or perhaps to a non-
steady-state bounded attractor, such as a limit cycle. We will show that under
biologically relevant assumptions, there always exists an asymptotically stable
steady state, and that none of the steady states can be destabilized by a Hopf
bifurcation. We are able to provide a complete local co-dimension 1 bifurcation
diagram. Although more complex bifurcation diagrams are possible, they are non
generic as they occur only for specific combinations of two or more parameters.

4.1 Stability of the disease-free steady state

In the disease-free steady state (0, 0, sd ), where d = f(0), there are no leukemic
cells, but the concentration of immune cells is positive, due to a basal cell pro-
duction level s.

Proposition 4 The disease-free steady state (0, 0, sd ) is asymptotically stable
if and only if r < µs

d . If r = µs
d , then this disease-free steady state is locally

attractive for positive solutions.

Proof. The linearized system around the disease-free steady state is

y′1 = ry1 −
µs

d
y1,

y′2 = a1y1 − d2y2 −
µs

d
y2,

z′ = −dz +
s

d
f ′(0)y2.

(13)

The disease-free Jacobian matrix is

J0 =


r − µs

d 0 0

a1 −d2 − µs
d 0

0 s
df
′(0) −d

 . (14)

The matrix (14) is triangular, and its eigenvalues lie on the diagonal, which are
all real coefficients. Two eigenvalues are always strictly negative. The third one,
given by r − µs

d , can be either negative or positive. Therefore, the disease-free
steady state is asymptotically stable if rd < µs, and it is unstable if rd > µs
(condition (C1)).

In addition, if rd = µs, it is easy to verify that for ε > 0 small enough,
Dε = [0; ε]×[0; a1d2 ε]×[z̄− r

Kµ ; +∞) is a stable set for the equations. For solutions



starting in Dε, since f is non-increasing on [0; a1d2 ε] and since z′ ≥ s− f(0)z, we
have

lim inf
+∞

z ≥ z̄.

Finally, since y′1 = −ry2
1/K + µy1(z̄ − z), we have

lim sup
+∞

y1 ≤
Kµ

r
lim sup

+∞
(z̄ − z) ≤ 0.

Hence, due to the non-negativity of y1, y1(+∞) = 0, and using the equations (4),
we conclude that (y1(t), y2(t), z(t))→ (0, 0, z̄).

From now on, we assume that the disease-free steady state is unstable, and
we want to know if there are other stable steady states.

4.2 Stability of the disease steady states

We denote by (ȳ1, ȳ2, z̄) a non-negative steady state of system (4), with ȳ1 and/or
ȳ2 positive. The Jacobian matrix is

J =


r − 2 r

K ȳ1 − µz̄ 0 −µȳ1

a1 −d2 − µz̄ −µȳ2

0 −f ′(ȳ2)z̄ −f(ȳ2)

 . (15)

Using (10) the matrix (15) becomes

J =


− r
K ȳ1 0 −µȳ1

a1 −a1
ȳ1
ȳ2

−µȳ2

0 −f ′(ȳ2)z̄ −f(ȳ2)

 . (16)

In order to determine the stability of the steady state, we compute the char-
acteristic polynomial χJ

χJ(X) =
(
X +

r

K
ȳ1

)(
(X + a1

ȳ1

ȳ2
)(X + f(ȳ2))− µȳ2z̄f

′(ȳ2)

)
− a1µȳ1z̄f

′(ȳ2)

= X3 +

(
r

K
ȳ1 + a1

ȳ1

ȳ2
+ f(ȳ2)

)
X2

+

(
r

K
ȳ1

(
a1
ȳ1

ȳ2
+ f(ȳ2)

)
+ a1

ȳ1

ȳ2
f(ȳ2)− µȳ2z̄f

′(ȳ2)

)
X

+

(
r

K
ȳ1

(
a1
ȳ1

ȳ2
f(ȳ2)− µȳ2z̄f

′(ȳ2)

)
− a1µȳ1z̄f

′(ȳ2)

)
,



and using the relation r
K ȳ1 + a1

ȳ1
ȳ2

= r + d2,

χJ(X) =X3 +X2 (r + d2 + f(ȳ2))

+

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
X

+

(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
. (17)

In what follows we will again keep notation of Proposition 1. In case 3 of
proposition 1, we will distinguish the low steady state (ȳ2 ≤ ymin) and the
others (ȳ2 ≥ ymax).

Stability of the low disease steady state We are interested in proving the
stability of the disease steady state given by Proposition 3 under condition (C1).
It is the only disease steady state (ȳ1, ȳ2, z̄) such that ȳ2 ≤ ymin.

Proposition 5 Assume the low disease steady state of (4) exists. It is asymp-
totically stable if and only if the disease-free steady state is unstable, i.e., if and
only if condition (C1) is satisfied. For rd = µs, there is a transcritical bifurcation
between the disease-free steady state and the low disease steady state.

Proof. We can assume that the disease-free steady state is unstable, which im-
plies that rd > µs and the existence of the low disease steady state. Either f
has no zero in (0,M), or f admits a smallest zero ymin ∈ (0,M). In either case,
at the low disease steady state, we have f ′(ȳ2) < 0. This means that the coeffi-
cients of χJ are all positive. We need to prove that χJ verifies the condition of
Lemma 4 (in Appendix).

aχbχ − cχ = (r + d2 + f(ȳ2))

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
−
(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
= (r + d2)

(
(r + d2)f(ȳ2) +

r

K
ȳ1a1

ȳ1

ȳ2

)
+f(ȳ2) ((r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2)) > 0.

Here we used the fact that f ′(ȳ2) < 0.
By Lemma 4, we know that the dominating root of χJ has a negative real

part, which means that the dominating eigenvalue of J has a negative real part.
Hence the low steady state is asymptotically stable.

For rd = µs, the low disease steady state crosses the disease-free steady state.
At this point, the fusion steady state is locally stable for positive solutions (as
seen in Subsection 4.1). For rd < µs, it becomes negative, and is necessarily
unstable, i.e., it is a transcritical bifurcation.



The asymptotic stability of the low disease steady state corresponds to a
state where the immune system is able to keep the leukemic cell population at
a low level, even without treatment. However, we demonstrate numerically that
the basin of attraction of low disease steady state is small, and solutions typically
converge to the large disease steady state.

Stability of the other steady states The existence of steady states other
than the disease-free and the low disease steady states depends on the exact
shape of the leukemia-induced immunosuppression function f . We assume that
we are in the case 3 of Proposition 1 and moreover ymax < M . We denote this
condition as (C2).

(C2): f has two zeros ymin and ymax such that 0 < ymin < ymax < M.

The assumption about the two zeros follows from the biological assumption
that there exists a range of leukemic cell concentrations for which the immune
system is able to mount an immune response (when f is negative, the growth
rate of z is strictly positive). If M ≤ ymax, the only possible disease steady state
is the low disease steady state, which is asymptotically stable under (C1). From
now on, we assume that M > ymax, opening the door for other disease steady
states to exist. All these disease steady states verify f ′(ȳ2) > 0.

We give a function that does not depend on s and µ, that gives the steady
states and their stability. We denote A(X) = f(X)(M −X), B(X) = X + d2

r M ,

θ = µs/d2 and θmax = supx∈(ymax,M){AB (x)}.
All disease steady states are entirely determined by their component ȳ2 de-

fined as a zero of the function P defined in (7). We express P as a parametric
linear combination of two functions A and B,

Pθ(X) = −A(X) + θB(X). (18)

Theorem 1. If the function
A

B
admits only one critical point, then the following

holds:

1. For all θ in [0, θmax) there exist two disease steady states x̄(1) and x̄(2) with

ymax ≤ ȳ
(1)
2 < ȳ

(2)
2 ≤ M . The disease steady state x̄(1) is unstable and x̄(2)

is asymptotically stable.
2. For all θ > θmax there is no steady state with ȳ2 in (ymax,M).
3. There is an saddle-node bifurcation for θ = θmax, the corresponding double

steady states is generically unstable.

Proof. The proof is constructed as follows:

– We give a necessary and sufficient condition for stability, that is based on
condition (C2) (Lemma 1).

– We connect this condition to the functions A and B, which are independent
of the parameter θ (Lemma 2).



– We describe the bifurcation diagram depending on θ.

The parameter θ will be used as the bifurcation parameter. It has no biolog-
ical meaning, but it allows the polynomial B to be unitary, and thus simplifies
the calculations. Otherwise it could be feasible to use parameters µ or s that
represent the immune system aggressiveness and the immune cells source, as we
do in the Section 5. The parameter θ may vary in [0; rd/d2] to respect condi-
tion (C1). The limit value θ = 0 is allowed to be reached when s = 0, but not
when µ = 0. Indeed, in this last case the link between steady state and roots of
polynomial P does not hold anymore.

The following lemma highlights the link between the stability of a steady
state x̄ and the sign of the jacobian matrix at x̄, under (C2). Its proof is given
in the Appendix.

Lemma 1 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4) such that f ′(ȳ2) > 0. The
steady state x̄ is asymptotically stable if and only if, det(J(x̄)) < 0.

Lemma 1 affirms that the key to stability is the Jacobian matrix determinant.
The following two lemmas highlight the link between this determinant and the
polynomials A and B. Their proofs are given in the Appendix.

Lemma 2 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4). The determinant of the
corresponding Jacobian matrix is:

det(J(x̄)) = − d2(r + d2)ȳ2(
M d2

r + ȳ2

)2 (A′B −AB′)(ȳ2).

Lemma 3 Let x ≥ 0. The following conditions are equivalent:

1. (A′B −AB′)(x) = 0

2. x is a double root of Pθ, where θ := A(x)
B(x) .

We first note that the unique zero of f ′ must lie between the zeros ymin
and ymax of f . This implies that f is decreasing in [0; ymin] and increasing in
[ymax; +∞). Therefore, f ′ stays positive on [ymax;M ], steady states x̄(1) and
x̄(2) verify the condition (C2).

Hence, Lemma 1 ensures that the stability of the steady state x̄ = (ȳ1, ȳ2, z̄)
is given by the sign of det(J(x̄)), which is equal to the sign of −(A′B−AB′)(ȳ2)
by Lemma 2.

The steady states are zeros of Pθ, so they satisfy A(x)
B(x) = θ. Since A and B do

not depend on θ, there exists a maximal value for θ such that this equation admits
a solution in (ymax;M), θmax = supx∈(ymax,M){AB (x)}. This bound stands for a

real x0 ∈ (ymax;M) because A
B (ymax) = A

B (M) = 0. The function A′B − AB′
vanishes in x0 because it is an extremum for A

B .Then x0 is a double zero of
Pθmax

.



We set θ < θmax. A double zero x1 for Pθ satisfies A
B (x1) = θ, and (A′ +

θB′)(x1) = 0. Then (A′B −AB′)(x1) = 0, so x1 is a critical point of A
B . By our

hypothesis A
B admits a unique critical point, so x1 = x0. This is a contradiction

since θ < θmax. This means that Pθ admits only simple zeros in (ymax,M). We
have

Pθ(x0) = −A(x0) + θB(x0) = B(x0)

(
θ − A

B
(x0)

)
= B(x0)(θ − θmax) < 0.

Since Pθ(ymax) > 0 and Pθ(M) > 0, Pθ admits exactly two zero in (ymax,M),
distributed on both sides of x0. A third zeros would induce to a second criti-
cal point for A

B , which is forbidden. The function A
B changes its direction only

at its critical point x0. It is easy to verify that (A′B − AB′)(M) < 0 and
(A′B−AB′)(ymax) > 0, hence A

B is strictly increasing on [ymax;x0] and strictly
decreasing on [x0;M ]. We can now explore the three cases of the theorem:

1. If θ < θmax, there exist two distinct steady states x̄(1) and x̄(2) such that

ȳ
(1)
2 < ȳ

(2)
2 . In addition x̄(1) is unstable and x̄(2) is asymptotically stable.

2. If θ > θmax, Pθ cannot vanish on [ymax,M ], so only the disease-free and
maybe the low disease steady state remains. We have seen in Proposition
5 that, as soon as the disease-free steady state is unstable, the low one is
asymptotically stable.

3. If θ = θmax, then there exists a unique steady state in [ymax,M ], resulting
from the fusion of two steady states with different stabilities: it is a saddle-
node bifurcation. Let x = (y1, y2, z) be a perturbation of the steady state x̄
such that y2 stays in [ymax,M ]. We have

z′ = s− f(y2)z = s− d2

µ

A

B
(y2) > s− d2

µ

A

B
(ȳ2) = 0,

because ȳ2 is the maximum of A
B on [ymax,M ]. Hence z is always increasing

near the steady state which, therefore, cannot be stable.

The next theorem is a stronger form of Theorem 1.

Theorem 2. Denote by θ1 < · · · < θn = θmax the extrema of A
B . Then

1. For all θ in [0; θmax)\{θ1, . . . , θn}, there exist an positive even number of
steady states with ȳ2 in (ymax;M). Their stability is alternated, the largest
in term of value of ȳ2 is asymptotically stable.

2. For all θ > θmax there is no steady state with ȳ2 in (ymax;M).
3. Generically, there is a saddle-node bifurcation for each θ ∈ {θ1, . . . , θn}.

Corresponding double steady states are generically unstable.

Proof. Using arguments identical to those used in proving Theorem 1, we con-
clude that x0 is a double zero of Pθ. We set θ ∈ [0; θmax)\{θ1, . . . , θn}. The
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Fig. 1: The left graph represents A
B as a function of y2 in the interval (0,M). The

right graph represents ȳ2 (corresponding to a steady state x̄) as a function of
θ. It is the bifurcation diagram, given by transposing the left graph. Stability is
given by the sign of

(
A
B

)′
. Both graphs correspond to the case where f is given

in Section 5.1.

function Pθ cannot have any double root since θ does not correspond to a criti-
cal point of A

B . At x0

Pθ(x0) = −A(x0) + θB(x0) = B(x0)

(
θ − A

B
(x0)

)
= B(x0)(θ − θmax) < 0.

Since Pθ(ymax) > 0 and Pθ(M) > 0, Pθ admits a positive even number of zeros in
(ymax;M). The function A

B stays monotonic between two consecutive extrema.
In addition, the sign of its derivative alternates between extrema. Calculations
give A

B (M) = 0 and (A′B−AB′)(M) < 0, so A
B is locally positive and decreasing

on the left side of M .
We fix θ < θmax, and denote xθ = max{x ≥ 0/AB (x) = θ}, which exists by

continuity of A
B . Since A

B (xθ) = θ ≥ 0 = A
B (M), A

B must be locally decreasing
near xθ. We can now explore the three cases of the theorem:

1. If θ ∈ [0, θmax)\{θ1, . . . , θn}, the steady states set is

Sθ =

{
x̄ = (ȳ1, ȳ2, z̄)

∣∣∣∣ A

B
(ȳ2) = θ & ȳ1 and z̄ verify 5 and 6

}
.

Since A
B is decreasing in max{ȳ2 / x̄ ∈ Sθ), that steady state is asymptotically

stable by Lemmas 2 and 1. The stability of the other steady states alternates
in terms of ȳ2 value. Since #Sθ is even, the lower steady state is unstable.

2. If θ > θmax, Pθ cannot vanish on [ymax,M ], so only the disease-free and
maybe the low disease steady state remains. We have seen in Proposition 5
that as soon as the disease-free steady state is unstable, the low one is asymp-
totically stable.



3. If θ = θmax then there exists a unique steady state, resulting from the fusion
of two steady states with different stabilities: it is a saddle-node bifurcation.

4. If θ ∈ {θ1, . . . , θn}, we let x = (y1, y2, z) be a perturbation of the steady
state x̄ such that y2 stays in [ymax,M ]. Since z′ = s−f(y2)z = s− d2

µ
A
B (y2),

z′ > s− d2
µ
A
B (y2) if θ is a maximum of AB on [ymax,M ], and z′ < s− d2

µ
A
B (y2)

if θ is a minimum of A
B on [ymax,M ]. In both cases, z is monotonic next to

the steady state which, therefore, cannot be stable.

Corollary 1 Let f be a rational fraction of the form f = N
D , where D is a

positive polynomial with degree two or less, and N is a quadratic polynomial that
admits two roots ymin and ymax in [0,M ], such that f ′ vanishes only once in
[0,M ]. Then there exists a value θmax such that:

1. For any θ in [0, θmax) there exist two disease steady states with ȳ2 in (ymax,M).
The lower one is unstable and the higher one is asymptotically stable.

2. For any θ in (θmax,+∞) there is no steady state with ȳ2 in (ymax,M).
3. There is an unstable saddle-node bifurcation at θ = θmax.

Proof. The function f admits two zeros in (0,M), which we denote as ymin and

ymax. We write f as f(x) = (x−ymin)(x−ymax)
D(x) , and adapt Theorem 2: The first

steady state is (0, 0, sd ). It is the disease-free steady state. Other steady states
are given by:

ȳ1 =
(r + d2)ȳ2

a1 + r
K ȳ2

, and z̄ =
sD(ȳ2)

(ȳ2 − ymin)(ȳ2 − ymax)
,

where ȳ2 is a positive zero of the cubic polynomial:

Pθ(X) = (X − ymin)(X − ymax)(X −M) + θ

(
M
d2

r
+X

)
D(X),

such that ȳ2 /∈ [ymin, ymax].
We keep the previous notations: A(X) = (X−ymin)(X−ymax)(X−M) and

B(X) = (M d2
r + X)D(X). To prove the corollary, we only have to verify that

A
B has only one critical point in (ymax,M).

We assume that A
B admits a second critical point x1 in (ymax,M), and denote

θ1 = A
B (x1). Then x1 is a double root for Pθ1 . For all θ lower than θmax, Pθ

admits one root in [0, ymin] and two distinct roots in [ymax,M ]. Since it is a
cubic polynomial, there are no more roots. Hence Pθ cannot have any double
root in [ymax,M ].

This means that θ1 = θmax. Since Pθmax
is a cubic polynomial that admits

x0 and x1 as double roots, necessarily x1 = x0. We showed that A
B admits one

and only one critical point. Applying Theorem 1 concludes the proof.

We have seen in this section that the bifurcation diagram is uniquely deter-
mined by transposing the graph of the function A

B . This means that no other



branch could co-exist with the ones we highlight. Another consequence is that,
at ȳ2 fixed, the stability is known regardless of the value of parameters s and
µ. We conducted the whole analysis by preferring the variable y2 over y1 and z
because it is the only practical biologically measurable quantity. Our results are
especially convenient since they only depend on this quantity.

5 Application of the stability analysis

In this section we will apply the previous stability analysis with two different
functions modeling the immune system.

5.1 The original model

As in [6], we set f(x) = d− α x
1+εx2 . Its profile is represented in Figure 2.
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Fig. 2: Functions f and P profiles. The part where P is positive is represented
in red.

In this case, the derivative f ′(x) = −α 1−εx2

(1+εx2)2 , vanishes only for x = ε−1/2.

We assume that α2 ≥ 4εd2, and denote:

ymin =
α−
√
α2 − 4εd2

2εd
, ymax =

α+
√
α2 − 4εd2

2εd
.

As soon as M > ymax, we can apply Corollary 1. The function Pθ is then the
third-order polynomial,

Pθ = (X − ymin)(X − ymax)(X −M) +
θ

εd

(
X +M

d2

r

)
(1 + εX2).

With this particular example, we can give an upper bound for A
B on R+:

A

B
(X ≥ 0) = d

(X2 − (ymin + ymax)X + 1
ε )(M −X)

(X + d2
r M)(X2 + 1

ε )
≤ d M −X

X + d2
r M

≤ rd

d2
.



Hence, θmax is bounded by rd
d2

. This value corresponds to the transcritical bifur-
cation between the low disease and the disease-free steady states. This means
that the saddle-node bifurcation occurs for lower values of θ than the transcritical
bifurcation.

The bifurcation diagram and stability chart given by Corollary 1 are repro-
duced in Figures 3 and 4.

log
10

(s)
2.5 3 3.5

lo
g

10
(y

2
) 

m
at

ur
e 

ce
lls

1

2

3

4

5

6

7

8

log
10

(s)
2.5 3 3.5

lo
g

10
(z

) 
im

m
un

e 
ce

lls
4.2

4.4

4.6

4.8

5

5.2

5.4

Fig. 3: Bifurcation diagram depending on parameter s variation (immune cells
source). Solid red curves are for asymptotically stable steady states with real
dominant eigenvalue, dashed red curves are for asymptotically stable steady
states with complex dominant eigenvalue, and dotted curves are for unstable
steady states. On the left graph the disease-free steady state corresponds to
ȳ2 = 0, so it does not appear with the log-scale. For s big enough, the two
highest steady states disappear, then low and trivial steady states cross each
other.

We applied the simplified model (4) to the patient data from [6] in order to
compare the relevance of two models in Figure 5.

For many patients, the fits in Figure 5 are comparable between the complete
model (1) and the simplified model (4). Intriguingly, for some patients (such as
Patients 1, 3 and 5), the fits seem more satisfactory with the simplified model.
Typically when the initial decay is slow, it looks as if the oscillations are better
controlled by the simplified model (4). It might be due to the fact that in order
to be consistent with [6], we decided to assume a priori that ymin and ymax exist,
which then constrains the parameters. Compared with the full model, (1), the
model (4) cannot capture rapid oscillations and sharp decays.

5.2 A mechanistic model

We apply here our procedure to a second example, a mechanistic model for de-
scribing the dynamics of CML [3]. In this model, there are no terms represent-
ing immunosuppression of the immune-leukemia interactions. Instead, mature
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Table 1: Universal parameters values used in the reduced model.

Parameter Value

r 0.007775
K 41.667
a1 1.350e5
d2 0.0375
s z(0) ∗ d

y1(0) K
y2(0) 1.5e8
z(0) 120

Table 2: Estimated parameters with the original model (1)

Patient inh1 inh2 d µ ymin ymax

1 4.612 92.3215 0.031 9.964e-7 4.994e4 5.598e5
2 1.456 545.150 0.099 1.504e-8 3.765e4 2.759e5
3 591.591 14.568 0.040 2.371e-7 3.132e3 2.228e4
4 486.315 226.000 0.075 2.879e-8 3.536e2 1.684e3
5 50.988 79.645 0.005 1.271e-6 1.182e3 5.482e4
6 30.208 359.979 0.371 2.263e-7 4.959e3 1.353e4
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Fig. 5: Fits of the original (dashed line) and reduced (solid line) models to six
patients treated with first-line Imatinib. The base-10 log of the BCR-ABL ratio
is plotted against time, in months. Dots represent patient data. Dotted lines
approximate the minimum leukemic level that is detectable by RT-PCR. Dots
along this line represent zero measurements, meaning CML cells were not de-
tected. The parameters used for the fits to the original and simplified model are
respectively in Tables 2 and 3, universal parameters are in Table 1.

Table 3: Estimated parameters with the simplified model (4)

Patient kinh d µ ymin ymax

1 2.521e2 0.051 3.647e-6 6.610e4 3.624e5
2 1.133e3 0.026 2.405e-8 3.831e4 3.055e5
3 4.205e2 0.054 4.224e-7 1.617e4 3.133e5
4 5.691e3 0.181 8.499e-6 1.206e3 1.090e4
5 4.594e3 0.038 5.723e-9 1.841e3 3.401e4
6 2.853e3 0.058 1.358e-9 7.143e3 7.576e4



leukemic cells are assumed to have two contrasting effects on immune cells: (i)
a Michaelis-Menten term, αy2z/(1 + εy2), that represents the stimulation of im-
mune cells by leukemic cells, with maximum rate αε−1 and Michaelis constant
ε−1; and (ii) a mass action term, νy2z, representing the killing of immune cells
by leukemic cells, at a rate ν.

For the immune dynamics, f is given by f(x) = d + νx − α x
1+εx . Its profile

is represented in Figure 6.
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In this case, the derivative f ′(x) = ν − α(1 + εx)−2, vanishes only for x =
1
ε (
√

α
ν − 1). We assume that (α− εd− ν)2 − 4ενd > 0, and denote:

ymin =
(α− εd− ν)−

√
(α− εd− ν)2 − 4ενd

2εν
,

ymax =
(α− εd− ν) +

√
(α− εd− ν)2 − 4ενd

2εν
.

As soon as M > ymax, we can apply Corollary 1. The bifurcation diagram
and stability chart given by Corollary 1 are reproduced in Figures 7 and 8.

6 Discussion and conclusion

In this manuscript we presented a simplified, analytically tractable version of a
model for tumor-immune interaction recently proposed [6]. This simplification
allows us to conduct a complete analytic study of the model. We showed the ex-
istence of a disease-free steady state and established conditions for the existence
of disease steady states. We characterized the stability of each of these steady
states, and identified the transitions in the number of steady states and in their
stability.
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. We
still have the possibility of having two stable steady states (one with y2 < ymin
one with y2 > ymax). One of the main difference is that a stable disease free
steady state may coexist with a stable disease steady state. In the first model,
this is mainly due to the fact that the immunosuppression is not saturated and
high levels of y2 leads to very small values of z, below s

f(0) .



It was anticipated that the simplified model would possess a disease-free
steady state. This state corresponds to the asymptotic solution when treatment
is effective. Whether the leukemic cells completely vanishes under treatment is
a biological open question [2, 19]. The model we analyze leads to a low disease
steady state (with leukemic load below the immune window) that corresponds to
the asymptotic solution when treatment is not sufficiently efficient to eradicate
the disease, but is sufficient to allow the immune system to keep it under control
at a low level.

We obtained complete generic one-parameter bifurcation diagrams (Figures 3
and 7), and showed that a low-disease steady state exists for a wide range of
parameters. When such a state exists, it is stable. The low-disease steady state
becomes non-positive and disappear from the biologically relevant phase-space
at a transcritical bifurcation with an unstable disease-free steady state, at which
they exchange their stability. Large disease steady state can coexist; they are
generically created and destroyed through saddle-node bifurcations. No steady
state can ever be destabilized through a Hopf bifurcation. Although we have not
shown that no limit cycles can occur, we could not find any non-local bifurcations
leading to limit cycles, such homoclinic bifurcations, or saddle-node bifurcation
on an invariant cycle (SNIC). The low-disease steady state is the only steady
state that can be a focus, and it is always a stable focus.

Two qualitatively different bifurcation diagrams were identified: (i) a stable
disease-free steady state and existence of a large disease steady state and mu-
tually exclusive; and (ii) co-existence of a stable disease-free steady state and a
large disease steady state possible.

The asymptotic stability we highlighted is a local stability of steady states,
which does not guarantee the convergence of any solution to the steady state.
We have not yet derived any theoretical result on the basin of attraction of
asymptotically stable steady states. Numerically, the low steady state basin of
attraction seems much smaller than the basin of attraction of the high steady
state. That could be interpreted by the scarcity of solutions converging to the low
disease steady state. For example, this model allows a state with low amount of
leukemic cells and high amount of immune cells to converge to the highest disease
steady state with high amount of leukemic cells and low amount of immune cells.

The stability results obtained in this paper could help in interpreting the
clinical state of remission after treatment cessation. Indeed, remission could cor-
respond to attraction by the low disease steady state, while relapse could corre-
spond to attraction by a higher stable disease steady state. It is useful to see the
weight of each parameter in the dynamics of solutions. For example, Figures 4
and 8 highlight the relevance controlling the autologous immune system efficacy
in order to constrain solutions to converge to a low disease steady state or to a
disease-free steady state.

Fitting either the original or the simplified model to individual patients yields
excellent results in most cases (Figure 5). The simplified model has a tendency
to predict oscillatory levels of BCR/ABL ratio, due to the focus nature of the
low disease steady state. Whether the fluctuations in clinical BCR/ABL ratio



correspond to deterministic oscillations or to stochastic fluctuations is not clear,
but our steady state analysis suggests that oscillations are a signature of the
immune control of the CML.

The bifurcation diagrams suggest three possible scenarios for the outcome
of a treatment cessation. In any of these scenarios, relapse is possible. First, if
there is co-existence of a stable large disease steady state and a stable low steady
state, no cure is possible and the success of treatment cessation is determined by
how attractive the low-disease steady state is. Second, if there is co-existence of
a large disease steady state and a stable disease-free steady state, it is possible
that treatment cessation (or continuation) could actually lead to eradication of
the tumor. Third, no large steady state exists, and the low-disease steady state
is the clinical disease state. In this case, the disease-free steady state is always
unstable, and treatment cessation is bound to fail.

Our stability analysis is adaptable to a large class of functions modeling the
immune system degradation. The double-monotony of this function is a biolog-
ically acceptable condition, corresponding to immune activation and immuno-
suppression.

Acknowledgements The work of GC was supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE1322106. The
work of DL was supported in part by the John Simon Guggenheim Memorial
Foundation. The work was supported by the Inria Partnerships Program grant
“Modelling Leukemia”.

References

1. Burchert, A. Inselmann, S. Saussele, S. Dietz, C.T. Müller, M.C. Eigendorff, E.
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APPENDIX

The following equations are satisfied by positive steady states. They will be used
in technical lemmas.

z̄ =
s

f(ȳ2)
,

z̄ =
d2

µ

M − ȳ2

M d2
r + ȳ2

,

r

K
ȳ1 =

(r + d2)ȳ2

M d2
r + ȳ2

,

a1
ȳ1

ȳ2
= M

d2

r

(r + d2)

M d2
r + ȳ2

.

Lemma 1 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4) such that f ′(ȳ2) > 0.
The steady state x̄ is asymptotically stable if and only if, det(J(x̄)) < 0.

Proof. The determinant of J(x̄) is the product of all its eigenvalues, so it is equal
to −χJ(0). We note that the polynomial χJ is convex on R+, and that

χ′J(0)− χJ(0)

r + d2
=

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
− 1

r + d2

(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
= (r + d2)f(ȳ2) +

r

K
ȳ1a1

ȳ1

ȳ2
− 1

r + d2

r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)

=
r

K
ȳ1a1

ȳ1

ȳ2
+
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(
(r + d2)2 − r

K
ȳ1a1

ȳ1
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=
r

K
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ȳ1
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r

K
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ȳ1

ȳ2

)2

− r
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ȳ1
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=
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+
f(ȳ2)

r + d2

(( r
K
ȳ1

)2
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(
a1
ȳ1
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)2

+
r

K
ȳ1a1

ȳ1

ȳ2

)
> 0.

Here we used f(ȳ2) > 0 given by Proposition 2. We consider two cases:



Case 1: If χJ(0) < 0, then there exists a root in R∗+. In this case the steady state
x̄ is unstable.

Case 2: If χJ(0) > 0, then χ′J(0) > 0 and, by convexity, χJ stays non-negative
on R∗+. If χJ admits three real roots, they are all negative, and the steady state
is asymptotically stable. Otherwise, there exists two conjugate complex roots. In
this case, we denote by x the negative real root, and by z one of the two complex
roots. First, note that since f ′(ȳ2) > 0, we have:

χJ(− r

K
ȳ1) = −a1ȳ1µz̄f

′(ȳ2) < 0.

As χJ has only one sign change on R, at x, we deduce that − r
K ȳ1 < x. Yet,

2 Re(z) + x = − r

K
ȳ1 − a1

ȳ1

ȳ2
− s

f(ȳ2)
< x− a1

ȳ1

ȳ2
− s

f(ȳ2)
.

Hence

Re(z) < −1

2

(
a1
ȳ1

ȳ2
+

s

f(ȳ2)

)
< 0.

We showed that complex roots have negative real parts in the case where
f ′(ȳ2) is positive. Therefore, the steady state is asymptotically stable.

Lemma 2 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4). The determinant
of the corresponding Jacobian matrix det(J(x̄)) has a sign opposite to that of
A′B −AB′.

Proof. We compute

A′B −AB′ = (f ′(X)(M −X)− f(X))

(
X +

d2

r
M

)
− f(X)(M −X)

= f ′(X)(M −X)

(
X +

d2

r
M

)
− f(X)M

(
1 +

d2

r

)
.

Let x̄ = (ȳ1, ȳ2, z̄) be a steady state for the system (4). The determinant of
the Jacobian matrix at x̄ is

det(J(x̄)) =
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

=
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M d2
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M
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M d2
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f(ȳ2)− (M − ȳ2)
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= − d2(r + d2)ȳ2(
M d2
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)2 (A′B −AB′)(ȳ2).

Hence sign(det(J(x̄))) = −sign((A′B −AB′)(ȳ2)).



Lemma 3 Let x ≥ 0. The following conditions are equivalent:

1. (A′B −AB′)(x) = 0,

2. x is a double root of Pθ, where θ := A(x)
B(x) .

Proof. Let x be a positive zero of A′B −AB′. We fix θ := A(x)
B(x) . Then,

Pθ(x) = −A(x) + θB(x) = 0,

P ′θ(x) = −A′(x) + θB′(x) = −A
′B −AB′

B
(x) = 0.

Hence x is a double zero of Pθ.
Reciprocally, let (θ, x) be such that x is a double zero of Pθ. Since Pθ(x) = 0,

θ = A
B (x). Also, since P ′θ(x) = 0, (A′B − AB′)(x) = 0, which means that x is a

zero of A′B −AB′.

Lemma 4 Consider the polynomial P = X3 +aX2 +bX+c, where a, b, c ∈ R∗+.
If ab > c, then all roots of P have negative real part.

Proof. First, positivity of all coefficients ensures that the real roots of P cannot
be positive. Second, as P (0) = c > 0, P necessarily admits a real, negative root.
It remains to characterize the two other roots. If real and negative, then the
dominating root is negative and the lemma is proven. Therefore we may assume
that the two remaining roots are complex, and we need to determine the sign of
their real part.

Let λ be the first negative root of P . We can factor

P =
(
X − λ

)(
X2 + (a+ λ)X + (b+ aλ+ λ2)

)
.

By our assumption, P admits a pair of complex roots. We want to compare(
X2 + (a+ λ)X + (b+ aλ+ λ2)

)
and (X − z)(X − z̄), where z ∈ C. Separating

the real and imaginary parts leads to

a+ λ = −2 Re(z),

b+ aλ+ λ2 = (Re(z))2 + (Im(z))2.

In order to find the sign of Re(z), we need to compare a and λ. We have P (−a) =
−ab + c. Since we assume that, ab > c, we obtain P (−a) < 0. As P has only
one real root λ, we obtain −a < λ. This leads to Re(z) < 0, and the dominating
root of P has its real part negative.
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