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BRANCHED HOLOMORPHIC CARTAN GEOMETRIES AND
CALABI-YAU MANIFOLDS

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. We introduce the concept of a branched holomorphic Cartan geometry. It gen-
eralizes to higher dimension the definition of branched (flat) complex projective structure on
a Riemann surface introduced by Mandelbaum. This new framework is much more flexible
than that of the usual holomorphic Cartan geometries. We show that all compact complex
projective manifolds admit branched flat holomorphic projective structure. We also give
an example of a non-flat branched holomorphic normal projective structure on a compact
complex surface. It is known that no compact complex surface admits such a structure with
empty branching locus. We prove that non-projective compact simply connected Kähler
Calabi-Yau manifolds do not admit branched holomorphic projective structures. The key
ingredient of its proof is the following result of independent interest: If E is a holomorphic
vector bundle over a compact simply connected Kähler Calabi-Yau manifold, and E admits
a holomorphic connection, then E is a trivial holomorphic vector bundle equipped with the
trivial connection.
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1. Introduction

The uniformization theorem for Riemann surfaces asserts that any Riemann surface is
isomorphic either to the projective line CP 1, or to a quotient of C or of the unit disk in
C by a discrete group of projective transformations (lying in the Möbius group PSL(2,C)).
In particular, any Riemann surface X admits a holomorphic atlas with coordinates in CP 1

and transition maps in PSL(2,C). This defines a (flat) complex projective structure on X.
Complex projective structures on Riemann surfaces were introduced on the study of the
second order ordinary differential equations in the complex domain and had a very major
role in understanding the framework of uniformization theorem [Gu, StG].

The complex projective line acted on by the Möbius group is a geometry in the sense of
Klein’s Erlangen program in which he proposed to study Euclidean, affine and projective
geometries in the unifying frame of the homogeneous model spaces G/H, where G is a (finite
dimensional) Lie group and H a closed subgroup in G.

Following Ehresmann [Eh], a manifold X is locally modelled on a homogeneous space
G/H, if X admits an atlas with charts in G/H and transition maps given by elements in
G using its left-translation action on G/H. Any G-invariant geometric feature of G/H will
have an intrinsic meaning on X.

Elie Cartan generalized Klein’s homogeneous model spaces to Cartan geometries (or Car-
tan connections) (see definition in Section 2.1). We recall that these are geometrical struc-
tures infinitesimally modelled on homogeneous spacesG/H. The Cartan geometry associated
to the affine (respectively, projective) geometry is classically called an affine (respectively,
projective) connection. A Cartan geometry on a manifold X is equipped with a curvature
tensor (see definition in Section 2.1) which vanishes exactly when X is locally modelled on
G/H in the sense of Ehresmann [Eh]. In such a situation the Cartan geometry is called flat.

In this article we study holomorphic Cartan geometries on compact complex manifolds of
complex dimension at least two. Contrary to the situation of Riemann surfaces, holomorphic
Cartan geometries in higher dimension are not always flat. Moreover, for a compact complex
manifold, to admit a holomorphic Cartan geometry is a very stringent condition: most of
the compact complex manifolds do not admit any holomorphic Cartan geometry.

In [KO], Kobayashi and Ochiai proved that compact complex surfaces admitting a holo-
morphic projective connection are biholomorphic either to the complex projective plane
CP 2, or to a quotient of an open set in CP 2 by a discrete group of projective transforma-
tions acting properly and discontinuously on it. In particular, they also admit a flat complex
projective structure (modelled on CP 2). In this list of compact complex surfaces admitting
(flat) complex projective structures, the only projective ones are CP 2, abelian varieties (and
their unramified finite quotients) and quotients of the ball (complex hyperbolic plane).

Another inspiring source of this paper is the work of Mandelbaum [Ma1, Ma2] who intro-
duced and studied branched affine and projective structures on Riemann surfaces. According
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to his definition, branched projective structures on Riemann surfaces are given by holomor-
phic atlas where local charts are finite branched coverings on open sets in CP 1 and transition
maps lie in PSL(2,C)). Such structures arise naturally in the study of conical hyperbolic
structures, and also when one consider ramified coverings.

Here we define a more general notion of branched holomorphic Cartan geometry on a
complex manifold X (see Definition 2.1), which is valid also in higher dimension and for
non-flat geometries. We show that the notion of curvature continues to hold, and in fact the
curvature vanishes exactly when there is a holomorphic atlas where local charts are branched
holomorphic maps to the model G/H. Two local charts agree up to the action on G/H of an
element in G. The geometric description of the flat case follows the usual one: there exists
a branched holomorphic developing map from the universal cover of X to the model G/H
which is a local biholomorphism away from a divisor. This developing map is equivariant
with respect to the monodromy homomorphism (which is a group homomorphism from the
fundamental group of X into G, unique up to post-composition by inner automorphisms of
G).

This new notion of branched Cartan geometry is much more flexible than the usual one.
For example, all compact complex projective manifolds admit branched flat holomorphic
projective structures (see Proposition 3.1).

We also prove that there exists branched normal holomorphic projective connections (see
definition in Section 2.2) on compact surfaces which are not flat (see Proposition 3.4). This
is not the case for holomorphic projective connections with empty branching set, meaning
any normal projective structure on a compact complex surface is automatically flat [Du3].

The following is proved in Theorem 6.2: if E is a holomorphic vector bundle over a compact
simply connected Kähler Calabi-Yau manifold, and E admits a holomorphic connection, then
E is a trivial holomorphic vector bundle equipped with the trivial connection.

This result, which is of independent interest, is related to the classification of branched
holomorphic Cartan geometries on Calabi-Yau manifolds. It yields Corollary 6.3 asserting
that non-projective compact simply connected Kähler Calabi-Yau manifolds do not admit
branched holomorphic projective structures.

The structure of this paper is as follows. Section 2 introduces the main notations and
definitions. Section 3 gives interesting examples of branched holomorphic Cartan geometries
and contains the proofs of Proposition 3.1 and Proposition 3.4. In Section 4 we give a
criterion (Theorem 4.1) for the existence of branched holomorphic Cartan geometries. In
Section 5 we study holomorphic projective structures on compact parallelizable manifolds.
Section 6 deals with branched holomorphic Cartan geometries on Calabi-Yau manifolds and
it contains the proofs of Theorem 6.2 and Corollary 6.3.

2. Holomorphic Cartan geometry and branched holomorphic Cartan

geometry

2.1. Holomorphic Cartan geometry. We first recall the definition of a holomorphic Car-
tan geometry.
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Let G be a connected complex Lie group and H ⊂ G a connected complex Lie subgroup.
The Lie algebras of H and G will be denoted by h and g respectively.

Let X be a connected complex manifold and

f : EH −→ X (2.1)

a holomorphic principal H–bundle on X. Let

EG := EH ×H G
fG−→ X (2.2)

be the holomorphic principal G–bundle on X obtained by extending the structure group
of EH using the inclusion of H in G. So EG is the quotient of EH × G where two points
(c1, g1), (c2, g2) ∈ EH × G are identified if there is an element h ∈ H such that c2 = c1h
and g2 = h−1g1. The projection fG in (2.2) is induced by the map EH × G −→ X,
(c, g) 7−→ f(c), where f is the projection in (2.1). The action of G on EG is induced
by the action of G on EH × G given by the right–translation action of G on itself. Let
ad(EH) = EH ×H h and ad(EG) = EG ×G g be the adjoint vector bundles for EH and EG
respectively. We have a short exact sequence of holomorphic vector bundles on X

0 −→ ad(EH)
ι1−→ ad(EG) −→ ad(EG)/ad(EH) −→ 0 . (2.3)

The holomorphic tangent bundle of a complex manifold Y will be denoted by TY . Let

At(EH) = (TEH)/H −→ X and At(EG) = (TEG)/G −→ X

be the Atiyah bundles for EH and EG respectively; see [At]. Let

0 −→ ad(EH)
ι2−→ At(EH)

qH−→ TX −→ 0 (2.4)

and

0 −→ ad(EG) −→ At(EG)
qG−→ TX −→ 0 (2.5)

be the Atiyah exact sequences for EH and EG respectively; see [At]. The projection qH
(respectively, qG) is induced by the differential of the map f (respectively, fG). A holomorphic
connection on a holomorphic principal bundle is a holomorphic splitting of the Atiyah exact
sequence associated to the principal bundle [At].

A holomorphic Cartan geometry on X of type G/H is a pair (EH , θ), where EH is a
holomorphic principal H–bundle on X and

θ : At(EH) −→ ad(EG)

is a holomorphic isomorphism of vector bundles such that θ ◦ ι2 = ι1 (see (2.4) and (2.3)).
So we have the following commutative diagram

0 −→ ad(EH)
ι2−→ At(EH)

qH−→ TX −→ 0

‖
yθ yφ

0 −→ ad(EH)
ι1−→ ad(EG) −→ ad(EG)/ad(EH) −→ 0

[Sh, Ch. 5]; the above homomorphism φ induced by θ is evidently an isomorphism.

We can embed ad(EH) in At(EH) ⊕ ad(EG) by sending any v to (ι2(v), −ι1(v)) (see
(2.4), (2.3)). The Atiyah bundle At(EG) is the quotient (At(EH)⊕ ad(EG))/ad(EH) for this
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embedding. The inclusion of ad(EG) in At(EG) in (2.5) is given by the inclusion of ad(EG)
in At(EH)⊕ ad(EG).

Given a holomorphic Cartan geometry (EH , θ) of type G/H on X, the homomorphism

At(EH)⊕ ad(EG) −→ ad(EG), (v, w) 7−→ θ(v) + w

produces a homomorphism

θ′ : At(EG) −→ ad(EG)

which is a holomorphic splitting of (2.5). Therefore, θ′ is a holomorphic connection on the
principal G–bundle EG.

The curvature Curv(θ′) of θ′ is a holomorphic section

Curv(θ′) ∈ H0(X, ad(EG)⊗ Ω2
X) ,

where Ωi
X :=

∧i(TX)∗.

The Cartan geometry (EH , θ) is called normal if

Curv(θ′) ∈ H0(X, ad(EH)⊗ Ω2
X)

[Sh, Ch. 8, § 2, p. 338].

The Cartan geometry (EH , θ) is called flat if

Curv(θ′) = 0

[Sh, Ch. 5, § 1, p. 177]. So flat Cartan geometries are normal.

If (EH , θ) is a holomorphic Cartan geometry, then the isomorphism θ can be interpreted
as a g–valued holomorphic 1–form β on EH satisfying the following three conditions:

(1) the homomorphism β : TEH −→ EH × g is an isomorphism,
(2) β is H–equivariant with H acting on g via conjugation, and
(3) the restriction of β to each fiber of f coincides with the Maurer–Cartan form associ-

ated to the action of H on EH .

2.2. Branched holomorphic Cartan geometry.

Definition 2.1. A branched holomorphic Cartan geometry on X of type G/H is a pair
(EH , θ), where EH is a holomorphic principal H–bundle on X and

θ : At(EH) −→ ad(EG)

is a holomorphic homomorphism of vector bundles, such that following three conditions hold:

(1) θ is an isomorphism over a nonempty open subset of X, and
(2) θ ◦ ι2 = ι1 (see (2.4) and (2.3)).

In other words, we have a commutative diagram

0 −→ ad(EH)
ι2−→ At(EH)

qH−→ TX −→ 0

‖
yθ yφ

0 −→ ad(EH)
ι1−→ ad(EG) −→ ad(EG)/ad(EH) −→ 0

(2.6)

of holomorphic vector bundles on X, where φ is induced by θ.
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Let U ⊂ X be the nonempty open subset over which θ is an isomorphism. From the
commutativity of (2.6) it follows that φ is an isomorphism exactly over U .

Lemma 2.2. The complement X \ U is a divisor.

Proof. Let d be the complex dimension of X. The homomorphism φ in (2.6) produces a
homomorphism ∧d

φ :
∧d

TX −→
∧d

(ad(EG)/ad(EH)) , (2.7)

so
∧d φ is a holomorphic section of the line bundle (

∧d(ad(EG)/ad(EH)))⊗ Ωd
X . The com-

plement X \ U coincides with the support of the divisor associated to this section
∧d φ of

(
∧d(ad(EG)/ad(EH)))⊗ Ωd

X . �

Definition 2.3. The divisor associated to the above section
∧d φ of (

∧d(ad(EG)/ad(EH)))⊗
Ωd
X will be called the branching divisor for the branched holomorphic Cartan geometry

(EH , θ) on X.

Just as in the case of usual Cartan geometries, the homomorphism

At(EH)⊕ ad(EG) −→ ad(EG), (v, w) 7−→ θ(v) + w

produces a holomorphic connection

θ′ : At(EG) −→ ad(EG) (2.8)

on EG.

We will call a branched holomorphic Cartan geometry (EH , θ) to be normal if

Curv(θ′) ∈ H0(X, ad(EH)⊗ Ω2
X) .

We will call a branched holomorphic Cartan geometry (EH , θ) to be flat if

Curv(θ′) = 0.

If (EH , θ) is a branched holomorphic Cartan geometry, then the homomorphism θ can
be interpreted as a g–valued holomorphic 1–form β on EH satisfying the following three
conditions:

(1) the homomorphism β : TEH −→ EH × g is an isomorphism over a nonempty open
subset of EH ,

(2) β is H–equivariant with H acting on g via conjugation, and
(3) the restriction of β to each fiber of f coincides with the Maurer–Cartan form associ-

ated to the action of H on EH .

3. Examples of branched holomorphic Cartan geometries

3.1. The standard model. We recall the standard (flat) Cartan geometry of type G/H.

Set X = G/H. Let FH be the holomorphic principal H–bundle on X defined by the
quotient map G −→ G/H; we use the notation FH instead of EH because it is a special
case which will be used later. Identify the Lie algebra g with the right–invariant vector
fields on G. This produces an isomorphism of At(FH) with ad(FG) and hence a Cartan
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geometry of type G/H on X (we use the notation FG instead of EG for the same reason as
above). Equivalently, the tautological holomorphic g–valued 1–form on G = FH satisfies the
three conditions needed to define a Cartan geometry of type G/H (see the last paragraph
of Section 2.1).

The above holomorphic g–valued 1–form on G = FH will be denoted by θG,H .

3.2. Flat Cartan geometries. A (EH , θ) holomorphic Cartan geometry of type G/H is
flat if and only if it is locally isomorphic to (FH , θG,H) [Sh, Ch. 5, § 5, Theorem 5.1].

If a complex manifold X admits a flat holomorphic Cartan geometry of type G/H, then
X admits an open cover by sets Ui and local biholomorphisms φi : Ui −→ G/H such that
all transition maps

φi ◦ φ−1j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj)

are, on each connected component, the restriction of automorphism of G/H given by the
action of a unique element gij ∈ G [Sh, Ch. 5, § 5, Theorem 5.2].

Following Ehresmann [Eh] one classically defines then a monodromy homomorphism ρ from

the fundamental group π1(X) of X into G and a developing map δ : X̃ −→ G/H which is

a π1(X)-equivariant local biholomorphism from the universal cover X̃ into the model G/H.

3.3. Construction of branched holomorphic Cartan geometries. Let X be a con-
nected complex manifold and

γ : X −→ G/H

a holomorphic map such that the differential

dγ : TX −→ T (G/H)

is an isomorphism over a nonempty subset of X.

The above condition on dγ is equivalent to the condition that dimX = dim(G/H) with
γ(X) containing a nonempty open subset of G/H. The homomorphism dγ is always an
isomorphism over an open subset of X, which may be empty.

Set EH to be the pullback γ∗FH . So we have a holomorphic map η : EH −→ FH which
is H–equivariant and fits in the commutative diagram

EH
η−→ FHy y

X
γ−→ G/H

Then (EH , η
∗θG,H) defines a branched Cartan geometry of type G/H on X.

To describe the above branched Cartan geometry in terms of the Atiyah bundle, first note
that At(γ∗FH) coincides with the subbundle of the vector bundle γ∗At(FH)⊕ TX given by
the kernel of the homomorphism

γ∗At(FH)⊕ TX −→ γ∗T (G/H) , (v, w) 7−→ γ∗qG,H(v)− dγ(w) ,
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where qG,H : At(FH) −→ T (G/H) is the natural projection (see (2.4)). Consider the

standard Cartan geometry θG,H : At(FH)
∼−→ ad(FG) of type G/H on the quotient G/H.

The restriction of the homomorphism

γ∗At(FH)⊕ TX −→ γ∗ad(FG) , (a, b) 7−→ γ∗θG,H(a)

to At(γ∗FH) is a homomorphism

At(γ∗FH) −→ ad(γ∗FG) = γ∗ad(FG) = ad(EG) ,

which defines a branched holomorphic Cartan geometry of type G/H on X.

The divisor of X over which the above branched Cartan geometry of type G/H on X fails
to be a Cartan geometry evidently coincides with the divisor over which the differential dγ
fails to be an isomorphism.

The curvature of the holomorphic connection on EG associated to the above branched
Cartan geometry of type G/H on X vanishes identically. Indeed, this follows immediately
from the fact that the standard Cartan geometry θG,H is flat. In particular, this branched
Cartan geometry on X is normal.

Conversely, let X be a complex manifold endowed with a branched flat holomorphic Cartan
geometry with branching divisor D. Then the proof of Theorem 5.2 in [Sh, Ch. 5, § 5]
shows that X admits an open cover by sets Ui such that there exist holomorphic maps
φi : Ui −→ G/H which are local biholomorphisms on Ui \ (Ui ∩ D); moreover, for each
connected component of the overlaps Ui ∩ Uj, there exists a unique gij ∈ G such that
gij ◦ fj = fi on the entire connected component.

Then the Ehresmann method [Eh] (based by analytic continuation of charts along paths)

defines a monodromy morphism ρ : π1(X) −→ G and a developing map δ : X̃ −→ G/H
which is a local biholomorphism away from the pull-back of D to the universal cover.

3.4. Branched flat affine and projective structures. Let us recall the standard model
G/H of the affine geometry.

Consider the semi-direct product Cd o GL(d,C) for the standard action of GL(d,C) on
Cd. This group Cd o GL(d,C) is identified with the group of all affine transformations of
Cd. Set H = GL(d,C) and G = Cd o GL(d,C).

A holomorphic affine structure (or equivalently holomorphic affine connection) on a com-
plex manifold X of dimension d is a holomorphic Cartan geometry of type G/H. This
terminology comes from the fact that the bundle FH will be automatically isomorphic to
the holomorphic frame bundle of X and the form θG,H defines a holomorphic connection in
the holomorphic tangent bundle of X. Conversely, any holomorphic connection in the holo-
morphic tangent bundle of X uniquely defines a holomorphic Cartan geometry of type G/H.
This connection is torsionfree exactly when the Cartan geometry is normal [MM]. For de-
tails about the equivalence between the several definitions of a holomorphic affine connection
(especially with the one seeing the connection as an operator ∇ acting on local holomorphic
vector fields and satisfying the Leibniz rule), the reader could refer to [MM, Sh].
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A branched holomorphic Cartan geometry of type Cd o GL(d,C)/GL(d,C) will be called
a branched holomorphic affine structure or a branched holomorphic affine connection.

We also recall that a holomorphic projective structure (or a holomorphic projective con-
nection) on a complex manifold X of dimension d is a holomorphic Cartan geometry of type
PGL(d+ 1,C)/Q, where Q ⊂ PGL(d+ 1,C) is the maximal parabolic subgroup that fixes a
given point for the standard action of PGL(d+ 1,C) on CP d (the space of lines in Cd+1). In
particular, there is a standard holomorphic projective structure on PGL(d+1,C)/Q = CP d.
Locally a holomorphic projective connection is an equivalence class of holomorphic affine
connections, where two affine connections are considered to be equivalent if they admit the
same unparametrized geodesics. The projective connection is normal exactly when it admits
a local representative which is a torsionfree affine connection [MM, OT].

We will call a branched holomorphic Cartan geometry of type PGL(d+1,C)/Q a branched
holomorphic projective structure or a branched holomorphic projective connection.

Proposition 3.1. Every compact complex projective manifold admits a branched flat holo-
morphic projective structure.

Proof. Let X be a compact complex projective manifold of complex dimension d. Then there
exists a finite surjective morphism

γ : X −→ CP d .

Indeed, one proves that the smallest integer N for which there exists a finite morphism
f from X to CPN is d. If N > d, then there exists P ∈ CPN \ f(X) and consider the
projection π : CPN \ {P} −→ CPN−1. The fibers of π ◦ f must be finite (otherwise f(X)
would contain a line through P , hence P ). Since π ◦ f is a proper morphism with finite
fibers, it must be finite.

Now we can pull back the standard holomorphic projective structure on CP d using the
map γ to get a branched holomorphic projective structure on X. �

Proposition 3.2.

(i) Simply connected compact complex manifolds do not admit branched flat holomorphic
affine structures.

(ii) Simply connected compact complex manifolds admitting branched flat holomorphic
projective structures are Moishezon.

Proof. (i) If, by contradiction, a simply connected compact complex manifold X admits
a branched flat holomorphic affine structure, then the developing map δ : X −→ Cd is
holomorphic and nonconstant: a contradiction.

(ii) If X is a simply connected manifold of complex dimension d admitting a branched flat
holomorphic projective structure, then its developing map is a holomorphic map δ : X −→
CP d which is a local biholomorphism away from a divisor D in X. Thus, the algebraic
dimension of X must be d and, consequently, X is Moishezon. �
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Since compact Kähler manifolds are Moishezon if and only if they are projective, one gets
then the following

Corollary 3.3. Non-projective simply connected Kähler manifolds do not admit branched
flat holomorphic projective structures.

In particular, non projective K3 surfaces do not admit branched flat holomorphic projec-
tive structures.

3.5. Branched normal holomorphic projective structure on complex surfaces. In
[KO], Kobayashi and Ochiai classified all compact complex surfaces admitting holomorphic
projective structures (connections). All of them happen to be isomorphic to quotients of
open sets in CP 2 by discrete subgroups of PGL(3,C) acting properly and discontinuously.
Consequently, all of them also admit flat holomorphic projective structures. Among those
surfaces, the only projective ones are the following : CP 2, surfaces covered by the ball and
abelian varieties (and their finite unramified quotients).

Moreover, it is known that every normal projective structure (connection) on a compact
complex surface is automatically flat [Du3].

Proposition 3.1 shows that the class of compact complex surfaces admitting branched
holomorphic projective structures is much broader. Moreover, we have the following

Proposition 3.4. There exists branched holomorphic projective structures on compact com-
plex surfaces which are normal, but not flat.

Proof. Let Y be a compact connected Riemann surface of genus at least two. Fix two
holomorphic 1–forms α1, α2 ∈ H0(X, Ω1

X) that are linearly independent. Set X = Y × Y .
Let Q ⊂ PGL(3,C) be the maximal parabolic subgroup that fixes the point (1, 0, 0) ∈ CP 2

for the standard action of PGL(3,C) on CP 2. Set H = Q and G = PGL(3,C).

Let EH = X ×H f−→ X be the trivial holomorphic principal H–bundle on X. So, the
corresponding holomorphic principal G–bundle EG is the trivial holomorphic principal G–
bundle X×G. The adjoint vector bundles ad(EH) and ad(EG) are the trivial vector bundles
X × h and X × g respectively. The trivialization of EH produces a trivial holomorphic
connection on EH . This connection defines a holomorphic splitting of the Atiyah exact
sequence in (2.4). So we have

At(EH) = ad(EG)⊕ TX = (X × h)⊕ TX .

Now let
θ : At(EH) −→ ad(EG) = X × g

be the holomorphic homomorphism which over any point (y1, y2) ∈ Y × Y = X is defined
by

(w, (v1, v2)) 7−→ w +

 0 0 α1(y1)(v1)
α1(y1)(v1) 0 0
α2(y2)(v2) 0 0

 , w ∈ h , vi ∈ TyiY .

Note that the Lie algebra g is the space of 3 × 3 complex matrices of trace zero, while h is
the subalgebra of g consisting of matrices (ai,j)

3
i,j=1 such that a2,1 = 0 = a3,1. Therefore, θ
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is an isomorphism over the nonempty open subset of X consisting of all (y1, y2) ∈ Y × Y
such that both α1(y1) and α2(y2) are nonzero.

Let θ′ be the holomorphic connection on EG = X × G associated to θ (see (2.8)). To
describe θ′, let D0 denote the trivial holomorphic connection on EG = X × G given by its
trivialization. Let

pi : X = Y × Y −→ Y , i = 1, 2

be the projection to the i–th factor. Then we have

θ′ = D0 +

 0 0 p∗1α1

p∗1α1 0 0
p∗2α2 0 0

 ;

note that ad(EG) = X × g, and 0 0 p∗1α1

p∗1α1 0 0
p∗2α2 0 0

 ∈ H0(X, ad(EG)⊗ Ω1
X)

because the diagonal terms are zero. Therefore, the curvature Curv(θ′) of the connection θ′

has the following expression:

Curv(θ′) =

 0 0 p∗1α1

p∗1α1 0 0
p∗2α2 0 0

∧
 0 0 p∗1α1

p∗1α1 0 0
p∗2α2 0 0

 =

(p∗1α1) ∧ (p∗2α2) 0 0
0 0 0
0 0 (p∗2α2) ∧ (p∗1α1)


Hence we have

Curv(θ′) ∈ H0(X, ad(EH)⊗ Ω2
X) .

So the branched projective structure (EH , θ) constructed above in normal. But we have
Curv(θ′) 6= 0. �

We don’t know whether (non-projective) compact complex surfaces admitting branched
holomorphic projective structures are exactly those admitting branched flat holomorphic
projective structures.

4. A criterion

Let X be a compact connected Kähler manifold of complex dimension d equipped with a
Kähler form ω. Chern classes will always mean ones with real coefficients. For a torsionfree
coherent analytic sheaf V on X, define

degree(V ) := (c1(V ) ∪ ωd−1) ∩ [X] ∈ R . (4.1)

The degree of a divisor D on X is defined to be degree(OX(D)).

Fix an effective divisor D on X. Fix a holomorphic principal H–bundle EH on X.

Proposition 4.1. If degree(Ω1
X)− degree(D) 6= degree(ad(EH)), then there is no branched

holomorphic Cartan geometry of type G/H on X with branching divisor D (see Definition
2.3). In particular, if D 6= 0 and degree(Ω1

X) ≤ degree(ad(EH)), then there is no branched
holomorphic Cartan geometry of type G/H on X with branching divisor D.
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Proof. Let (EH , θ) be a branched holomorphic Cartan geometry of type G/H on X with

branching divisor D. Consider the homomorphism
∧d φ in (2.7). Since D is the divisor for

the corresponding holomorphic section of the line bundle (
∧d(ad(EG)/ad(EH))) ⊗ Ωd

X , we
have

degree(D) = degree((
∧d

(ad(EG)/ad(EH)))⊗ Ωd
X)

= degree(ad(EG))− degree(ad(EH)) + degree(Ω1
X) . (4.2)

Recall that EG has a holomorphic connection θ′ corresponding to θ. It induces a holomorphic
connection on ad(EG). Hence we have c1(ad(EG)) = 0 [At, Theorem 4], which implies that
degree(ad(EG)) = 0. Therefore, from (4.2) it follows that

degree(Ω1
X)− degree(D) = degree(ad(EH)) . (4.3)

If D 6= 0, then degree(D) > 0. Hence in that case (4.3) fails if we have degree(Ω1
X) ≤

degree(ad(EH)). �

Corollary 4.2.

(i) If degree(Ω1
X) < 0, then there is no branched holomorphic affine structure on X.

(ii) If degree(Ω1
X) = 0, then all branched holomorphic affine structures on X are actually

holomorphic affine structures.

Proof. Set H = GL(d,C) and G = Cd o GL(d,C). Recall that a branched holomorphic
affine structure on X is a branched holomorphic Cartan geometry on X of type G/H, where
H and G are as above. Let (EH , θ) be a branched holomorphic affine structure on the
compact Kähler manifold (X, ω) of dimension d. The homomorphism

M(d,C)⊗M(d,C) −→ C , A⊗B 7−→ Trace(AB)

is nondegenerate and GL(d,C)–invariant. In other words, the Lie algebra h of H = GL(d,C)
is self-dual as an H–module. Hence ad(EH) = ad(EH)∗, in particular, we have

degree(ad(EH)) = 0 .

Therefore, the corollary follows from Proposition 4.1. �

Remark 4.3. Let X be a rationally connected compact complex manifold. The proof of
Theorem 4.1 in [BM] extends to branched Cartan geometries on X. In other words, any
branched Cartan geometry of type G/H on X is flat and it is given by a holomorphic map
X −→ G/H. This implies that G/H is compact.

5. Holomorphic projective structure on parallelizable manifolds

Recall that, by a theorem of Wang [Wa], compact complex parallelizable manifolds (i.e.,
manifolds with a trivial holomorphic tangent bundle) are isomorphic to quotients G/Γ of
complex Lie groups G by cocompact lattices Γ ⊂ G (recall that cocompact (or normal)
lattices are those for which the quotient is compact). Such a quotient is known to be Kähler
if and only if G is abelian.
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All the compact complex parallelizable manifolds admit a holomorphic affine structure
(connections) given by the trivialization of the holomorphic tangent bundle (by right-invariant
vector fields). As soon as G is non-abelian the holomorphic affine connection for which right-
invariant vector fields are parallel have non vanishing torsion and, consequently, it is not flat.

Moreover we have the following:

Proposition 5.1. Let G be a complex semi-simple Lie group and Γ a cocompact lattice in
G. Then the quotient G/Γ does not admit any branched flat affine structure.

Let us first prove the following:

Lemma 5.2. Let G be a complex semi-simple Lie group and Γ a cocompact lattice in G.
Then any branched holomorphic Cartan geometry on X = G/Γ has an empty branching set.

Proof. Assume, by contradiction, that the branching set is not empty. Then, by Lemma 2.2
the branching set must be a divisor in X. On the other hand, it is known, [HM], that G/Γ
contains no divisor: a contradiction. �

Now we go back to the proof of Proposition 5.1.

Proof. Assume, by contradiction, that X = G/Γ admits a branched flat affine structure.
Using Lemma 5.2 the branching set must be empty. Consider then the holomorphic affine
connection ∇ in the holomorphic tangent bundle TX associated the holomorphic flat affine
structure. If d is the complex dimension of X, denote by (V1, V2, . . . , Vd) a family of globally
defined holomorphic vector fields on X trivializing TX (the Vi’s descend from right-invariant
vector fields on G). For any i, j, the holomorphic vector field ∇ViVj is also globally defined
on X and must be a linear combination of Vi’s with constant coefficients. It follows that the
pull-back of ∇ViVj to G is a right-invariant vector field. This implies that the pull-back to
G of ∇ is right-invariant. But it is known, [Du5], that a semi-simple complex Lie algebra
does not admit translation invariant holomorphic flat affine structures: a contradiction. �

The simplest example is that of compact quotients of SL(2,C) by lattices Γ: they do not
admit (branched) flat holomorphic affine structures. But we will see that they admit flat
holomorphic projective structures.

Indeed, the Killing quadratic form on the Lie algebra of SL(2,C) is nondegenerate. It en-
dows the complex manifold SL(2,C) with a right-invariant holomorphic Riemannian metric
in the sense of the following definition.

Definition 5.3. A holomorphic Riemannian metric on X is a holomorphic section

g ∈ H0(X, S2((TX)∗))

such that for every point x ∈ X the quadratic form g(x) on the fiber TxX is nondegenerate.

A holomorphic Riemannian metric on a complex manifold of dimension d is a holomorphic
Cartan geometry of the type G/H, with G = Cd o O(d,C) and H = O(d,C), with O(d,C)
the complex orthogonal group [Sh, Ch. 6].
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As in the Riemannian or pseudo-Riemannian setting, one associates to a holomorphic
Riemannian metric g a unique holomorphic affine connection ∇. This connection ∇, called
the Levi-Civita connection of g, is uniquely determined by the following properties: ∇ is
torsionfree and the holomorphic tensor g is parallel with respect to ∇. Using ∇ one can
compute the curvature tensor of g which vanishes identically if and only if g is locally
isomorphic to the standard flat model dz21 + . . . + dz2n, seen as a homogeneous space of
G = Cd o O(d,C).

The holomorphic Riemannian metric on SL(2,C) coming from the Killing quadratic form
is bi-invariant (since the Killing quadratic form is invariant under the adjoint action of
SL(2,C)). It has nonzero constant sectional curvature [Gh]. Since the Levi-Civita connection
of a metric of constant sectional curvature is known to be projectively flat, this endows
SL(2,C) with a bi-invariant flat holomorphic projective structure. For more details about
the geometry of holomorphic Riemannian metrics one can see [Gh, Du1, DZ].

Interesting exotic deformations of parallelizable manifolds SL(2,C)/Γ was constructed by
Ghys in [Gh].

Those deformations are constructed choosing a group homomorphism u : Γ −→ SL(2,C)
and considering the embedding γ 7−→ (u(γ), γ) of Γ into SL(2,C) × SL(2,C) (acting on
SL(2,C) by left and right translations). Algebraically, the action is given by:

(γ, x) ∈ Γ× SL(2,C) −→ u(γ−1)xγ ∈ SL(2,C) .

It is proved in [Gh] that, for u close enough to the trivial morphism, Γ acts properly and
freely on SL(2,C) such that the quotient M(u,Γ) is a complex compact manifold (covered
by SL(2,C)). In general, these examples do not admit parallelizable manifolds as finite
covers. Moreover, for generic u the space of holomorphic global vector fields is trivial.
All manifolds M(u,Γ) inherit a flat holomorphic projective structure (coming from the bi-
invariant projective structure constructed above). Moreover, any small deformation of the
manifold SL(2,C) is isomorphic to M(u,Γ) for some u [Gh]. Therefore we get the following:

Theorem 5.4 (Ghys). Complex compact parallelizable manifolds SL(2,C)/Γ and their small
deformations admit flat holomorphic projective structures.

It is not not known whether for generic homomorphisms u, complex manifolds M(u,Γ)
admit other flat holomorphic projective structures than the standard one (that descends
from the bi-invariant flat holomorphic projective structure on SL(2,C) constructed above).

For some non-generic homomorphisms u, complex manifolds M(u,Γ) also admit holo-
morphic Riemannian metrics with nonconstant sectional curvature [Gh]. The associated
holomorphic projective structures on those manifolds are not flat.

Recall here the main result in [DZ]:

Theorem 5.5. Let M be a compact complex threefold endowed with a holomorphic Riemann-
ian metric. Then M admits a finite unramified covering bearing a holomorphic Riemannian
metric of constant sectional curvature (and hence the associated flat holomorphic projective
structure).
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Now we will describe the global geometry of holomorphic projective structures on complex
parallelizable manifolds. Let us first prove the following.

Lemma 5.6. Consider a holomorphic projective connection on a compact complex manifold
X with trivial canonical bundle. Then X admits a holomorphic affine connection ∇ which
is projectively isomorphic to the given holomorphic projective connection.

Proof. Let X =
⋃
Ui be an open cover of X such that on each Ui there exist a holomorphic

affine connection ∇i projectively equivalent to the given projective connection. Let ω be a
global nontrivial holomorphic section of the canonical bundle. On each Ui, there exists a

unique holomorphic affine connection ∇̃i projectively equivalent to ∇i and such that ω is

parallel with respect to ∇̃i [OT, Appendix A.3]. By uniqueness, these ∇̃i’s agree on the
overlaps of the Ui’s and define a global holomorphic affine connection on X projectively
equivalent to the original holomorphic projective connection (for a different proof one can
also combine two results: [Gu, p. 96] and [KO, p. 78–79]). �

A corollary of this result is the following:

Proposition 5.7. Let G be a complex Lie group of dimension d and Γ a lattice in G. Then
X = G/Γ admits a flat holomorphic projective structure if and only if there exists a Lie

group homomorphism i : G̃ −→ PGL(d + 1,C) such that i(G̃) acts with an open orbit on

the standard model CP d, where G̃ is the universal cover of G.

Note that the condition in the statement of Proposition 5.7 is equivalent to the existence of
a Lie algebra homomorphism ĩ from the Lie algebra of G into the Lie algebra of PGL(d+1,C),

such that the image of ĩ intersects trivially the Lie subalgebra of the stabilizer Q of a point
in CP d. A classification of those complex Lie algebras admitting such homomorphisms is
done in [Ka] (see also [Ag] for the real case).

Proof. First assume that there exists a group homomorphism i : G̃ −→ PGL(d+1,C) such

that i(G̃) acts on CP d with an open orbit O ⊂ X. Fix a point o ∈ O and consider the map

π : G̃ −→ O defined by π(g) = i(g) · o, for all g ∈ G̃. The map π is a covering and the
pull-back of the flat holomorphic projective structure of O through π is a right-invariant flat

holomorphic projective structure on G̃. This flat holomorphic projective structure descends

to the quotient X = G̃/Γ̃, where Γ̃ is the lift of Γ to the universal covering G̃ of G.

To prove the converse, assume that G/Γ is equipped with a flat holomorphic projective
structure. By Lemma 5.6, there exists a holomorphic affine connection ∇ on G/Γ which
is projectively equivalent to the given flat holomorphic projective structure. The proof of
Proposition 5.1 shows that the pull-back of ∇ to G is a right-invariant holomorphic affine
connection. In particular, the pull-back of the initial flat holomorphic projective structure
to G is right-invariant. It follows that the Lie algebra of G acts locally projectively on
the standard projective model CP d. Since the model is simply connected, this local action

extends to a projective locally free global action of G̃ on PGL(d + 1,C). This gives the
required Lie group homomorphism i. �
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It may be remarked that the Lie group morphism i in the statement of Proposition 5.7

extends the monodromy morphism ρ : Γ̃ −→ PGL(d+ 1,C) to a Lie group homomorphism
i. Those projective structures are called homogeneous.

In order to see that SL(2,C) admits actions as in the statement of Proposition 5.7, consider
the SL(2,C) irreducible linear action on the vector space of homogeneous polynomials of
degree 3 in two variables (by linear changing of variables). The projectivization of this
linear action gives a projective action of SL(2,C) on CP 3 admitting an open orbit: the
SL(2,C)-orbit of those polynomials which are a product of three distinct linear forms (recall
that the projective action of SL(2,C) on the projective line CP 1 is transitive on the set of
triples of distinct points).

6. Calabi–Yau manifolds and branched Cartan geometries

We are interested here in understanding branched holomorphic Cartan geometries on
Calabi-Yau manifolds.

Recall that Kähler Calabi-Yau manifolds are compact complex Kähler manifolds such that
the first Chern class (with real coefficients) of the holomorphic tangent bundle vanishes. By
Yau’s proof of Calabi’s conjecture those manifolds admit Kähler metrics with vanishing Ricci
curvature [Ya]. Compact Kähler manifolds admitting holomorphic affine connections have
vanishing real Chern classes [At]; it was proved in [IKO] that Yau’s result implies that they
must admit finite unramified coverings which are complex tori.

It was proved in [BM] (see also [Du2, Du4]) that Calabi-Yau manifolds bearing holomorphic
Cartan geometries admit finite unramified covers by complex tori. We extend here this result
to branched holomorphic Cartan geometries.

Theorem 6.1. A compact (Kähler) Calabi-Yau manifold X bearing a branched holomorphic
affine structure admits a finite unramified covering by a complex torus.

Proof. Since c1(TX) = 0, part (ii) in Corollary 4.2 implies that the branched holomorphic
affine structure on X is actually a holomorphic affine structure (connection). Hence X
admits a finite unramified covering by a complex torus [IKO]. �

Theorem 6.2. Let X be a compact simply connected Kähler manifold such that c1(TX) = 0.
Let E be a holomorphic vector bundle on X equipped with a holomorphic connection. Then
E is a trivial holomorphic vector bundle and D is the trivial connection on it.

Proof. The theorem of Yau says that X admits a Ricci–flat Kähler metric [Ya]. Fix a Ricci–
flat Kähler form ω on X. The degree of a torsionfree coherent analytic sheaf on X will be
defined using ω (as in (4.1)). Since ω is Ricci–flat, the tangent bundle TX is polystable.
Since TX is polystable with c1(TX) = 0, and E admits a holomorphic connection, it follows
that E is semistable [Bi, p. 2830].

Note that ci(E),= 0, i ≥ 1, because E admits a holomorphic connection [At, Theorem 4].
In particular, we have degree(E) = 0.
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Notice that, for projective Calabi-Yau manifolds X, Corollary 1.3 in [Si] implies then that
E admits a flat holomorphic connection. Since X is simply connected, this implies that E
is trivial if X is projective.

We will address now the general Kähler case.

Let V ⊂ E be a polystable subsheaf such that

• degree(V ) = 0, and
• the quotient E/V is torsionfree.

The second condition implies that V is reflexive. Since E is semistable, and V is polystable
with degree(V ) = 0 = degree(E), it follows that E/V is semistable with degree(E/V ) = 0.

Let d be the complex dimension of X. Let the ranks of V and E/V be r and s respectively.
Since V and E/V are semistable, we have the Bogomolov inequality

((2r · c2(V )− (r − 1)c1(V )2) ∪ ωd−2) ∩ [X] ≥ 0 , (6.1)

((2s · c2(E/V )− (s− 1)c1(E/V )2) ∪ ωd−2) ∩ [X] ≥ 0 (6.2)

[BM, Lemma 2.1].

We will show that the inequalities in (6.1) and (6.2) are equalities. Denote the sheaf E/V
by W . We have

2(r + s)c2(V ⊕W )− (r + s− 1)c1(V ⊕W )2

= 2(r + s)(c2(V ) + c2(W ) + c1(V )c1(W ))− (r + s− 1)(c1(V )2 + c1(W )2 + 2c1(V )c1(W ))

=
r + s

r
(2rc2(V )− (r − 1)c1(V )2) +

r + s

s
(2rc2(W )− (s− 1)c1(W )2)

−s
r
c1(V )2 − r

s
c1(W )2 + 2c1(V )c1(W )

=
r + s

r
(2rc2(V )−(r−1)c1(V )2)+

r + s

s
(2rc2(W )−(s−1)c1(W )2)− 1

sr
(s·c1(V )−r·c1(W ))2 .

On the other hand, ci(V ⊕W ) = ci(E) = 0, so

r + s

r
((2r ·c2(V )−(r−1)c1(V )2)∪ωd−2)∩ [X]+

r + s

s
((2rc2(W )−(s−1)c1(W )2)∪ωd−2)∩ [X]

− 1

sr
((s · c1(V )− r · c1(W ))2 ∪ ωd−2) ∩ [X] = 0 . (6.3)

From Hodge index theorem, [Vo] (Section 6.3), it follows that

− 1

sr
((s · c1(V )− r · c1(W ))2 ∪ ωd−2) ∩ [X] ≥ 0 .

Therefore, from (6.3) we conclude that the inequalities in (6.1) and (6.2) are equalities.

Since ((2r · c2(V ) − (r − 1)c1(V )2) ∪ ωd−2) ∩ [X] = 0, from [BS, p. 40, Corollary 3] we
conclude that V is a polystable vector bundle admitting a projectively flat unitary connection.
Therefore, the projective bundle P (V ) is given by a representation of π1(X) in PU(r). As
X is simply connected, we conclude that the projective bundle P (V ) is trivial. Hence

V = L⊕r , (6.4)

where L is a holomorphic line bundle on X. We have

degree(L) = 0 ,
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because degree(V ) = 0.

Now assume that V is preserved by the connection D on E. Then V is a subbundle
of E, and the quotient E/V has a holomorphic connection D1 induced by D. So we may
repeat the above arguments for (E/V, D1) and get a subsheaf V1 ⊂ E/V which is a direct
sum of line bundles of degree zero (as in (6.4)). Again assume that V1 is preserved by D1

and repeat the argument. In this way we get a filtration of E by subbundles such that each
successive quotient is a polystable vector bundle of degree zero. Now Theorem 2 in [Si] implies
that E admits a flat holomorphic connection. Since X is simply connected, this implies
that E is holomorphically trivial. A trivial holomorphic vector bundle on X has exactly
one holomorphic connection because H0(X, Ω1

X) = 0 (recall that X is simply connected).
Therefore, a trivial holomorphic vector bundle on X has only the trivial connection.

Now assume, by contradiction, that V is not preserved by the connectionD on E. Consider
the holomorphic section of Hom(V, E/V ) ⊗ Ω1

X given by D; it is nonzero because V is not
preserved by D. Let

δ : TX −→ Hom(V, E/V )

be the homomorphism given by this section.

The rank of Hom(V, E/V ) is rs. We have

degree(Hom(V, E/V )) = r · degree(E/V )− s · degree(V ) = 0 ,

and Hom(V, E/V ) is semistable because both V and E/V are semistable [AB, Lemma 2.7].
On the other hand TX is a polystable vector bundle of degree zero. Hence the image δ(TX)
is also a polystable vector bundle of degree zero.

Let t be the rank of U := δ(TX). We have

(2rs · c2(Hom(V, E/V ))− (rs− 1)c1(Hom(V, E/V ))2) ∪ ωd−2) ∩ [X]

= ((2r · c2(V )− (r − 1)c1(V )2) ∪ ωd−2) ∩ [X]

+((2s · c2(E/V )− (s− 1)c1(E/V )2) ∪ ωd−2) ∩ [X] = 0 .

This implies that

((2t · c2(U)− (t− 1)c1(U)2) ∪ ωd−2) ∩ [X] = 0 ,

because the Bogomolov inequality holds for both U and Hom(V, E/V )/U . Indeed, the
Bogomolov inequality holds for all three terms in the short exact sequence

0 −→ U −→ Hom(V, E/V ) −→ Hom(V, E/V )/U −→ 0

and furthermore it is an equality for Hom(V, E/V ); hence the Bogomolov inequality is an
equality for both U and Hom(V, E/V )/U .

Again from [BS, p. 40, Corollary 3] we conclude that P (U) admits a flat connection. Hence
U is of the form

U = N⊕t ,

where N is a holomorphic line bundle of degree zero.

Since TX is polystable, the quotient bundle U is a direct summand of TX. This implies
that U is a subbundle of TX. Hence we have a holomorphic decomposition

TX = N ⊕N ′ , (6.5)



BRANCHED HOLOMORPHIC CARTAN GEOMETRIES 19

where N is a holomorphic line bundle on X of degree zero, and the rank of N ′ is d− 1.

A result of Beauville [Be, Theorem A] associates to any holomorphic splitting

TX = U1 ⊕ U2 ⊕ . . .⊕ Uj
a corresponding decompositionX = X1×X2×. . .×Xj, withXi simply connected Calabi-Yau
manifolds, such that Ui = π∗i (TXi), where pi : X −→ Xi, 1 ≤ i ≤ j, are the canonical
projection. Now from (6.5) we conclude that X is a product of Calabi-Yau manifolds with
one factor of dimension one. But there is no simply connected Calabi-Yau manifold of
complex dimension one. So we get a contradiction. This completes the proof. �

Corollary 6.3.

(i) Any branched holomorphic Cartan geometry on a compact simply connected (Kähler)
Calabi-Yau manifold is flat. Consequently, the model G/H of the Cartan geometry
must be compact.

(ii) Non-projective compact simply connected (Kähler) Calabi-Yau manifolds do not admit
branched holomorphic projective structures.

Proof. Let X be a simply connected Calabi-Yau manifold endowed with a branched holo-
morphic Cartan geometry of type G/H.

(i) Theorem 6.2 implies that the associated holomorphic connection θ′ of EH must be
flat. Consequently, the Cartan geometry is flat. The developing map δ : X −→ G/H is a
branched holomorphic map. This implies that δ(X) = G/H is compact.

(ii) This follows from part (i) and Corollary 3.3. �
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[Gh] E. Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2,C), Jour. Reine
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