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Smeared Coulomb potential orbitals: I-Asymptotic expansion

We consider an 1-electron model Hamiltonian, whose potential energy corresponds to the Coulomb potential of an infinite wire with charge Z distributed according to a Gaussian function. The time independent Schrödinger equation for this Hamiltonian is solved perturbationally in the asymptotic limit of small amplitude vibration (Gaussian function width close to zero). We propose to use the naturally polarized functions soobtained, as orbital basis sets for quantum chemical calculations. In particular, they should be well suited to perform electron-nucleus mean field configuration interaction calculations. Since the free-parameters of the model have the remarkable property to factorize the perturbative corrections to the eigenfunctions, these corrective part in factor can be simply added as additional functions to standard basis sets, leaving it to the molecular orbital calculation to optimize the free parameters within molecular orbital coefficients.

Introduction

This paper is dedicated to Prof. Graham Chandler for his 80 th birthday. His famous "Mclean and Chandler basis sets" have proved extremely useful to the quantum chemistry community. Some twenty years ago, we optimized Gaussian basis sets for molecular fragments together with D. Jayatilaka and G. S. Chandler 1 . However, this endeavour was suspended due to technical difficulties raised by electronegative atoms. In the present article, we come back to, perhaps, a more original approach to basis functions, where the latter are not selected on the ground of their technical advantages, as was the case initially for Gaussian-type orbitals (GTO) 2 , but because they are eigenfunctions of a model Hamiltonian and therefore have some physical relevance. It is hoped that this property can be taken advantage of in basis set truncation.

The model Hamiltonian we will consider, is a generalization of the hydrogenoid atom Coulomb Hamiltonian. So, our new orbitals will be part of the exponential-type orbitals (ETO) 3 family, like the hydrogenoid atom eigenfunctions, which constitute an asymptotic limit. Slater-type orbitals (STO) 4,5 is another type of ETO related to hydrogenoid orbitals (HO): they can be seen as "uncontracted" HO, that is to say, as HO with the Laguerre polynomial prefactor replaced by a simple monomial one. In contrast to GTO, the difficulty of computing multicenter integrals with STO has led to the introduction of more ETO family members such as Bessel-type orbitals (BTO) 6 or Coulomb-Sturmian orbitals (CSO) 7 . The techniques developed for the latter 8-10 will be equally relevant for integrals involving our deformed hydrogenoid orbitals (DHO).

It is our take that DHO will be particularly useful for the recently developed electronnucleus mean field configuration interaction (EN-MFCI) method [START_REF] Cassam-Chenaï | ??A920125022015[END_REF] . The EN-MFCI method affords one to obtain in a single calculation, the electronic and vibrational energy levels of a molecule, without making the "Born-Oppenheimer" (BO) approximation [START_REF] Cassam-Chenaï | ??A920125022015[END_REF]12 . In contrast, the traditional methods of Quantum Chemistry are set in the frame of this approximation.

They describe electronic clouds of fixed nuclear configurations and make use of orbital basis sets centered on nuclear positions. The latter basis sets are not appropriate for EN-MFCI calculations and their discrepancies have been bypassed so far, only by adding off-centered orbitals. However, the addition of such functions introduces linear dependencies within the orbital set and spans virtual molecular orbitals of little relevance for the description of low energy wave functions of the molecule. So, it appears important to develop new orbital basis functions for the EN-MFCI method, able to describe the smeared electronic cloud of oscillating nuclei in a molecular system. This article is the first part of a series aiming at deriving appropriate basis functions for EN-MFCI calculations. We propose to use the eigenfunctions of a one-electron model

Hamiltonian corresponding to a Coulomb potential convoluted with a Gaussian function.

The latter can be seen as a ground state vibrational eigenfunction for the nuclear internal motion in the harmonic approximation. In the next section, we show how such Hamiltonian can be expanded asymptotically near the infinitely small Gaussian width limit, where the hydrogenoid atom eigenfunctions are retrieved. Then, in section 3, we solve the eigenproblem for the first order corrected potential by means of the Rayleigh-Schrödinger perturbation theory. We tabulate the fist order corrected eigenfunctions and associated eigenvalues up to n = 7. In the last section, we provide details and perspectives on how these eigenfunctions can be employed in multi-electron, quantum chemical calculations. Numerical applications of EN-MFCI making use of these new functions is postponed to part two of this series.

Asymptotic expansion of a smeared Coulombic Hamiltonian

Let us consider the one-electron model Hamiltonian: H = -2µ + V ( r), with a potential of the form:

V ( r) = -Z a π +∞ -∞ exp[-az 2 0 ] r -r z 0 dz 0 , (1) 
where, Z ∈ N * , a ∈ R * + , r = (x, y, z) and r z 0 = (0, 0, z 0 ) in Cartesian coordinates. When r is expressed in cylindrical coordinates, r = (ρ, φ, z), the potential depends only upon ρ and z,

V (ρ, z) = -Z a π +∞ -∞ exp[-az 2 0 ] ρ 2 + (z -z 0 ) 2 dz 0 . (2) 
This potential corresponds to the Coulomb potential of an infinite wire with charge Z distributed according to a Gaussian function. In the limiting case of a Gaussian function sharply peaking at the origin (a → +∞, Dirac distribution limit), the system will tends towards a point-charge Z concentrated at the origin and the hydrogenoid atom eigenfunctions will be recovered.

However, by taking a Gaussian width parameter of the order of magnitude of a nucleus vibration amplitude, we will get basis functions corresponding to a Coulomb potential convoluted by a nuclear, vibrational, harmonic motion, that we may think particularly appropriate for EN-MFCI calculations.

Unfortunately, the Schrödinger equation for this potential is hard to solve because the whole z-axis is singular. So, we will restrict ourselves to the a → ∞ asymptotic limit, and expand the potential V (ρ, z) as

V (ρ, z) = -Z √ a π +∞ 0 dλ √ λ +∞ -∞ dz 0 exp[-az 2 0 -λ(ρ 2 + (z -z 0 ) 2 )] = -Z a π +∞ 0 dλ √ λ(a+λ) exp[-λ(ρ 2 + z 2 )]exp[ λ 2 a+λ z 2 ] = -Z √ π +∞ 0 dλ 1 √ λ + -λ 2 +z 2 λ 2 √ λa + λ 3/2 (3-12z 2 λ+4z 4 λ 2 ) 8a 2 + λ 5/2 (-15+90z 2 λ-60z 4 λ 2 +8z 6 λ 3 ) 48a 3 + o 1 a 7 2 exp[-λ(ρ 2 + z 2 )]
(3)

Swaping the limits and setting r =

ρ 2 + z 2 , ρ = r × sin(θ), z = r × cos(θ), with θ ∈ [0, π],
the potential becomes

V (r, θ) = -Z r + (1-3cos(θ) 2 )Z 4r 3 a - 3((3-30cos(θ) 2 +35cos(θ) 4 )Z) 32r 5 a 2 + 15(5-105cos(θ) 2 +315cos(θ) 4 -231cos(θ) 6 )Z 128r 7 a 3 + O 1 a 4 , (4) 
where we recognize the hydrogenoid atom potential in the zero th -order term,

V (0) (r, θ) = - Z r . (5) 
Now, at any order, the singularity is located at the single point r = 0. In the following, we will only consider the V (r, θ) potential truncated at first order,

V 1 (r, θ) := - Z r + (1 -3cos(θ) 2 ) Z 4r 3 a . ( 6 
)
Since this potential is not bounded from below, we will not attempt to solve the eigenproblem exactly. Instead, we apply Rayleigh-Schrödinger perturbation theory, to obtain the first order corrections to the hydrogenoid atom eigenstates.

Perturbationally corrected eigenstates

So, we consider the following Hamiltonian in spherical coordinates and atomic units

H = -1 2µ 1 r 2 ∂ ∂r r 2 ∂ ∂r + 1 r 2 sin(θ) ∂ ∂θ sin(θ) ∂ ∂θ + 1 r 2 sin(θ) 2 ∂ 2 ∂φ 2 + V 1 (r, θ), (7) 
defined on the Hilbert space of square integrable functions whose scalar product is expressed as,

ψ 1 |ψ 2 := +∞ 0 r 2 dr π 0 sin(θ)dθ 2π 0 dφ ψ * 1 (r, θ, φ)ψ 2 (r, θ, φ). (8) 
A Galerkin-type approach similar to the one proposed in 13 , with spherical harmonics in place of Chebychev basis functions could be considered to solve its eigenvalue problem. However, it is more practical to approach the eigenstates perturbationally, starting from the well-known solutions of time-independent Schrödinger equation for the hydrogenoid atom,

ψ (0) n,l,m (r, θ, φ) = R n,l (r)Y l,m (θ, φ) (9) 
with

R n,l (r) = 2µZ n 3 2 (n -l -1)! 2n[(n + l)!] exp - µZr n 2µZr n l L 2l+1 n-l-1 2µZr n , (10) 
where L 2l+1 n-l-1 (x) denotes the generalized Laguerre polynomials, and Y l,m (θ, φ) the spherical harmonics. We note that the perturbation operator,

V (1) (r, θ) := 1 a (1 -3cos(θ) 2 ) Z 4r 3 . ( 11 
)
is proportional to Y 2,0 (θ, φ),

V (1) (r, θ) = π 5 -Z a Y 2,0 (θ, φ) r 3 . ( 12 
)
Given the following integral formula

π 0 sin(θ)dθ 2π 0 dφ Y l 1 ,m 1 (θ, φ)Y l 2 ,m 2 (θ, φ)Y l 3 ,m 3 (θ, φ) = (2l 1 + 1)(2l 2 + 1)(2l 3 + 1) 4π   l 1 l 2 l 3 0 0 0     l 1 l 2 l 3 m 1 m 2 m 3   , (13) 
and the well-known relation for the conjugate of a spherical harmonic:

Y * l,m (θ, φ) = (-1) m Y l,-m (θ, φ), (14) 
we deduce that, for a given (n, l, m)-triplet of quantum numbers, the state ψ

(0)
n,l,m can only be coupled at first order to states ψ Table 1: List of hydrogenoid eigenstates coupled by the perturbation operator of Eq.( 12) to a given hydrogenoid eigenstate (in terms of their associated quantum numbers).

(0) n ,l ,m 's such that (i) l ≥ |m|, (ii) for l ∈ {|l -2|, • • • , l + 2}, the 3-j symbol   l l 2 0 0 0   is
Zero-order states states possibly coupled by first-order perturbation n > 0, l = 0, m = 0

(n > 2, l = 2, m = 0) n > 1, l = 1, m ∈ {-1, 0, 1} (n > 1, l = 1, m = m); (n > 3, l = 3, m = m) n > l ≥ 2, m ∈ {-l, -l + 1, l -1, l} (n > l, l = l, m = m); (n > l + 2, l = l + 2, m = m) n > l ≥ 2, m ∈ {-l + 2, • • • , l -2} (n > l -2, l = l -2, m = m); (n > l, l = l, m = m); (n > l + 2, l = l + 2, m = m)
A priori, the perturbation operator needs to be diagonalized first in each degenerate n-subspace. The first order correction to the unperturbed energies, (that is the energies of the hydrogenoid atom, E

n,l,m = -µZ 2 2n 2 in hartree), are the eigenvalues of the matrix, ( ψ

n,l,m |V (1) |ψ

(0) n,l ,m ) (l,m),(l ,m ) = (δ m,m ψ (0) 
n,l,m |V (1) |ψ

(0) n,l ,m ) (l,m),(l ,m ) . (15) 
However, this matrix is already diagonal: For m = m and l = l a non-zero integration on angular variables implies l = l ± 2, as we have seen. Suppose without loss of generality, that l = l + 2, the problem being symmetrical in l and l . The generalized Laguerre polynomial L 2l+1 n-l-1 to the factor appearing in front of the generalized Laguerre polynomials in the radial integral R n,l | 1 r 3 |R n,l . So, for l = 0, there is no first order correction,

2µZr n = L 2l +5 n-l -3 2µZr 
E n,0,0 = -µZ 2 2n 2 , (16) 
and for l > 0, the correction is,

E n,l,m = E (0) n,l,m - π 5 Z a ψ (0) n,l,m | Y 2,0 (θ, φ) r 3 |ψ (0) n,l,m = - µZ 2 2n 2 - π 5 Z a +∞ 0 R 2 n,l (r) r dr × (-1) m (l + 1 2 ) 5 π   l l 2 0 0 0     l l 2 -m m 0   = - µZ 2 2n 2 - Z a × (-1) m (l + 1 2 )   l l 2 0 0 0     l l 2 -m m 0   +∞ 0 R 2 n,l (r) r dr. (17) 
As expected, the spherical symmetry is broken: an (l, |m|)-dependency is introduced in the perturbed eigenvalues. In Tab.2, we provide the first order eigenvalues, which can be useful for basis set truncation purposes. We note that, at first order, degeneracy is not completely lifted, as for example, E 4,0,0 = E 4,3,±2 . If we factorize by the zero order energy, we see that the relative, first order corrections are all proportional to µ 2 Z 2 a .

Table 2: First-order corrected energies (up to n=4). For every pairs, (n, l), the sum over m ∈ {-l, -l + 1, • • • , l -1, l} of the first order corrections is zero. The spacing between the energies does not follow any scale, only the order between the levels is respected. A similar observation can be made for the first order corrected eigenfunctions,

l = 0 l = 1 l = 2 l = 3 E 4,1,±1 = -µZ 2 32 + µ 3 Z 4 1920a E 4,2,±2 = -µZ 2 32 + µ 3 Z 4 6760a E 4,3,±3 = -µZ 2 32 + µ 3 Z 4 16128a n = 4 E 4,0,0 = -µZ 2 32 E 4,3,±2 = -µZ 2 32 E 4,3,±1 = -µZ 2 32 -µ 3 Z 4 26880a E 4,3,0 = -µZ 2 32 -µ 3 Z 4 20160a E 4,2,±1 = -µZ 2 32 -µ 3 Z 4 13440a E 4,2,0 = -µZ 2 32 -µ 3 Z 4 6760a E 4,1,0 = -µZ 2 32 -µ 3 Z 4 960a ....
E 3,1,±1 = -µZ 2 18 + µ 3 Z 4 810a E 3,2,±2 = -µZ 2 18 + µ 3 Z 4 2835a n = 3 E 3,0,0 = -µZ 2 18 E 3,2,±1 = -µZ 2 18 -µ 3 Z 4 5670a E 3,2,0 = -µZ 2 18 -µ 3 Z 4 2835a E 3,1,0 = -
E 2,1,±1 = -µZ 2 8 + µ 3 Z 4 240a n = 2 E 2,0,0 = -µZ 2 8 E 2,1,0 = -µZ 2 8 -µ 3 Z 4 120a ....
ψ n,l,m = ψ (0) n,l,m + (n ,l ) =(n,l) -π 5 Z a ψ (0) n ,l ,m | Y 2,0 (θ,φ) r 3 |ψ (0) n,l,m E (0) n,l,m -E (0) n ,l ,m ψ (0) n ,l ,m = ψ (0) n,l,m + (n ,l ) =(n,l) -Z a +∞ 0 R n ,l (r)R n,l (r) r dr × (-1) m (l + 1 2 )(l + 1 2 )   l l 2 0 0 0     l l 2 -m m 0   -µZ 2 2n 2 + µZ 2 2n 2 ψ (0) n ,l ,m = ψ (0) n,l,m + (n ,l ) =(n,l) 2n 2 n 2 aµZ(n 2 -n 2 ) (-1) m (l + 1 2 )(l + 1 2 )   l l 2 0 0 0     l l 2 -m m 0   +∞ 0 R n ,l (r)R n,l (r) r dr ψ (0) n ,l ,m , (18) 
the radial integral being proportional to µ 3 Z 3 (because of the 1 r 3 -term, as it appears when one makes the change of variables x = 2µZr), all the coupling coefficients in the expansion are proportional to µ 2 Z 2 a . Here also, the potentially divergent terms in the expansion, due to the degeneracy of the zero th order eigenvalues for a given n in the denominators, can be excluded since the corresponding numerators cancel out for the same reason that makes the first order matrix, Eq.( 15 Table 3: First-order corrected wave functions, ordered in increasing energy eigenvalue up to n=3 (in Appendix we provide a more comprehensive table up to n=7, "i-orbitals").

n = l = 0 m = 0 ψ 1,0,0 = ψ (0) 1,0,0 + √ 5 5aµZ n >2 1 1-1 n 2 +∞ 0 R n ,2 (r)R 1,0 (r) r dr ψ (0) n ,2,0 = ψ (0) 1,0,0 + µ 2 Z 2 a √ 6 480 ψ (0) 3,2,0 + 104 28125 ψ (0) 4,2,0 + 5 √ 14 6804 ψ (0) 5,2,0 + 5744 √ 21 12353145 ψ (0) 6,2,0 + 3299 √ 21 8847360 ψ (0) 7,2,0 + • • • n = l = 0 m = 0 ψ 2,0,0 = ψ (0) 2,0,0 + 4 √ 5 5aµZ n >2 1 1-4 n 2 +∞ 0 R n ,2 (r)R 2,0 (r) r dr ψ (0) n ,2,0 = ψ (0) 2,0,0 -µ 2 Z 2 a 32 √ 3 9375 ψ (0) 3,2,0 + 2 √ 2 1215 ψ (0) 4,2,0 + 3680 √ 7 7411887 ψ (0) 5,2,0 + 29 √ 42 215040 ψ (0) 6,2,0 + 63584 √ 42 645700815 ψ (0) 7,2,0 + • • • n = l = 1 m = 0 ψ 2,1,0 = ψ (0) 2,1,0 + 8 5aµZ n >2 1 1-4 n 2 +∞ 0 R n ,1 (r)R 2,1 (r) r dr ψ (0)
n ,1,0 

+ 12 √ 21 35aµZ n >3 1 1-4 n 2 +∞ 0 R n ,3 (r)R 2,1 (r) r dr ψ (0) n ,3,0 = ψ (0) 2,1,0 + µ 2 Z 2 a 192 3125 ψ (0) 3,1,0 + 56 √ 10 6075 ψ (0) 4,1,0 + 8768 √ 5 1058841 ψ (0) 5,1,0 + 201 √ 35 89600 ψ (0) 6,1,0 + 2926784 √ 14 1076168025 ψ (0) 7,1,0 + • • • + µ 2 Z 2 a 8 √ 10 14175 ψ (0) 4,3,0 + 512 √ 5 823543 ψ (0) 5,3,0 + 123 √ 10 358400 ψ (0) 6,3,0 + 541184 √ 3 1076168025 ψ (0) 7,3,0 + • • • n = l = 1 m = ±1 ψ 2,1,±1 = ψ (0) 2,1,±1 - 4 5aµZ n >2 1 1-4 n 2 +∞ 0 R n ,1 (r)R 2,1 (r) r dr ψ (0) n ,1,±1 + 12 √ 14 35aµZ n >3 1 1-4 n 2 +∞ 0 R n ,3 (r)R 2,1 (r) r dr ψ (0) n ,3,±1 = ψ (0) 2,1,±1 -µ 2 Z 2 a 96 3125 ψ (0) 3,1,±1 + 28 √ 10 6075 ψ (0) 4,1,±1 + 4384 √ 5 1058841 ψ (0) 5,1,±1 + 201 √ 35 179200 ψ (0) 6,1,±1 + 1463392 √ 14 1076168025 ψ (0) 7,1,±1 + • • • + µ 2 Z 2 a 16 √ 15 42525 ψ (0) 4,3,±1 + 512 √ 30 2470629 ψ (0) 5,3,±1 + 41 √ 15 179200 ψ (0) 6,3,±1 + 541184 √ 2 1076168025 ψ (0) 7,3,±1 + • • • n = l = 0 m = 0 ψ 3,0,0 = ψ (0) 3,0,0 + 27 √ 5 35aµZ n >3 1 1-9 n 2 +∞ 0 R n ,2 (r)R 3,0 (r) r dr ψ (0) n ,2,0 = ψ (0) 3,0,0 -µ 2 Z 2 a 792 √ 3 588245 ψ (0) 4,2,0 + 45 √ 42 229376 ψ (0) 5,2,0 + 656 √ 7 2066715 ψ (0) 6,2,0 + 1809 √ 7 7812500 ψ (0) 7,2,0 + • • • n = l = 1 m = 0 ψ 3,1,0 = ψ (0) 3,1,0 + 18 5aµZ n >1 n =3 1 1-9 n 2 +∞ 0 R n ,1 (r)R 3,1 (r) r dr ψ (0) n ,1,0 + 27 √ 21 35aµZ n >3 1 1-9 n 2 +∞ 0 R n ,3 (r)R 3,1 (r) r dr ψ (0) n ,3,0 = ψ (0) 3,1,0 + µ 2 Z 2 a -192 3125 ψ (0) 2,1,0 + 60288 √ 10 2941225 ψ (0) 4,1,0 + 231 √ 5 16384 ψ (0) 5,1,0 + 35648 √ 35 10333575 ψ (0) 6,1,0 + 310191 √ 14 78125000 ψ (0) 7,1,0 + • • • -µ 2 Z 2 a 10368 √ 10 20588575 ψ (0) 4,3,0 + 81 √ 5 458752 ψ (0) 5,3,0 + 128 √ 10 3444525 ψ (0) 6,3,0 + 567 √ 3 39062500 ψ (0) 7,3,0 + • • • n = l = 1 m = ±1 ψ 3,1,±1 = ψ (0) 3,1,±1 - 9 5aµZ n >3 1 1-9 n 2 +∞ 0 R n ,1 (r)R 3,1 (r) r dr ψ (0) n ,1,±1 + 27 √ 14 35aµZ n >3 1 1-9 n 2 +∞ 0 R n ,3 (r)R 3,1 (r) r dr ψ (0) n ,3,±1 = ψ (0) 3,1,±1 + µ 2 Z 2
√ 2 39062500 ψ (0) 7,3,±1 + • • • n = l = 2 m = 0 ψ 3,2,0 = ψ (0) 3,2,0 + 9 √ 5 5aµZ n >0 n =3 1 1-9 n 2 +∞ 0 R n ,0 (r)R 3,2 (r) r dr ψ (0)
n ,0,0

+ 18 7aµZ n >3 1 1-9 n 2 +∞ 0 R n ,2 (r)R 3,2 (r) r dr ψ (0)
n ,2,0 (in harmonic quantum level n vib ). Hence, it is hoped that these approximate eigenstates could be appropriate to describe the electron density of the effective electronic

+ 54 √ 5 35aµZ n >4 1 1-9 n 2 +∞ 0 R n ,4 (r)R 3,2 (r) r dr ψ (0) n ,4,0 = ψ (0) 3,2,0 + µ 2 Z 2 a - √ 6 480 ψ (0) 1,0,0 + 32 √ 3 9375 ψ (0) 2,0,0 + 128 √ 6 1764735 ψ (0) 4,0,0 + 5 √ 30 196608 ψ (0) 5,0,0 + 32 295245 ψ (0) 6,0,0 + 392 √ 42 29296875 ψ (0) 7,0,0 + • • • + µ 2 Z 2 a 13824 √ 6 4117715 ψ (0) 4,2,0 + 675 √ 21 802816 ψ (0) 5,2,0 + 9472 √ 14 14467005 ψ (0) 6,2,0 + 7371 √ 14 15625000 ψ (0) 7,2,0 + • • • + µ 2 Z 2 a 135 √ 105 1605632 ψ (0) 5,4,0 + 512 √ 42 4822335 ψ (0) 6,4,0 + 7749 √ 231 214843750 ψ (0) 7,4,0 + • • • n = l = 2 m = ±1 ψ 3,2,±1 = ψ (0) 3,2,±1 + 9 7aµZ n >3 1 1-9 n 2 +∞ 0 R n ,2 (r)R 3,2 (r) r dr ψ (0) n ,2,±1 + 9 √ 6 7aµZ n >4 1 1-9 n 2 +∞ 0 R n ,4 (r)R 3,2 (r) r dr ψ (0) n ,4,±1 = ψ (0) 3,2,±1 + µ 2 Z 2 a 6912 √ 6 4117715 ψ (0) 4,2,±1 + 675 √ 21 1605632 ψ (0) 5,2,±1 + 4736 √ 14 14467005 ψ (0) 6,2,±1 + 7371 √ 14 31250000 ψ (0) 7,2,±1 + • • • + µ 2 Z 2 a 675 √ 14 3211264 ψ (0) 5,4,±1 + 512 √ 35 4822335 ψ (0) 6,4,±1 + 7749 √ 770 429687500 ψ (0) 7,4,±1 + • • • n = l = 2 m = ±2 ψ 3,2,±2 = ψ (0) 3,2,±2 -18 √ 5 35aµZ n >3 1 1-9 n 2 +∞ 0 R n ,2 (r)R 3,2 (r) r dr ψ (0) n ,2,±2 + 9 √ 3 7aµZ n >4 1 1-9 n 2 +∞ 0 R n ,4 (r)R 3,2 (r) r dr ψ (0) n ,4,±2 = ψ (0) 3,2,±2 -µ 2 Z 2 a 13824 √ 6 4117715 ψ (0) 4,2,±2 + 675 √ 21 802816 ψ (0) 5,2,±2 + 9472 √ 14 14467005 ψ (0) 6,2,±2 + 7371 √ 14 15625000 ψ (0) 7,2,±2 + • • • + µ 2 Z 2 a 675 √ 7 3211264 ψ ( 
Hamiltonians solved in the EN-MFCI method [START_REF] Cassam-Chenaï | ??A920125022015[END_REF] .

Although the model Hamiltonian depends upon 3 parameters, µ, Z, and a, its first order approximate eigenstates are parametrized by only two independent ones. They can conveniently be chosen as, c = µZ and b = µZ a . Furthermore, since the product b × c factorizes the first order perturbative term in the approximate DHOs expansion, Eq.( 18), we propose to just add the functions made of these corrective terms to standard basis sets, and leave it to molecular orbital calculations to optimize their linear combination with the other orbitals.

More precisely, instead of using ψ n,l,m (b, c) of Eq.( 18) (making explicit the dependency upon the free parameters), we propose to use

ψ (1) n,l,m (c) b • c = (-1) m 16n 2 l + 1 2 (n ,l ) =(n,l) n 2 (n 2 -n 2 ) l + 1 2   l l 2 0 0 0     l l 2 -m m 0   +∞ 0 R n ,l (x)R n,l (x) x dx ψ (0) n ,l ,m (c), (19) 
which only depends upon c through the ψ An important issue is to calculate efficiently multicenter integrals involving the χ i 's and

DHO

(1) j 's orbitals, the former being usually GTOs and the latter ETOs. We will adopt a strategy similar to that of the SMILES module 14 , optionally included in the MOLPRO quantum chemistry package 15 to deal with STOs. That is to say, the DHO (1) 's will be transformed into an GTO-expansion, as also in Ref. [START_REF] Shaw | [END_REF] . However, different Cartesian prefactors will be mixed in the GTO-expansion of a given DHO. The BDF code [17][18][19] has been modified to accept contracted GTO having such mixed Cartesian prefactors. Full computational details will be provided in the second paper of this series 20 . Note that, a recently proposed, alternative strategy could be considered in the future 21 .

A hyperbolic cosine factor can be associated to ETO to provide a "double zeta" character to a minimal basis set 22 . This can be considered for DHO, as well. However, it seems more natural within our framework to combine different sets of DHO corresponding to atoms in different ionization states, to obtain multi-zeta basis sets. This last option preserves the desirable property for the DHOs to have associated energy eigenvalues, which can be used for truncation purposes.

Beside their application to the EN-MFCI method, which will be investigated in the next paper of the series, DHOs could also be useful for "clamped nuclei" quantum chemistry calculations, as they can be regarded as naturally "sp-hybridized" (unlike spherical harmonics STO). Actually, one could develop other model Hamiltonian distorted from spherical symmetry in more than one direction and obtain their first order approximate eigenfunctions by following the approach presented in this paper. For example, generalization of our con- Appendix: First order corrected eigenstates up to n=7

n = 1 E 0 1 = -µZ 2 2 l = 0 E 1 1,0,0 = 0 n = 2 E 0 2 = -µZ 2 8 l = 0 E 1 2,0,0 = 0 l = 1 E 1 2,1,0 = -µ 3 Z 4 120a E 1 2,1,±1 = µ 3 Z 4 240a n = 3 E 0 3 = -µZ 2 18 l = 0 E 1 3,0,0 = 0 l = 1 E 1 3,1,0 = -µ 3 Z 4 405a E 1 3,1,±1 = µ 3 Z 4 810a l = 2 E 1 3,2,0 = -µ 3 Z 4 2835a E 1 3,2,±1 = -µ 3 Z 4 5670a E 1 3,2,±2 = µ 3 Z 4 2835a n = 4 E 0 4 = -µZ 2 32 l = 0 E 1 4,0,0 = 0 l = 1 E 1 4,1,0 = -µ 3 Z 4 960a E 1 4,1,±1 = µ 3 Z 4 1920a l = 2 E 1 4,2,0 = -µ Z 6720a E 1 4,2,±1 = -µ Z 13440a E 1 4,2,±2 = µ Z 6720a l = 3 E 1 4,3,0 = -µ 3 Z 4 20160a E 1 4,3,±1 = -µ 3 Z 4 26880a E 1 4,3,±2 = 0 E 1 4,3,±3 = µ 3 Z 4 16128a n = 5 E 0 5 = -µZ 2 50 l = 0 E 1 5,0,0 = 0 l = 1 E 1 5,1,0 = -µ 3 Z 4 1875a E 1 5,1,±1 = µ 3 Z 4 3750a l = 2 E 1 5,2,0 = -µ 3 Z 4 13125a E 1 5,2,±1 = -µ 3 Z 4 26250a E 1 5,2,±2 = µ 3 Z 4 13125a l = 3 E 1 5,3,0 = -µ 3 Z 4 39375a E 1 5,3,±1 = -µ 3 Z 4 52500a E 1 5,3,±2 = 0 E 1 5,3,±3 = µ 3 Z 4 31500a l = 4 E 1 5,4,0 = -µ 3 Z 4 86625a E 1 5,4,±1 = -17µ 3 Z 4 1732500a E 1 5,4,±2 = -2µ 3 Z 4 433125a E 1 5,4,±3 = µ 3 Z 4 247500a E 1 5,4,±4 = µ 3 Z 4 61875a n = 6 E 0 6 = -µZ 2 72 l = 0 E 1 6,0,0 = 0 l = 1 E 1 6,1,0 = -µ 3 Z 4 3240a E 1 6,1,±1 = µ 3 Z 4 6480a l = 2 E 1 6,2,0 = -µ 3 Z 4 22680a E 1 6,2,±1 = -µ 3 Z 4 45360a E 1 6,2,±2 = µ 3 Z 4 22680a l = 3 E 1 6,3,0 = -µ 3 Z 4 68040a E 1 6,3,±1 = -µ 3 Z 4 90720a E 1 6,3,±2 = 0 E 1 6,3,±3 = µ 3 Z 4 54432a l = 4 E 1 6,4,0 = -µ 3 Z 4 149688a E 1 6,4,±1 = -17µ 3 Z 4 2993760a E 1 6,4,±2 = -µ 3 Z 4 374220a E 1 6,4,±3 = µ 3 Z 4 427680a E 1 6,4,±4 = µ 3 Z 4 106920a l = 5 E 1 6,5,0 = -µ 3 Z 4 277992a E 1 6,5,±1 = -µ 3 Z 4 308880a E 1 6,5,±2 = -µ 3 Z 4 463320a E 1 6,5,±3 = -µ 3 Z 4 2779920a E 1 6,5,±4 = µ 3 Z 4 463320a E 1 6,5,±5 = µ 3 Z 4 185328a n = 7 E 0 7 = -µZ 2 98 l = 0 E 1 7,0,0 = 0 l = 1 E 1 7,1,0 = -µ 3 Z 4 5145a E 1 7,1,±1 = µ 3 Z 4 10290a l = 2 E 1 7,2,0 = -µ 3 Z 4 36015a E 1 7,2,±1 = -µ 3 Z 4 72030a E 1 7,2,±2 = µ 3 Z 4 36015a l = 3 E 1 7,3,0 = -µ 3 Z 4 108045a E 1 7,3,±1 = -µ 3 Z 4 144060a E 1 7,3,±2 = 0 E 1 7,3,±3 = µ 3 Z 4 86436a l = 4 E 1 7,4,0 = -µ 3 Z 4 237699a E 1 7,4,±1 = -17µ 3 Z 4 4753980a E 1 7,4,±2 = -2µ 3 Z 4 1188495a E 1 7,4,±3 = µ 3 Z 4 679140a E 1 7,4,±4 = µ 3 Z 4 169785a l = 5 E 1 7,5,0 = -µ 3 Z 4 441441a E 1 7,5,±1 = -µ 3 Z 4 490490a E 1 7,5,±2 = -µ 3 Z 4 735735a E 1 7,5,±3 = -µ 3 Z 4 4414410a E 1 7,5,±4 = µ 3 Z 4 735735a E 1 7,5,±5 = µ 3 Z 4 294294a l = 6 E 1 7,6,0 = -µ Z 735735a E 1 7,6,±1 = -µ Z 792330a E 1 7,6,±2 = -µ Z 1030029a E 1 7,6,±3 = -µ Z 2060058a E 1 7,6,±4 = µ Z 5150145a E 1 7,6,±5 = µ Z 936390a E 1 7,6,±6 = µ Z 468195a
Table 4: Zero order eigenvalues and first order corrections up to n=7 

n = 1 < 100|320 >=
n,l,m =

(n ,l ) =(n,l)

< n l m|nlm > µ 2 Only positive m-values are tabulated, their negative counterparts giving the same coupling coefficients. Note that, all numbers being real, < n l m|nlm >=< nlm|n l m >

  non zero, and, (iii) n > l . The allowed quantum number values are summed up in Tab.1.

  n can be expanded as a linear combination of generalized Laguerre polynomial L 2l +1 i 2µZr n with i ≤ n -l -3. All these polynomials are orthogonal to L 2l +1 n-l -1 2µZr n for the mesure 2µZr n (2l +1) exp -2µZr n which is proportional

  ), diagonal. The first terms in the expansion of the lowest eigenfunctions are given in Tab. 3. Isodensity surfaces of the density functions corresponding to these eigenfunctions are displayed in Figs. 1 to 10. They shows isosurfaces belonging sometimes to different homology groups for different density values, which give an idea of the repartition of the electronic charge as it becomes more and more concentrated. The parameter c := µ × Z, which controls how diffuse the unperturbed hydrogenoid orbitals are, is set to 1. The parameter b := µ×Z a , which tunes the intensity of the distorsion with respect to spherical symmetry, takes two values: b = 1 close to the no distorsion case (b = 0), and b = 32 for which the effect of the perturbed potential becomes clearly apparent. The perturbed 1s orbital, Fig. 1 for example, becomes elongated along the Coulomb potential spreading axis, as one expects. The variations for other orbitals are sometimes less intuitive.

  ,±2 + • • • 4 Application to quantum chemical calculations In the previous section, we have obtained first order perturbative corrections to the eigenfunctions of a smeared Coulomb potential along an arbitrary axis. Such a potential can represent the average potential felt by an electron bounded to a vibrating nucleus of effective charge Z, effective reduced mass µ and effective classical vibrating amplitude equal to 2n vib +1 2a

  coefficients in the occupied molecular orbitals, obtained for example in a HF calculation, implicitly determine the corresponding coefficient products, b • c, and consequently, if c is given, the free parameters b. For instance, in H 2 , there is only one occupied HF orbital of the form, ψ 1 = i u i χ i + j v j DHO (1) j where the χ i 's are standard basis functions, and the DHO (1) j are various DHOs on different centers and/or different quantum numbers, indexed by j. The u i , v j 's are scalar coefficients. One can avoid the explicit optimization of the b j • c j values for each DHO j (c j ), and just use the v j 's values.
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 123457810 Figure 1: Comparison of hydrogen smeared Coulomb potential 1s orbital squared density levels.
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	n = 1	E 1,0,0 = -µZ 2 2

Table 5 :

 5 Non-zero, first order coupling coefficients up to n=7 in µ 2

	units,
	Z 2	a
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