N
N

N

HAL

open science

Next (GGeneration of Airborne Platforms: From
Architecture Design to Sensors Scheduling
Ludovic Grivault, Amal El Fallah-Seghrouchni, Raphaél Girard-Claudon

» To cite this version:

Ludovic Grivault, Amal El Fallah-Seghrouchni, Raphaél Girard-Claudon. Next Generation of Airborne
Platforms: From Architecture Design to Sensors Scheduling. ICA 2017 - 2nd IEEE International

Conference on Agents, Jul 2017, Beijing, China. hal-01539119v1

HAL Id: hal-01539119
https://hal.science/hal-01539119v1
Submitted on 14 Jun 2017 (v1), last revised 13 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01539119v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Preliminary Version

Next Generation of Airborne Platforms
From Architecture Design to Sensors Scheduling

Ludovic Grivault

Thales Airborne Systems
Paris, France
ludovic.grivault@lip6.fr

Abstract—Airborne platforms such as Remote Piloted Aircraft
Systems (RPAS) are operating in highly critical contexts. The
next generation of RPAS will be endowed with multifunction
sensors (i.e. each sensor offers a large panel of functions to the
platform’s manager during the mission). As a platform, RPAS
carry out a wide collection of complex tasks, thanks to the
interleaving of the various services of sensors. The sensors are
in charge of collecting data from the environment. In this paper,
we aim to design a system as a software medium layer between
the platform manager and the hardware resources on board
of the airborne platform (i.e. multifunction sensors). Today, the
requirements of the platform in terms of autonomy, modularity,
robustness and reactivity as well as the industrial constraints call
for the design of a new multifunction system architecture. Such
a design may rely on multi-agent paradigm since it is modular
by design and the agents naturally bring autonomy and pro-
activity to the system. This paper presents new and original
contributions: (1) an original agentification of the system in the
form of a multi-agent architecture that captures the dynamic of
the environment by creating tactical objects (i.e. agents) that may
appear in the mission theater; (2) agents that generates a plan of
tasks according to the resources (e.g. the sensors) he needs; (3)
a scheduler that handles the plans of tasks issued by the agents
in order to provide an efficient scheduling of sensors.

Index Terms—Sensor Suite; Autonomous System; RPAS;
Multi-agent Systems; Multi-function; Agent.

I. THE CONTEXT

Nowadays, airborne platforms are used worldwide as a
strategic asset during different kinds of operations including
conflicts, surveillance and rescue. These operations occur in
highly dynamic environments with a low predictability under
scenarios combining up to a thousand entities. The involved
entities all have their own behaviors, speeds and trajectories.
In this context, onboard instruments (i.e. sensors) allow the
platform, hence the mission manager, to collect knowledge
from the field.

Throughout the years, sensors have become complex sy-
stems, multinational, able to share data, communicate and,
since recently, collaborate. Sensors are all specific to various
physical dimensions (electromagnetic at different wavelengths,
optics, infrared, etc.) and different range (few meters to
hundreds of kilometers, shallow to wide angles, etc.). Because
of this variety, collaboration between sensors allows to deduce
new data concerning the environment by overlapping outputs
coming from many sensors. In this article, we will study the

Amal El Fallah-Seghrouchni

Laboratoire d’Informatique de Paris 6 Laboratoire d’Informatique de Paris 6
Paris, France

amal.elfallah @lip6.fr

Raphaél Girard-Claudon
Thales Airborne Systems
Elancourt, France
raphael.girard-claudon @ fr.thalesgroup.com

management of resources onboard Remote Piloted Aircraft
Systems (RPAS). Our approach aims to design a suitable
architecture to deal with resources, i.e. various sensors in our
target application. We adopt the multi-agent paradigm by using
an agent-based architecture for the multi-sensor and multi-
function system [1], [2]. We will show in this article how the
sensors’ cooperation and coordination can by ensured by the
multi-agent architecture and a temporal scheduling.

The evolution of battlefields due to many factors, including
new technologies and conflicts’ transformation, leads to emer-
ging needs [3]. These needs directly impact the development of
airborne platforms and thus of Multi-Sensor Systems (MSS).
On the one hand, new operating conditions imply the use of
autonomous platforms with advanced flexibility and multirole
capabilities [4]. On the other hand, the technologies’ fast
evolution together with the cost reduction objective entail
industries to develop more reliable and durable systems [5].
Sensors carried by RPAS are now able to perform a large panel
of functions such as image acquisition, spectrum analysis, and
object tracking [6]. All these sensors play a major role in
operation and their optimization has become essential.

From a MSS point of view, the orthogonal constraints cited
earlier (i.e. low cost versus high autonomy) lead to look for
a new architecture able to enhance the MSS’ autonomy and
resilience while optimizing the sensors’ use [1].

This paper presents new and original contributions: (1)
a multi-agent architecture that captures the dynamic of the
environment by creating tactical agents that may appear in the
mission theater which corresponds to an original agentification
of the system; (2) each agent generates a plan of tasks accor-
ding to the resources he needs, namely the sensors; (3) our
scheduler that handles the plans of tasks issued from the agents
in order to provide an efficient scheduling of sensors. The
coordination of the sensors is then supported by a scheduling
mechanism in order to satisfy the requirements of the mission
and the platform in a hardly-constrained environment.

Our paper goes on to present a realistic scenario (cor-
responding to real systems conditions) and shows, through
simulations, how the multi-agent system evolves and how our
scheduling manages the agents’ plans of tasks in a realistic
mission theater.

This paper is organized as follows: section 2 presents the re-

Preliminary Version

lated work and emphasizes the originality of our contributions.
Section 3 presents our framework including the multi-agent
architecture we propose for the design of the next generation
of airborne platforms; section 4 details the scheduling mecha-
nism; section 5 provides our experimental results based on
the scenario given by our industrial partner. Finally section 6
concludes this paper and presents our perspectives.

II. RELATED WORK

Agent-based online architectures are currently used within
many Airports’ Air Traffic Controllers (ATC) [7], [8]. These
agent ATC architectures demonstrated the advantages
brought by agents in term of autonomy. Objectives of ATC
are about to control the traffic in geographical areas [9].
This task is usually done by a human operator who can be
potentially overburdened depending on area attendance [10].
In this context, agents can be used to follow the location of
aircraft in a geographical area and assist/alert the operator
along different situations. In ATC, agents are mainly used
as secondary operators assisting the main system’s user with
automatic treatment, discharging the operator from a certain
workload. ATCs have many constraints in common with
a MSS, especially complex visualization of the field, data
overloads, high criticality and low delays. The fundamental
difference between ATC and MSS lies in the presence of
the sensors. Sensors in this kind of airborne platforms are
highly complex instruments, continuously expecting precise
requests to work (time, orientation, duration, power, tracking
movements, etc.). Furthermore, all requests, treatments and
products should be treated in a real-time manner, leading to a
highly responsive and predictive sensors’ behaviors.

Driving sensors through a multi-agent system was studied
before in the context of sensor-mission assignment [11]. In
this previous architecture, sensors were agentified and sharing
missions which were given by a mission manager. In our
system, the MSS is also generating sensors plans by analyzing
the data coming from the field and making sensors plans in
consequence. This feature leads the MSS to support low-level
sensors’ requirements as well as high-level autonomy goals
simultaneously. From a scheduling point of view, our scheduler
manages plans of tasks feasible in a particular time window.
Each task is specified by precedence and duration constraints.
The plans are weighted by a priority coefficient operationally
determined and the industrial need requires to take principally
this coefficient in input. In our architecture, the objective is
not to balance the use of resources since each task is dedicated
to one precise resource but to have all priority plans scheduled
at the end of the scheduling process. This approach is quite
different from the literature of scheduling which is principally
centered on sharing divisible tasks with dynamic priority in
order to distribute them on resources in an optimized way.

III. THE MSS FRAMEWORK

At first sight, the MSS acts as an interface between the
Mission Manager and the sensors’ apertures set. The MSS
helps to provide high-autonomy features as well as an accurate

control of sensors and efficient use of limited available re-
sources (sensors’ apertures, power, cooling, computing power,
etc.) [12]. To realize this MSS, we will resort to a multi-agent
architecture since the agents are suitable to bring the flexibility
and the autonomy required by the MSS. The following section
will describe our proposed architecture given in Fig. 1b as well
as the inputs and outputs of our MSS architecture.

Between high-level decisions and sensor management,
agents play an important role in the MSS’ architecture.

A. Agent Design

One of the most important contributions of our architecture
is the conceptual meaning of the agents. Indeed, in the MSS,
agents are not additional software mission managers but virtual
instances of the field objects. Agents have a unique objective:
collect as much data as possible about a unique field object
through the use of sensors in order to fulfill high-level orders.
To achieve his goal, an agent will try to select and execute one
of the available functions on the NGAP. In practice, a function
will rely on a pre-compiled plan of tasks while the local
scheduler is in charge of time instantiation (tasks durations,
deadlines, etc.). In our framework each task is associated with
a resource and sensors are assimilated to material resources.

Please refer to the article [1] for more details about agent’s
design and MSS architecture. The agent’s design is shown
on fig. 1a. Tactical agents are equipped with communication
modules, memory and a core. They have a double role:
creating high-level sensors’ objectives and generating sensors
plans.

B. Generic Tactical Agents

Agents are generic when created, meaning that they are all
able to instantiate various available plans of tasks at the system
birth. Agents become specialized along the platform flight
after receiving data about the corresponding field object. It
should be specified that the MSS can detect an object without
knowing neither which kinds of object it is nor the object’s
position. Therefore, it should also be specified that all sensors
cannot be used with all kind of object. In case the agent is not
specified because of a weak data feeding, available functions
for this agent would refer to a very large set of sensors. When
knowledge about this object expands, functions become more
specific and more precise to this kind of agent.

Each agent is the mirror of an actual object from the
field. This approach creates a complete matching between
the tactical situation and the agents’ group. This connection
between the agents and field objects brings many advantages:

o A natural virtual embedded vision of the field with a
network of active objects.

o An easy access to behavior analysis and learning functi-
ons versus in-field unexpected events.

o A strong modularity of development.

o A high autonomy of the MSS provided by the agents’
proactiveness.

« An easy modeling of an open system with objects that
appear or disappear dynamically.

Preliminary Version

[Airborne Platform] [

Mission Manager

AGENT’S ENVIRONMENT
Orders &

Policies MSS Qutput

ENT

High Level Requests
Tactical Data
Policies

T
— —— Agents Data
Requests to MM
|

Agent

COMMUNICATIONS
MEMORY

FUNCTION CHOICE

Operationnal & Functionnal Objectives
Plans Descriptions

1 Function Selection ‘

I
Functionnal Objectives Plan

Agent's

Operational
knowledge

Platform’s

data PROCESS

} Local Scheduler
- I
Sensors’ Plans

h 4

Data

Selected functions

Global Scheduler

1
|
|
|
|
|
|
|
|
|
|
CORE |
|
|
|
|
|
|
|
|
|
|
|

SENSOR PLAN
PROCESS

Sensors’
knowledge I,

Field data

Global S'chedu]e
A

i
Resources |

It

\ \
p

Drivers |
i

Antenna

v . 3 ‘I/
Sensors’ plans Hardware |

\
I

(a) Agent’s Design

Radio Optical Optical
Emitter Acquisition

Radio Optical Optical
Emitter Acquisition Processin; |
Sensor Head

{ T][][e

Solid State Emit

Sensor Head
Optical Acq

(b) SMS Agent-Based Architecture

Fig. 1: The Agent’s Design and Agent-based MSS Architecture.

o A first step for a full decentralized tactical situation
architecture.

Representing the tactical situation by agents brought us to
call them the tactical agents.

From the operational point of view, all field’s objects
possess a specific degree of interest for sensors. For instance, a
highly critical or dangerous object on the field would naturally
lead to a proportional use of sensors to gather knowledge about
this object. The closed control loop achieves this autonomy
objective with the implication of agents. The objects’ degree
of interest is described by the priority level of the agent. The
agent’s priority is a score based on operational rules. The plan
priority is set when created by an agent and equals the priority
of this agent. This means each plan received by the scheduler
have a priority linked to the operational interest of real objects.

C. The Multi-Agent System Evolution

At the system’s start-up, the set of agents is almost empty.
Only a special kind of agent is present in the Multi-Agent
System (MAS) and represents the RPAS. This agent has access
to functions such as watching (i.e. vigil mode) and objects
search. In fact, this agent acts as a bootstrap for the initial
set of agents: the RPAS agent plans functions which lead to
the discovery of new objects, hence to the creation of new
agents. A freshly created agent has a potential depending on
the data already collected. During detection of the object and
so creation of the agent, enough data can be already seized
and completely specify the agent (e.g. if the agent was created
after taking a high-resolution picture).

IV. SCHEDULING
A. MSS Efficiency

The efficiency of the MSS relies on the consistency of
achieved tasks according to environment’s parameters:

Events from the field (e.g. weather changes).

Platform condition (e.g. platform’s speed and attitude).
MSS state (e.g. sensor failure).

Field objects’ behaviors (e.g. object’s appearance or atti-
tude changes).

Operators’ instructions (e.g. specific operating policies
given by different operators).

The highest efficiency is reached if the MSS collected the
maximum volume of significant information about the field
regarding all the previous parameters.

To answer these constraints, one solution is to attribute to
each agent a priority level. The agent’s priority reflects the
potential interest of the field object from an operational point
of view and hence allows a proportional access to sensors.

The great number of objects present on the field implies a
large quantity of sensors’ plans created by the agents. Many of
these plans can be insignificant from an operational point of
view. As an example, we can imagine a scenario in which
the platform is tracking an important object on the field
through the radar sensor, the importance of the object implies
a high level of priority. After sorting by priority order, all
the requests will not be achievable by the same sensor. A
part would be achieved by another one (e.g. camera sensor)
while the other part would be simply unachieved. In spite of
a partial realization of agents’ requests the resulting efficiency
is optimal in the given situation.

The determination of the agents’ priority level is an impor-
tant point of the scheduling consistency.

B. Plan of Tasks

Year after year, the number of functions (e.g. take a picture
or listen to signals on M-band) achievable by an MSS multip-
lied. Today, sensors allow to realize many different functions.
Each function is achieved through a specific plan of tasks.

Preliminary Version

A task is an indivisible action achieved by a resource. A
task can be identified as Ty, of duration Dy, and scheduled on
the timeline of a resource r;. The task is starting at t, and
finishing at t;+Dj. A plan of tasks is an ordered set of tasks
to achieve a sensor function (e.g. Take a picture requires the
use of two resources: a Optical camera and an Optical image
processing unit).

Fig. 2 represents a plan composed of 3 tasks, each of them
needing a distinct resource. This figure shows the asynchro-
nous and indivisible features of resources’ occupations. In fact,
the tasks 1 and 2 are starting and ending at the same time
while the task 3 is starting before the previous tasks’ end. The
resources are fully allocated during the tasks. The plan weight
is determined by agents and reflects the importance to execute
the plan at an operational level. Plan tasks and tasks directly
inherits the agent’s priority.

t. Pk Start PeEnd t4

Py / Task 3
ol i Py / Task 2

. Po/Taskl

Resources’ | [time

timelines '

Plan k

Fig. 2: A plan of tasks P, on 3 resources.

The plan Py, is defined such that Py, = {~,T;.,T4,C, T} where
v is the plan’s priority with v € N, T, the release time of
the plan, T; the plan’s execution deadline and C the set of
constraints which specifies the order of the set of tasks 7 =
{Th,T»,T5}.

C. Scheduler

The scheduler takes in input the plans issued by the agents
and the plans already scheduled on the timelines, their priori-
ties and define a global schedule. After sorting all the plans by
priority, the scheduler’s algorithm is calculating the start time
for each task contained within the plans. The result is a global
schedule constituted of interleaved tasks. This scheduling is
achieved for a temporal horizon Ty . The plans which were
not accepted within the temporal horizon are not scheduled
and will be processed later when the average priority of all
the plans will be lower. If a plan is not scheduled, the agent
is advised about the failure and is able to submit a new plan
on less busy resources. The scheduling algorithm is described
by the Algorithm 1.

Because our algorithm is scheduling plans one by one and
the industrial context requires to schedule the plans of the
highest priority in spite of the low-priority plans, the plans of
highest priority are scheduled in the first place.

The scheduling starts by sorting all the plans by priority.
The algorithm finds the starting date of each task of each plan
by checking the compatibility of the task with the tasks within
the global schedule. If the task is not compatible, the algorithm
shift the task’s start-time until the task is compatible. When
a start-time is found, the algorithm proceed the same way
with the next task of the same plan. If one of the tasks is not
compatible, the plan’s release time is shifted. If after shifting

the plan the release time is higher than the plan’s deadline,
the plan is abandoned and the owner (i.e. agent) is advised.
When all the tasks of the plan are scheduled and compatible,
the plan is sent to the global schedule and the next plan of
lower priority is entering the scheduler.

Algorithm 1: Scheduling Algorithm

Input: P the set of the whole plans of tasks
Output: t: the start time of each task T,, for each plan Py
Data: Ty : Temporal horizon

1 P <—sortPlansByPriority(P);
2 foreach Plan Pk of P do

3 while 3T, unscheduled € T N\ Pk.t, <Pk.tq do

4 foreach Tusk Tn of 7). do

5 T, .ts¢—precedence(C,);

6 while —isCompatible(T,,) ATp.ts <Tg do

7 if matchingConstraints(T,) then

8 | nextTaskOfThePlan(Pk);

9 else

10 |_ shift(T,,.ts); /% increment tg x/
11 if —isCompatible(T,,) then

12 |_ shift(Pk.t,.); /% increment t, x/
13 if 3T, unscheduled € Ty then

14 | abandon(Py); adviseAgent(“unplanned” ,ownersOf(Py));
15 else

16 |_ addToGlobalSchedule(Py,);

V. EXPERIMENTAL RESULTS
A. Scenario

Since test in real situations is complex and very expensive
to be achieved with this kind of platform and MSS, we im-
plemented this architecture and its environment in simulation.
Hence, we developed a special test scenario, able to show
the main decisions an operator takes during a mission. This
scenario gathers up to 10 steps where the platform is deployed
in different contexts with different criticality. Thanks to this
scenario we can now evaluate the behavior and the decisions
taken by our MSS architecture by simulation in operational
situations. Fig. 3 is the visualization of the main window of
the simulation engine.

The upper-left graphics show the simulation progres-
sion, platform situation and agents population statistics. The
downer-left graphics display the real-time tactical situation
generated by the simulation. This tactical situation is RPAS
subjective and shows only objects and data known by the
RPAS. Here, the tactical agent 4 (TA-4) is selected. On the
right part of the window, the real-time knowledge of the
selected agent is displayed. Each line represents knowledge
contained in the agent’s memory. An instant picture of this
knowledge map shows the precise progression of the agent in
the tactical context. In this simulation, knowledge is identified
by a key and a value. On the left part of the column are the
keys and on the left the values (e.g. PRIORITY is a key, 3 the
value).

Preliminary Version

The keys starting by TACT are knowledge specific to
tactical agents. On this knowledge map we can see with keys
TACT_GROUND, TACT_MOVING and TACT_EM_EMITTER
that the TA-4 is representing a static ground object emitting an
electromagnetic signal. The CURRENT_OO (operational ob-
jective) indicates the agent is trying to locate and identify the
matching object. The knowledge CURRENT_TACT_STATE
describes the current state of the tactical finite state machine
and shows that the agent is now waiting the end of execution
of the accepted plans pointed by the key ACCEPTED_PLANS.

The previous states of the visible tactical situation were
realized fully automatically and no human manipulations were
made. All the necessary data were embedded in the algorithms,
plans’ descriptions and tactical rules, as for a real platform du-
ring flight preparation. The simulation starts by the creation of
the RPAS agent, which is a particular derivation of the tactical
agent class. The RPAS goal is to build plans able to collect
data from the field in order to detect objects and instantiate
their matching agents. Once the RPAS created, many watching
plans were built and sent to the scheduler. The sensors worked
according to the plans and the produced data were sent to the
track merger. The track merger, after an analysis of the tactical
situation, created 3 agents corresponding to the sensors data.
The 3 tactical agents then generated sensors plans in order to
complete their tactical knowledge.

After many tasks, an objective is given to the platform:
search the object TST (i.e. Time Sensitive Target) in a parti-
cular area. After a while and many sensors tasks, the TST was
found as expected without human control on the MSS’ sensors.
Some functions were implemented to enhance the robustness
of the MSS including agent death and replication for avoiding
blocking agents situations. The MSS’ global behavior matched
our expectations during simulations and sensors’ tasks were
correctly scheduled. Work should be done to refine choices’

A, Tactical Situation View =] =
‘Window
rrrrrrrrrrr SIMULATION ENGINE-——— Agent TA-4 ID: 4
Time 00 hOO min 03 sec 67 centis, e A Y= —
[967] NOT_ACCEPTED_PLANS - [P-10 LOC_OMNI_PRECISE p3]
ATK
rrrrrrrrrrrrrrrrrr PLATFORM-—rrrrmrere |2
Alt. 1624.0m | |Pas: [13000,000;-60000,000;0,000]
Cap 0.0° | iSpd: [0,000,-0,000,0,000]
Spd, 2000 | lAng [-1,571,0,000,0,000]
| IMrg: [10 10, 10]
,,,,,,,,,,,,,,,,,,,, HCENTE e | nb of EM Emit.-1
Total 5 | BAODMHz - 0325 Vm
Active TA 3 CURRENT_0O : LOCATE_AND_IDENTIFY
NEXT_PLANIFY : 22630
----------------- AGENTS LIS Terrrrrerrcrre PING RECEIVED - frue
RPAS0 TACT_MOVING - falss
SA TACT_RECOGHIZED - true
A2 TACT_LOCALIZED_WIDELY - true
A3 COMPILED_PLANS - [P-10 LOC_OMNI_PRECISE p3 , P11 SAR_SPOT_R
Tad PING_ACK TO_ID - -1
N AGENT D 4
- TACT_LOCALIZED_PRECISELY - falss
T00km TACT_SPEED : 00
TACT TYPE : GROUND
il T TACT DETECTED - tue
SENT_PLANS : [P-11 SAR_SPOT_R p3 , P-10 LOG_OMNI_PRECISE p3 |
TACT SIDE : ENNEMY
LAST_DETECTED ; 458
R OLD_TACT_STATE : WAITING_FEEDBACK
@ SELF_TRAJECTORY : 480 positions [1001; 24050]
TACT_GROUND_LWL - true
CURRENT_FOS © [LOCATE_AND_IDENTIFY]
Traeens RUNNABLE_PLANS : [LOC_OMNI_PRECISE, SAR_SPQT_R, SAR_SPOT L
RPAS_TRAJECTORY : 480 pasttions [100 ; 24050]
TACT_EM_EMITTER : true
Taz<o ACCEPTED_PLANS : [P-11 SAR_SPOT R p3 |
® CURRENT_TACT_STATE - WAITING_PLAN_RESULT
PLANS_FEEDBACK : [P-11 SAR_SPOT_R p3 , P-10 LOG_OMNI_PRECISE
TACT_ARR - false
TACT_IDENTIFIED : false
<l TACT AGRESS : 0
PRIORITY : 3

Fig. 3: Visualization of simulator’s main frames.

models concerning agents’ plans, sensors’ behaviors, and
objects’ behaviors. Though, the modularity of the MSS is
improved by this architecture and the agent nature allows to
specify architecture characteristics block by block. Concerning
the system autonomy, the simulation showed the ability the
MSS has for managing high-level objectives depending on
its own observations, without other interventions from the
operator than specifying policies.

B. Experimentation

In this work we have conducted a set of experiments.
The plans to be scheduled came from the scenario des-
cribed in section V-A. The set of available resources are:
ANT_L: Left active antenna, ANT_R: Right active antenna,
HF: High-frequency band, LF: Low-frequency band, POW:
Power, RDR_IMG: Radar image process unit, OPTRO: Op-
tical camera, OPT_IMG: Optical image process unit, JAM:
Jammer and DECOY: Chalffs and flares. Agents have submitted
100 plans to the global scheduler (each agent has a local
scheduler that generates pre-compiled plans). As done by our
algorithm, the scheduling results are given in fig. 5 and fig 6.

Fig. 5 shows that the number of scheduled plans increases
with the size of the temporal horizon. In our simulation,
whatever the priority of the plan, its deadline coincides with
the temporal horizon. In case the plans are quite temporally
constrained then giving more time to the scheduler is not
useful to increase the number of scheduled plans. Fig. 5 also
shows the scheduling time depends on the temporal horizon.
The larger is the horizon, the less reactive is the scheduler.
From an operational point of view, a scheduling time above
660ms is not acceptable: the temporal horizon should be under
120s to keep a scheduling time under 100ms . Fig. 6 shows
that the plans with the highest priority are scheduled as soon
as possible even in a narrow window (temporal horizon). In
addition, the average priority of scheduled plans converges
to the average priority of all the plans. The operational
requirements are met by the scheduling we propose since most
of the time the MSS faces situations that need short time
scheduling with few plans with high priorities. Fig. 4 shows
the experimental output of the scheduler with tasks incoming
at different times of the scenario.

In this dynamic instantiation of the scheduler, the global
schedule is redefined each time a plan with a priority higher
than the lowest priority of the scheduled plans is received from
agents. To avoid started plans to be stopped before they finish,
they are isolated from the schedule’s queue. Started plans are
stopped only if higher priority plans cannot successfully be
scheduled because of their time window constraints (i.e. rele-
ase/deadline times).

CONCLUSION

Our study aims to deal with new scheduling problems in
the context of RPAS. We are interested in the scheduling of
plans of tasks instead of the classical scheduling of tasks.
This implies several differences with existing algorithms. For

Preliminary Version

instance, removing unfeasible plan of tasks releases a set of
resources which strongly impacts the ongoing scheduling. We
also have to deal with a flow of requests from the agents.
This can be roughly viewed as an online scheduling, but
at this stage we have no information about the probabilities
of agents requests. From the architecture point of view, our
design of multi-agent system allows to consider dynamic and
open theater. All the new objects from the field are taken in

3790
9
a0 F(’__,lﬂr,-——__
}-90
3300
3080 Number of Ll
2800, scheduled plans, 7w &
72 =
—~ 2640 g
@
66 ®©
E 2420 T
2 220 b 3
F om0 54 3
2 s &
£ 1760 S
g a2 bt
2 e 5
@ 1320 w5
£
1100 - " . 30
Scheduling time in ms S
880 24 Z

Y1000 es00 22000 27500 33000 39500

%500
‘Window Width (s)

Fig. 5: Number of scheduled plans and scheduling time
depending on the temporal horizon.

Average Priority of Scheduled Plans (priority)

Average Priority of Scheduled Plans (priarity)

Average priority of all plans

T T T T T
500 22000 27500 3s000 38500

"i1000 "i8500
Window Width (s)

Fig. 6: Average priority of scheduled plans depending on
temporal horizon

Resources |

charge by tactical agents at the runtime. The dynamic of the
architecture, its flexibility and the first results of our scheduling
mechanism provide promising solution for the next generation
of airborne platforms. Indeed, the multifunction and multi-
sensor features of this platform are fully exploited by the
multi-agent system.

Our perspectives are various, ranging from the improvement
of the scheduling by using learning approach in order to
anticipate the law of arrival of demands from the agents
to the decentralization of the architecture and multi-platform
cooperation.

REFERENCES

[1]1 L. Grivault, A. El Fallah-Seghrouchni, and R. Girard-Claudon, “Agent-
Based Architecture for Multi-sensors System Deployed on Airborne
Platform,” in 2016 IEEE International Conference on Agents (ICA), Sep.
2016, pp. 86-89.

[2] L. Grivault, A. El Fallah Seghrouchni, and R. Girard-Claudon, “Coor-
dination Of Sensors Deployed On Airborne Platform: A Scheduling
Approach,” in EUMAS-AT2016, Valencia, Spain, Dec. 2016.

[3] S. Kemkemian, M. Nouvel, P. Cornic, P. Le Bihan, and P. Garrec, “Radar
systems for sense and avoid on UAV,” International Radar Conference,
Oct. 2009.

[4] A. Schulte, D. Donath, and F. Honecker, “Human-system interaction
analysis for military pilot activity and mental workload determination,”
IEEE International Conference on Systems, Man, and Cybernetics, 2015.

[5]1 L. Chabod and E. Chamouard, “Low cost moving target tracking and
fire control,” International Radar Conference, Oct. 2009.

[6] S. Kemkemian and M. Nouvel-Fiani, “Toward common radar & EW
multifunction active arrays,” in 2010 IEEE International Symposium on
Phased Array Systems and Technology, Oct. 2010, pp. 777-784.

[71 M. Nguyen-Duc, Z. Guessoum, O. Marin, J.-F. Perrot, and J.-P. Briot, “A
multi-agent approach to reliable air traffic control,” in 2nd International
Symposium on Agent Based Modeling and Simulation (ABModSim’08),
Vienna, Austria, Mar. 2008.

[8] T.J. Callantine, “CATS-based Air Traffic Controller Agents,” San Jose
State University, 2002.

[9]1 K. Tumer and A. Agogino, “Distributed Agent-Based Air Traffic Flow

Management,” The Sixth Intl. Joint Conf. on Autonomous Agents and

Multi-Agent Systems - AAMAS, 2007.

Y. Ibrahim, P. Higgins, and P. Bruce, “Evaluation of a collision avoidance

display to support pilots’ mental workload in a free flight environment,”

IEEE International Conference on Industrial Engineering and Engineer-

ing Management, 2013.

[11] Thao Le, Timothy J. Norman, and Wamberto Vasconcelos, “Agent-based

Sensor-Mission Assignment for Tasks Sharing Assets,” IFAAMA, 2009.

[12] L. Chabod and P. Galaup, “Shared Resources for Airborne Multifunction

Sensor Systems,” IET International Conference on Radar Systems, 2014.

[10]

OPT_IMG
OPTRO
RDR_IMG
LF

Pow

HF
ANT_R

ANT_L

11.2090s

85.7705

Fig. 4: Example of scheduling of a set of plans on all considered resources of the platform.

