
HAL Id: hal-01539074
https://hal.science/hal-01539074

Submitted on 22 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Q5Cost format and library: a tutorial about the
common format for quantum chemistry interoperability

Antonio Monari, Anthony Scemama, Stefano Evangelisti, Elda Rossi

To cite this version:
Antonio Monari, Anthony Scemama, Stefano Evangelisti, Elda Rossi. Q5Cost format and library: a
tutorial about the common format for quantum chemistry interoperability. Laganà, Antonio. ICTP,
24, pp.103-124, 2008, Lecture notes, 929500342X. �hal-01539074�

https://hal.science/hal-01539074
https://hal.archives-ouvertes.fr

Q5Cost Format and Library: A Tutorial About the

Common Format for Quantum Chemistry

Interoperability

A. Monari1, A. Scemama2, S. Evangelisti2 and E. Rossi3∗

1 Dipartimento di Chimica Fisica e Inorganica,

Università di Bologna, Bologna, Italy
2 Laboratoire de Chimie et Physique Quantiques, UMR 5626,

Université de Toulouse et CNRS 118, Toulouse, France
3 CINECA, Casalecchio di Reno, Bologna, Italy

Lecture given at the

Joint EU-IndiaGrid/CompChem Grid Tutorial on

Chemical and Material Science Applications

Trieste, 15-18 September 2008

LNS0924007

∗e.rossi@cineca.it

Abstract

A user guide concerning the use of the Q5Cost format and library
is presented. The present tutorial is aimed to the Quantum Chemistry
developers who wish to exploit the Q5Cost capabilities in their own
code. Q5Cost is a data format for interchange and interoperability,
specifically designed for Quantum Chemistry programs, and was pro-
posed within a COST activity. A brief recall of the format and library
structure is presented. The installation procedure, the naming conven-
tion and the coding strategy are fully illustrated in a tutorial style.
Many examples are provided and discussed in order to facilitate the
usage for the final programmer. Several utilities have been delivered
for the use of the developers and the users of the library, as well as
various converters for well-known Quantum Chemistry codes.

Contents

1 Introduction 107

1.1 The intended audience . 107

1.2 The data format . 107

1.3 The Library . 110

1.4 The organization of the .q5 file 111

1.5 Utilities . 112

2 Working notes: A tutorial for the use of the Q5Cost library112

2.1 Where to find the Q5Cost library 113

2.1.1 Get the compressed package 113

2.1.2 Access to the CVS repository 113

2.2 How to install the library and tools on your machine 114

2.3 How to use it (wrappers or internal coding) 116

2.4 Example 1: Creating or opening a .q5 file 118

2.5 Example 2: Extracting information from a .q5 file 120

3 Staying tuned: Updates and help 122

4 Acknowledgments 123

Q5Cost Format and Library 107

1 Introduction

The present article contains a tutorial for the use of a library, called Q5Cost,

for the management of data produced by a generic ab-initio Quantum Chem-

istry (QC) code and its conversion from and to a common data format for

the Quantum Chemistry, also called Q5Cost.

The Q5Cost data format has been defined with the aim of making code

interoperability easier in the scientific area of Quantum Chemistry. This is

the outcome of an activity carried out within the COST network, supporting

cooperation among researchers in Europe: the former D23 “Metache” action,

now concluded, and the D37 “GridChem” action, started in July 2006 [1].

The first problem to face when integrating different QC codes in a com-

mon workflow is the lack of a standard and the different data formats adopted

by each code. Our suggestion is to adopt such a standard, specifically de-

signed for interchange, and to connect each code in the set through a con-

verter. Of course not to invent “yet another format”, we strongly tried to

design a format as general and flexible as possible and to coordinate ourselves

with other similar initiatives in the QC context.

The Q5Cost format and library is based on and takes advantage of HDF5

(Hierarchical Data Format) [2]. The definition of the data model, the de-

scription of the library and the last uptake of the activity has been reported

elsewhere [3, 4, 5, 6].

1.1 The intended audience

This tutorial is designed for final users, researchers or programmers that need

to manage the data files produced by a QC calculation in order to increase the

interoperability of the program itself. This goal can be reached by writing a

specific translation program (wrapper) for each QC code towards a common

data format. If the common data format is Q5Cost, the routines of the

Q5Cost library can facilitate this task.

The same goal can be reached also by including calls to the library in

the specific QC code, if this seams more suitable to the user.

1.2 The data format

The structure of the Q5Cost data format has been fully described elsewhere

[3, 4, 5, 6], as well as its connections with the inherent HDF5 structure [2].

108 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

Figure 1: Schema of the Q5Cost data format.

Here we just want to briefly recall the main features that are useful for

understanding how to apply the library.

Q5Cost is a common interchange format for data coming from ab initio

quantum chemistry calculations. In this context ab initio refers to methods

that are based on a wave function rather than on an electronic density. In

particular, the Density Functional Theory (DFT) methods at the moment

are not supported by our format. Extension to the DFT context, as well as

to Quantum Dynamics context are under development.

The data format consists of a collection of chemical objects related within

a hierarchical structure in a logical containment relationship as reported in

Figure 1.

The dark gray boxes are containers (groups in HDF5 terminology) and

the light gray boxes are data (data sets), while the metadata (attributes)

are listed in the white labels.

Q5Cost Format and Library 109

Data described by the Q5Cost format belong to two different categories:

1. Data: The large binary quantities used in quantum chemistry for rep-

resenting integrals, properties and wave functions. They can be stored

using matrices with an arbitrary number of indices (rank-n arrays),

scale aggressively with the system size, and are normally accessed with

a “chunked” approach (i.e., using well-defined blocks of data).

2. Metadata: Simple and small pieces of data that describe and better

define the previous data. They represent well-known chemical enti-

ties like nuclear energy, molecular orbital labels, molecular symmetry

and can be stored as scalars, vectors or matrices. For example, the

nuclear repulsion energy is a floating point scalar, molecular orbitals

coefficients are an (N,M) floating point matrix, the associated orbital

energies are a floating point vector, the molecular orbital labels are a

vector of strings, and so on.

All the chemical objects described in the Q5Cost data format are related

within a hierarchical structure and a logical containment relation. A first

(root) container, named System, represents the molecular system as defined

by its structural data (chemical composition and spatial geometry). All the

general metadata can be associated to this container. A system can contain

several Domains. The role of the Domain is to group together entities whose

indices conceptually refer to the same kind of functions. In the present

version three Domains have been defined:

• Atomic Orbital (AO): Refers to data defined on the AO basis, over-

lap, one-electron integrals, two-electron integrals, Density matrix and

the generic property, i.e. any other property that can be described on

the AO basis (dipole moment integrals, for example). This domain

contains also the definition of the Basis Set.

• Molecular Orbital (MO): Refers to the data defined on the MO

basis, one- and two-electron integrals, Density matrix and the generic

property. This domain also contains the transformation matrix needed

to define the MO on the AO basis.

• Wave Function (WF): Refers to the definition of the wave function.

110 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

1.3 The Library

The library is organized as a collection of many routines (more than 100 are

available at the moment). The routine names are chemically significant and

strictly recall the function of the routine itself. Each routine belongs to a

different class, the classification is made according to the references of the

routines to the domains and/or to specific objects in a given domain.

At present different classes of routines are available:

Q5Cost_init Routines for housekeeping and file management

Q5Cost_deinit

Q5Cost_file_

Q5Cost_Basis_ Basis set

Q5Cost_System_ General high level information

Q5Cost_Sys_Geometry_ Geometry of the molecule

Q5Cost_Sys_Symmetry_ Space symmetry of the molecule

Q5Cost_AO_ Atomic Orbitals

Q5Cost_AOOneInt_ Atomic Orbitals: one electron integrals

Q5Cost_AOTwoInt_ Atomic Orbitals: one electron integrals

Q5Cost_AOOverlap_ Atomic Orbitals: overlap integrals

Q5Cost_AODensity_ Density Matrix on the AO orbitals

Q5Cost_AODensityOne_ Density Matrix on the AO orbitals: One-body

Q5Cost_AODensityTwo_ Density Matrix on the AO orbitals: Two-bodies

Q5Cost_MO_ Molecular Orbitals

Q5Cost_MOOneInt_ Molecular Orbitals: one electron integrals

Q5Cost_MOTwoInt_ Molecular Orbitals: two electrons integrals

Q5Cost_MODensity_ Density Matrix on the MO orbitals

Q5Cost_MODensityOne_ Density Matrix on the MO orbitals: One-body

Q5Cost_MODensityTwo_ Density Matrix on the MO orbitals: Two-bodies

Q5Cost_Property_ Integrals for a generic operator

Q5Cost_WF_ Wave-function

Q5Cost_WFDetCoef_ Wave-function: Determinant and coefficients

The naming convention depends on the type or routines, and follows

mainly two schemes:

1. Routines working on the large QC datasets, for example:

Q5Cost AOOneInt append

• Q5Cost: is a common prefix

Q5Cost Format and Library 111

• AOOneInt: is the data object involved, in this case the one elec-

tron integrals on the AO basis

• append: is the operation to be performed, in this case an append

(write) operation.

2. Routines working on the domains and on the metadata (small data)

for example:

Q5Cost AO set num orb sym

• Q5Cost: is a common prefix

• AO: is the domain where the action will work

• set: is the operation to be performed

• num orb sym: is the data object affected by the operation

Also the formal parameters inside the routines follow a specific organisation.

For example, let us consider the Q5Cost AOOverlap read routine:

Q5Cost_AOOverlap_read (file_id,offset,howmany,idx,value,error,

user_tag)

The first parameter is always the ID of the .q5 file, that is returned by an

initial “file create” or “file open” routine. All the other parameters, up to

“error”, are input/output parameters and depends on the actual routine:

in this case “offset” is the numeral of the first integral to be read from the

file, “howmany” is the total number of integrals, “idx” is the place where to

store the indices, “value” is the place where to store the values (with this

routine you can read only integrals with indices). The “error” parameter

returns the error condition of the routine. A return value of zero for the

“error” parameter means the routine completed successfully. All routines in

the library have the “error” parameter. The following parameters, if any,

are optional and can be invoked by key. Usually they have a default value

attached, so if you do not include them in the actual call, they assume a pre-

specified value. In this example the only optional parameter is “user tag”, a

string to identify the actual AO domain these integrals refer to. If not given,

the default “default tag” string is used.

1.4 The organization of the .q5 file

The data written by the Q5Cost routines are stored into a file, usually iden-

tified by the “.q5” extension. This is a standard HDF5 file and can be

112 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

accessed using the HDF5 tools (h5dump, h5ls, etc., see HDF5 Utilities man-

ual at the HDF web site [7]) even if other more specific tools are available

in the Q5Cost distribution (q5dump, q5edit).

Each .q5 file contains a collection of data obtained through multiple

QC calculations, but always refers to a single molecular specie, a single

geometry and a single choice for the basis set functions. If the user needs

more geometries (like in geometry optimization workflows) he has to organize

the work on multiple .q5 files.

1.5 Utilities

A number of utilities have been setup to facilitate the use of the Q5Cost

library and data format. Some of the utilities are addressed to the library

developers, others are intended to be used by the final users: here only the

latter will be discussed.

A first useful utility is an automatic configuration script to install the

library on your system. It takes into account the specificity of the computing

platform, like the compilers, the location of the libraries, and verifies if the

needed underlying HDF5 layer is present. This configuration script is based

on autoconf [8], an extensible package of macros that produces shell scripts

to automatically configure software source code packages and guarantees the

portability on different architectures.

Two other useful utilities for the final user are available to inspect the

.q5 file without writing an ad-hoc program. Even if HDF5 is a binary file, it

contains its own description and it is possible, using standard HDF5 instru-

ments, to extract a complete description in a human readable form.

• q5dump is a simple tool that reports the content of a Q5Cost file,

listing the data and the metadata contained in it.

• q5edit is a more complete and attractive tool. Using this Python

interactive program, the user can navigate through the file, listing the

content and modifying the data using his favorite text editor.

2 Working notes: A tutorial for the use of the
Q5Cost library

The Q5Cost library and model are fully described in the home web site

(http://www.q5cost.org) that can be used as the main reference for down-

Q5Cost Format and Library 113

loading the library and the tools, as well as to get up-to-date documentation

and assistance.

2.1 Where to find the Q5Cost library

The last version of the library (1.0 at present) is downloadable from the

Q5Cost web site following the download link.

Since the Q5Cost library is built on top of the HDF5 Fortran library, the

first step is to install HDF5. At present the supported versions are HDF5

1.6.7 and 1.8.0 that can be downloaded from the official site of HDF5:

http://www.hdfgroup.org/HDF5/release/index.html

Some instructions for a quick installation of the HDF5 library can be

found on the Q5Cost.org website too; follow them to download HDF5 and

install it on your system. At this point you can proceed with the installation

of Q5Cost. There are two ways to get the Q5Cost package:

1. get the compressed package from the web site

2. access to the CVS repository.

2.1.1 Get the compressed package

This is the simplest way for getting ready with Q5Cost. You can get detailed

information about the installation of the web site:

http://abigrid.cineca.it/abigrid/download/download-q5cost-detailed-instructions.

After downloading the compressed package (.gz) on a Unix/Linux ma-

chine, you have to expand it using the gunzip/tar commands: this will

create a new folder (Q5Cost-1.0) containing all you need for installing the

library.

> gunzip q5cost-1.0.tar.gz

> tar -xvf q5cost-1.0.tar

> cd q5cost-1.0

2.1.2 Access to the CVS repository

The Q5Cost library is available in a CVS repository in Toulouse. CVS

(Concurrent Versions System) is a tool for version control and is used by the

Q5Cost developers in order to assure a safe collaborative maintenance of the

114 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

code.

host = lpqsv11.ups-tlse.fr

cvs name = /misc/CVS_Repositories/cvs_cost

username (read only) = costch01

(ask the password if interested to q5cost info@cineca.it).

The CVS repository contains the very last working version of the Q5Cost

library; please note that this is not a stable and guaranteed version, you can

use it at your own risk. If you want the last stable version, please download

it from the official download site.

The costch01 username is allowed only to read from the repository. If

you want to become a developer and get a username with write privileges,

please, ask q5cost info@cineca.it.

To access the CVS from your local machine you will have to follow these

steps

1. connect to your local unix machine

2. enter the following commands

>export CVS_RSH=ssh

>cvs -d <username>@lpqsvll.ups-tlse.fr:

/misc/CVS_Repositories/cvs_cost <command> <options>

For example, to copy the library in the local “q5cost” directory using the

read only username, the commands are:

>export CVS_RSH=ssh

>cvs -d costch01@lpqsv11.ups-tlse.fr:

/misc/CVS_Repositories/cvs_cost checkout q5qost-1.0

2.2 How to install the library and tools on your machine

Whichever way you choose to download the q5cost package, you now have

a “q5cost” directory containing all you need for the installation. You can

now start reading the 00 README file and run the configure script that

will look for the required programming tools in your environment.

Q5Cost Format and Library 115

Before executing the configure script be sure to have the Fortran and

C compilers, in addition to the HDF5 library. The configure script tries to

locate all required modules using the locate command. If you want to give the

exact location of the HDF5 library you can set the $LIBHDF5 environment

variable before running the script. Also the compilers can be forced by

setting some environmental variables: FC for the Fortran compiler, CC for

the C compiler, CXX for the C++ compiler. You can obtain a complete

description of the configure script with the “–help” option.

> export LIBHDF5=/.../libraries/hdf5/intel--10.1/lib

> ./configure --help

> ./configure

At this point some useful files have been created:

• config.log: This is a log of the configure run, useful for debugging the

script

• config.status: This is a script that can be used to recreate the current

configuration

• INSTRUCTIONS: Environment variables to be set for using the library

• Makefile: Script for compiling the library, the user tools, the test-suite

and the Python modules.

To compile the library and the other tools using the Makefile enter the

command:

> make all

If everything is fine you can check now your library setup running the test

suite

> cd testsuite

> ./testsuite

If everything is fine you should obtain an output text confirming the correct

execution of all programs in the testsuite. Do not worry about error mes-

sages, since some components of the suite check also the ability to recognize

error conditions. Just verify that all tests passed, an “OK” string is printed

for each of them.

At the end a summary is printed. It should appear like this one:

116 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

----- Final Output -------

Test performed : 146

Test successful : 146

Test failed : 0

First ones

Test error : 0

2.3 How to use it (wrappers or internal coding)

Q5Cost is a library and it is intended to be used within a program. Its

objective is to help converting data format from/to a specific data format

used by a QC program, by translating into Q5Cost, which is a common

format for interchange. There are several bindings available: Fortran 90,

Fortran 77, C, C++ and Python (Fortran 77 is not encouraged). So you can

call the library routines from programs written in one of these languages.

There are mainly two different approaches that can be followed to inter-

face a generic QC program with the Q5Cost data format:

1. You can write a “wrapper” for the QC program of interest: this is

a separate program, coded in the language of choice, taking care of

translating the data format from and to the program native format

towards the Q5Cost model.

2. You can include the Q5Cost calls into the QC program for managing

the read/write access to the data (internal coding).

The choice among the two approaches depends on the personal preferences

and on the availability of the source code of the QC program. Both of

them have pros and cons to be carefully considered before starting. Both

approaches have been followed up to now by the partners of the project.

In any case, the first thing to do before starting to use the library is

to correctly setup the working environment, by following the suggestions

contained in the “INSTRUCTIONS” file in the root directory of Q5Cost.

This file is created by the configure script and points out the correct variables

to be defined for the actual environment:

1. Two environment variables have to be defined, pointing to the include

directories of HDF5 and Q5Cost

> export INCHDF5=/.../hdf5/include

> export Q5COSTPATH=/.../q5cost-1.0

Q5Cost Format and Library 117

The definition can be included in the unix startup file (.bashrc, for

example) in order to be always present.

2. When compiling and linking your program (wrapper or QC program

with internal coding) you have to point the required libraries and in-

cludes. For example, if the variables reported above have been defined,

a possible Makefile for your wrapper could be:

Makefile for compiling and linking a program containing

calls to the Q5Cost library

#

define the following variables befor running the Makefile:

- the include-HDF5 path (in $INCHDF5)

- the Q5Cost root path (in $Q5CostPATH)

- the compiler to be used (in $FC)

#

Fcomp = $(FC)

FCFLAGS= -I$(Q5CostPATH)/include -I$(INCHDF5)

LDFLAGS= $(Q5CostPATH)/lib/Q5Cost.a

TARGETS=wrapper

.SUFFIXES: .f .o

.f.o: $*.f

$(Fcomp) -c $(FCFLAGS) -o $@ $*.f

$(TARGET): wrapper.o

$(Fcomp) -o $@ $@.o $(LDFLAGS)

The best way to start using the Q5Cost library is to try with some easy

examples, which you can find in the “examples” directory under the Q5Cost

root:

• file create: creates a new, empty file named file.q5;

• file open: open an existing file file.q5 and extract the creation date;

• geometry create: creates a new file.q5 file and writes in it the geometry

information, extracted from the “benzene.xyz” file;

• geometry read: open the existing file file.q5 (created by the previous

program) and extract geometry information from it.

118 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

All these examples are coded in F90, the most common language used in

QC. Two of the examples are commented in the following.

2.4 Example 1: Creating or opening a .q5 file

In this example we create a .q5 file named file.q5

PROGRAM FILE_CREATE

use Q5Cost

implicit none

integer :: error ! The error parameters for the Q5Cost calls

! if everything goes well error == 0

character*64 :: file_name, ctime

integer(hid_t) q5_id !q5_file identifier note use the hdf5 type

file_name = ’file.q5’

! Initialize the library to be called at the beginning

! of each Q5Cost session

call Q5Cost_init(error)

if(error.ne.0) then

write(6,*) ’Unable to Initialize Q5Cost’

stop

endif

! And now creates the file named file_name

! the file will be given the q5_id identifier

! that will be used for any future reference

call Q5Cost_file_create(file_name,q5_id,error)

if(error.ne.0) then

write(6,*) ’Unable to create Q5Cost’

stop

endif

! You created the file let’s get and print the creation time

call Q5Cost_file_get_ctime(q5_id,ctime,error)

if(error.ne.0) then

write(6,*) ’Unable to get creation time’

stop

endif

write(6,’(a4,a1,a2,a1,a2)’) ctime(1:4),’/’,ctime(5:6),

$ ’/’,ctime(7:8)

write(6,’(a2,a1,a2,a1,a2)’) ctime(10:11),’:’,ctime(12:13)

Q5Cost Format and Library 119

$,’:’,ctime(14:15)

! Now we close the file

call Q5Cost_file_close(q5_id,error)

if(error.ne.0) then

write(6,*) ’Unable to close Q5Cost’

stop

endif

! and we deinitialize the Q5Cost library

call Q5Cost_deinit(error)

if(error.ne.0) then

write(6,*) ’Unable to Initialize Q5Cost’

stop

endif

END

use q5cost

This F90 statement is needed to access the Q5Cost module and is always

required at the very beginning of all subroutines/functions/programs con-

taining Q5Cost calls.

integer(hid_t) q5_id

This is the identifier of the .q5 file containing data in the Q5Cost format.

This must be declared of type integer(hid t) that is a specific type defined

by hdf5. After the open call (create/open), this is the only reference to the

.q5 file, used by all Q5Cost routines.

call Q5Cost_init(error)

call Q5Cost_deinit(error)

These routines initialize the Q5 environment. Each program using Q5Cost

must“initialize” the environment at the beginning and “deinitialize” it at

the end.

call Q5Cost_file_create(file_name,q5_id,error)

call Q5Cost_file_open (file_name,q5_id,error)

call Q5Cost_file_close(q5_id,error)

120 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

Creates the file named file name. If the file already exists you can open it

(in R/W) with the Q5Cost file open routine: the file will be given the q5 id

identifier that will be used for any future reference. When the file is no

longer needed, it must be closed with the Q5Cost file close routine.

if(error.ne.0) then

write(6,*) ’Unable to create Q5Cost’

stop

endif

All Q5Cost routines contain an exit parameter (error) that can be tested to

trap a possible error. If the routine was successful the return value is zero.

2.5 Example 2: Extracting information from a .q5 file

In this example we read the geometry information from a .q5 file named

“file.q5”.

PROGRAM GEOMETRY_READ

! Read the geometry from a Q5Cost file for a benzene molecule

use Q5Cost

implicit none

integer :: error ! The error parameters for the Q5Cost calls

! if everything goes well error == 0

character*64 :: file_name, ctime

integer(hid_t) :: q5_id !q5_file identifier note use the hdf5 type

integer :: num_sym, num_alpha, num_beta, num_atoms,i

character*3, allocatable :: label(:)

real*8, allocatable :: charge(:), coord(:,:)

file_name = ’file.q5’

! Initialize the library to be called at the beginning

! of each Q5Cost session

call Q5Cost_init(error)

if(error.ne.0) then

write(6,*) ’Unable to Initialize Q5Cost’

stop

endif

! And now creates the file named file_name

! the file will be given the q5_id identifier

! that will be used for any future reference

Q5Cost Format and Library 121

call Q5Cost_file_open(file_name,q5_id,error)

if(error.ne.0) then

write(6,*) ’Unable to open Q5Cost’

stop

endif

! now read the geometrical parameters from the Q5Cost file

call Q5Cost_Sys_Geometry_get_num_atom(q5_id,num_atoms,error)

if(error.ne.0) then

write(6,*) ’Unable to set number of atoms’

stop

endif

! allocate the array storing the geometrical parameters

allocate (charge (num_atoms))

allocate (label (num_atoms))

allocate (coord (3,num_atoms))

call Q5Cost_Sys_Geometry_get_charge(q5_id,charge,error)

if(error.ne.0) then

write(6,*) ’Unable to get charges of atoms’

stop

endif

call Q5Cost_Sys_Geometry_get_coord(q5_id,coord,error)

if(error.ne.0) then

write(6,*) ’Unable to get coordinates’

stop

endif

call Q5Cost_Sys_Geometry_get_label(q5_id,label,error)

if(error.ne.0) then

write(6,*) ’Unable to get labels’

stop

endif

! Write the parameters in a xyz format

write(6,*) num_atoms

write(6,*)

do i = 1, num_atoms

write(6,’(a4,4f16.8)’) label(i),

$ coord(1,i), coord(2,i), coord(3,i)

enddo

! Write the effective charges

122 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

write(6,*)

write(6,*) ’Charges’

do i = 1, num_atoms

write(6,’(a4,f6.4)’) label(i), charge(i)

enddo

! Now we close the file

call Q5Cost_file_close(q5_id,error)

if(error.ne.0) then

write(6,*) ’Unable to close Q5Cost’

stop

endif

! and we deinitialize the Q5Cost library

call Q5Cost_deinit(error)

if(error.ne.0) then

write(6,*) ’Unable to Initialize Q5Cost’

stop

endif

END

Q5Cost_Sys_Geometry_get_num_atom(q5_id,num_atoms,error)

Access the geometry class in the .q5 file and get the number of atoms.

! allocate the array storing the geometrical parameters

allocate (charge (num_atoms))

allocate (label (num_atoms))

allocate (coord (3,num_atoms))

call Q5Cost_Sys_Geometry_get_charge(q5_id,charge,error)

Q5Cost_Sys_Geometry_get_coord(q5_id,coord,error)

Q5Cost_Sys_Geometry_get_label(q5_id,label,error)

The nuclear effective charges (“charge(:)”), the Cartesian coordinates (“co-

ord(3,:)”) and the atom labels (“label(:)”) are extracted from the file after

dynamically allocating the corresponding arrays.

3 Staying tuned: Updates and help

The web site is the best place to stay tuned with the activity of the Q5Cost

developing team. In the near future we plan to create a mailing list for

Q5Cost Format and Library 123

disseminating important news about the activity upgrades. The mailing list

creation will be posted on the web site.

The library is well documented through a reference manual. It can be

found on the web site as an html document. It is also included in the

download package, into the “doc” folder as a pdf, txt and html document.

An official user help-desk is not yet in place. In the mean time you can

send a mail to the Q5Cost developers if you need any advice:

q5cost_info@cineca.it

4 Acknowledgments

Support from COST in Chemistry action D37 is gratefully acknowledged.

The French CNRS is also gratefully acknowledged for partial funding.

124 A. Monari, A. Scemama, S. Evangelisti and E. Rossi

References

[1] The COST/D37 action:

http://www.cost.esf.org/domains actions/cmst/Actions/

Grid Computing in Chemistry

[2] HDF5 a general purpose library and file format for storing scientific

data. Also available at http://hdf.ncsa.uiuc.edu/HDF5/ Specification of

XML can be found at the site (http://www.w3.org/XML); A. Holmer,

XML IE5 Programmers Reference, Wrox Press, Chicago, IL, USA, 1999

[3] E. Rossi, A. Emerson and S. Evangelisti, (2003). Lect. Notes Comput.

Sci. 2658, 316-323

[4] S. Borini, A. Monari, E. Rossi, A. Tajti, C. Angeli, G.L. Bendazzoli, R.

Cimiraglia, A. Emerson, S. Evangelisti, D. Maynau, J. Sanchez-Marin

and P.G. Szalay, (2007). J. Chem. Inf. Model. 47, 1271-1277

[5] C. Angeli, G.L. Bendazzoli, S. Borini, R. Cimiraglia, A. Emerson, S.

Evangelisti, D. Maynau, A. Monari, E. Rossi, J. Sanchez-Marin, P.G.

Szalay and A. Tajti, (2007). Int. J. Quant. Chem. 107, 2082-2091

[6] A. Scemama, A. Monari, C. Angeli, S. Borini, S. Evangelisti and E.

Rossi, (2008). Lect. Notes on Comp. Science 5072 1094

[7] HDF5 Document Set: http://www.hdfgroup.org/HDF5/doc/index.html

[8] Gnu autoconf see: http://www.gnu.org/software/autoconf

