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Abstract

IRPF90 is a Fortran programming environment which helps the development of large Fortran
codes. In Fortran programs, the programmer has to focus on the order of the instructions: before
using a variable, the programmer has to be sure that it has already been computed in all possible
situations. For large codes, it is common source of error. In IRPF90 most of the order of instructions
is handled by the pre-processor, and an automatic mechanism guarantees that every entity is
built before being used. This mechanism relies on the {needs/needed by} relations between the
entities, which are built automatically. Codes written with IRPF90 execute often faster than Fortran
programs, are faster to write and easier to maintain.


http://arxiv.org/abs/0909.5012v1

I. INTRODUCTION

The most popular programming languages in high performance computing (HPC) are
those which produce fast executables (Fortran and C for instance). Large programs written
in these languages are difficult to maintain and these languages are in constant evolution to
facilitate the development of large codes. For example, the C+-+ language|l| was proposed
as an improvement of the C language by introducing classes and other features of object-
oriented programming. In this paper, we propose a Fortran pre-processor with a very limited
number of keywords, which facilitates the development of large programs and the re-usability
of the code without affecting the efficiency.

In the imperative programming paradigm, a computation is a ordered list of commands
that change the state of the program. At the lowest level, the machine code is imperative:
the commands are the machine code instructions and the state of the program is represented
by to the content of the memory. At a higher level, the Fortran language is an imperative
language. Each statement of a Fortran program modifies the state of the memory.

In the functional programming paradigm, a computation is the evaluation of a function.
This function, to be evaluated, may need to evaluate other functions. The state of the
program is not known by the programmer, and the memory management is handled by the
compiler.

Imperative languages are easy to understand by machines, while functional languages are
easy to understand by human beings. Hence, code written in an imperative language can
be made extremely efficient, and this is the main reason why Fortran and C are so popular
in the field of High Performance Computing (HPC).

However, codes written in imperative languages usually become excessively complicated
to maintain and to debug. In a large code, it is often very difficult for the programmer to
have a clear image of the state of the program at a given position of the code, especially when
side-effects in a procedure modifiy memory locations which are used in other procedures.

In this paper, we present a tool called “Implicit Reference to Parameters with Fortran 90”
(IRPF90). It is a Fortran pre-processor which facilitates the development of large simulation
codes, by allowing the programmer to focus on what is being computed, instead of how it is
computed. This last sentence often describes the difference between the functional and the
imperative paradigms|2|. From a practical point of view, IRPF90 is a program written in
the Python|3| language. It produces Fortran source files from IRPF90 source files. IRPF90
source files are Fortran source files with a limited number of additional statements. To
explain how to use the IRPF90 tool, we will write a simple molecular dynamics program as
a tutorial.

II. TUTORIAL: A MOLECULAR DYNAMICS PROGRAM
A. Imperative and functional implementation of the potential

We first choose to implement the Lennard-Jones potential[4] to compute the interaction

of pairs of atoms:
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1 program potential with_imperative_style

2 implicit none

3 double precision :: sigma_1lj, epsilon_17j

4 double precision :: interatomic_distance

5 double precision :: sigma_over_r

6 double precision :: V_17j

7 print *, 'Sigma?’

8 read(*,*) sigma_1lj

9 print *, 'Epsilon?'
10 read(*,*) epsilon_17
11 print *, 'Interatomic Distance?'
12 read(*,*) interatomic_distance
13 sigma_over_r = sigma_lj/interatomic_distance
14 V_1j = 4.d0 * epsilon_17j * ( sigma_over_r**12 &
15 — sigma_over_r**6 )

16 print *, 'Lennard-Jones potential:'
17 print *, V_17
18 end program

FIG. 1: Imperative implementation of the Lennard-Jones potential.

where 7 is the atom-atom distance, € is the depth of the potential well and o is the value of
r for which the potential energy is zero. € and o are the parameters of the force field.

Using an imperative style, one would obtain the program given in figure [l One can
clearly see the sequence of statements in this program: first read the data, then compute
the value of the potential.

This program can be re-written using a functional style, as shown in figure In the
functional form of the program, the sequence of operations does not appear as clearly as in
the imperative example. Moreover, the order of execution of the commands now depends
on the choice of the compiler: the function sigma_over_r and the function epsilon_1j are
both called on line 12-13, and the order of execution may differ from one compiler to the
other.

The program was written in such a way that the functions have no arguments. The
reason for this choice is that the references to the entities which are needed to calculate
a function appear inside the function, and not outside of the function. Therefore, the
code is simpler to understand for a programmer who never read this particular code, and
it can be easily represented as a production tree (figure 3 above). This tree exhibits the
relation {needs/needed by} between the entities of interest: the entity V_1j needs the entities
sigma_over_r and epsilon_1j to be produced, and sigma_over_r needs sigma_1lj and
interatomic_distance.

In the imperative version of the code (figure[ll), the production tree has to be known by the
programmer so he can place the instructions in the proper order. For simple programs it is
not a problem, but for large codes the production tree can be so large that the programmer is
likely to make wrong assumptions in the dependencies between the entities. This complexifies
the structure of the code by the introduction of many different methods to compute the same
quantity, and the performance of the code can be reduced due to the computation of entities
which are not needed.

In the functional version (figure 2]), the production tree does not need to be known by the
programmer. It exists implicitely through the function calls, and the evaluation of the main
function is realized by exploring the tree with a depth-first algorithm. A large advantage
of the functional style is that there can only be one way to calculate the value of an entity:



program potential with_ functional_style
double precision :: V_17j

print *, V_13()

end program

double precision function V_17()
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double precision :: sigma_1l3j
double precision :: epsilon_17j
double precision :: interatomic_distance
10 double precision :: sigma_over_r
11 V_1j = 4.d0 * epsilon_1j() * &
12 ( sigma_over_r()**12 - sigma_over_xr()**6 )
13 end function

15 double precision function epsilon_17j()
16 print *, 'Epsilon?'

17 read(*,*) epsilon_1j
18 end function
19

20 double precision function sigma_1l7 ()
21 print *, 'Sigma?'

22 read(*,*) sigma_1l7j

23 end function

24

25 double precision function sigma_over_r ()

26 double precision :: sigma_17j

27 double precision :: interatomic_distance

28 sigma_over_r = sigma_lj()/interatomic_distance ()
29 end function

30

31 double precision function interatomic_distance ()
32 print *, '"Interatomic Distance?'

33 read(*,*) interatomic_distance

34 end function

FIG. 2: Functional implementation of the Lennard-Jones potential.

Vlj

epsilonlj sigma_over_r sigma_over_r

interatomic_distance sigmalj sigmalj interatomic_distance
Vlj
ep31lon1j sigma_over_r
sigmalj interatomic_distance

FIG. 3: The production tree of V_1j. Above, the tree produced by the program of figure 2l Below,
the tree obtained if only one call to sigma_over_r is made.



1 double precision function sigma_over_r ()

2 double precision :: sigma_17

3 double precision :: interatomic_distance
4 double precision, save :: last_result

5 integer, save :: first_time_here

6 if (first_time_here.eqg.0) then

7 last_result = sigma_1j()/interatomic_distance ()
8 first_time_here = 1

9 endif
10 sigma_over_r = last_result
11 end function

FIG. 4: Memoized sigma_over_r function

calling the corresponding function. Therefore, the readability of the code is improved for a
programmer who is not familiar with the program. Moreover, as soon as an entity is needed,
it is calculated and valid. Writing programs in this way reduces considerably the risk to use
un-initialized variables, or variables that are supposed to have a given value but which have
been modified by a side-effect.

With the functional example, every time a quantity is needed it is computed, even if
it has already been built before. If the functions are pure (with no side-effects), one can
implement memoization[@, ] to reduce the computational cost: the last value of the function
is saved, and if the function is called again with the same arguments the last result is returned
instead of computing it again. In the present example we chose to write functions with no
arguments, so memoization is trivial to implement (figure (). If we consider that the leaves
of the production tree are constant, memoization can be applied to all the functions. The
production tree of V_1j can now be simplified, as shown in figure [3] below.

B. Presentation of the IRPF90 statements

IRPF90 is a Fortran pre-processor: it generates Fortran code from source files which
contain keywords specific to the IRPF90 program. The keywords understood by TRPF90
pre-processor are briefly presented. They will be examplified in the next subsections for the
molecular dynamics example.

BEGIN_PROVIDER ... END_PROVIDER
Delimitates the definition of a provider (sections [IC| and [TD]).

BEGIN_DOC ... END_DOC
Delimitates the documentation of the current provider (section [IC]).

BEGIN_SHELL ... END_SHELL
Delimitates an embedded script (section [TE]).

ASSERT
Expresses an assertion (section [LC)).

TOUCH
Expresses the modification of the value of an entity by a side-effect (section [TF).

FREE
Invalidates an entity and free the associated memory. (section ?7?).

IRP_READ / IRP_WRITE
Reads/Writes the content of the production tree to/from disk (section [LG)).



1 program lennard_jones_dynamics

2 print *, V_17j

3 end program

4

5 BEGIN_PROVIDER [ double precision, V_17j ]

6 implicit none

7 BEGIN_DOC

8 ! Lennard Jones potential energy.

9 END_DOC
10 double precision :: sigma_over_r
11 sigma_over_r = sigma_lj / interatomic_distance
12 V_1j = 4.d0 * epsilon_1j * ( sigma_over_r**12 &
13 — sigma_over_r**6 )
14 END_PROVIDER
15

16 BEGIN_PROVIDER [ double precision, epsilon_17j ]
17 &BEGIN_PROVIDER [ double precision, sigma_l7j ]

18 BEGIN_DOC

19 ! Parameters of the Lennard-Jones potential
20 END_DOC

21 print *, 'Epsilon?'

22 read(*,*) epsilon_1j

23 ASSERT (epsilon_17j > 0.)

24 print *, 'Sigma?'

25 read(*,*) sigma_17j

26 ASSERT (sigma_1l1lj > 0.)

27 END_PROVIDER

28

29 BEGIN_PROVIDER[double precision, interatomic_distance]
30 BEGIN_DOC

31 ! Distance between the atoms

32 END_DOC

33 print *, 'Inter-atomic distance?'

34 read (*,*) interatomic_distance

35 ASSERT (interatomic_distance >= 0.)

36 END_PROVIDER

FIG. 5: IRPF90 implementation of the Lennard-Jones potential.

IRP_IF ... TIRP_ELSE ... IRP_ENDIF
Delimitates blocks for conditional compilation (section [IGI).
PROVIDE

Explicit call to the provider of an entity (section ITG).

C. Implementation of the potential using IRPF90

In the IRPF90 environment, the entities of interest are the result of memoized functions
with no arguments. This representation of the data allows its organization in a production
tree, which is built and handled by the IRPF90 pre-processor. The previous program may
be written again using the IRPF90 environment, as shown in figure [l

The program shown in figure [l is very similar to the functional program of figure 2l The
difference is that the entities of interest are not functions anymore, but variables. The vari-
able corresponding to an entity is provided by calling a providing procedure (or provider),
defined between the keywords BEGIN_PROVIDER ... END_PROVIDER. In the IRPF90 en-
vironment, a provider can provide several entities (as shown with the parameters of the
potential), although it is preferable to have providers that provide only one entity.



When an entity has been built, it is tagged as built. Hence, the next call to the provider
will return the last computed value, and will not build the value again. This explains why
in the IRPF90 environment the parameters of the force field are asked only once to the user.

The ASSERT keyword was introduced to allow the user to place assertions|9] in the code.
An assertion specifies certain general properties of a value. It is expressed as a logical
expression which is supposed to be always true. If it is not, the program is wrong. Assertions
in the code provide run-time checks which can dramatically reduce the time spent finding
bugs: if an assertion is not verified, the program stops with a message telling the user which
assertion caused the program to fail.

The BEGIN_DOC ... END_DOC blocks contain the documentation of the provided entities.
The descriptions are encapsulated inside these blocks in order to facilitate the generation
of technical documentation. For each entity a “man page” is created, which contains the
{needs/needed by} dependencies of the entity and the description given in the BEGIN_DOC

END_DOC block. This documentation can be accessed by using the irpman command
followed by the name of the entity.

The IRPF90 environment was created to simplify the work of the scientific programmer. A
lot of time is spent creating Makefiles, which describe the dependencies between the source
files for the compilation. As the IRPF90 tool “knows” the production tree, it can build
automatically the Makefiles of programs, without any interaction with the user. When the
user starts a project, he runs the command irpf90 -init in an empty directory. A standard
Makefile is created, with the gfortran compiler|10] as a default. Then, the user starts to
write IRPF90 files which contain providers, subroutines, functions and main programs in
files characterized by the .irp.f suffix. Running make calls irpf90, and a correct Makefile
is automatically produced and used to compile the code.

D. Providing arrays

Now the basics of IRPF90 are known to the reader, we can show how simple it is to write
a molecular dynamics program. As we will compute the interaction of several atoms, we
will change the previous program such that we produce an array of potential energies per
atom. We first need to introduce the quantity Natoms which contains the number of atoms.
Figure [6] shows the code which defines the geometrical parameters of the system. Figure [1
shows the providers corresponding to the potential energy V' per atom ¢, where it is chosen
equal to the Lennard-Jones potential energy:

Natoms 12 6
o= S ()
2 Nieall) el

Figure [§ shows the providers corresponding to the kinetic energy 7' per atom i:
1 2

7, = Smillvil| @

where m; is the mass and v; is the velocity vector of atom 7. The velocity vector is chosen
to be initialized zero.

The dimensions of arrays are given in the definition of the provider. If an entity, defines

the dimension of an array, the provider of the dimensioning entity will be called before

allocating the array. This guarantees that the array will always be allocated with the proper

(2)

7



BEGIN_PROVIDER [ integer, Natoms ]
BEGIN_DOC

! Number of atoms

END_DOC

print *, 'Number of atoms?'

read (*, *) Natoms

ASSERT (Natoms > 0)
END_PROVIDER
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10 BEGIN_PROVIDER [ double precision, coord, (3,Natoms) ]

11 &BEGIN_PROVIDER [ double precision, mass , (Natoms) ]
12 implicit none

13 BEGIN_DOC

14 ! Atomic data, input in atomic units.

15 END_DOC

16 integer :: i,J

17 print *, 'For each atom: x, y, 2z, mass?'
18 do i=1,Natoms

19 read(*,*) (coord(j,i), j=1,3), mass (i)
20 ASSERT (mass (i) > 0.)

21 enddo

22 END_PROVIDER

23

24 BEGIN_PROVIDER[double precision,distance, (Natoms,Natoms) ]
25 implicit none

26 BEGIN_DOC

27 ! distance : Distance matrix of the atoms
28 END_DOC

29 integer :: i,3j,k

30 do i=1,Natoms

31 do j=1,Natoms

32 distance(j,1i) = 0.

33 do k=1,3

34 distance(j,1) = distance(j,i) + &

35 (coord(k, i) —coord(k, j)) **2

36 enddo

37 distance(j,1i) = sqgrt(distance(3j,1i))

38 enddo

39 enddo

40 END_PROVIDER

FIG. 6: Code defining the geometrical parameters of the system

size. In IRPF90, the memory allocation of an array entity is not written by the user, but
by the pre-processor.

Memory can be explicitely freed using the keyword FREE. For example, de-allocating the
array velocity would be done using FREE velocity. If the memory of an entity is freed,
the entity is tagged as “not built”, and it will be allocated and built again the next time it
is needed.

E. Embedding scripts

The IRPF90 environment allows the programmer to write scripts inside his code. The
scripting language that will interpret the script is given in brackets. The result of the shell
script will be inserted in the file, and then will be interpreted by the Fortran pre-processor.
Such scripts can be used to write templates, or to write in the code some information that
has to be retrieved at compilation. For example, the date when the code was compiled can



1 BEGIN_PROVIDER [ double precision, V, (Natoms) ]
2 BEGIN_DOC

3 ! Potential energy.

4 END_DOC

5 integer :: i

6 do i=1,Natoms

7 V(i) = V_17j(1)

8 enddo

9 END_PROVIDER

10

11 BEGIN_PROVIDER [ double precision, V_1j, (Natoms) ]
12 implicit none

13 BEGIN_DOC

14 ! Lennard Jones potential energy.

15 END_DOC

16 integer :: i,J

17 double precision :: sigma_over_r

18 do i=1,Natoms

19 v_1lj(i) = 0.
20 do j=1,Natoms
21 if (i1 /= 3 ) then
22 ASSERT (distance(j,i) > 0.)
23 sigma_over_r = sigma_17j / distance(j,1i)
24 V_1j(i) = V_1j(i) + sigma_over_r**12 &
25 — sigma_over_r**6
26 endif
27 enddo
28 V_1j(i) = 4.d0 * epsilon_13 * V_17(1i)
29 enddo
30 END_PROVIDER
31

32 BEGIN_PROVIDER [ double precision, epsilon_17 ]
33 &BEGIN_PROVIDER [ double precision, sigma_l7j ]

34 BEGIN_DOC

35 ! Parameters of the Lennard-Jones potential
36 END_DOC

37 print *, 'Epsilon?'

38 read(*,*) epsilon_1j

39 ASSERT (epsilon_13j > 0.)

40 print *, 'Sigma?'

41 read(*,*) sigma_17j

42 ASSERT (sigma_1l3j > 0.)

43 END_PROVIDER

FIG. 7: Definition of the potential.

be inserted in the source code using the example given in figure
In our molecular dynamics program, the total kinetic energy E_kin is the sum over all
the elements of the kinetic energy vector T:

Natoms

Exn= Y T (4)
i=1

Similarly, the potential energy E_pot is the sum of all the potential energies per atom.

N, atoms

Epot = Z Vi (5)
i=1

The code to build E_kin and E_pot is very close: only the names of the variables change, and
it is convenient to write the code using a unique template for both quantities, as shown in
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BEGIN_PROVIDER [ double precision, T, (Natoms) ]

BEGIN_DOC

! Kinetic energy per atom
END_DOC

integer :: i

do i=1,Natoms
T(i) = 0.5d0 * mass (i) * velocity2 (i)
enddo

END_PROVIDER

BEGIN_PROVIDER[double precision,velocity2, (Natoms) ]
BEGIN_DOC
! Square of the norm of the velocity per atom
END_DOC

integer :: i, k

do i=1,Natoms

velocity2(i) = 0.dO

do k=1,3

velocity2 (i) = velocity2(i) + velocity(k,i)**2

enddo

enddo
END_PROVIDER

BEGIN_PROVIDER[double precision,velocity, (3,Natoms) ]
BEGIN_DOC
! Velocity vector per atom

END_DOC

integer :: i, k

do i=1,Natoms

do k=1,3
velocity(k,i) = 0.d0
enddo

enddo

END_PROVIDER

FIG. 8: Definition of the kinetic energy.

program print_the_date

BEGIN_SHELL [ /bin/sh ]
echo print *, \'Compiled by $USER on “date’\'
END_SHELL

end program

g WN -

FIG. 9: Embedded shell script which gets the date of compilation.

figure[I0l In this way, adding a new property which is the sum over all the atomic properties
can done be done in only one line of code: adding the triplet (Property, Documentation,
Atomic Property) to the list of entities at line 15.

F. Changing the value of an entity by a controlled side-effect

Many computer simulation programs contain iterative processes. In an iterative process,
the same function has to be calculated at each step, but with different arguments. In our
IRPF90 environment, at every iteration the production tree is the same, but the values of
some entities change. To keep the program correct, if the value of one entity is changed it
has to be tagged as “built” with its new value, and all the entities which depend on this

10



1 BEGIN_SHELL [ /usr/bin/python ]
2 template = """
3 BEGIN_PROVIDER [ double precision, % (entity)s ]
4 BEGIN_DOC
5 ' % (doc) s
6 END_DOC
7 integer :: i
8 % (entity)s = 0.
9 do i=1,Natoms
10 % (entity)s = S (entity)s+%$(e_array)s (i)
11 enddo
12 END_PROVIDER
l 3 nwmww
14 entities = [ ("E_pot", "Potential Energy", "V"),
15 ("E_kin", "Kinetic Energy", "T") ]
16 for e in entities:
17 dictionary = { "entity": e[O0],
18 "doc": e[l],
19 "e_array": e[2]}
20 print template%dictionary

21 END_SHELL

FIG. 10: Providers of the Lennard-Jones potential energy and the kinetic energy using a template.

entity (directly or indirectly) need to be tagged as “not built”. These last entities will need
to be re-computed during the new iteration. This mechanism is achieved automatically by
the IRPF90 pre-processor using the keyword TOUCH. The side-effect modifying the value of
the entity is controlled, and the program will stay consistent with the change everywhere in
the rest of the code.

In our program, we are now able to compute the kinetic and potential energy of the
system. The next step is now to implement the dynamics. We choose to use the velocity
Verlet algorithm:

At?
"= " 4 VvUAL + a”T (6)
1
Vn-l—l — Vn‘l' §(an+an+1)At (7)

where r™ and v” are respectively the position and velocity vectors at step n, At is the time
step and the acceleration vector a is defined as

N, toms
< 1
a = E — E V, Epot (8)
i=1 !

The velocity Verlet algorithm is written in a subroutine verlet, and the gradient of the
potential energy VE, can be computed by finite difference (figure [IT]).

Computing a component 7 of the numerical gradient of E,, can be decomposed in six
steps:

1. Change the component 7 of the coordinate r; — (r; + )
2. Compute the value of E

3. Change the coordinate (r; + ) — (r; — )

11



BEGIN_PROVIDER [ double precision, dstep ]
BEGIN_DOC

! Finite difference step

END_DOC

dstep = 1.d-4
END_PROVIDER

BEGIN_PROVIDER[double precision,V_grad_numeric, (3,Natoms) ]
implicit none
10 BEGIN_DOC

OWooJoyurd whNE

11 ! Numerical gradient of the potential
12 END_DOC

13 integer :: i, k

14 do i=1,Natoms

15 do k=1,3

16 coord(k,i) = coord(k,i) + dstep

17 TOUCH coord

18 V_grad_numeric(k,i) = E_pot

19 coord(k,i) = coord(k,i) - 2.d0*dstep
20 TOUCH coord

21 V_grad_numeric(k,i) = &

22 ( V_grad_numeric(k,1i)-E_pot )/ (2.d0*dstep)
23 coord(k,i) = coord(k,i) + dstep

24 enddo

25 enddo

26 TOUCH coord
277 END_PROVIDER

29 BEGIN_PROVIDER [ double precision, V_grad, (3,Natoms) ]
30 BEGIN_DOC

31 ! Gradient of the potential

32 END_DOC

33 integer :: i,k

34 do i=1,Natoms

35 do k=1,3

36 V_grad(k,i) = V_grad_numeric(k,1i)
37 enddo

38 enddo

39 END_PROVIDER

FIG. 11: Provider of the gradient of the potential.

4. Compute the value of Eq
5. Compute the component of the gradient using the two last values of Eq
6. Re-set (r; — ) — 1y

The provider of V_grad_numeric follows these steps: in the internal loop, the array coord
is changed (line 16). Touching it (line 17) invalidates automatically E_pot, since it depends
indirectly on coord. As the value of E_pot is needed in line 18 and not valid, it is re-computed
between line 17 and line 18. The value of E_pot which is affected to V_grad_numeric(k,i)
is the value of the potential energy, consistent with the current set of atomic coordinates.
Then, the coordinates are changed again (line 19), and the program is informed of this
change at line 20. When the value of E_pot is used again at line 22, it is consistent with
the last change of coordinates. At line 23 the coordinates are changed again, but no touch
statement follows. The reason for this choice is efficiency, since two cases are possible for
the next instruction: if we are at the last iteration of the loop, we exit the main loop and

12



line 26 is executed. Otherwise, the next instruction will be line 16. Touching coord is not
necessary between line 23 and line 16 since no other entity is used.

The important point is that the programmer doesn’t have to know how E_pot depends
on coord. He only has to apply a simple rule which states that when the value of an entity
A is modified, it has to be touched before any other entity B is used. If B depends on A, it
will be re-computed, otherwise it will not, and the code will always be correct. Using this
method to compute a numerical gradient allows a programmer who is not familiar with the
code to compute the gradient of any entity A with respect to any other quantity B, without
even knowing if A depends on B. If A does not depend on B, the gradient will automatically
be zero. In the programs dealing with optimization problems, it is a real advantage: a short
script can be written to build automatically all the possible numerical derivatives, involving
all the entities of the program, as given in figure 21

The velocity Verlet algorithm can be implemented (figure [I3)) as follows:

1. Compute the new value of the coordinates
2. Compute the component of the velocities which depends on the old set of coordinates
3. Touch the coordinates and the velocities

4. Increment the velocities by their component which depends on the new set of coordi-
nates

5. Touch the velocities

G. Other Features

As TIRPF90 is designed for HPC, conditional compilation is an essential require-
ment. Indeed, it is often used for activating and deactivating blocks of code defining
the behavior of the program under a parallel environment. This is achieved by the
IRP_IF...IRP_ELSE...IRP_ENDIF constructs. In figure [I4] the checkpointing block is acti-
vated by running irpf90 -DCHECKPOINT. If the -D option is not present, the other block is
activated.

The current state of the production tree can written to disk using the command
IRP_WRITE as in figure For each entity in the subtrees of E_pot and E_kin, a file is
created with the name of the entity which contains the value of the entity. The subtree can
be loaded again later using the IRP_READ statement. This functionality is particularly useful
for adding quickly a checkpointing feature to an existing program.

The PROVIDE keyword was added to assign imperatively a needs/needed by relation be-
tween two entities. This keyword can be used to associate the value of an entity to an
iteration number in an iterative process, or to help the preprocessor to produce more effi-
cient code.

A last convenient feature was added: the declarations of the local variables do not need
anymore to be located before the first executable statement. The local variables can now
be declared anywhere inside the providers, subroutines and functions. The IRPF90 pre-
processor will put them at the beginning of the subroutines or functions for the programmer.
It allows the user to declare the variables where the reader needs to know to what they
correspond.

13
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BEGIN_SHELL [ /usr/bin/python ]
# Read the names of the entities and their dimensions
dims = {}
import os
for filename in os.listdir('.'):
if filename.endswith('.irp.f'):
file = open(filename, 'r')
for line in file:
if "$" not in line:
if line.strip() .lower () .startswith('begin_provider'):
buffer = line.split(',"',2)
name = buffer[l] spllt( 1")[0].strip()
if len(buffer) ==

dims [name] = []
else:
dims [name] = buffer[2]
for ¢ in "()] \n":
dims[name] = dims[name].replace(c,"")
dims [name] = dims[name].split(",")

file.close()
# The template to use for the code generation
template = """
BEGIN_PROVIDER[double precision, grad_%(varl)s_%(var2)s % (dims2)
BEGIN_DOC
! Gradient of %(varl)s with respect to

[)

% (var2) s

END_DOC
integer :: %$(all_i)s
double precision :: two_dstep
two_dstep = dstep + dstep
% (do) s
$(var2)s %$(indice)s = % (var2)s % (indice)s + dstep
TOUCH % (var2)s
grad_% (varl)s_%(var2)s % (indice)s = % (varl)s
$(var2)s % (indice)s = % (var2)s %$(indice)s - two_dstep
TOUCH % (var2)s
grad_% (varl)s_ (var2) %(1ndlce)s = &
(grad_ %(varl) % (var2)s %(indice)s - % (varl)s)/two_dstep
% (var2) s %(indice)s = %(var2) % (indice)s + dstep
%(enddo)

TOUCH % (var2)s
END_PROVIDER
nmnwn
# Generate all possibilities of d(vl)/d(v2), with vl scalar
for vl in dims.keys({():

if dims[vl] == []:
for v2 in dims.keys():
if v2 = vl:
do = nn
enddo = ""
if dims[v2] == []:
dims2 = ""
all_i = "i"
indice = ""
else:
dims2 = ', ('+','.join(dims[v2])+")"
all_i = "'",'".join([ "i"+str (k) for k in range(len(dims[v2])
indice = " ("
for k,d in enumerate (dims[v2]) :
i = "i"+str (k)
do =" do "4+i+" = 1,"+d+"\n"+do
enddo += " enddo\n"
indice += i+","
indice = indice[:-1]+")"
dictionary = {"varl" . vl,
"var2" : v2, "dims2" : dims2,
"all _i"™ : all_i, "do" : do,
"indice": indice, "enddo" : enddo}
print template%dictionaﬁ%
END_SHELL

s]

) 1)
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BEGIN_PROVIDER [ integer,

BEGIN_DOC

Nsteps ]

! Number of steps for the dynamics

END_DOC

print *, 'Nsteps?'
read(*,*) Nsteps
ASSERT (Nsteps > 0)
END_PROVIDER

BEGIN_PROVIDER [ double precision, tstep ]
&BEGIN_PROVIDER [ double precision, tstep2 ]

BEGIN_DOC

! Time step for the dynamics

END_DOC

print *, 'Time step?'
read(*,*) tstep
ASSERT (tstep > 0.)
tstep2 = tstep*tstep
END_PROVIDER

BEGIN_PROVIDER[double precision,acceleration, (3,Natoms) ]

implicit none

BEGIN_DOC

! Acceleration = - grad(V)/m

END_DOC

integer :: i, k

do i=1,Natoms
do k=1,3
acceleration(k,i) = — V_grad(k,i)/mass (i)
enddo

enddo

END_PROVIDER

subroutine verlet
implicit none
integer :: is, i, k
do is=1,Nsteps

do i=1,Natoms

do k=1,3
coord(k,i) = coord(k,i) + tstep*velocity(k,1i)
0.5*tstep2*acceleration(k, i)
velocity(k,i) = velocity(k,i) + 0.5*tstep* &
acceleration (k, 1)
enddo
enddo

TOUCH coord velocity
do i=1,Natoms

do k=1,3
velocity(k,i) = velocity(k,i) + 0.5*tstep* &
acceleration (k, 1)
enddo
enddo

TOUCH velocity
call print_data(is)
enddo
end subroutine

FIG. 13: The velocity Verlet algorithm.
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1 program dynamics

2

3 call verlet

4

5 IRP_TIF CHECKPOINT

6

7 print *, 'Checkpoint'
8 IRP_WRITE E_pot

9 IRP_WRITE E_kin
10
11 IRP_ELSE
12
13 print *, 'No checkpoint'
14
15 IRP_ENDIF
16
17 end

FIG. 14: The main program.

III. EFFICIENCY OF THE GENERATED CODE

In the laboratory, we are currently re-writing a quantum Monte Carlo (QMC) program,
named QMC=Chem, with the IRPF90 tool. The same computation was realized with the
old code (usual Fortran code), and the new code (IRPF90 code). Both codes were compiled
with the Intel Fortran compiler version 11.1 using the same options. A benchmark was
realized on an Intel Xeon 5140 processor.

The TRPF90 code is faster than the old code by a factor of 1.60: the CPU time of the
IRPF90 executable is 62% of the CPU time of the old code. This time reduction is mainly
due to the avoidance of computing quantities that are already computed. The total number
of processor instructions is therefore reduced.

The average number of instructions per processor cycle is 1.47 for the old code, and 1.81
for the IRPF90 code. This application shows that even if the un-necessary computations were
removed from the old code, the code produced by IRPF90 would still be more efficient. The
reason is that in IRPF90, the programmer is guided to write efficient code: the providers
are small subroutines that manipulate a very limited number of memory locations. This
coding style improves the temporal locality of the code[12] and thus minimizes the number
of cache misses.

The conclusion of this real-size application is that the overhead due to the management
of the production tree is negligible compared to the efficiency gained by avoiding to compute
many times the same quantity, and by helping the Fortran compiler to produce optimized
code.

IV. SUMMARY

The IRPF90 environment is proposed for writing programs with reduced complexity.
This technique for writing programs, called “Implicit Reference to Parameters” (IRP),[7] is

conform to the recommendations of the “Open Structure Interfaceable Programming Envi-
ronment” (OSIPE)|§|:

e Open: Unambiguous identification and access to any entity anywhere in the program
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e Interfaceable: Easy addition of any new feature to an existing code
e Structured: The additions will have no effect on the program logic

The programming paradigm uses some ideas of functional programming and thus clarifies
the correspondance between the mathematical formulas and the code. Therefore, scientists
do not need to be experts in programming to write clear, reusable and efficient code, as
shown with the simple molecular dynamics code presented in this paper.

The consequences of the locality of the code are multiple:

e the code is efficient since the temporal locality is increased,
e the overlap of pieces of code written simultaneously by multiple developers is reduced.

e regression testing|13| can be achieved by writing, for each entity, a program which
tests that the entity is built correctly.

Finally, let us mention that the IRPF90 pre-processor generates Fortran 90 which is fully
compatible with standard subroutines and functions. Therefore the produced Fortran code
can be compiled on any architecture, and the usual HPC libraries (BLAS|14|, LAPACK|15],
MPI|16],...) can be used.

The IRPF90 program can be downloaded on http://irpf90.sourceforge.net
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