
HAL Id: hal-01539073
https://hal.science/hal-01539073

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IRPF90: a programming environment for high
performance computing

Anthony Scemama

To cite this version:
Anthony Scemama. IRPF90: a programming environment for high performance computing. [Research
Report] CNRS; Université Paul Sabatier - Toulouse (France). 2009. �hal-01539073�

https://hal.science/hal-01539073
https://hal.archives-ouvertes.fr

ar
X

iv
:0

90
9.

50
12

v1
 [

cs
.S

E
]

 2
8

Se
p

20
09

IRPF90: a programming environment for high performan
e

omputing

Anthony S
emama

Laboratoire de Chimie et Physique Quantiques,

CNRS-UMR 5626,

IRSAMC Université Paul Sabatier,

118 route de Narbonne

31062 Toulouse Cedex, Fran
e

(Dated: September 5, 2018)

Abstra
t

IRPF90 is a Fortran programming environment whi
h helps the development of large Fortran

odes. In Fortran programs, the programmer has to fo
us on the order of the instru
tions: before

using a variable, the programmer has to be sure that it has already been
omputed in all possible

situations. For large
odes, it is
ommon sour
e of error. In IRPF90 most of the order of instru
tions

is handled by the pre-pro
essor, and an automati
 me
hanism guarantees that every entity is

built before being used. This me
hanism relies on the {needs/needed by} relations between the

entities, whi
h are built automati
ally. Codes written with IRPF90 exe
ute often faster than Fortran

programs, are faster to write and easier to maintain.

1

http://arxiv.org/abs/0909.5012v1

I. INTRODUCTION

The most popular programming languages in high performan
e
omputing (HPC) are

those whi
h produ
e fast exe
utables (Fortran and C for instan
e). Large programs written

in these languages are di�
ult to maintain and these languages are in
onstant evolution to

fa
ilitate the development of large
odes. For example, the C++ language[1℄ was proposed

as an improvement of the C language by introdu
ing
lasses and other features of obje
t-

oriented programming. In this paper, we propose a Fortran pre-pro
essor with a very limited

number of keywords, whi
h fa
ilitates the development of large programs and the re-usability

of the
ode without a�e
ting the e�
ien
y.

In the imperative programming paradigm, a
omputation is a ordered list of
ommands

that
hange the state of the program. At the lowest level, the ma
hine
ode is imperative:

the
ommands are the ma
hine
ode instru
tions and the state of the program is represented

by to the
ontent of the memory. At a higher level, the Fortran language is an imperative

language. Ea
h statement of a Fortran program modi�es the state of the memory.

In the fun
tional programming paradigm, a
omputation is the evaluation of a fun
tion.

This fun
tion, to be evaluated, may need to evaluate other fun
tions. The state of the

program is not known by the programmer, and the memory management is handled by the

ompiler.

Imperative languages are easy to understand by ma
hines, while fun
tional languages are

easy to understand by human beings. Hen
e,
ode written in an imperative language
an

be made extremely e�
ient, and this is the main reason why Fortran and C are so popular

in the �eld of High Performan
e Computing (HPC).

However,
odes written in imperative languages usually be
ome ex
essively
ompli
ated

to maintain and to debug. In a large
ode, it is often very di�
ult for the programmer to

have a
lear image of the state of the program at a given position of the
ode, espe
ially when

side-e�e
ts in a pro
edure modi�y memory lo
ations whi
h are used in other pro
edures.

In this paper, we present a tool
alled �Impli
it Referen
e to Parameters with Fortran 90�

(IRPF90). It is a Fortran pre-pro
essor whi
h fa
ilitates the development of large simulation

odes, by allowing the programmer to fo
us on what is being
omputed, instead of how it is

omputed. This last senten
e often des
ribes the di�eren
e between the fun
tional and the

imperative paradigms[2℄. From a pra
ti
al point of view, IRPF90 is a program written in

the Python[3℄ language. It produ
es Fortran sour
e �les from IRPF90 sour
e �les. IRPF90

sour
e �les are Fortran sour
e �les with a limited number of additional statements. To

explain how to use the IRPF90 tool, we will write a simple mole
ular dynami
s program as

a tutorial.

II. TUTORIAL: A MOLECULAR DYNAMICS PROGRAM

A. Imperative and fun
tional implementation of the potential

We �rst
hoose to implement the Lennard-Jones potential[4℄ to
ompute the intera
tion

of pairs of atoms:

V (r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

(1)

2

 1 program potential_with_imperative_style
 2 implicit none
 3 double precision :: sigma_lj, epsilon_lj
 4 double precision :: interatomic_distance
 5 double precision :: sigma_over_r
 6 double precision :: V_lj
 7 print *, 'Sigma?'
 8 read(*,*) sigma_lj
 9 print *, 'Epsilon?'
 10 read(*,*) epsilon_lj
 11 print *, 'Interatomic Distance?'
 12 read(*,*) interatomic_distance
 13 sigma_over_r = sigma_lj/interatomic_distance
 14 V_lj = 4.d0 * epsilon_lj * (sigma_over_r**12 &
 15 − sigma_over_r**6)
 16 print *, 'Lennard−Jones potential:'
 17 print *, V_lj
 18 end program

FIG. 1: Imperative implementation of the Lennard-Jones potential.

where r is the atom-atom distan
e, ǫ is the depth of the potential well and σ is the value of

r for whi
h the potential energy is zero. ǫ and σ are the parameters of the for
e �eld.

Using an imperative style, one would obtain the program given in �gure 1. One
an

learly see the sequen
e of statements in this program: �rst read the data, then
ompute

the value of the potential.

This program
an be re-written using a fun
tional style, as shown in �gure 2. In the

fun
tional form of the program, the sequen
e of operations does not appear as
learly as in

the imperative example. Moreover, the order of exe
ution of the
ommands now depends

on the
hoi
e of the
ompiler: the fun
tion sigma_over_r and the fun
tion epsilon_lj are

both
alled on line 12-13, and the order of exe
ution may di�er from one
ompiler to the

other.

The program was written in su
h a way that the fun
tions have no arguments. The

reason for this
hoi
e is that the referen
es to the entities whi
h are needed to
al
ulate

a fun
tion appear inside the fun
tion, and not outside of the fun
tion. Therefore, the

ode is simpler to understand for a programmer who never read this parti
ular
ode, and

it
an be easily represented as a produ
tion tree (�gure 3, above). This tree exhibits the

relation {needs/needed by} between the entities of interest: the entity V_lj needs the entities

sigma_over_r and epsilon_lj to be produ
ed, and sigma_over_r needs sigma_lj and

interatomi
_distan
e.

In the imperative version of the
ode (�gure 1), the produ
tion tree has to be known by the

programmer so he
an pla
e the instru
tions in the proper order. For simple programs it is

not a problem, but for large
odes the produ
tion tree
an be so large that the programmer is

likely to make wrong assumptions in the dependen
ies between the entities. This
omplexi�es

the stru
ture of the
ode by the introdu
tion of many di�erent methods to
ompute the same

quantity, and the performan
e of the
ode
an be redu
ed due to the
omputation of entities

whi
h are not needed.

In the fun
tional version (�gure 2), the produ
tion tree does not need to be known by the

programmer. It exists impli
itely through the fun
tion
alls, and the evaluation of the main

fun
tion is realized by exploring the tree with a depth-�rst algorithm. A large advantage

of the fun
tional style is that there
an only be one way to
al
ulate the value of an entity:

3

 1 program potential_with_functional_style
 2 double precision :: V_lj
 3 print *, V_lj()
 4 end program
 5
 6 double precision function V_lj()
 7 double precision :: sigma_lj
 8 double precision :: epsilon_lj
 9 double precision :: interatomic_distance
 10 double precision :: sigma_over_r
 11 V_lj = 4.d0 * epsilon_lj() * &
 12 (sigma_over_r()**12 − sigma_over_r()**6)
 13 end function
 14
 15 double precision function epsilon_lj()
 16 print *, 'Epsilon?'
 17 read(*,*) epsilon_lj
 18 end function
 19
 20 double precision function sigma_lj ()
 21 print *, 'Sigma?'
 22 read(*,*) sigma_lj
 23 end function
 24
 25 double precision function sigma_over_r()
 26 double precision :: sigma_lj
 27 double precision :: interatomic_distance
 28 sigma_over_r = sigma_lj()/interatomic_distance()
 29 end function
 30
 31 double precision function interatomic_distance()
 32 print *, 'Interatomic Distance?'
 33 read(*,*) interatomic_distance
 34 end function

FIG. 2: Fun
tional implementation of the Lennard-Jones potential.

epsilon
lj

lj
V

sigma
lj

sigma
lj

sigma_over_r sigma_over_r

interatomic_distanceinteratomic_distance

sigma_over_r

interatomic_distancesigma
lj

epsilon
lj

lj
V

FIG. 3: The produ
tion tree of V_lj. Above, the tree produ
ed by the program of �gure 2. Below,

the tree obtained if only one
all to sigma_over_r is made.

4

 1 double precision function sigma_over_r()
 2 double precision :: sigma_lj
 3 double precision :: interatomic_distance
 4 double precision, save :: last_result
 5 integer, save :: first_time_here
 6 if (first_time_here.eq.0) then
 7 last_result = sigma_lj()/interatomic_distance()
 8 first_time_here = 1
 9 endif
 10 sigma_over_r = last_result
 11 end function

FIG. 4: Memoized sigma_over_r fun
tion

alling the
orresponding fun
tion. Therefore, the readability of the
ode is improved for a

programmer who is not familiar with the program. Moreover, as soon as an entity is needed,

it is
al
ulated and valid. Writing programs in this way redu
es
onsiderably the risk to use

un-initialized variables, or variables that are supposed to have a given value but whi
h have

been modi�ed by a side-e�e
t.

With the fun
tional example, every time a quantity is needed it is
omputed, even if

it has already been built before. If the fun
tions are pure (with no side-e�e
ts), one
an

implement memoization[5, 6℄ to redu
e the
omputational
ost: the last value of the fun
tion

is saved, and if the fun
tion is
alled again with the same arguments the last result is returned

instead of
omputing it again. In the present example we
hose to write fun
tions with no

arguments, so memoization is trivial to implement (�gure 4). If we
onsider that the leaves

of the produ
tion tree are
onstant, memoization
an be applied to all the fun
tions. The

produ
tion tree of V_lj
an now be simpli�ed, as shown in �gure 3, below.

B. Presentation of the IRPF90 statements

IRPF90 is a Fortran pre-pro
essor: it generates Fortran
ode from sour
e �les whi
h

ontain keywords spe
i�
 to the IRPF90 program. The keywords understood by IRPF90

pre-pro
essor are brie�y presented. They will be exampli�ed in the next subse
tions for the

mole
ular dynami
s example.

BEGIN_PROVIDER ... END_PROVIDER

Delimitates the de�nition of a provider (se
tions IIC and IID).

BEGIN_DOC ... END_DOC

Delimitates the do
umentation of the
urrent provider (se
tion IIC).

BEGIN_SHELL ... END_SHELL

Delimitates an embedded s
ript (se
tion II E).

ASSERT

Expresses an assertion (se
tion IIC).

TOUCH

Expresses the modi�
ation of the value of an entity by a side-e�e
t (se
tion II F).

FREE

Invalidates an entity and free the asso
iated memory. (se
tion ??).

IRP_READ / IRP_WRITE

Reads/Writes the
ontent of the produ
tion tree to/from disk (se
tion IIG).

5

 1 program lennard_jones_dynamics
 2 print *, V_lj
 3 end program
 4
 5 BEGIN_PROVIDER [double precision, V_lj]
 6 implicit none
 7 BEGIN_DOC
 8 ! Lennard Jones potential energy.
 9 END_DOC
 10 double precision :: sigma_over_r
 11 sigma_over_r = sigma_lj / interatomic_distance
 12 V_lj = 4.d0 * epsilon_lj * (sigma_over_r**12 &
 13 − sigma_over_r**6)
 14 END_PROVIDER
 15
 16 BEGIN_PROVIDER [double precision, epsilon_lj]
 17 &BEGIN_PROVIDER [double precision, sigma_lj]
 18 BEGIN_DOC
 19 ! Parameters of the Lennard−Jones potential
 20 END_DOC
 21 print *, 'Epsilon?'
 22 read(*,*) epsilon_lj
 23 ASSERT (epsilon_lj > 0.)
 24 print *, 'Sigma?'
 25 read(*,*) sigma_lj
 26 ASSERT (sigma_lj > 0.)
 27 END_PROVIDER
 28
 29 BEGIN_PROVIDER[double precision,interatomic_distance]
 30 BEGIN_DOC
 31 ! Distance between the atoms
 32 END_DOC
 33 print *, 'Inter−atomic distance?'
 34 read (*,*) interatomic_distance
 35 ASSERT (interatomic_distance >= 0.)
 36 END_PROVIDER

FIG. 5: IRPF90 implementation of the Lennard-Jones potential.

IRP_IF ... IRP_ELSE ... IRP_ENDIF

Delimitates blo
ks for
onditional
ompilation (se
tion IIG).

PROVIDE

Expli
it
all to the provider of an entity (se
tion IIG).

C. Implementation of the potential using IRPF90

In the IRPF90 environment, the entities of interest are the result of memoized fun
tions

with no arguments. This representation of the data allows its organization in a produ
tion

tree, whi
h is built and handled by the IRPF90 pre-pro
essor. The previous program may

be written again using the IRPF90 environment, as shown in �gure 5.

The program shown in �gure 5 is very similar to the fun
tional program of �gure 2. The

di�eren
e is that the entities of interest are not fun
tions anymore, but variables. The vari-

able
orresponding to an entity is provided by
alling a providing pro
edure (or provider),

de�ned between the keywords BEGIN_PROVIDER ... END_PROVIDER. In the IRPF90 en-

vironment, a provider
an provide several entities (as shown with the parameters of the

potential), although it is preferable to have providers that provide only one entity.

6

When an entity has been built, it is tagged as built. Hen
e, the next
all to the provider

will return the last
omputed value, and will not build the value again. This explains why

in the IRPF90 environment the parameters of the for
e �eld are asked only on
e to the user.

The ASSERT keyword was introdu
ed to allow the user to pla
e assertions[9℄ in the
ode.

An assertion spe
i�es
ertain general properties of a value. It is expressed as a logi
al

expression whi
h is supposed to be always true. If it is not, the program is wrong. Assertions

in the
ode provide run-time
he
ks whi
h
an dramati
ally redu
e the time spent �nding

bugs: if an assertion is not veri�ed, the program stops with a message telling the user whi
h

assertion
aused the program to fail.

The BEGIN_DOC ... END_DOC blo
ks
ontain the do
umentation of the provided entities.

The des
riptions are en
apsulated inside these blo
ks in order to fa
ilitate the generation

of te
hni
al do
umentation. For ea
h entity a �man page� is
reated, whi
h
ontains the

{needs/needed by} dependen
ies of the entity and the des
ription given in the BEGIN_DOC

... END_DOC blo
k. This do
umentation
an be a

essed by using the irpman
ommand

followed by the name of the entity.

The IRPF90 environment was
reated to simplify the work of the s
ienti�
 programmer. A

lot of time is spent
reating Make�les, whi
h des
ribe the dependen
ies between the sour
e

�les for the
ompilation. As the IRPF90 tool �knows� the produ
tion tree, it
an build

automati
ally the Make�les of programs, without any intera
tion with the user. When the

user starts a proje
t, he runs the
ommand irpf90 �init in an empty dire
tory. A standard

Make�le is
reated, with the gfortran
ompiler[10℄ as a default. Then, the user starts to

write IRPF90 �les whi
h
ontain providers, subroutines, fun
tions and main programs in

�les
hara
terized by the .irp.f su�x. Running make
alls irpf90, and a
orre
t Make�le

is automati
ally produ
ed and used to
ompile the
ode.

D. Providing arrays

Now the basi
s of IRPF90 are known to the reader, we
an show how simple it is to write

a mole
ular dynami
s program. As we will
ompute the intera
tion of several atoms, we

will
hange the previous program su
h that we produ
e an array of potential energies per

atom. We �rst need to introdu
e the quantity Natoms whi
h
ontains the number of atoms.

Figure 6 shows the
ode whi
h de�nes the geometri
al parameters of the system. Figure 7

shows the providers
orresponding to the potential energy V per atom i, where it is
hosen

equal to the Lennard-Jones potential energy:

Vi = V
LJ
i =

Natoms
∑

j 6=i

4ǫ

[

(

σ

||rij||

)12

−

(

σ

||rij||

)6
]

(2)

Figure 8 shows the providers
orresponding to the kineti
 energy T per atom i:

Ti =
1

2
mi||vi||

2
(3)

where mi is the mass and vi is the velo
ity ve
tor of atom i. The velo
ity ve
tor is
hosen

to be initialized zero.

The dimensions of arrays are given in the de�nition of the provider. If an entity, de�nes

the dimension of an array, the provider of the dimensioning entity will be
alled before

allo
ating the array. This guarantees that the array will always be allo
ated with the proper

7

 1 BEGIN_PROVIDER [integer, Natoms]
 2 BEGIN_DOC
 3 ! Number of atoms
 4 END_DOC
 5 print *, 'Number of atoms?'
 6 read(*,*) Natoms
 7 ASSERT (Natoms > 0)
 8 END_PROVIDER
 9
 10 BEGIN_PROVIDER [double precision, coord, (3,Natoms)]
 11 &BEGIN_PROVIDER [double precision, mass , (Natoms)]
 12 implicit none
 13 BEGIN_DOC
 14 ! Atomic data, input in atomic units.
 15 END_DOC
 16 integer :: i,j
 17 print *, 'For each atom: x, y, z, mass?'
 18 do i=1,Natoms
 19 read(*,*) (coord(j,i), j=1,3), mass(i)
 20 ASSERT (mass(i) > 0.)
 21 enddo
 22 END_PROVIDER
 23
 24 BEGIN_PROVIDER[double precision,distance,(Natoms,Natoms)]
 25 implicit none
 26 BEGIN_DOC
 27 ! distance : Distance matrix of the atoms
 28 END_DOC
 29 integer :: i,j,k
 30 do i=1,Natoms
 31 do j=1,Natoms
 32 distance(j,i) = 0.
 33 do k=1,3
 34 distance(j,i) = distance(j,i) + &
 35 (coord(k,i)−coord(k,j))**2
 36 enddo
 37 distance(j,i) = sqrt(distance(j,i))
 38 enddo
 39 enddo
 40 END_PROVIDER

FIG. 6: Code de�ning the geometri
al parameters of the system

size. In IRPF90, the memory allo
ation of an array entity is not written by the user, but

by the pre-pro
essor.

Memory
an be expli
itely freed using the keyword FREE. For example, de-allo
ating the

array velo
ity would be done using FREE velo
ity. If the memory of an entity is freed,

the entity is tagged as �not built�, and it will be allo
ated and built again the next time it

is needed.

E. Embedding s
ripts

The IRPF90 environment allows the programmer to write s
ripts inside his
ode. The

s
ripting language that will interpret the s
ript is given in bra
kets. The result of the shell

s
ript will be inserted in the �le, and then will be interpreted by the Fortran pre-pro
essor.

Su
h s
ripts
an be used to write templates, or to write in the
ode some information that

has to be retrieved at
ompilation. For example, the date when the
ode was
ompiled
an

8

 1 BEGIN_PROVIDER [double precision, V, (Natoms)]
 2 BEGIN_DOC
 3 ! Potential energy.
 4 END_DOC
 5 integer :: i
 6 do i=1,Natoms
 7 V(i) = V_lj(i)
 8 enddo
 9 END_PROVIDER
 10
 11 BEGIN_PROVIDER [double precision, V_lj, (Natoms)]
 12 implicit none
 13 BEGIN_DOC
 14 ! Lennard Jones potential energy.
 15 END_DOC
 16 integer :: i,j
 17 double precision :: sigma_over_r
 18 do i=1,Natoms
 19 V_lj(i) = 0.
 20 do j=1,Natoms
 21 if (i /= j) then
 22 ASSERT (distance(j,i) > 0.)
 23 sigma_over_r = sigma_lj / distance(j,i)
 24 V_lj(i) = V_lj(i) + sigma_over_r**12 &
 25 − sigma_over_r**6
 26 endif
 27 enddo
 28 V_lj(i) = 4.d0 * epsilon_lj * V_lj(i)
 29 enddo
 30 END_PROVIDER
 31
 32 BEGIN_PROVIDER [double precision, epsilon_lj]
 33 &BEGIN_PROVIDER [double precision, sigma_lj]
 34 BEGIN_DOC
 35 ! Parameters of the Lennard−Jones potential
 36 END_DOC
 37 print *, 'Epsilon?'
 38 read(*,*) epsilon_lj
 39 ASSERT (epsilon_lj > 0.)
 40 print *, 'Sigma?'
 41 read(*,*) sigma_lj
 42 ASSERT (sigma_lj > 0.)
 43 END_PROVIDER

FIG. 7: De�nition of the potential.

be inserted in the sour
e
ode using the example given in �gure 9.

In our mole
ular dynami
s program, the total kineti
 energy E_kin is the sum over all

the elements of the kineti
 energy ve
tor T:

Ekin =
Natoms
∑

i=1

Ti (4)

Similarly, the potential energy E_pot is the sum of all the potential energies per atom.

Epot =
Natoms
∑

i=1

Vi (5)

The
ode to build E_kin and E_pot is very
lose: only the names of the variables
hange, and

it is
onvenient to write the
ode using a unique template for both quantities, as shown in

9

 1 BEGIN_PROVIDER [double precision, T, (Natoms)]
 2 BEGIN_DOC
 3 ! Kinetic energy per atom
 4 END_DOC
 5 integer :: i
 6 do i=1,Natoms
 7 T(i) = 0.5d0 * mass(i) * velocity2(i)
 8 enddo
 9 END_PROVIDER
 10
 11 BEGIN_PROVIDER[double precision,velocity2,(Natoms)]
 12 BEGIN_DOC
 13 ! Square of the norm of the velocity per atom
 14 END_DOC
 15 integer :: i, k
 16 do i=1,Natoms
 17 velocity2(i) = 0.d0
 18 do k=1,3
 19 velocity2(i) = velocity2(i) + velocity(k,i)**2
 20 enddo
 21 enddo
 22 END_PROVIDER
 23
 24 BEGIN_PROVIDER[double precision,velocity,(3,Natoms)]
 25 BEGIN_DOC
 26 ! Velocity vector per atom
 27 END_DOC
 28 integer :: i, k
 29 do i=1,Natoms
 30 do k=1,3
 31 velocity(k,i) = 0.d0
 32 enddo
 33 enddo
 34 END_PROVIDER

FIG. 8: De�nition of the kineti
 energy.

 1 program print_the_date
 2 BEGIN_SHELL [/bin/sh]
 3 echo print *, \'Compiled by $USER on `date`\'
 4 END_SHELL
 5 end program

FIG. 9: Embedded shell s
ript whi
h gets the date of
ompilation.

�gure 10. In this way, adding a new property whi
h is the sum over all the atomi
 properties

an done be done in only one line of
ode: adding the triplet (Property, Do
umentation,

Atomi
 Property) to the list of entities at line 15.

F. Changing the value of an entity by a
ontrolled side-e�e
t

Many
omputer simulation programs
ontain iterative pro
esses. In an iterative pro
ess,

the same fun
tion has to be
al
ulated at ea
h step, but with di�erent arguments. In our

IRPF90 environment, at every iteration the produ
tion tree is the same, but the values of

some entities
hange. To keep the program
orre
t, if the value of one entity is
hanged it

has to be tagged as �built� with its new value, and all the entities whi
h depend on this

10

 1 BEGIN_SHELL [/usr/bin/python]
 2 template = """
 3 BEGIN_PROVIDER [double precision, %(entity)s]
 4 BEGIN_DOC
 5 ! %(doc)s
 6 END_DOC
 7 integer :: i
 8 %(entity)s = 0.
 9 do i=1,Natoms
 10 %(entity)s = %(entity)s+%(e_array)s(i)
 11 enddo
 12 END_PROVIDER
 13 """
 14 entities = [("E_pot", "Potential Energy", "V"),
 15 ("E_kin", "Kinetic Energy", "T")]
 16 for e in entities:
 17 dictionary = { "entity": e[0],
 18 "doc": e[1],
 19 "e_array": e[2]}
 20 print template%dictionary
 21 END_SHELL

FIG. 10: Providers of the Lennard-Jones potential energy and the kineti
 energy using a template.

entity (dire
tly or indire
tly) need to be tagged as �not built�. These last entities will need

to be re-
omputed during the new iteration. This me
hanism is a
hieved automati
ally by

the IRPF90 pre-pro
essor using the keyword TOUCH. The side-e�e
t modifying the value of

the entity is
ontrolled, and the program will stay
onsistent with the
hange everywhere in

the rest of the
ode.

In our program, we are now able to
ompute the kineti
 and potential energy of the

system. The next step is now to implement the dynami
s. We
hoose to use the velo
ity

Verlet algorithm[11℄:

r
n+1 = r

n + v
n∆t + a

n∆t2

2
(6)

v
n+1 = v

n +
1

2
(an + a

n+1)∆t (7)

where r
n
and v

n
are respe
tively the position and velo
ity ve
tors at step n, ∆t is the time

step and the a

eleration ve
tor a is de�ned as

a =

Natoms
∑

i=1

−
1

mi

∇iEpot (8)

The velo
ity Verlet algorithm is written in a subroutine verlet, and the gradient of the

potential energy ∇Epot
an be
omputed by �nite di�eren
e (�gure 11).

Computing a
omponent i of the numeri
al gradient of Epot
an be de
omposed in six

steps:

1. Change the
omponent i of the
oordinate ri −→ (ri + δ)

2. Compute the value of Epot

3. Change the
oordinate (ri + δ) −→ (ri − δ)

11

 1 BEGIN_PROVIDER [double precision, dstep]
 2 BEGIN_DOC
 3 ! Finite difference step
 4 END_DOC
 5 dstep = 1.d−4
 6 END_PROVIDER
 7
 8 BEGIN_PROVIDER[double precision,V_grad_numeric,(3,Natoms)]
 9 implicit none
 10 BEGIN_DOC
 11 ! Numerical gradient of the potential
 12 END_DOC
 13 integer :: i, k
 14 do i=1,Natoms
 15 do k=1,3
 16 coord(k,i) = coord(k,i) + dstep
 17 TOUCH coord
 18 V_grad_numeric(k,i) = E_pot
 19 coord(k,i) = coord(k,i) − 2.d0*dstep
 20 TOUCH coord
 21 V_grad_numeric(k,i) = &
 22 (V_grad_numeric(k,i)−E_pot)/(2.d0*dstep)
 23 coord(k,i) = coord(k,i) + dstep
 24 enddo
 25 enddo
 26 TOUCH coord
 27 END_PROVIDER
 28
 29 BEGIN_PROVIDER [double precision, V_grad, (3,Natoms)]
 30 BEGIN_DOC
 31 ! Gradient of the potential
 32 END_DOC
 33 integer :: i,k
 34 do i=1,Natoms
 35 do k=1,3
 36 V_grad(k,i) = V_grad_numeric(k,i)
 37 enddo
 38 enddo
 39 END_PROVIDER

FIG. 11: Provider of the gradient of the potential.

4. Compute the value of Epot

5. Compute the
omponent of the gradient using the two last values of Epot

6. Re-set (ri − δ) −→ ri

The provider of V_grad_numeri
 follows these steps: in the internal loop, the array
oord

is
hanged (line 16). Tou
hing it (line 17) invalidates automati
ally E_pot, sin
e it depends

indire
tly on
oord. As the value of E_pot is needed in line 18 and not valid, it is re-
omputed

between line 17 and line 18. The value of E_pot whi
h is a�e
ted to V_grad_numeri
(k,i)

is the value of the potential energy,
onsistent with the
urrent set of atomi

oordinates.

Then, the
oordinates are
hanged again (line 19), and the program is informed of this

hange at line 20. When the value of E_pot is used again at line 22, it is
onsistent with

the last
hange of
oordinates. At line 23 the
oordinates are
hanged again, but no tou
h

statement follows. The reason for this
hoi
e is e�
ien
y, sin
e two
ases are possible for

the next instru
tion: if we are at the last iteration of the loop, we exit the main loop and

12

line 26 is exe
uted. Otherwise, the next instru
tion will be line 16. Tou
hing
oord is not

ne
essary between line 23 and line 16 sin
e no other entity is used.

The important point is that the programmer doesn't have to know how E_pot depends

on
oord. He only has to apply a simple rule whi
h states that when the value of an entity

A is modi�ed, it has to be tou
hed before any other entity B is used. If B depends on A, it

will be re-
omputed, otherwise it will not, and the
ode will always be
orre
t. Using this

method to
ompute a numeri
al gradient allows a programmer who is not familiar with the

ode to
ompute the gradient of any entity A with respe
t to any other quantity B, without

even knowing if A depends on B. If A does not depend on B, the gradient will automati
ally

be zero. In the programs dealing with optimization problems, it is a real advantage: a short

s
ript
an be written to build automati
ally all the possible numeri
al derivatives, involving

all the entities of the program, as given in �gure 12.

The velo
ity Verlet algorithm
an be implemented (�gure 13) as follows:

1. Compute the new value of the
oordinates

2. Compute the
omponent of the velo
ities whi
h depends on the old set of
oordinates

3. Tou
h the
oordinates and the velo
ities

4. In
rement the velo
ities by their
omponent whi
h depends on the new set of
oordi-

nates

5. Tou
h the velo
ities

G. Other Features

As IRPF90 is designed for HPC,
onditional
ompilation is an essential require-

ment. Indeed, it is often used for a
tivating and dea
tivating blo
ks of
ode de�ning

the behavior of the program under a parallel environment. This is a
hieved by the

IRP_IF...IRP_ELSE...IRP_ENDIF
onstru
ts. In �gure 14, the
he
kpointing blo
k is a
ti-

vated by running irpf90 -DCHECKPOINT. If the -D option is not present, the other blo
k is

a
tivated.

The
urrent state of the produ
tion tree
an written to disk using the
ommand

IRP_WRITE as in �gure 14. For ea
h entity in the subtrees of E_pot and E_kin, a �le is

reated with the name of the entity whi
h
ontains the value of the entity. The subtree
an

be loaded again later using the IRP_READ statement. This fun
tionality is parti
ularly useful

for adding qui
kly a
he
kpointing feature to an existing program.

The PROVIDE keyword was added to assign imperatively a needs/needed by relation be-

tween two entities. This keyword
an be used to asso
iate the value of an entity to an

iteration number in an iterative pro
ess, or to help the prepro
essor to produ
e more e�-

ient
ode.

A last
onvenient feature was added: the de
larations of the lo
al variables do not need

anymore to be lo
ated before the �rst exe
utable statement. The lo
al variables
an now

be de
lared anywhere inside the providers, subroutines and fun
tions. The IRPF90 pre-

pro
essor will put them at the beginning of the subroutines or fun
tions for the programmer.

It allows the user to de
lare the variables where the reader needs to know to what they

orrespond.

13

 1 BEGIN_SHELL [/usr/bin/python]
 2 # Read the names of the entities and their dimensions
 3 dims = {}
 4 import os
 5 for filename in os.listdir('.'):
 6 if filename.endswith('.irp.f'):
 7 file = open(filename,'r')
 8 for line in file:
 9 if "%" not in line:
 10 if line.strip().lower().startswith('begin_provider'):
 11 buffer = line.split(',',2)
 12 name = buffer[1].split(']')[0].strip()
 13 if len(buffer) == 2:
 14 dims[name] = []
 15 else:
 16 dims[name] = buffer[2]
 17 for c in "()] \n":
 18 dims[name] = dims[name].replace(c,"")
 19 dims[name] = dims[name].split(",")
 20 file.close()
 21 # The template to use for the code generation
 22 template = """
 23 BEGIN_PROVIDER[double precision, grad_%(var1)s_%(var2)s %(dims2)s]
 24 BEGIN_DOC
 25 ! Gradient of %(var1)s with respect to %(var2)s
 26 END_DOC
 27 integer :: %(all_i)s
 28 double precision :: two_dstep
 29 two_dstep = dstep + dstep
 30 %(do)s
 31 %(var2)s %(indice)s = %(var2)s %(indice)s + dstep
 32 TOUCH %(var2)s
 33 grad_%(var1)s_%(var2)s %(indice)s = %(var1)s
 34 %(var2)s %(indice)s = %(var2)s %(indice)s − two_dstep
 35 TOUCH %(var2)s
 36 grad_%(var1)s_%(var2)s %(indice)s = &
 37 (grad_%(var1)s_%(var2)s %(indice)s − %(var1)s)/two_dstep
 38 %(var2)s %(indice)s = %(var2)s %(indice)s + dstep
 39 %(enddo)s
 40 TOUCH %(var2)s
 41 END_PROVIDER
 42 """
 43 # Generate all possibilities of d(v1)/d(v2), with v1 scalar
 44 for v1 in dims.keys():
 45 if dims[v1] == []:
 46 for v2 in dims.keys():
 47 if v2 != v1:
 48 do = ""
 49 enddo = ""
 50 if dims[v2] == []:
 51 dims2 = ""
 52 all_i = "i"
 53 indice = ""
 54 else:
 55 dims2 = ', ('+','.join(dims[v2])+')'
 56 all_i = ','.join(["i"+str(k) for k in range(len(dims[v2]))])
 57 indice = "("
 58 for k,d in enumerate(dims[v2]):
 59 i = "i"+str(k)
 60 do = " do "+i+" = 1,"+d+"\n"+do
 61 enddo += " enddo\n"
 62 indice += i+","
 63 indice = indice[:−1]+")"
 64 dictionary = {"var1" : v1,
 65 "var2" : v2, "dims2" : dims2,
 66 "all_i" : all_i, "do" : do,
 67 "indice": indice, "enddo" : enddo}
 68 print template%dictionary
 69 END_SHELL

FIG. 12: Automati
 generation of all possible gradients of s
alar entities with respe
t to all other

entities.

14

 1 BEGIN_PROVIDER [integer, Nsteps]
 2 BEGIN_DOC
 3 ! Number of steps for the dynamics
 4 END_DOC
 5 print *, 'Nsteps?'
 6 read(*,*) Nsteps
 7 ASSERT (Nsteps > 0)
 8 END_PROVIDER
 9
 10 BEGIN_PROVIDER [double precision, tstep]
 11 &BEGIN_PROVIDER [double precision, tstep2]
 12 BEGIN_DOC
 13 ! Time step for the dynamics
 14 END_DOC
 15 print *, 'Time step?'
 16 read(*,*) tstep
 17 ASSERT (tstep > 0.)
 18 tstep2 = tstep*tstep
 19 END_PROVIDER
 20
 21 BEGIN_PROVIDER[double precision,acceleration,(3,Natoms)]
 22 implicit none
 23 BEGIN_DOC
 24 ! Acceleration = − grad(V)/m
 25 END_DOC
 26 integer :: i, k
 27 do i=1,Natoms
 28 do k=1,3
 29 acceleration(k,i) = − V_grad(k,i)/mass(i)
 30 enddo
 31 enddo
 32 END_PROVIDER
 33
 34 subroutine verlet
 35 implicit none
 36 integer :: is, i, k
 37 do is=1,Nsteps
 38 do i=1,Natoms
 39 do k=1,3
 40 coord(k,i) = coord(k,i) + tstep*velocity(k,i) + &
 41 0.5*tstep2*acceleration(k,i)
 42 velocity(k,i) = velocity(k,i) + 0.5*tstep* &
 43 acceleration(k,i)
 44 enddo
 45 enddo
 46 TOUCH coord velocity
 47 do i=1,Natoms
 48 do k=1,3
 49 velocity(k,i) = velocity(k,i) + 0.5*tstep* &
 50 acceleration(k,i)
 51 enddo
 52 enddo
 53 TOUCH velocity
 54 call print_data(is)
 55 enddo
 56 end subroutine

FIG. 13: The velo
ity Verlet algorithm.

15

 1 program dynamics
 2
 3 call verlet
 4
 5 IRP_IF CHECKPOINT
 6
 7 print *, 'Checkpoint'
 8 IRP_WRITE E_pot
 9 IRP_WRITE E_kin
 10
 11 IRP_ELSE
 12
 13 print *, 'No checkpoint'
 14
 15 IRP_ENDIF
 16
 17 end

FIG. 14: The main program.

III. EFFICIENCY OF THE GENERATED CODE

In the laboratory, we are
urrently re-writing a quantum Monte Carlo (QMC) program,

named QMC=Chem, with the IRPF90 tool. The same
omputation was realized with the

old
ode (usual Fortran
ode), and the new
ode (IRPF90
ode). Both
odes were
ompiled

with the Intel Fortran
ompiler version 11.1 using the same options. A ben
hmark was

realized on an Intel Xeon 5140 pro
essor.

The IRPF90
ode is faster than the old
ode by a fa
tor of 1.60: the CPU time of the

IRPF90 exe
utable is 62% of the CPU time of the old
ode. This time redu
tion is mainly

due to the avoidan
e of
omputing quantities that are already
omputed. The total number

of pro
essor instru
tions is therefore redu
ed.

The average number of instru
tions per pro
essor
y
le is 1.47 for the old
ode, and 1.81

for the IRPF90
ode. This appli
ation shows that even if the un-ne
essary
omputations were

removed from the old
ode, the
ode produ
ed by IRPF90 would still be more e�
ient. The

reason is that in IRPF90, the programmer is guided to write e�
ient
ode: the providers

are small subroutines that manipulate a very limited number of memory lo
ations. This

oding style improves the temporal lo
ality of the
ode[12℄ and thus minimizes the number

of
a
he misses.

The
on
lusion of this real-size appli
ation is that the overhead due to the management

of the produ
tion tree is negligible
ompared to the e�
ien
y gained by avoiding to
ompute

many times the same quantity, and by helping the Fortran
ompiler to produ
e optimized

ode.

IV. SUMMARY

The IRPF90 environment is proposed for writing programs with redu
ed
omplexity.

This te
hnique for writing programs,
alled �Impli
it Referen
e to Parameters� (IRP),[7℄ is

onform to the re
ommendations of the �Open Stru
ture Interfa
eable Programming Envi-

ronment� (OSIPE)[8℄:

• Open: Unambiguous identi�
ation and a

ess to any entity anywhere in the program

16

• Interfa
eable: Easy addition of any new feature to an existing
ode

• Stru
tured: The additions will have no e�e
t on the program logi

The programming paradigm uses some ideas of fun
tional programming and thus
lari�es

the
orrespondan
e between the mathemati
al formulas and the
ode. Therefore, s
ientists

do not need to be experts in programming to write
lear, reusable and e�
ient
ode, as

shown with the simple mole
ular dynami
s
ode presented in this paper.

The
onsequen
es of the lo
ality of the
ode are multiple:

• the
ode is e�
ient sin
e the temporal lo
ality is in
reased,

• the overlap of pie
es of
ode written simultaneously by multiple developers is redu
ed.

• regression testing[13℄
an be a
hieved by writing, for ea
h entity, a program whi
h

tests that the entity is built
orre
tly.

Finally, let us mention that the IRPF90 pre-pro
essor generates Fortran 90 whi
h is fully

ompatible with standard subroutines and fun
tions. Therefore the produ
ed Fortran
ode

an be
ompiled on any ar
hite
ture, and the usual HPC libraries (BLAS[14℄, LAPACK[15℄,

MPI[16℄,. . .)
an be used.

The IRPF90 program
an be downloaded on http://irpf90.sour
eforge.net

A
knowledgments

The author would like to a
knowledge F. Colonna (CNRS, Paris) for tea
hing him the IRP

method, and long dis
ussions around this subje
t. The author also would like to thank P.

Reinhardt (Université Pierre et Marie Curie, Paris) for testing and enjoying the IRPF90 tool,

and F. Spiegelman (Université Paul Sabatier, Toulouse) for dis
ussions about the mole
ular

dynami
s
ode.

[1℄ Stroustrup B. The C++ Programming Language Ed: Addison-Wesley Pub Co; 3rd edition

(2000).

[2℄ Hudak P. ACM Comput. Surv. 21(3), 359 (1989).

[3℄ http://www.python.org/

[4℄ Lennard-Jones J. E., Pro
eedings of the Physi
al So
iety 43, 461 (1931).

[5℄ Mi
hie D. Nature 218 19 (1968).

[6℄ Hughes R.J.M. �Lazy memo fun
tions� in: G. Goos and J. Hartmanis, eds., Pro
. Conf:

on Fun
tional Programming and Computer Ar
hite
ture, Nan
y, Fran
e, September 1985,

Springer Le
ture Note Series, Vol. 201 (Springer, Berlin, 1985).

[7℄ http://galileo.l
t.jussieu.fr/∼frames/mediawiki/index.php/IRP_Programming_Presentation

[8℄ Colonna F., Jolly L.-H., Poirier R. A., Ángyán J. G., and Jansen G. Comp. Phys. Comm.

81(3), 293 (1994).

[9℄ Hoare C.A.R., Commun. ACM, 12(10), 576 (1969).

[10℄ http://g

.gnu.org/fortran/

[11℄ Swope W. C., Andersen H. C., Berens P. H., and Wilson K. R. J. Chem. Phys. 76, 637 (1982).

17

http://irpf90.sourceforge.net
http://www.python.org/
http://galileo.lct.jussieu.fr/~frames/mediawiki/index.php/IRP_Programming_Presentation
http://gcc.gnu.org/fortran/

[12℄ Denning P. J. Commun. ACM 48(7), 19 (2005).

[13℄ Agrawal H., Horgan J. R., Krauser, E.W., London, S., In
remental regression testing. in:

Pro
eedings of the IEEE Conferen
e on Software Maintenan
e, 348 (1993).

[14℄ L. S. Bla
kford, J. Demmel, J. Dongarra, I. Du�, S. Hammarling, G. Henry, M. Heroux, L.

Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, ACM Trans.

Math. Soft. 28(2), 135 (2002).

[15℄ Anderson E., Bai Z., Bis
hof C., Bla
kford S., Demmel J., Dongarra J., Du Croz J., Greenbaum

A., Hammarling S., M
Kenney A. and Sorensen D. LAPACK Users' Guide, Ed: So
iety for

Industrial and Applied Mathemati
s, Philadelphia, PA, (1999).

[16℄ Gropp W., Lusk E., Doss N. and A. Skjellum, Parallel Computing 22(6), 789 (1996).

18

	Introduction
	Tutorial: a molecular dynamics program
	Imperative and functional implementation of the potential
	Presentation of the IRPF90 statements
	Implementation of the potential using IRPF90
	Providing arrays
	Embedding scripts
	Changing the value of an entity by a controlled side-effect
	Other Features

	Efficiency of the generated code
	Summary
	Acknowledgments
	References

