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Abstract

Several aspects of the recently proposed DMC-CIPSI approach consisting in using selected Con-

figuration Interaction (SCI) approaches such as CIPSI (Configuration Interaction using a Pertur-

bative Selection done Iteratively) to build accurate nodes for diffusion Monte Carlo (DMC) calcu-

lations are presented and discussed. The main ideas are illustrated with a number of calculations

for diatomics molecules and for the benchmark G1 set.
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I. INTRODUCTION

In recent years the present authors have reported a number of fixed-node DMC studies

using trial wavefunctions whose determinantal part is built with the CIPSI approach. [1–

5] The purpose of this paper is to review the present situation, to clarify some important

aspects of DMC-CIPSI, and to present some new illustrative results.

In section II we briefly recall what Configuration Interaction (CI) methods are about and

present the basic ideas of perturbatively selected CI approaches. We emphasize on the very

high efficiency of SCI in approaching the exact Full CI limit using only a tiny fraction of the

full Hilbert space of determinants. Selecting important determinants being a natural idea,

it is no surprise that it has been introduced a long time ago and has been rediscovered many

times under various forms since then. To the best of our knowledge selected CI appeared for

the first time in 1969 in two independent works by Bender and Davidson[6] and Whitten and

Hackmeyer.[7] In practice, the flavor of SCI we employ is the CIPSI approach introduced by

Malrieu and collaborators in 1973.[8] CIPSI being our working algorithm for generating CI

expansions, a brief description is given here. It is noted that the recent FCI-QMC method

of Alavi et al.[9, 10] is essentially a SCI approach, except that selection of determinants in

FCI-QMC is done stochastically instead of deterministically.

In section III the performance of CIPSI is illustrated for the case of the water molecule

at equilibrium geometry using the cc-pCVnZ family of basis sets, with n = 2 to 5 and for

the whole set of 55 molecules and 9 atoms of the G1 standard set.[11, 12] It is shown that

in all cases the FCI limit is closely approached.

In section IV the use of CIPSI nodes in DMC is discussed. We first present our motivations

and then comment on the key result observed, namely that in all applications realized so far

the fixed-node error associated with the approximate nodes of the CIPSI expansion is found

to systematically decrease both as a function of the number of selected determinants and as

the size of the basis set. This remarkable property provides a convenient way of controlling

the fixed-node error. Let us emphasize that in contrast with common practice in QMC the

molecular orbitals are not stochastically re-optimized here. An illustrative application to the

water molecule is presented.[5] Of course, the main price to pay is the need of using much

larger CI expansions than usual. The main ideas of our recently proposed approach[13] to

handle very large number of determinants in QMC are presented. In practice, converged
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DMC calculations using trial wavefunctions including up to a few millions of determinants

are feasible. The computational increase with respect to single-determinant calculations is

roughly proportional to ∼
√
Ndets with a small prefactor.

In section V the implementation of effective core potentials (ECP) in DMC using CIPSI

trial wavefunctions is presented. As already proposed some time ago,[14, 15] CI expansions

allow to calculate analytically the action of the nonlinear pseudo-potential operator on the

trial wavefunction. In this way, the use of quadrature points to integrate the wavefunction

over the sphere as usually done[16] is avoided and a gain in computational effort essentially

proportional to the number of grid points is achieved. The effectiveness of the approach is

illustrated in the case of the atomization energy of the C2 molecule.

Finally, Sec. VI presents a detailed summary of the main features of the DMC-CIPSI

approach and some lines of research presently under investigation are mentioned.

II. SELECTED CONFIGURATION INTERACTION

A. Configuration Interaction methods

In Configuration Interaction the wavefunction is written as a sum of Slater determinants

|Ψ〉 =
∑
i

ci|Di〉 (1)

where determinants are built over spin-orbitals. Let {φk} be the set of NMO orthonormal

molecular orbitals used, the size of the full Hilbert space is given by the number of ways

of distributing the N↑ electrons among the orbitals times the corresponding number for N↓

electrons. The total size of the full CI space is then (no symmetries are considered)

NFCI =

(
NMO

N↑

)(
NMO

N↓

)
The CI eigenspectrum is obtained by diagonalizing the Hamiltonian matrix, Hij = 〈Di|H|Dj〉

within the orthonormal basis of determinants. In practice, the exponential increase of the

FCI space restricts the use of FCI to small systems including a small number of electrons and

molecular orbitals (NFCI not greater than about 109). To go beyond, the FCI expansion has

to be truncated. The most popular strategy consists in defining a subspace of determinants

chosen a priori. Typically, the Hartree-Fock determinant (or a few determinants) is chosen
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as reference and all possible determinants built by promoting a given number of electrons

from the HF occupied orbitals to the virtual ones are considered. In the CIS approach only

single excitations are considered, in CISD all single and double excitations, etc.
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Figure 1. N2 in the cc-pVTZ basis set (RN−N=1.0977 Å). Variation of the number of determinants

with n-excitations with respect to the Hartree-Fock determinant in the CIPSI expansion as a

function of the number of selected determinants up to 5× 106.

Now, numerical experience shows that among all possible determinants corresponding to

a given number of excitations, only a tiny fraction plays a significant role in constructing

the properties of the low-lying eigenstates. Furthermore, the weight of a determinant in the

CI expansion is not directly related to its degree of excitation. For example, quadruply-

excited determinants may play a more important role than some doubly- or singly-excited

determinants. However, in practice, limiting the maximum number of excitations to about

six is usually sufficient to get chemical accuracy. To give some quantitative illustration of

these statements, Figure 1 presents the number of determinants per class of excitations n as

a function of the number of determinants in the CIPSI wavefunction for the N2 molecule at

equilibrium geometry (cc-pVTZ basis set). Without entering now into the details of CIPSI

presented below, let us just note that for 5×106 determinants the CIPSI expansion has
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almost converged to the FCI solution. Accordingly, results presented in the figure for the

distribution of excitations is essentially that of the FCI wavefunction.

As a consequence of the preceding remarks, it is clear that it is desirable to find a way of

selecting only the most important determinants of the FCI expansion without considering all

those of negligible weight (the vast majority). This is the purpose of selected configuration

interaction approaches.

B. Selected CI and CIPSI algorithm

To the best of our knowledge Bender and Davidson[6] and Whitten and Hackmeyer[7]

were the first in 1969 to introduce and exploit the idea of selecting determinants in CI

approaches. In their work Bender and Davison proposed to select space configuration using

an energy contribution criterion. Denoting |φ0〉 the restricted HF CSF-configuration, |φli〉

all possible spin configurations issued from the space configuration, and

ε
(2)
i =

1

k

k∑
l=1

|〈φli|H|φ0〉|
2

〈φ0|H|φ0〉 − 〈φli|H|φli〉
(2)

the “average” perturbative energy contribution, the space configurations were ordered ac-

cording to this contribution and those determinants contributing the most selected. The CI

wavefunction was then constructed by using the selected configurations, |φ0〉, and all single

excitations. A few months later, a similar idea using the very same perturbative criterion

was introduced independently by Whitten and Hackmeyer.[7] In addition, they proposed

to improve step-by-step the CI expansion by iterating the selection step to reach the most

important determinants beyond double-excitations.

In 1973 Malrieu and collaborators[8] presented the CIPSI method (and later on an im-

proved version of it[17]). In CIPSI the construction of the multirefence variational space is

essentially identical to that of Whiten and Hackmeyer. However, in order to better describe

the dynamical correlation effects poorly reproduced by the multireference space, a perturba-

tional calculation of the remaining correlation contributions was proposed. In applications

the perturbational part is usually important from both a qualitative and quantitative point

of view.

The CIPSI algorithm being our practical scheme for generating selected CI expansions,
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let us now present its main steps.

• Step 0: Start from a given determinant (e.g. the Hartree-Fock determinant) or set of

determinants, thus defining an initial reference subspace: S0 = {|D0〉, ...}. Diagonalize H

within S0 and get the ground-state energy E
(0)
0 and eigenvector:

|Ψ(0)
0 〉 =

∑
i∈S0

c
(0)
i |Di〉 (3)

Here and in what follows, a superscript on various quantities is used to indicate the iteration

number.

Then, do iteratively (n = 0, ...):

• Step 1: Collect all different determinants |Dk〉 connected by H to |Ψ(n)
0 〉, that is

〈Ψ(n)
0 |H|Dk〉 6= 0 (4)

and not belonging to the reference space Sn.

• Step 2: Compute the small energy change of the total energy due to each connected

determinant as evaluated at second-order perturbation theory

δe(|Dk〉) = −|〈Ψ
(n)
0 |H|Dk〉|

2

Hkk − E(n)
0

(5)

• Step 3: Add the determinant |Dk∗〉 associated with the largest |δe| to the reference

subspace:

Sn → Sn+1 = Sn ∪ {|Dk∗〉}

Of course, instead of adding only one determinant a group of determinants can be selected

using a threshold. This is what is actually done in practice.

• Step 4: Diagonalize H within Sn+1 to get:

|Ψ(n+1)
0 〉 =

∑
i∈Sn+1

c
(n+1)
i |Di〉 with E

(n+1)
0 (6)
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• Go to step 1 or stop if the target size for the reference subspace has been reached.

Denoting Ndets the final number of determinants, the resulting ground-state |Ψ0(Ndets)〉

is the variational CIPSI solution. It is the expansion used in DMC to contruct the determi-

nantal part of the trial wavefunction.

A second step in CIPSI is the calculation of a perturbational estimate of the correlation

energy left between the variational CIPSI energy and the exact FCI one. At second order,

this contribution writes

EPT2 = −
∑
k∈M

|〈Ψ0(Ndets)|H|Dk〉|2

Hkk − E0(Ndets)
(7)

where M denotes the set of all determinants not belonging to the reference space and

connected to the CIPSI expansion |Ψ0(Ndets)〉 by H (single and double excitations only)

and E0(Ndets) the variational CIPSI energy. In practice, this contribution allows to recover

a major part of the remaining correlation energy.

At this point a number of remarks are in order:

i.) Although the selection scheme is presented here for computing the ground-state eigen-

vector only, no special difficulties arise when generalizing the scheme to a finite number of

states (see, e.g.[17])

ii.) The decomposition of the Hamiltonian H underlying the perturbative second-order

expression introduced in step 2 is known as the Epstein-Nesbet partition.[18, 19] This de-

composition is not unique, other possible choices are the Møller-Plesset partition[20] or the

barycentric one,[8] see discussion in [17].

iii.) Instead of calculating the energetic change perturbatively, expression (5), it can be

preferable to employ the non-perturbative expression resulting from the diagonalization of

H into the two-dimensional basis consisting of the vectors |Ψ(n)
0 〉 and |Dk〉. Simple algebra

shows that the energetic change is given by

δe(|Dk〉) =
1

2
[Hkk − E0(Ndets)]

1−

√√√√1 +
4|〈Ψ(n)

0 |H|Dk〉|
2

[Hkk − E0(Ndets)]
2

 (8)
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In the limit of small transition matrix elements, 〈Ψ(n)
0 |H|Dk〉, both expressions (5) and (8)

coincide. The non-perturbative formula is used in our applications.

iv.) The implementation of this algorithm can be performed using limited amount of

central memory. On the other hand, the CPU time required is essentially proportional to

NdetsN
2
occN

2
virt where Nocc is the number of occupied molecular orbitals and Nvirt the number

of virtual orbitals.

C. Selected CI variants

As already pointed out selecting the most important determinants of the FCI expansion

is a so natural idea that, since the pioneering work of Bender and Davidson[6] and Whitten

and Hackmeyer,[7] several variants of SCI approaches have been proposed. In practice,

the actual differences between approaches are usually rather minor and most ideas and

technical aspects seem to have been re-discovered several times by independent groups. To

give a fair account of the subject and an exhaustive list of references is thus difficult. Here,

we limit ourselves to the references we are aware of, namely [6–8, 17, 21–41]. Regarding

more specifically CIPSI, there has been a sustained research activity conducted during the

80’s and 90’s by research groups in Toulouse (Malrieu and coll.), Pisa (Angeli, Persico,

Cimiraglia and coll.), and then Ferrara (Angeli, Cimiraglia) including the development at

Pisa of a very efficient CIPSI code using diagrammatic techniques[28, 31, 42]. Thanks to all

this, CIPSI has been extensively applied for years by several groups to a variety of accurate

studies of ground and excited states and potential energy surfaces (see, for example [43–58])

Finally, note that in the last years our group has developped its own CIPSI code, Quantum

Package. This code has been designed to be particularly easy to install, run and modify; it

can be freely downloaded at [59].

D. FCI-QMC as a stochastic selected CI approach

Full Configuration Interaction Quantum Monte Carlo (FCI-QMC) is a method for solving

stochastically the FCI equations.[9, 10] Introducing as in DMC an imaginary time t the

coefficients ci of the CI expansion, Eq.(1), are evolved in time using the operator [1− τ(H−
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E)] as small-time propagator

c(t+ τ) = [1− τ(H − E)]c(t) (9)

c being the vector of coefficients, E some reference energy, and τ the time step. After n

steps the coefficients are given by

c(t) = [1− τ(H − E)]nc(t = 0). (10)

In the long-time limit (t = nτ large) the vector c converges to the exact CI vector (indepen-

dently on initial conditions c(t=0) provided that 〈c(t=0)|c〉 6= 0 and for a sufficiently small

time step). As in all QMC methods, a set of walkers is introduced for sampling coefficients

and a few simple stochastic rules realizing in average the action of H according to Eq.(9) are

introduced (spawning, death/cloning and annihilation). Note that equations of evolution

(10) are similar to those of continuous DMC (electrons moving in ordinary space) where

a small-time expression of operator e−τ(H−E) is used, and are essentially identical to the

equations of lattice DMC (see e.g.,[60]) The two main differences of FCIQMC with other

QMC approaches are the fact that no trial vector is introduced (thus, avoiding the fixed-

node error) and that the stochastic rules used are particularly efficient in attenuating the

sign instability inherent to all stochastic simulations of fermionic systems (annihilation at

each MC step of walkers of opposite sign on occupied determinants and use of the initiator

approximation).

At a given time t the CI expansion is stochastically realized by the distribution of walkers

as

|Ψ〉 =
∑
i

ni|Di〉

where ni is the sum of the signed weight of walkers on Slater determinant |Di〉 (M =
∑

i |ni|=

total number of walkers). This wavefunction is the counterpart of the CIPSI expansion at

iteration n, Eq.(6). As in CIPSI at the next step t+τ (next iteration n+1) new determinants

will appear. In FCI-QMC it is realized through spawning. Some determinants may also

disappear through the action of the diagonal part of the Hamiltonian [1 − τ(Hii − E)]

(death/cloning step). These two steps are designed to reproduce in average the action of

the propagator on determinant Di

[1− τ(H − E)]|Di〉 = [1− τ(Hii − E)]|Di〉 − τ
∑
k 6=i

Hik|Dk〉.

9



In CIPSI a given determinant |Di〉 is selected only once during iterations via Eq.(5). In latter

iterations it is included in the reference space and does not participate anymore to the selec-

tion. Starting from some initial determinant (usually the HF determinant) the probability

of selecting |Di〉 at some given iteration n is related to the existence of a series of (n − 1)

intermediate determinants (|Di1〉, |Di2〉, ..., |Dik〉, ...) different from |Di〉 and connecting it to

the initial determinant so that the product

∏
k

|Hik+1ik |2

Hik+1ik − E0

is large compared to products corresponding to other series of intermediate determinants.

In FCI-QMC a determinant |Di〉 is spawned (selected) from |Dj〉 according to the mag-

nitude of Hii and -in contrast with CIPSI- with no direct dependence on the inverse of

(Hii − E0). However, during MC iterations the number of walkers on a given determinant

evolves in time according to the death/cloning step and leads to a weighted contribution of

determinants to spawning. After integration in time the weight of the determinants |Di〉

can be estimated to be about
∫
dte−t(Hii−E0) that is, ∼ 1

Hii−E0
for large enough time. As

seen, FCI-QMC and CIPSI are in close connection.

III. APPLICATIONS OF CIPSI

A. The water molecule

To exemplify CIPSI all-electron calculations for the water molecule using basis sets of

various sizes are presented. In our first example we propose to reproduce the density ma-

trix renormalization group (DMRG) calculation of Chan and Head-Gordon[61] at geometry

(ROH = 1Å, θOH = 104.5◦) and using the “Roos Augmented Double Zeta ANO” basis set

consisting of 41 orbitals[62, 63]. The full CI Hilbert space contains about 5.6 1011 determi-

nants (no spin or space symmetries taken into account). Calculations have been carried out

using our perturbatively selected CI program Quantum Package.[59] The energy convergence

as a function of the number of selected determinants in different situations is presented in

Figure 2.

Four different curves are shown together with the DMRG energy value of -76.31471(1)

of Chan and Head-Gordon[61] (solid horizontal line). The two upper curves represent the
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Figure 2. Energy convergence of the variational and full CIPSI energies as a function of the number

of selected determinants using canonical and natural orbitals. Energy in a.u.

CIPSI variational energy as a function of the number of selected determinants up to 750 000

using either canonical or natural molecular orbitals. Natural orbitals have been obtained by

diagonalizing the first-order density matrix built with the largest expansion obtained using

canonical orbitals. As seen the convergence of both variational energies is very rapid. Using

canonical orbitals an energy of -76.31239 a.u. is obtained with 750 000 determinants, a

value differing from the FCI one by only 2.3 millihartree (about 1.4 kcal/mol). As known

the accuracy of CI calculations is significantly enhanced when using natural orbitals.[64]

Here, it is clearly the case and the lowest energy reached is now -76.31436 a.u. with an error

of 0.35 millihartree (about 0.2 kcal/mol). When adding the second-order energy correction

EPT2, Eq.(7), the energy convergence is much improved (two lower curves of Figure 2).

The kcal/mol (chemical) accuracy is reached with only 1000 and 4000 determinants using

canonical and natural orbitals, respectively. The best CIPSI energy including second-order

correction and obtained with canonical orbitals is -76.31452 a.u. When using natural orbitals

the energy is found to converge with five decimal places to the value of -76.31471 a.u., in

perfect agreement with the DMRG result of Chan and Head-Gordon, -76.31471(1) a.u.
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Let us emphasize that approaching the FCI limit with such a level of accuracy and so

few determinants (compared to the total number of 5.6 1011) is particularly striking and is

one of the most remarkable features of SCI approaches.

To illustrate the possibility of making calculations with much larger basis sets, results

obtained with the correlation-consistent polarized core-valence basis sets, cc-pCVnZ, with

n going from 2 to 5 are presented. The geometry chosen is now the experimental equilib-

rium geometry, ROH = 0.9572 Å and θOH = 104.52◦. The number of basis set functions

are 28, 71, 174 and 255 for cc-pCVDZ, cc-pCVTZ,cc-pCVQZ, and cc-pCV5Z, respectively.

The total number of determinants of the FCI Hilbert space with such basis sets are about

1 1010,1.7 1014,1.6 1018, and 7.5 1019, respectively. On the left part of Figure 3 the conver-
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Figure 3. Convergence of the energy with the number of selected determinants (logarithmic scale).

The graph on the left displays the variational energy, and the graph on the right shows the energy

with the perturbative correction, Eq.(7).

gence of the ground-state variational energy obtained for each basis set is shown. As seen,
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the convergence is still possible with such larger basis sets. On the right part, the full CIPSI

energy curves (Evar + EPT2) are presented; each curve is found to converge with a good

accuracy to the full CI limit.

B. Generalization: The G1 set

In contrast with the exact Full-CI approach which takes into account the entire set of

determinants and is thus rapidly unfeasible, CIPSI can be used for much larger systems. The

exact limits depend of course on the size of the basis set used, the number of electrons, and

also on the level of convergence asked for when approaching the full CI limit. To illustrate

the feasibility of CIPSI for larger systems we present systematic all-electron calculations for

the G1 benchmark set of Pople and collaborators.[65] The set is composed of 55 molecules

and 9 different atoms. The cc-pVDZ and cc-pVTZ basis sets have been used. For all

systems and both basis sets a quasi-FCI convergence has been reached. In Figure 4 the

number of selected determinants needed to recover 99% of the correlation energy at CIPSI

variational level (cc-pVDZ basis set) is plotted for each molecule or atom. For each system

results are given either for canonical or natural orbitals. Depending on the importance of

the multiconfigurational character of the system, this number may vary considerably (from

a few tens to about 107). As expected, the number of determinants needed using natural

orbitals is most of the times smaller and sometimes comparable. Figure 5 is similar to the

preceding figure, except that numbers are given now for a full CIPSI calculation including

the second-order energy correction and that a much greater accuracy corresponding to 99.9%

of the correlation energy is targeted. As seen, it is remarkable that such a high precision

can be reached for all systems with a number of determinants not exceeding ∼ 107. In

contrast with variational calculations, it should be noted that the use of natural orbitals

does not systematically improve the convergence. Finally, some comparison with accurate

CCSD(T) calculations performed using the same basis sets and geometries are presented. In

Figure 6 the distribution of errors in atomization energies calculated with both CCSD(T)

and CIPSI methods are plotted. For the cc-pVDZ basis set, CCSD(T) and CIPSI curves

are very similar, indicating that CCSD(T) calculations have also reached the quasi full CI

limit. For the larger cc-pVTZ basis set, the two curves remain similar but some significant

differences show up with CIPSI results more distributed toward small errors due to a better
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description of multireference systems.
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at CIPSI/cc-pVDZ variational level. Results for canonical and natural orbitals are given.
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IV. USING CIPSI NODES IN DMC

A. Motivations

In DMC the standard practice is to introduce compact trial wavefunctions reproducing

as much as possible the mathematical and physical properties of the exact wave function.

Next, the “best” nodes are determined through optimization of the parameters of the trial

wavefunction in a preliminary variational Monte Carlo (VMC) run. The objective function

to minimize is either the variational energy associated with the trial wavefunction or the

variance of the Hamiltonian (or a combination of both). A number of algorithms have

been elaborated to perform this important practical step as efficiently as possible.[66–71] No

limitations existing in QMC for the choice of the functional form of the trial wavefunction,

many different expressions have been introduced (see, e.g. [72–79]). However, the most

popular one is certainly the Jastrow-Slater trial wavefunction expressed as a short expansion

over a set of Slater determinants multiplied by a global Jastrow factor describing explicitly
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the electron-electron and electron-electron-nucleus interactions and, in particular, imposing

the electron-electron cusp conditions associated with the zero-interelectronic distance limit

of the true wavefunction.

In the DMC-CIPSI approach the determinantal part of the trial wavefunction is built

using systematic CIPSI expansions. The main motivation is that CI approaches provide

a simple, deterministic, and systematic way of constructing wavefunctions of controllable

quality. In a given one-particle basis set, the wavefunction is improved by increasing the

number of determinants, up to the Full CI (FCI) limit. Then, by increasing the basis

set, the wavefunction can be further improved, up to the complete basis set (CBS) limit

where the exact solution of the continuous electronic Schrödinger equation is reached. The

CI nodes, which are defined as the zeroes of the expansion, are also expected to follow

such a systematic improvement, thus facilitating the control of the fixed-node error. A

second important motivation is that the stochastic optimization step can be avoided since

a systematic way of improving the wavefunction is now at our disposal. The optimal CI

coefficients are obtained by the (deterministic) diagonalization of the Hamiltonian matrix

in the basis set of Slater determinants. It is a simple and robust step which leads to a

unique set of coefficients. Furthermore, it can be made automatic, an important feature in

the perspective of designing a fully black-box QMC code. Finally, using deterministically

constructed nodal structures greatly facilitates the use of nodes evolving smoothly as a

function of any parameter of the Hamiltonian. It is important when calculating potential

energy surfaces (see, our application to the F2 molecule,[4]) or response properties under

external fields.

The main price to pay for such advantages is of course the need of considering much

larger multideterminant expansions (from tens of thousands up to a few millions) than in

standard DMC implementations where compactness of the trial wavefunction is searched

for. However, efficient algorithms have been proposed to perform such calculations[80–82].

Very recently, we have also presented an efficient algorithm for computing very large CI

expansions. Its main ideas are briefly summarized in section IV C below.
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B. Toward a better control of the fixed-node approximation

A remarkable property systematically observed so far in our DMC applications using

large CIPSI expansions[1, 3, 4] is that, except for a possible transient regime at small num-

ber of determinants,[83] the fixed-node error resulting from the use of CIPSI nodes is found

to decrease monotonically, both as a function of the number of selected determinants, Ndets,

and of the basis set size, M . This result is illustrated here in the case of the water molecule

at equilibrium geometry. Results shown here complement our recent benchmark study on

water.[5]. In Figure 7 all-electron fixed-node energies obtained with DMC-CIPSI as a func-

tion of the number of selected determinants for the first four cc-pCVnZ basis set (n=2-5) are

reported. Calculations have been performed using the variational CIPSI expansions of the

preceding subsection. In practice, DMC simulations have been realized using our general-

purpose QMC program QMC=Chem (downloadable at [84]). A minimal Jastrow prefactor

taking care of the electron-electron cusp condition is employed and molecular orbitals are

slightly modified at very short electron-nucleus distances to impose exact electron-nucleus

cusp conditions. The time step used, τ = 2 × 10−4 a.u., has been chosen small enough to

make the finite time step error not observable with statistical fluctuations. As seen on the

figure the convergence of DMC energies both as a function of the number of determinants

and of the basis set are almost reached. The value of −76.43744(18) a.u. obtained with the

largest basis set and 1 423 377 determinants is, to the best of our knowledge, the lowest

upper bound reported so far, the experimentally derived estimate of the exact nonrelativistic

energy being -76.4389(1) a.u.[85] Thanks to our recent algorithm for calculating very large

number of determinants in DMC[13] (see, section IV C below), the increase of CPU time

for the largest calculation including more than 1.4 million of determinants compared to the

same calculation limited to the Hartree-Fock determinant is only ∼ 235.

In practice, the possibility of calculating fixed-node energies displaying such a regular

behavior as a function of the number of determinants and molecular orbitals is clearly at-

tractive in terms of control of the fixed-node error. For example, in our benchmark study

of the water molecule[5] it was possible to extrapolate the DMC energies obtained with

each cc-pCVnZ basis set as a function of the cardinal number n, as routinely done in de-

terministic CI calculations. Using a standard 1/n3 law a very accurate DMC-CIPSI energy

value of -76.43894(12) a.u. was obtained, in full agreement with the estimate exact value of
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-76.4389(1) a.u.[5]

At this point, we emphasize that the observed property of systematic decrease of the

energy as a function of the number of determinants is known not to be systematically true for

a general CI expansion (see, e.g. [86]). Here, its validity may probably be attributed to the

fact that determinants are selected in a hierarchical way (the most important ones first), so

that the wavefunctions quality increases step by step, and so the quality of nodes. However,

from a mathematical point of view, such a property is far from being trivial. There is no

simple argument why the FCI nodes obtained from minimization of the variational energy

with respect to the multideterminant coefficients would lead to the best nodal structure

(minimum of the fixed-node energy with respect to such coefficients). In a general space

(not necessarily a Hilbert space of determinants) it is easy to construct a wavefunction

of poor quality having a high variational energy but exact nodes and, then, to exhibit a

wavefunction with a much lower energy but wrong nodes. To demonstrate the validity or

not of the observed property in a finite space of determinants built with molecular orbitals

expanded in a finite basis set remains to be done.

C. Evaluating very large number of determinants in QMC

The algorithm we use to run DMC calculations with a very large number of determi-

nants (presently up to a few millions) has been presented in detail in [13]. Its efficiency is

sufficiently high to perform converged DMC calculations with a number of determinants up

to a few millions of determinants. In the case of the chlorine atom discussed in [13] a trial

wavefunction including about 750 000 determinants has been used with a computational

increase of about 400 compared to a single-determinant calculation. As already mentioned

above, in the benchmark calculation of the water molecule[5] up to 1 423 377 determinants

have been used for a computational increase of only ∼ 235.

The main ideas of the algorithm are as follows.

• O(
√
Ndets)-scaling. A first observation is that the determinantal part of trial wave-

functions built with Ndets determinants can be rewritten as a function of a set of different
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spin-specific determinants Dσ
i (Rσ) (σ =↑, ↓) as follows

ΨDet(R) =

N↑dets∑
i=1

N↓dets∑
j=1

CijD
↑
i (R↑)D

↓
j (R↓) (11)

where C is a matrix of coefficients of size N↑dets ×N
↓
dets, R = (r1, ..., rN) denotes the full set

of electron space coordinates, and R↑ and R↓ the two subsets of coordinates associated with

↑ and ↓ electrons.

In standard CI expansions the number of unique spin-specific determinants is much

smaller than Ndets and typically scales as
√
Ndets. It is true for FCI expansions where all

possible determinants are considered. Indeed, Nσ
dets attains its maximal value of

(
NMO

Nσ

)
and

since Ndets is given as N↑dets×N
↓
dets, the number of unique spin-specific determinants Dσ(R)

is of order
√
Ndets. However, it is in general also true for the usual truncated expansions

(CASSCF, CISD, etc.) essentially because the numerous excitations implying multiple ex-

citations of spin-like electrons plays a marginal role and have a vanishing weight.
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• Optimized Sherman-Morrison updates. As proposed in a number of works,[80–82] we

calculate the determinants and their derivatives using the Sherman-Morrison (SM) formula

for updating the inverse Slater matrices. However, in contrast with other implementations,

we have found more efficient not to compare the Slater matrix to a common reference (typi-

cally, the Hartree-Fock determinant) but instead to perform the Sherman-Morrison updates

with respect to the previously computed determinant Dσ
i−1. To reduce the prefactor asso-

ciated with this step the list of determinants is sorted with a suitably chosen order so that

with high probability successive determinants in the list differ only by one- or two-column

substitution, thus decreasing the average number of substitution performed.

• Exploiting high-performance capabilities of present-day processors. This very practical

aspect – which is in general too much underestimated – is far from being anecdotal since

it allows us to gain important computational savings. A number of important features

include the use of vector fused-multiply add (FMA) instructions (that is, the calculation of

a=a+b*c in one CPU cycle) for the innermost loops. It is extremely efficient and should be

systematically searched for. Using such instructions (present in general-purpose processors),

up to eight FMA per CPU cycle can be performed in double precision. While computing

loops, overheads are also very costly and should be reduced/eliminated. By taking care

separately of the various parts of the loop (peeling loop, scalar loop, vector loop, and tail

loop) through size-specific and/or hard-coded subroutines, a level of 100% vectorized loops

is reached in our code. Another crucial point is to properly manage the data flow arriving

to the processing unit. As known, to be able to move data from the memory to the CPU

with a sufficiently high data transfer to keep the CPU busy is a major concern of modern

calculations. Then, it is not only important to make maximum use of the low-latency cache

memories to store intermediate data but also to maximize prefetching allowing the processor

to anticipate the use of the right data and instructions in advance. To enhance prefetching

the algorithm should allow the predictability of the data arrival in the CPU (that is, avoid

random access as much as possible). It is this important aspect that has motivated us to

use Sherman-Morrison updates, despite the fact that a method like the Table method[81]

has formally a better scaling. Indeed, massive calculations of scalar products at the heart

of repeated uses of SM updates are so ideally adapted to present-day processors that very

20



high performances can be obtained.

• Improved truncation scheme. Instead of truncating the CI expansion according to

the magnitude of the multideterminant coefficients as usual done, we propose instead to

remove spin-specific determinants according to their total contribution to the norm of the

expansion. In this way, more determinants can be handled for a price corresponding to

shorter expansions.

To be more precise, we first observe that truncating the wavefunction according to the

magnitude of coefficients has the effect of removing elements of the sparse matrix C of

Eq.(11). A reduction of the computational cost occurs only when a full line (↑) or a full

column (↓) of C contains only zeroes, in that case the determinant Dσ can be removed from

the calculation. Now, by expressing the norm of the wave function as

N =

N↑dets∑
i=1

N↓dets∑
j=1

C2
ij =

N↑dets∑
i=1

N ↑i =

N↓dets∑
j=1

N ↓j . (12)

it is possible to assign a contribution to the norm to each determinant. Then, all deter-

minants whose contribution to the norm is below some threshold will be removed from

the expansion. This truncation scheme allows to eliminate the smallest number of coeffi-

cients needed to obtain some computational gain. Moreover, the size-consistence property

of the wave function is expected to be approximately preserved by such a truncation : when

a σ-determinant is removed, it is equivalent to removing the product of Dσ with all the

σ̄-determinants of the wave function.

V. PSEUDOPOTENTIALS FOR DMC USING CIPSI

When using pseudopotentials a valence Hamiltonian is defined

Hval = Hloc + VECP (13)

where Hloc is the local part describing the kinetic energy, the Coulombic repulsion and the

local part of the effective core potentials (ECP).

Hloc = −1

2

∑
i

∇2
i +

∑
i,α

vloc(riα) +
∑
i<j

1

rij
(14)
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and VECP the non-local part written as

VECP =
∑
i,α

∑
l

vl(riα)
l∑

m=−l

Ylm(Ωiα)

∫
dΩ′iαY

∗
lm(Ω′iα) (15)

where vl is a radial pseudopotential, Ylm is the spherical harmonic, α labels pseudo-ions.

The action of a non-local operator being difficult to sample in DMC, VECP is “localized”

by projecting it on the trial wavefunction. The localized form of the pseudo-potential is thus

defined as

V loc
ECP =

VECPΨT

ΨT

(16)

and we are led back to standard DMC simulations using only local operators at the price

of introducing a new “localization approximation”. This error is usually minimized by

optimization of the trial wavefunction, see ref.[87]. In practice, the necessity of numerically

evaluating the localized potential is the main difference with standard DMC calculations.

For each nucleus α and electron i, the two-dimensional angular integrals of the product

of each Ylm and the trial wavefunction (all electrons fixed except the ith-electron moved over

the sphere centered on nucleus α and of radius riα) must be performed. By choosing the

axes oriented such that the ith electron is on the z axis, the contribution coming from the

pair (i, α) is given by[16]∑
i,α

∑
l

2l + 1

4π
vl(riα)

∫
dΩ′iαPl(cosθ

′)
ψT (r1, ...r

′
i, ..., rN)

ψT (r1, ..ri, ..rN)
(17)

where Pl denotes a Legendre polynomial. Because of the Jastrow factor, the integrals in-

volved cannot be computed analytically. The standard solution is to evaluate them nu-

merically using some quadrature for the sphere. Here, the CI form allows to perform the

integration exactly, as already proposed some time ago.[14, 15] Note that although no Jas-

trow prefactor is used here when localizing the pseudo-potential operator, such a prefactor

can still be used for the DMC simulation itself. A first advantage is that the calculation is

significantly faster: in practice, the computational cost is the same as evaluating the Lapla-

cian of the wave function and a gain proportional to the number of quadrature points is

obtained. A second advantage is the possibility of a better control of the localization error

by increasing the number of determinants.

To illustrate these statements, we have chosen to calculate the atomization energy of the

C2 molecule at the Hartree-Fock, CIPSI, DMC-HF and DMC-CIPSI levels with and without
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pseudopotentials. All-electron HF or CIPSI calculations have been performed with the cc-

pVTZ basis set. To allow meaningful comparisons, 1s molecular orbitals have been kept

frozen in all-electron CIPSI calculations. Pseudopotential calculations were done using the

pseudopotentials of Burkatzki et al.[88] with the corresponding VTZ basis set. The electron-

nucleus cusps of all the wave functions were imposed,[89–91] and no Jastrow factor was used.

For the sake of comparison, the same time step (5× 10−4 au) was used for all-electron and

pseudopotential calculations, although a much larger time step could have been taken with

pseudopotentials.

Energy Number of determinants

C (a.u.) C2 (a.u.) AE (kcal/mol) C C2

Hartree-Fock

all-e -37.6867 -75.4015 17.6 1 1

pseudo- -5.3290 -10.6880 18.8 1 1

CIPSI

all-e -37.7810 -75.7852 140.1 3796 106

pseudo- -5.4280 -11.0800 140.6 3882 106

DMC-HF

all-e -37.8293(1) -75.8597(3) 126.3(2) 1 1

pseudo- -5.4167(1) -11.0362(3) 127.2(2) 1 1

DMC-CIPSI, ε = 10−6

all-e -37.8431(2) -75.9166(2) 144.6(2) 3497 173553

pseudo- -5.4334(1) -11.0969(3) 144.3(2) 3532 231991

Estimated exact AE [92, 93] 147±2

Table I. Comparison of all-electron (cc-pVTZ) and pseudopotential (BFD-VTZ) calculations of the

atomization energy of C2 with CIPSI wave functions. A threshold ε = 10−6 was applied to the

CIPSI wave functions as explained in text.

The results presented in Table I show that all the atomization energies obtained using

pseudopotentials are in very good agreement with those obtained with all-electron calcu-

lations at the same level of theory. The DMC energies obtained with CIPSI trial wave
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functions are always below those obtained with Hartree-Fock trial wave functions, and the

error in the atomization energy is reduced from 20 kcal/mol with HF nodes down to 3

kcal/mol with CIPSI nodes.

Calculations were performed on Intel Xeon E5-2680v3 processors. Timings are given in

Table II. For the carbon atom the computational time needed for one walker to perform one

complete Monte Carlo step (all electrons moved) is the same with or without pseudopoten-

tials. For the C2 molecule, the calculation is even faster with pseudopotentials: A factor of

about 1.5 is gained with respect to the all-electron calculation. This can be explained by the

computational effort saved due to the reduced size of Slater matrices in the pseudopotential

case (from 6×6 to 4×4) but, more importantly, by the fact that the additional cost related

to the calculation of the contributions due to the pseudopotential is not enough important to

reverse the situation. In all-electron calculations, the variance is only slightly reduced when

going from the Hartree-Fock trial wave function to the CIPSI wave function (with frozen

core). Indeed, the largest part of the fluctuations comes from the lack of correlation of the

core electrons. In the calculations involving pseudopotentials, the decrease of the variance

is significant: a reduction by a factor of 2.4 and 3.2 is observed.

From a more general perspective, comparisons between all-electron and pseudopotential

calculations must take into account both the computational effort required in each case and

the level of fluctuations resulting from the quality of the trial wavefunction. To quantify

this, we have reported in the table the number of CPU hours required to obtain an error bar

of 1 kcal/mol. Using pseudopotentials for the C2 molecule, it is found that the reduction

of the variance due to the improvement of the wave function with the multideterminant

expansion almost compensates the cost of the computation due to the additional 230 000

determinants : the CPU time needed to obtain a desired accuracy is only 1.2× more than

the single determinant calculation.

VI. SUMMARY AND SOME PERSPECTIVES

Let us first summarize the most important ideas and results presented in this work.

i.) Selected Configuration Interaction approaches such as CIPSI are very efficient methods

for approaching the full CI limit with a number of determinants representing only a tiny
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CPU time per DMC step CPU time to get a 1 kcal/mol Variance

(milliseconds) error (hours) (a.u.)

all-e pseudo- all-e pseudo- all-e pseudo-

DMC-HF

C 0.0076 0.0078 1.54 1.18 7.858(3) 0.3471(2)

C2 0.0286 0.0186 14.95 10.35 16.208(7) 1.1372(6)

DMC-CIPSI

C 0.193 0.201 5.61 0.70 7.620(8) 0.1084(4)

C2 10.1 8.12 91.05 12.72 15.61(3) 0.460(1)

Table II. CPU time for one complete Monte Carlo step (one walker, all electrons moved), CPU

time needed to reach an error on 1 kcal/mol, and variances associated with the HF and CIPSI trial

wave functions (electron-nucleus cusp corrected).

fraction of the full determinantal space. This is so because only the most important determi-

nants of the FCI expansion are perturbatively selected at each step of the iterative process.

We note that the recent FCI-QMC method of Alavi et al.[9, 10] uses essentially the same

idea, except that in CIPSI the selection is done deterministically instead of stochastically.

ii.) In constrast with exact FCI which becomes rapidly prohibitively expensive, CIPSI

allows to treat larger systems, while maintaining results of near-Full CI quality. The exact

practical limits depend of course on the size of the basis set used, the number of active

electrons, and also on the level of convergence asked for when approaching the full CI limit.

In this work, the CIPSI approach has been exemplified with near-FCI quality all-electron

calculations for the water molecule using a series of basis sets of increasing size up to the

cc-pCV5Z basis set and for the whole set of 55 molecules and 9 atoms of the benchmark

G1 set (cc-pVDZ basis set). In each case, the huge size of the FCI space forbids exact FCI

calculations. CIPSI has been applied to larger systems, for example for calculating accurate

total energies for the atoms of the 3d series,[3] and for obtaining near-FCI quality results for

the CuCl2 molecule (calculations including 63 electrons and 25 active valence electrons).[94]

Note that by using Effective Core Potentials as described in section V even larger systems
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can be treated.

iii.) We emphasize that the idea of selecting determinants is not limited to the entire

space of determinants but can be used to make CI expansion to converge in a subset of

determinants chosen a priori. For example, efficient and accurate selected CASCI, CISD,

or even MRCC[95] calculations can be performed. Note that going beyond CASCI and im-

plementing a selected CASSCF approach (CASCI with optimization of molecular orbitals)

is also possible; this is let for further work. However, note that a stochastic version of

CASSCF within FCI-QMC framework has already been implemented by Alavi et al.[96]

iv.) CIPSI expansions can be used as determinantal part of the trial wavefunctions employed

in DMC calculations. In others words, we propose to use selected CI nodes as approximation

of the unknown exact nodes. The basic motivation is that CI approaches provide a simple,

deterministic, and systematic way to build wavefunctions of controllable quality. In a given

one-particle basis set, the wavefunction is improved by increasing the number of determi-

nants, up to the FCI limit. Then, by increasing the basis set, the wavefunction can be

further improved, up to the CBS limit where the exact solution of the continuous electronic

Schrödinger equation is reached. CI nodes, defined as the zeroes of the CI expansions, are

also expected to display such a systematic improvement.

v.) The main result giving substance to the use of selected CIPSI nodes is that in all

applications realized so far the fixed-node error is found to decrease both as a function

of the number of selected determinants and of the size of the basis set. Mathematically

speaking, such a result is far from being trivial. In practice, such a property is particularly

useful in terms of control of the fixed-node error.

vi.) From a practical point of view, the price to pay is the need of considering much

larger multideterminant expansions (from tens of thousands up to a few millions) than in

standard DMC where compactness of the trial wavefunction is usually searched for. Indeed,

computing at each of Monte Carlo step the first and second derivatives of the trial wavefunc-

tion (drift vector and local energy) is the hot spot of DMC. However, efficient algorithms

have been proposed to perform such calculations[80–82]. Here, we have briefly summarized

26



our recently introduced algorithm allowing to compute N -determinant expansions issued

from selected CI calculations with a computational cost roughly proportional to
√
N (with

a small prefactor).

vii.) One key advantage of using CIPSI nodes is that their construction can be made

fully automatic. Coefficients of the CI expansion are obtained in a simple and determinis-

tic way by diagonalizing the Hamiltonian matrix and the solution is unique. Furthermore,

when approaching the FCI limit the resulting expansion becomes independent on the type of

molecular orbitals used (canonical, natural, Kohn-Sham, see Figure 8 of ref.[94]). Another

attractive feature is that the nodes built are reproducible and thus “DMC models” can

be defined in the spirit of WFT or DFT ab initio approaches (HF/cc-pVnZ, MP2/6-31G,

CCSD(T), DFT/B3LYP etc.) Indeed, once the basis set has been specified, the nodes are

unambiguously defined at convergence of the DMC energy as a function of the number

of selected determinants. Furthermore, in this limit the nodal surfaces vary continuously

as a function of the parameters of the Hamiltonian. A particularly important example

is the possibility of obtaining regular potential energy surface (PES). This idea has been

illustrated in a previous work on the potential energy curve of the F2 molecule.[4] Further-

more, it is also possible to reduce the “non-parallelism” error resulting from the use of a

trial wavefunction of non-uniform quality across the PES. This can be done for example by

using a variable number of selected determinants depending on the geometry and chosen to

lead to a constant second-order estimate of the remaining correlation energy (constant-PT2

approach,[4] ).

viii.) As in standard DMC approaches a Jastrow prefactor can be used to reduce sta-

tistical fluctuations. However, in contrast with what is usually done, we do not propose

to re-optimize the determinantal CIPSI part in presence of this Jastrow term. The main

reason for that is not to lose the advantages of using deterministically constructed nodal

structures: Systematic improvement of nodes as a function of the number of determinants

and of the size of the basis set, simplicity of construction of nodes and reproductibility,

possibility of optimizing a very large number of small coefficients in the CI expansion (no

noise limiting in practice the magnitude of optimizable coefficients), smooth evolution of

nodes under variation of an external parameter (geometry, external field), etc.
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ix.) The price to pay for not re-optimizing the determinantal part in the presence of a

Jastrow is that for small basis sets larger fixed-node errors are usually obtained. However,

when increasing sufficiently the quality of basis set, it is no longer true as illustrated for

example in the case of the oxygen atom,[1] the water molecule,[5] and the 3d-transition

metal atoms[3] for which benchmark total energies have been obtained.

x.) CIPSI wavefunctions are particularly attractive when using non-local Effective Core

Potentials (ECP). Indeed, as already proposed some time ago,[14, 15] CI expansions allow

the analytical calculation of the action of the non-linear part of the pseudo-potential op-

erator on the trial wavefunction. In this way, the use of a numerical grid defined over the

sphere is avoided and a gain in computational effort essentially proportional to the number

of grid points is obtained. Here, this idea has been illustrated in the case of the C2 molecule.

Finally, let us briefly mention a number of topics presently under investigation.

xi.) The slow part of the CI convergence is known to result from the absence of electron-

electron cusp. In standard QMC approaches, the short distance electron-electron behavior

is introduced into the Jastrow prefactor and its impact on nodes is taken into account

by optimization of the full trial wavefunction. Under re-optimization, molecular orbitals

are changed and the distribution of multideterminant coefficients is modified with a re-

inforcement of coefficients associated with chemically meaningful determinants and a reduc-

tion of the numerous small coefficients associated with the absence of cusp. To keep the

CIPSI as compact as possible and to eliminate this unphysical and uncoherent background

of small coefficients a R12/F12 version of CIPSI is called for. We emphasize that such an

analytical and deterministic construction of the R12/F12 expansion is necessary if we want

to keep the advantages related to the deterministic construction of nodes.

xii.) To treat even larger systems, the increase of the number of determinants in the

CIPSI expansion must be kept under control. Instead of targeting the near full CI limit,

simpler models can be used in the spirit of what is done in MRCC approaches[95] or by

defining effective Hamiltonians in the reference space modelling the effect of the external
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space (so-called internally decontracted approaches).

xiii.) Finally, it is clear that systematic studies on difficult systems of various types are

needed to explore the potential and limits of the DMC-CIPSI approach.
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