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WEAK NORMALIZATION AND SEMINORMALIZATION IN REAL ALGEBRAIC

GEOMETRY

GOULWEN FICHOU, JEAN-PHILIPPE MONNIER AND RONAN QUAREZ

Abstract. We define the weak normalization and the seminormalization of a central real algebraic
variety. The study is related to the properties of the rings of continuous rational functions and regulous
functions on real algebraic varieties. We provide in particular several characterizations (algebraic or
geometric) of these varieties, and study in full details the case of curves.

The concept of weak normalization of a complex analytic variety has been introduced by Andreotti
& Bombieri [3] in order to study the space of analytic cycles associated with a complex algebraic
variety. The operation of weak normalization consists in enriching the sheaf of holomorphic functions
with those continuous functions which are also meromorphic. Later Andreotti & Norguet [4] defined
the notion of weak normalization in the context of schemes. For algebraic varieties, it consists roughly
speaking of an intermediate algebraic variety between an algebraic variety X and its normalization,
in such a way that the weak normalization of X is in bijection with X. One way to construct it is
to identify in the normalization all the points belonging to the pre-image of points in X. It gives
rise to a variety satisfying a universal property among those varieties in birational bijection via a
universal homeomorphism onto X. The theory of seminormalization, closely related to that of weak
normalization, have been developed later by Traverso [33] for commutative rings, with subsequent
work notably by Swan [32] or Leahy & Vitulli [23] (see also [34]), with a more particular focus on
the algebraic approach or the singularities. Note however that in the geometric context of complex
algebraic variety, weak normalization and seminormalization lead to the same notion. We refer to
Vitulli [35] for a survey on weak normality and seminormality for commutative rings and algebraic
varieties. More recently, the concept of seminormalization is used in the minimal model program of
Kollár and Kovács [16] and it appears also in [17].

In the context of real geometry, the first occurrence of weak normality or seminormality is the work
by Acquistapace, Broglia and Tognoli [1] in the case of real analytic spaces. In [24] the Traverso
seminormalization of real algebraic varieties is studied by considering the ring of regular functions,
showing that such notion does not provide natural universal property. Seminormalization in the
Nash context is introduced in [28]. Our aim in this paper is to provide appropriate definitions for
weak normalization and seminormalization in real algebraic geometry, leading to natural universal
properties. Contrarily to the complex setting, it will appear that the notions of weak normalization
and seminormalization are distinct, the difference being witnessed by the behaviour of continuous
rational functions on real algebraic varieties.

The first focus on continuous rational function in real geometry is due to Kreisel [20] who proved
that a positive answer to Hilbert seventeenth problem of representing a positive polynomial as a sum
of squares of rational functions, can always be chosen among continuous functions. Besides, Kucharz
[21] used this class of functions to approximate as algebraically as possible continuous maps between
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spheres, whereas Kollár & Nowak [19] initiated the proper study of these functions, proving notably
that the restriction of a continuous function defined on a (central) real algebraic variety, which is also
rational, does not remain rational in general. It is however the case as soon as the ambient variety
is nonsingular. As a consequence, on a singular real algebraic variety one may consider the ring
R0(X) of continuous rational functions, or its subring R0(X) consisting of those continuous rational
functions which remain rational under restriction. This class, called hereditarily rational in [19], has
been systematically studied in [11] under the name of regulous functions. The continuous rational
functions are now extensively studied in real geometry, we refer for example to [22, 18, 12, 26] for
further readings related to the subject of the paper.

Let X be an irreductible real algebraic variety in the sense of [7]. Assume that X is central,
namely that the set of regular points of X is dense in X for the Euclidean topology; this condition
guaranties that the continuous extension of a given rational function, if it exists, is unique. The
rational functions on X that satisfy a monic polynomial equation with coefficients in the ring P(X) of
polynomial functions on X, form a ring (the integral closure of P(X) in K(X)) which is a finite module
over P(X). This ring is the polynomial ring of a well-known real algebraic variety, the normalization X ′

of X, coming with a finite birational morphism onto X. Now, if we require moreover that the rational
functions admit a continuous extension to X, the corresponding subring R0(X)∩P(X ′) (the integral
closure of P(X) in R0(X)) of P(X ′) is still a finite module over P(X), and therefore it coincides with
the polynomial ring of a real algebraic variety. We call this variety the (real) weak normalization X∗

of X. It comes again with a finite birational morphism onto X, which is an homeomorphism both
for the Euclidean and regulous topologies. We prove in Theorem 6.8 that it is actually the biggest
real algebraic variety lying between X and X ′ satisfying either of these properties. We provide in
the same statement several characterizations of X∗, notably from a geometric point of view that X∗

is the biggest intermediate variety between X and X ′ being in bijection with X, or in an algebraic
point of view that X∗ is the biggest intermediate variety between X and X ′ satisfying the strong real
lying over property (cf. Definition 2.2). The justification for calling X∗ the weak normalization of X
comes from Theorem 6.15, which illustrates that the ring P(X∗) satisfies analogue properties in the
real setting as the weak normalization for complex algebraic varieties.

Now, replacing the ring of continuous rational functions with the ring of regulous functions leads
similarly to the definition of the (real) seminormalisation X∗ of X, whose ring of polynomial functions
is given by R0(X) ∩ P(X ′) (the integral closure of P(X) in R0(X)). The seminormalization of X
is an intermediate variety between X and X∗, so that X∗ admits a finite birational morphism onto
X which is an homeomorphism both for the Euclidean and regulous topologies. It is moreover the
biggest intermediate variety between X and X ′ whose polynomial functions are regulous on X. It
is also the biggest intermediate variety between X and X ′ satisfying the very strong real lying over
property (cf. Definition 2.5).

The normalization, weak normalization and seminormalization of a real algebraic variety are dif-
ferent in general. The latter two coincide on varieties where all continuous rational functions are
regulous, for instance in the case of curves. We provide in this particular case a full description of the
singularities of a weakly normal curves, in the spirit of [10] in the complex context.

The paper is organized as follows. In the first section, we provide a detailled study of the integral
closure of the rings of polynomial and regular functions on a real algebraic varieties. The results
presented there are probably well-known to the specialists, however we give them with complete proofs
for reason of a lack of reference. The second section is devoted to the study of topological properties
of integral morphisms, where by topology we refer either to Zariski topology, the topology of the
real spectrum or the real Zariski topology. After reviewing some basics about continuous rational
functions in the third section, we study in the fourth section finite birational morphisms between real
algebraic varieties, with a particular focus on the case of central varieties (the non central case is a
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work under progress to appear in a forthcoming paper). Section five deals with the relation between
rational continuous functions with the normalization map, giving in particular in Proposition 5.15 a
description of the integral closure of the ring of continuous rational functions on a central curve. The
last section is the heart of the paper, where we define and study the weak normalization and the
seminormalization of a central real algebraic variety.

Acknowledgment : The first author is deeply grateful to F. Acquistapace and F. Broglia for
mentioning to him the potential study of weak normalization for real algebraic variety via continuous
rational functions.

1. Normalization of real algebraic varieties

In this section we review the basic properties of the normalization of a real algebraic variety, defined
via the integral closure of the ring of polynomial functions. We put a particular stress on the integral
closure of the ring of regular functions.

1.1. Ideals of polynomial and regular functions. We consider in this text only affine real algebraic
varieties and more precisely real algebraic sets which are the real closed points of affine real algebraic
varieties. This is not an overly restrictive choice since almost all real algebraic varieties are affine [7,
Rem. 3.2.12]. Unless specified, all algebraic sets are real. Let X ⊂ Rn be an algebraic set. Let K(X)
denotes the ring of rational functions on X, it is a field when X is irreducible. Let P(X) be the ring
of polynomial functions on X defined by P(X) = R[x1, . . . , xn]/I, where I ⊂ R[x1, . . . , xn] is the ideal
of polynomials that vanish identically on X. If f is a real function on X then we denote by Z(f)
the zero set of f in X. If E is a set of real functions on X, we denote by Z(E) the set

⋂
f∈E Z(f).

Let A be a ring of real functions on X and let Z be a subset of X, we denote by IA(Z) the ideal
of functions on A that vanish identically on Z. Let OX be the sheaf of regular functions on X (see
[7, Sect. 3.2]). Let O(X) be the ring of global sections of OX on X, it is called the ring of regular
functions on X. Let S(X) be the multiplicative set of polynomial functions on X that does not vanish
on X i.e. S(X) = {p ∈ P(X)| Z(p) = ∅}. By [7, Def. 3.2.1], we have

O(X) = S(X)−1 P(X).

Let A be a commutative ring with unit. An ideal I of A is called real if, for every sequence a1, . . . , ak
of elements of A, then a21 + · · · + a2k ∈ I implies ai ∈ I for i = 1, . . . , k. We denote by R-SpecA the
real part of SpecA i.e. the set of real prime ideals of A. We denote by MaxA the set of maximal
ideals of A.

Proposition 1.1. We have

MaxO(X) ⊂ R-SpecO(X)

i.e. any maximal ideal of O(X) is real.

Proof. A maximal ideal of O(X) can be identified, by intersecting it with P(X), with a maximal ideal
m of P(X) such that m ∩ S(X) = ∅ and it is clearly sufficient to prove that m is real. Assume
p21 + · · · + p2k ∈ m for some pi ∈ P(X) and suppose moreover that p1 6∈ m. If k = 1 then we get
a contradiction since a maximal ideal is radical. So assume k > 1. Since m is maximal, there exist
q ∈ P(X) and r ∈ m such that qp1 = 1+ r. We get q2p21+ · · ·+ q2p2k ∈ m and q2p21 = (1+ r)2 = 1+ r′

with r′ ∈ m. Hence 1 +
∑k

i=2 q
2p2i ∈ m but it is impossible since 1 +

∑k
i=2 q

2p2i ∈ S(X). �

Proposition 1.2. The set MaxO(X) is in bijection with X. More precisely, for any maximal ideal
m of O(X) there exists a unique x ∈ X such that m = mx with mx = IO(X)({x}).



4 GOULWEN FICHOU, JEAN-PHILIPPE MONNIER AND RONAN QUAREZ

Proof. It is sufficient to prove that any maximal ideal m of P(X) that does not intersect S(X) is of
the form mx for a x ∈ X with mx = IP(X)({x}). As we have already seen in the proof of Proposition
1.1, m is a real ideal. By the real Nullstellensatz [7, Thm. 4.1.4], we have IP(X)(Z(m)) = m and thus
Z(m) 6= ∅. Let x ∈ Z(m), by [7, Thm. 4.1.4] it follows that IP(X)(Z(m)) = m ⊂ IP(X)({x}) = mx

and the proof is done since m is maximal. �

Proposition 1.3. The set MaxP(X) ∩ R-SpecP(X) is in bijection with X. More precisely, for any
maximal and real ideal m of P(X) there exists a unique x ∈ X such that m = mx with mx =
IP(X)({x}).
Proof. Copy the end of the proof of Proposition 1.2. �

Proposition 1.4. [25, Thm. 4.7, Sect. 4]
Let A be an integral domain. We have

A =
⋂

p∈SpecA

Ap =
⋂

m∈MaxA

Am.

Proof. Since A has no zero-divisors then the canonical map A→ Ap is injective. It follows that

A ⊂
⋂

p∈SpecA

Ap ⊂
⋂

m∈MaxA

Am.

We can conclude using [25, Thm. 4.7]. �

Let X be an irreducible algebraic set. From Propositions 1.2 and 1.4, we get

O(X) =
⋂

p∈SpecO(X)

O(X)p =
⋂

x∈X

O(X)mx =
⋂

x∈X

P(X)mx =
⋂

x∈X

OX,x .

In the previous formula mx is the maximal ideal of polynomial functions or regular functions that
vanish at x ∈ X.

1.2. Polynomial and regular maps. In complex affine algebraic geometry, polynomial and regular
functions coincide and thus we have a unique and natural definition of morphism between complex
algebraic sets. In the real setting no such natural definition exists. Usually, real algebraic geometers
prefer working with the ring of regular functions rather than the ring of polynomial functions on a
real algebraic set. In this paper, we make the opposite choice and we justify this choice in Remark
6.4. In other words, we see real algebraic sets as affine R-schemes and we consider the natural class
of functions on it.

Let X ⊂ Rn, Y ⊂ Rm be real algebraic sets. A polynomial (resp. regular) map from X to Y is a
map whose coordinate functions are polynomial (resp. regular). A polynomial (resp. regular) map
ϕ : X → Y induces an R-algebra homomorphism ϕ∗ : P(Y ) → P(X) (resp. ϕ∗ : O(Y ) → O(X))
defined by ϕ∗(f) = f◦ϕ. The map ϕ 7→ ϕ∗ gives a bijection between the set of polynomial maps fromX
to Y and the R-algebra homomorphisms from P(Y ) to P(X) (resp. the set of regular maps from X to
Y and the R-algebra homomorphisms from O(Y ) to O(X)). We say that a polynomial (resp. regular)
map ϕ : X → Y is an isomorphism (resp. a regular isomorphism) if ϕ is bijective with a polynomial
(resp. regular) inverse, or in another words if ϕ∗ : P(Y ) → P(X) (resp. ϕ∗ : O(Y ) → O(X)) is an
isomorphism. See [7, Sec. 3.2] and [9, Ch. 5] for detailed proofs of the previous well known results.
In the remainder of the paper, a map designates a polynomial map.

1.3. Complexification of real algebraic sets. Let X ⊂ Rn be a real algebraic set. The complexifi-
cation of X, denoted by XC, is the complex algebraic set XC ⊂ Cn, whose ring of polynomial functions
is P(XC) = P(X)⊗R C. We say that X is geometrically smooth if XC is smooth. Remark that XC is
automatically irreducible because X is an algebraic set. The situation is different when we consider
an algebraic variety X over R, i.e. a reduced separated scheme of finite type over SpecR; actually X
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can be irreducible and X ×SpecR SpecC reducible when the set of real points of X is not Zariski dense
in the set of complex points (SpecR[x]/(x2 + 1) for example).

Let ϕ : X → Y be a polynomial map between real algebraic sets. The tensor product by C of the
morphism of R-algebras ϕ∗ : P(Y ) → P(X) gives a morphism of C-algebras P(YC) → P(XC) and by
duality we get a polynomial map ϕC : XC → YC called the complexification of ϕ. We clearly get:

Proposition 1.5. Let ϕ : X → Y be a polynomial map between real algebraic sets. If ϕ is an
isomorphism then ϕC is an isomorphism.

Remark 1.6. Two non-isomorphic real algebraic sets can be isomorphic over the complex numbers:
the empty conic Z(x2 + y2 + 1) and the circle Z(x2 + y2 − 1).
It is not possible in general to complexify a regular map between real algebraic sets.

1.4. Normalization. Let A be an integral domain with fraction field denoted by K. An element
b ∈ K is integral over A if b is the root of a monic polynomial with coefficients in A. By [5, Prop.
5.1], b is integral over A if and only if A[b] is a finite A-module. This equivalence allows to prove
that A = {b ∈ K| b is integral overA} is a ring called the integral closure of A (in K). The ring A is
called integrally closed if A = A. If A is Noetherian then A is a finite A-module [25, Lem. 1 Sec. 33].
In particular, if A is the ring of polynomial functions on an irreducible algebraic set Y over a field k
then A is a finitely generated k-algebra and so A is the ring of polynomial functions of an irreducible
algebraic set, denoted by Y ′, called the normalization of Y . We recall that a map X → Y between two
algebraic sets over a field k is said finite if the ring morphism P(Y ) → P(X) makes P(X) a finitely
generated P(Y )-module. The inclusion A ⊂ A induces a finite map Y ′ → Y , called the normalization
map, which is a birational equivalence. We say that (an irreducible algebraic set over a field k) Y is
a normal if its ring of polynomial functions is integrally closed i.e. Y is its own normalization.

Let X be an irreducible algebraic set. We say that X is geometrically normal if the associated
complex algebraic set XC is normal.

Proposition 1.7. Let X be a geometrically smooth irreducible algebraic set. Then X is normal.

Proof. It is well-known that if XC is smooth then P(XC) is integrally closed in K(XC) (see [31, Thm.
1 Ch. 2 Sect. 5] for example). Hence P(X) is also integrally closed in K(X). �

Example 1.8. The following algebraic curve X = Z(y2 − (x2 + 1)2(x − 1)) is smooth but not
geometrically smooth. The ring P(X) (instead of O(X)) is not integrally closed in K(X) since the

non-polynomial but regular function f =
y

x2 + 1
is integral over P(X) since f2 − (x− 1) = 0.

Proposition 1.9. Let X be a smooth irreducible algebraic set. Then O(X) is integrally closed in
K(X).

Proof. By [7, 3.3.6, 3.3.7], for any x ∈ X the local ring OX,x of germs of regular functions at x is
integrally closed in K(X). Therefore

O(X) =
⋂

x∈X

OX,x ⊂
⋂

x∈X

OX,x =
⋂

x∈X

OX,x = O(X).

�

Proposition 1.10. Let X be an irreducible algebraic set. If X is normal then O(X) is also integrally
closed in K(X).

Proof. We have already seen that O(X) = S(X)−1 P(X) where S(X) is the multiplicative part of
P(X) of polynomial functions that do not vanish on X. We get the proof using [5, prop. 5.12]. �

Proposition 1.11. Let X be an irreducible algebraic set. Then X is normal if and only if X is
geometrically normal.
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Proof. One implication is trivial and we prove the other one. Assume X is normal i.e. P(X) is

integrally closed. Let f ∈ K(XC) be such that f ∈ P(XC). We have K(XC) = K(X) ⊗ C and thus
we have a complex involution σ : K(XC) → K(XC) with fixed part equal to K(X). We can write

f =
f + σ(f)

2
+ ı

−ı(f − σ(f))

2
. Since σ(P(XC)) ⊂ P(XC) and since P(XC) is a ring then we see that

σ(f) and f + σ(f) are integral over P(XC). Since f + σ(f) ∈ K(X) then f + σ(f) is integral over
P(X), taking the real part of the coefficient of the integral equation, and thus f +σ(f) ∈ P(X). Since

P(XC) is a ring then
−ı(f − σ(f))

2
is integral over P(XC) and thus is also integral over P(X) (it is

fixed by σ). It follows that f ∈ P(X)⊗ C = P(XC). �

In the remaining of this section we will compare the rings O(X) and O(X ′). We have O(X) =
S(X)−1 P(X ′) [5, prop. 5.12] and O(X ′) = S(X ′)−1 P(X ′). Let π : X ′ → X be the normalization
map. It is easy to check that if f ∈ S(X) then f ◦ π ∈ S(X ′) and thus

O(X) →֒ O(X ′).

Lemma 1.12. Let A be integral domain. Then

A =
⋂

m∈MaxA

Am =
⋂

m∈MaxA

Am =
⋂

m′∈MaxA

Am′ .

Proof. By Proposition 1.4, we have A =
⋂

m∈MaxAAm and thus

A =
⋂

m∈MaxA

Am ⊂
⋂

m∈MaxA

Am

and
A =

⋂

m′∈MaxA

Am′ .

It remains to prove the inclusion
⋂

m∈MaxA

Am ⊂
⋂

m′∈MaxA

Am′ .

Let m ∈ MaxA. We have Am ⊂ ⋂
p′∈SpecA,p′∩A=m

Ap′ (By [5, Prop. 3.9] the map Am → Am =

A ⊗A Am is injective, the map Am → Ap′ is clearly injective). By [5, Prop. 5.13], Ap′ is integrally

closed for any p
′ ∈ SpecA. Thus we get

Am ⊂
⋂

p′∈SpecA,p′∩A=m

Ap′ .

By [25, Lem. 2, Sect. 9], the map ϕ : SpecA → SpecA, p′ 7→ p
′ ∩ A has only non-empty fibers and

ϕ−1(MaxA) = MaxA. According to the above results the proof is done. �

We denote by ϕ the map ϕ : SpecP(X ′) → SpecP(X), p′ 7→ p
′ ∩ P(X). Since P(X) →֒ P(X ′) is

integral, we have already seen at the end of the proof of Lemma 1.12 that the fibers of ϕ are non-empty
and ϕ−1(MaxP(X)) = MaxP(X ′).

We have already seen that the maximal ideals of the ring of regular functions O(X ′) of the nor-
malization of X are all real ideals (Proposition 1.1). We prove in the next proposition that the set

of maximal ideals of the integral closure O(X) of the ring of regular functions on X corresponds

to ϕ−1(X). Therefore, a maximal ideal of O(X) is not necessarily real and consequently the rings

O(X) and O(X ′) can be distinct. It shows that “taking the integral closure” and “taking the regular
functions” are operations that do not commute in the real setting. Proposition 1.13 gives a descrip-
tion of the rings O(X) and O(X ′) as the intersection of the localizations at their maximal ideals. In

Proposition 1.16, we explain when O(X) = O(X ′).
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Proposition 1.13. We have:

1) The set MaxO(X) is in bijection with ϕ−1(X) = ϕ−1({mx = IP(X)({x}), x ∈ X}).
2)

O(X) =
⋂

x∈X

OX,x =
⋂

m′∈ϕ−1(X)

P(X ′)m′

3)

O(X ′) =
⋂

m′∈MaxP(X′)∩R-SpecP(X′)

P(X ′)m′ .

Proof. By Proposition 1.2 and [25, Lem. 2, Sect. 9], we get 1). The third statement is a consequence
of Propositions 1.2 and 1.4. By Lemma 1.12 and Proposition 1.2 we get

O(X) =
⋂

x∈X

OX,x =
⋂

x∈X

OX,x =
⋂

m′∈ϕ−1(X)

P(X ′)m′ ,

that proves the second statement. �

Example 1.14. Consider the cubic X = Z(y2−x2(x−1)) with an isolated point at the origin. Then
P(X ′) = P(X)[y/x] ≃ R[x, z]/(z2−(x−1)), setting z = y/x. The function f = 1/(1+z2) = x2/(x2+
y2) is regular on X ′. However f 6∈ P(X ′)m′ for the non-real maximal ideal m′ = (1+z2) = ϕ−1(m) of
P(X ′), where m = (x, y) is the (real) maximal ideal of the origin in P(X). Indeed we have 1/f ∈ m

′.

In particular f ∈ O(X ′) \ O(X).

Example 1.15. Consider the surface X = Z(x3 − y3(1 + z2)). Then P(X ′) = P(X)[x/y] ≃
R[t, y, z]/(t3−(1+z2)), setting t = x/y. The function f = 1/(t2+t+1+z2) = y2/(x2+xy+y2+y2z2)
is regular on X ′. Let m = (x, y, z) be the maximal and real ideal of polynomial functions on X that
vanish at the origin. Over m we have two maximal ideals of P(X ′), only one of these two ideals is
real, namely ϕ−1(m) = {m′ = (t − 1, y, z), m′′ = (t2 + t + 1, y, z)}. We have f 6∈ P(X ′)m′′ since

1/f ∈ m
′′. It follows that f ∈ O(X ′) \ O(X).

Let π : X ′ → X denote the normalization map.

Proposition 1.16. The rings O(X) and O(X ′) are isomorphic if and only if the fibers of πC : X ′
C →

XC over the points of X are totally real i.e. #(π−1
C (x)) = #(π−1(x)) ∀x ∈ X.

Proof. Assume there exists x ∈ X such that π−1
C (x) is not totally real. It forces the existence of a

non-real maximal ideal m′ of P(X ′) such that m
′ ∩ P(X) = IP(X)({x}). By Propositions 1.13 (first

statement) and 1.2 then O(X) and O(X ′) cannot be isomorphic.
Assume the fibers of πC : X ′

C → XC over the points of X are totally real. Since the image by ϕ
of a real prime ideal of P(X ′) is a real prime ideal of P(X). It follows that ϕ−1(X) = MaxP(X ′) ∩
R-SpecP(X ′) and we conclude the proof using the last two statements of Proposition 1.13. �

We may wonder if O(X) is the ring of regular functions of an algebraic set. The following proposition
gives an answer to this question.

Proposition 1.17. Assume O(X) is the ring of regular functions of an intermediate algebraic set Y
between X and X ′ i.e P(X) ⊂ P(Y ) ⊂ P(X ′). Then

O(X) ≃ O(X ′).

Proof. Assume O(X) = O(Y ). By Proposition 1.1, all the maximal ideals of O(X) are real. It follows
from Proposition 1.13.(1) that the fibers of πC : X ′

C → XC over the points of X are totally real. By
Proposition 1.16, we get the proof. �
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Remark 1.18. It may happen that two algebraic sets have isomorphic rings of regular functions but
non isomorphic rings of polynomial functions. Consider an irreducible algebraic set X of dimension
one such that XC is singular and has only non-real singularities (e.g X = Z(y2 − (x2 + 1)2x)). Let

X ′ be the normalization of X. From Proposition 1.9, we get O(X) = O(X). By Proposition 1.16, we
see that O(X) and O(X ′) are thus isomorphic. By Proposition 1.11, it follows that X is not normal
and thus P(X) and P(X ′) are not isomorphic rings. To conclude, for an irreducible algebraic set X of
dimension one, the non-real singularities of XC contribute to the non-normality of P(X) but do not
affect the normality of O(X).

2. Some topological properties of integral morphisms

In real algebraic geometry, it is common to use various topologies, like the Zariski toplogy or the
Euclidean topology. When dealing with algebra, the same situation appears, and in this section with
study topological properties of integral morphism with respect to Zariski topology, the topology of
the real spectrum, and the real Zariski topology.

2.1. Several topologies on a ring.

2.1.1. Zariski topology. Let A be a commutative ring containing Q and denote by SpecA (the Zariski
spectrum of A) the set of all prime ideals of A. Then, SpecA can be endowed with the Zariski topology
whose basis of open subsets is given by the sets D(a) = {p ∈ SpecA | a /∈ p} for a ∈ A (and whose
closed subsets are given by the sets V (I) = {p ∈ SpecA | I ⊂ p} where I is an ideal of A).

2.1.2. Real spectrum topology. To a commutative ring A containing Q one may also associate a topo-
logical subspace Specr A which takes into account only prime ideals p whose residual field admits an
ordering.

Let us detail this construction below. An order α in A is given by a real prime ideal p of A (called
the support of α and denoted by supp(α)) and an ordering on the residue field k(p) at p or equivalently
it is given by a morphism φ from A to a real closed field K.

The value a(α) of a ∈ A at the ordering α is just φ(a). The set of orders of A is called the
real spectrum of A and denoted by Specr A. It is empty if and only if −1 is a sum of squares
in A. One endows Specr A with a natural topology whose open subsets are generated by the sets
{α ∈ Specr A | a(α) > 0} where a ∈ A. The set Specr A can be also identified with the set of prime
cones of A: a prime cone α of A is a subset of A that satisfies (i) α+α ⊂ α, (ii) α.α ⊂ α, (iii) a2 ∈ α
∀a ∈ A, (iv) −1 6∈ α, (v) ab ∈ α ⇒ (a ∈ α or − b ∈ α) ∀(a, b) ∈ A × A. If α is a prime cone of A
then the support of α is α ∩ −α. A subset of A satisfying the conditions (i), (ii) and (iii) is called a
cone of A. A cone of A satisfying (iv) is called a proper cone of A. Let α, β be two points of Specr A,
then we say that β is a specialization of α and that α is generization of β if α ⊂ β (as prime cones).
By [7, Prop. 7.1.18], β is a specialization of α if and only β is in the closure of the singleton {α} for
the topology introduced previously.

For more details on the real spectrum, the reader is referred to [7].
One has a natural support mapping Specr A→ SpecA which sends α to supp(α).

2.1.3. Real Zariski topology. In this work, we will also consider the set R-SpecA which is just the
image of the support mapping, namely it consists in all the real prime ideals of A. We endow it with
the induced Zariski topology.

Let us denote MaxA ⊂ SpecA the subsets of all maximal ideals of A. Let us also denote DR(a) =
D(a) ∩ (R-SpecA) and VR(I) = V (I) ∩ (R-SpecA).

Then, the closed subsets of R-SpecA have the form VR(I) where I is an ideal of A and a basis of
open subsets is given by the subsets DR(a) for a ∈ A.
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2.1.4. Fonctoriality. Let φ : A → B be a ring morphism. It canonically induces a map ψ : SpecB →
SpecA which is continuous for the Zariski topology.

It also induces a map ψr : Specr B → Specr A which is continuous for the real spectrum topology.
And also,

Proposition 2.1. The morphism φ : A → B induces a map ψR : R-SpecB → R-SpecA which is
continuous for the Zariski topology.

Proof. Let us see first that this is a well defined map. Indeed, let q ∈ R-SpecB and p = ψ(q). Then,
there exists an ordering on k(q) that one may define by giving a morphism B/q → R into a real
closed field R. Hence, one gets the following commutative diagram :

A → B
↓ ↓

A/p → B/q → R

which defines an ordering on k(p) and hence p is a real prime ideal.
The continuity comes from the following sequence of equalities :

ψ−1
R (DR(a)) = ψ−1

R (D(a) ∩ R-SpecA) = ψ−1(D(a) ∩ R-SpecA) ∩R-SpecB =

ψ−1(D(a)) ∩ ψ−1(R-SpecA) ∩ R-SpecB = D(φ(a)) ∩ R-SpecB = DR(φ(a)).

�

From now on, we will deal with ring extensions, namely φ will be injective.

2.2. Lying over and going-up.

2.2.1. Lying over.

Definition 2.2. We say that a ring extension φ : A → B satisfies the lying over property if ψ is
surjective. Likewise, we say that φ satisfies the real lying over (resp. strong real lying over) property
if ψR is surjective (resp. bijective).

We recall, for instance from [25, Theorem 9.3]) :

Proposition 2.3. Assume that the ring extension φ : A→ B is integral. Then

(1) φ satisfies the lying over property,
(2) ψ induces a map from MaxB to MaxA which is surjective.

One has also, induced from ψR, a map from R-MaxB to R-MaxA but the real counterpart of the
last property is false in general, namely ψR is not necessarily surjective.

Indeed, let us consider Example 1.14. Namely, denote by A the ring of polynomial functions of the
cubic with an isolated singularity Z(y2 − x2(x− 1)) and by A the ring of polynomial functions of its
normalization. Then, A → A is integral although there is only a non-real maximal ideal of A lying
over the maximal and real ideal of A corresponding to the real isolated point of the cubic.

Remark 2.4. The lying over property does not imply the real lying-over property.

We define now a very strong real lying over property.

Definition 2.5. We say that a ring extension φ : A → B satisfies the very strong real lying over
property if, given p ∈ R-SpecA, there exists a unique q ∈ R-SpecB such that q ∩ A = p (i.e
φ satisfies the strong real lying over property) and the induced injective map on the residue fields
k(p) →֒ k(q) is an isomorphism.
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2.2.2. Going-up.

Definition 2.6. We say that a ring extension φ : A → B satisfies the going-up property if, for any
couple of prime ideals p ⊂ p

′ in SpecA and a prime ideal q ∈ SpecB lying over p, there exists a
prime ideal q′ ∈ SpecB over p

′ and such that q ⊂ q
′.

The going-up property is stronger than the lying over property : it is obvious in the case where A
and B are domains and it follows from a theorem by Kaplansky in all generality.

When our ring extension is integral, we recall, for instance from [25, Theorem 9.3] :

Proposition 2.7. Assume that the ring extension φ : A→ B is integral. Then, φ satisfies the going-up
property.

One readily deduces from Propositions 2.3 and 2.7:

Proposition 2.8. Assume that φ : A→ B is integral. Then, ψ is a closed mapping.

To get a real counterpart, one has to increase the assumptions.
One can define also a real going-up property for the real spectrum.

Definition 2.9. We say that a ring extension φ : A → B satisfies the going-up property for the real
spectrum if, for any couple of points α,α′ ∈ Specr A such that α′ belongs to the closure of α (which
we denote by α→ α′) and a point β ∈ Specr B lying over α, there exists a point β′ ∈ Specr B over α′

and such that β → β′.

We recall from [2, Proposition 4.2]:

Proposition 2.10. Assume that the ring extension φ : A → B is integral. Then, φ satisfies the real
going-up property for the real spectrum and ψr is a closed mapping.

Likewise, one may define a going-up property for real prime ideals. Example 1.14 shows that integral
extensions do not necessarily satisfy the real going-up property since they do not necessarily satisfy
the real lying-over property. The going-up property for real prime ideals will be studied more precisely
in a forthcoming paper [13].

We define a strong and a very strong real lying over property for ideals.

Definition 2.11. Let A→ B be a ring extension.

1) We say that A → B satisfies the strong real lying over property if, given a real prime ideal p
of A, there exists a unique p

′ ∈ R-SpecB lying over p.
2) We say that A → B satisfies the very strong real lying over property if, given a real prime

ideal p of A, there exists a unique p
′ ∈ R-SpecB lying over p and the induced injective map

on the residue fields k(p) → k(p′) is an isomorphism.

2.3. Central rings.

Definition 2.12. We say that a domain A with fractions field K is a central ring if the image of
SpecrK is dense in Specr A.

In the geometric setting, one also has the notion of a central algebraic set:

Definition 2.13. Let X be an irreducible algebraic set. We say that X is central if the set of all its
regular points is dense with respect to the euclidean topology.

According to [7, Proposition 7.6.2] and [7, Proposition 7.6.4], one has :

Proposition 2.14. Let X be an irreducible algebraic set. Then, X is a central if and only if its ring
of polynomial functions is a central ring.

Example 2.15. (1) The cubic with isolated point of Example 1.14 is not central.
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(2) The nodal curve Z(y2 − x2(x− 1)) is central.

Of central interest is the following result :

Proposition 2.16. Let φ : A → B be an integral ring extension where A and B are domains with
same fraction field. If A is central, then :

(1) B is central,
(2) ψR is surjective (φ satisfies the real lying over property).

Proof. (1) Let β′ ∈ Specr B. It lies over α′ ∈ Specr A. Since A is central, there exists α ∈ Specr A
coming from SpecrK such that α → α′. Since A and B have same field of fractions, there
is β ∈ Specr B coming from SpecrK over α. Looking now at α and α′ as prime cones, then
α ⊂ α′ = φ−1(β′). And hence, φ(α) ⊂ φ(φ−1(β′)) ⊂ β′. One gets β ⊂ β′, namely β → β′.
This shows that B is central.

(2) Let p
′ ∈ R-SpecA. It is the support of a point α′ ∈ Specr A. Since A is central, there exists

α ∈ SpecrK ∩ Specr A such that α→ α′. Since A and B have same field of fractions K, there
is β ∈ Specr B ∩ SpecrK over α. By the real going-up for the real spectrum (Proposition
2.10), one deduces the existence of β′ ∈ Specr B over α and such that β → β′. It implies that
the support of β′ is a real prime ideal q′ lying over p

′. Namely, φ satisfies the real lying over
property or, in other words, ψR is surjective.

�

Let us end this section with a property which we will need in the following.

Lemma 2.17. Let A→ B be an integral extension with A and B domains. Then, dimA = dimB.

Proof. Since the morphism is integral, there do not exist two different prime ideals q ⊂ q
′ in B lying

over the same prime ideal p in A [25, Thm. 9.3, Sect. 9]. Hence, one has dimA ≥ dimB.
Since the morphism is injective and A and B are domains, by the going-up property, one gets that

dimA ≤ dimB. �

3. Rational and continuous functions

We introduce three classes of functions on real algebraic varieties, the regulous functions, ratio-
nal continuous functions and blow-regular functions. We briefly recall the relations between these
functions. We refer the reader to [26] for more details.

3.1. Regulous functions. Regulous functions on an algebraic set were introduced in [11] in order to
correct the defects of the classical real algebraic geometry i.e. the real algebraic geometry where the
usual class of functions is the class of regular functions.

Definition 3.1. We say that a function f : Rn → R is regulous on Rn if f is continuous on Rn and f
is a rational function on Rn, i.e. there exists a non-empty Zariski open subset U ⊆ Rn such that f |U
is regular. We denote by R0(Rn) the ring of regulous functions on Rn.

The regulous topology of Rn is defined to be the topology whose closed subsets are generated by
the zero sets of regulous functions on Rn. By [11, Thm. 6.4], the regulous topology on Rn is the
algebraically constructible topology on Rn (denoted by C-topology).

Definition 3.2. Let X be an algebraic subset of Rn. A regulous function on X is the restriction to
X of a regulous function on Rn. The ring of regulous functions on X, denoted by R0(X), corresponds
to

R0(X) = R0(Rn)/I(X)

where I(X) is the ideal of R0(Rn) of regulous functions on Rn that vanish identically on X.
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Let X be an algebraic subset of Rn. By [19, Prop. 8] or [11, Thm. 4.1], a regulous function on
X is always rational on X (coincides with a regular function on a dense Zariski open subset of X).
We have a natural ring morphism φ0 : R0(X) → K(X) which send f ∈ R0(X) to the class (U, f |U )
in K(X), where (U, f |U ) is a regular presentation of f i.e. U is a dense Zariski open subset of X and
f |U is regular.

In the following, we will denote by E
τ

the closure of the subset E of Rn for the topology τ on Rn.
We also denote by Xreg (resp. Sing(X)) the smooth (resp. singular) locus of X.

Proposition 3.3. [26, Prop. 2.7]
Let X be an algebraic subset of Rn. The map φ0 : R0(X) → K(X) is injective if and only if

Xreg
C
= X.

3.2. Rational continuous functions. Let X be an algebraic set. Let f ∈ K(X) be a rational
function on X. The domain of f , denoted by dom(f), is the biggest dense Zariski open subset of X

on which f is regular, namely f =
p

q
on dom(f) where p and q are polynomial functions on Rn such

that Z(q)∩X = X \ dom(f). The indeterminacy locus or polar locus of f is defined to be the Zariski
closed set indet(f) = X \ dom(f).

Definition 3.4. Let f be a real continuous function on X. We say that f is a rational continuous
function on X if f is rational on X i.e. there exists a dense Zariski open subset U ⊆ X such that f |U
is regular.

Let R0(X) denote the ring of rational continuous functions on X. We have a natural ring morphism
φ0 : R0(X) → K(X) which send f ∈ R0(X) to the class (U, f |U ) in K(X), where (U, f |U ) is a regular
presentation of f .

Remark 3.5. We have R0(R
n) = R0(Rn).

Recall that X is “central” if Xreg
eucl

= X (Definition 2.13).

Proposition 3.6. [26, Prop. 2.14]
The map φ0 : R0(X) → K(X) is injective if and only if X is central.

Remark 3.7. The use of rational continuous functions in real algebraic geometry is interesting only
for real algebraic varieties that are central, indeed without the central hypothesis a rational continuous
function is not necessarily semi-algebraic. On the contrary, a regulous function is always semi-algebraic.

By [19, Prop. 8] or [11, Thm. 4.1], any f ∈ R0(X) can be identified with a unique function in
R0(X). Hence we get the following ring inclusion φ00 : R0(X) →֒ R0(X) and moreover φ0 = φ0 ◦ φ00.
In [19] Kollár and Nowak study the differences between rational continuous functions and regulous
functions on central real algebraic varieties (“regulous functions” are named “hereditarily rational
continuous functions” in [19]), in particular they give the first example of rational continuous function
that is not regulous (in the central case) [19, Ex. 2]. In [26] and [18] the comparison between rational
continuous and regulous continues.

Theorem 3.8. [19, Prop. 8, Thm. 10] (the smooth case) and [26, Thm. 2.22]
Let X be an algebraic set such that dimSing(X) ≤ 0. Then the map φ00 : R0(X) →֒ R0(X) is an

isomorphism.

3.3. Blow-regular functions.

Definition 3.9. Let X be an algebraic set. Let B(X) denote the ring of real functions f defined on

X such that, there exists a resolution of singularities π : X̃ → X such that the composite f ◦ π is
regular on X̃ . A f ∈ B(X) is called a “blow-regular function” on X.

By [11, Thm. 3.11], regulous functions and blow-regular functions coincide in the smooth case.
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Theorem 3.10. [11, Thm. 3.11]
Let X be a smooth algebraic set. We have R0(X) = B(X).

Remark 3.11. According to Theorems 3.10 and 3.8, f ∈ B(X) if and only if f is a real function

defined on X such that for any resolution of singularities π : X̃ → X such that f ◦ π is regulous or
rational continuous on X̃ .

In [26], Theorem 3.10 is extended to the central case.

Proposition 3.12. [26, Prop. 2.29]
Let X be a central algebraic set. We have

B(X) = R0(X).

3.4. Zariski spectrum of the ring of rational continuous functions.

Proposition 3.13. Let X be an algebraic set. The maximal ideals of R0(X) are real.

Proof. Since 1 +
∑R0(X)2 ⊂ R0(X)×, we can conclude using the arguments given in the proof of

Proposition 1.1. �

Let X be an algebraic set. We say that X is “almost central” if dim(X \Xreg
eucl

) ≤ 0. Any algebraic
curve is almost central.

Remark 3.14. Let X be an almost central algebraic set.

• If f ∈ R0(X) then f is a semi-algebraic function on X: On X \Xreg
eucl

it is clear since X \Xreg
eucl

is empty or a finite set of points. On the semi-algebraic set Xreg
eucl

the graph of f is the euclidean
closure of the graph of a regular presentation of f .

• If f ∈ R0(X) then Z(f) is regulous closed: Z(f) = (Z(f) ∩ (X \ Xreg
eucl

))
∐
(Z(f) ∩ Xreg

eucl
),

Z(f)∩ (X \Xreg
eucl

) is clearly regulous closed and Z(f)∩Xreg
eucl

is also regulous closed by [26, Prop.
3.5].

Proposition 3.15. Let X be an almost central algebraic set. Let I be an ideal of R0(X). There exists
f ∈ I such that Z(f) = Z(I).

Proof. We have Z(I) =
⋂

f∈I Z(f). By Remark 3.14, Z(I) is thus an intersection of regulous closed

sets. Since the regulous topology on X is the topology on X induced by the regulous topology on Rn

(by definition of R0(X)) then the regulous topology on X is Noetherian [11, Thm. 4.3]. Therefore
there exists f1, . . . , ft ∈ I such that

Z(I) = Z(f1) ∩ · · · ∩ Z(ft) = Z(f21 + · · ·+ f2t ).

�

Proposition 3.16. (Weak Nullstellensatz)
Let X be an almost central algebraic set. Let I be an ideal of R0(X). Then Z(I) = ∅ if and only if
I = R0(X).

Proof. By Proposition 3.15 there exists f ∈ I such that Z(f) = Z(I). Therefore Z(I) = ∅ if and only
if f is a unit in R0(X). �

Corollary 3.17. Let X be an almost central algebraic set. The set MaxR0(X) is in bijection with
X. More precisely, for any maximal ideal m of R0(X) there exists a unique x ∈ X such that m = mx

with mx = IR0(X)({x}).
Proof. Let m be a maximal ideal of R0(X). By Proposition 3.16 there exists x ∈ Z(m). We have
m ⊂ IR0(X)(Z(m)) ⊂ IR0(X)({x}). Since IR0(X)({x}) 6= R0(X) and m is maximal then the previous
inclusions are equalities. �
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Lemma 3.18. [7, Prop. 2.6.4] (Łojasiewicz inequality)
Let X be an algebraic set. Let f be a continuous semi-algebraic function on X and let g be a

continuous semi-algebraic function on X \ Z(f). For N ∈ N sufficiently big then fNg is a continuous
semi-algebraic function on X vanishing over the whole set Z(f).

Theorem 3.19. (Nullstellensatz)
Let X be an almost central algebraic set. Let I be an ideal of R0(X). Then

IR0(X)(Z(I)) =
√
I.

Proof. We have trivially
√
I ⊂ IR0(X)(Z(I)).

Let g ∈ IR0(X)(Z(I)). By Proposition 3.15 there exists f ∈ I such that Z(f) = Z(I). Since

Z(f) ⊂ Z(g) then the function
1

f
is a continuous semi-algebraic function on X \ Z(g). By Lemma

3.18, for a sufficiently big integer N the function hN =
gN

f
is continuous on X and thus clearly belongs

to R0(X). Therefore gN = hNf ∈ I and the proof is done. �

Proposition 3.20. Let X be an almost central algebraic set. Any radical ideal of R0(X) is real.

Proof. Let I be a radical ideal of R0(X). Assume f1, . . . , ft are rational continuous functions on X
(t > 1) such that f21 + · · ·+ f2t ∈ I. Let j ∈ {1, . . . , t}. We have Z(f21 + · · ·+ f2t ) ⊂ Z(fj) and thus, by

Lemma 3.18,
fNj

f21 + · · · + f2t
∈ R0(X) for N sufficiently big. We conclude that for N big then fNj ∈ I

and it gives the proof since I is radical. �

4. Properties of finite birational maps

In this section, we investigate the properties of finite birational maps between algebraic sets in
relationship with the rings of rational continuous and regulous functions. In this text, a birational
map π : Y → X between two algebraic sets is a polynomial map that induces an isomorphism from
a dense Zariski open subset of Y to a dense Zariski open subset of X. It means that π is defined
everywhere, but its inverse may not be. If X and Y are irreducible, π is birational if and only if π
induces an isomorphism K(X) ≃ K(Y ).

Recall that a map π : Y → X between two topological spaces is called proper if the preimage of
every compact subset of X is a compact subset of Y .

Lemma 4.1. Let π : Y → X be a finite birational map between irreducible algebraic sets. Then

1) The ring morphism P(X) → P(Y ), p 7→ p ◦ π is injective and integral.
2) The map π is proper, and thus closed, for the euclidean topology.

Proof. The ring morphism P(X) → P(Y ) is injective and integral since π is respectively birational
(and thus dominant) and finite.

By [2, Ch. 2, Prop 4.2-4.3], the map ψr : Specr P(Y ) → Specr P(X) is closed for the real spectrum
topology. According to [7, Theorem 7.2.3], there is a bijective correspondence between open (resp.
closed) semi-algebraic subsets of X (resp. Y ) and open (resp. closed) constructible subsets of the
real spectrum Specr P(X) (resp. the real spectrum Specr P(Y )). It follows that the image by π of
every closed semi-algebraic subset of Y is a closed semi-algebraic subset of X. Let K ⊂ X be a
compact subset. Let

⋃
i∈I Ui be an open cover of π−1(K); since the open balls are semi-algebraic

sets, we can assume the Ui’s to be semi-algebraic sets. For any x ∈ X, the fiber π−1(x) is finite so
there exists a finite subset Λx ⊂ I such that π−1(x) ⊂ ⋃

i∈Λx
Ui. The set Y \ ⋃

i∈Λx
Ui is a closed

semi-algebraic subset of Y and thus its image by π is a closed semi-algebraic subset of X. It follows
that Vx = X \ f(Y \⋃i∈Λx

Ui) is an open subset of X that clearly contains x. Since K is compact
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and since K ⊂ ⋃
x∈K Vx then there exists l ∈ N \{0} and x1, . . . , xl ∈ K such that K ⊂ ⋃l

j=1 Vxj
. Let

Λ be the finite subset of I given by Λ =
⋃l

j=1Λxj
. We have proved that π−1(K) is compact since

π−1(K) ⊂ π−1(
l⋃

j=1

Vxj
) ⊂

⋃

i∈Λ

Ui.

Since π is proper for the Euclidean topology then π is closed for the Euclidean topology. �

Lemma 4.2. Let π : Y → X be a birational map between irreducible central algebraic sets. The
composition by π gives a injective ring morphism

π0 : R0(X) →֒ R0(Y ), f 7→ f ◦ π.
Proof. Let f ∈ R0(X). The function f ◦ π is clearly rational on Y since π is birational. The function
f ◦ π is clearly continuous on Y and thus f ◦ π ∈ R0(Y ). By Proposition 3.6 and since π is birational
then R0(X) and R0(Y ) inject into K(X). It follows that f and f ◦ π correspond to the same rational
function of K(X). Since Y is central then f ◦ π is the unique continuous extension to Y of f ◦ π = f
seen as a rational function on Y . �

Proposition 4.3. Let π : Y → X be a finite birational map between irreducible algebraic sets. We
denote by ψ the map SpecP(Y ) → SpecP(X), p 7→ p ∩ P(X) (see 2.1.4).
If X is central then:

1) π is surjective.
2) ψ(R-SpecP(Y )) = R-SpecP(X) i.e. P(X) → P(Y ) satisfies the real lying over property i.e.

ψR : R-SpecP(Y ) → R-SpecP(X) is surjective.
3) ψ(R-SpecP(Y ) ∩MaxP(Y )) = R-SpecP(X) ∩MaxP(X).
4) Y is central.
5) π is a quotient map for the Euclidean topology.
6) The image of the injective ring morphism π0 : R0(X) → R0(Y ), f 7→ f ◦ π is the ring of

rational continuous functions on Y that are constant on the fibers of π. We denote by
R0(Y )

π
this ring and thus

R0(X) ≃ R0(Y )

π
.

Proof. The first four properties are direct consequences of Proposition 2.16 and 2.3.
By 1) and Lemma 4.1 the map π is continuous, surjective and a closed map for the Euclidean

topology; this gives 5).
Let g ∈ R0(Y ). By 4) we know that X and Y are central. By Proposition 3.6 and since π is

birational, the function g is rational on X. Since π is a quotient map for the Euclidean topology then
the continuous function g on Y induces a continuous function on X if and only if g is constant on the
fibers of π. �

The following theorem will lead to the introduction of the real weak normalization of an algebraic
set in a forthcoming section.

Theorem 4.4. Let π : Y → X be a finite birational map between irreducible algebraic sets. We assume
moreover that X is central. The following properties are equivalent:

1) π is a bijection.
2) The ring morphism R0(X) → R0(Y ) is an isomorphism.
3) P(Y ) ⊂ R0(X).
4) π is an homeomorphism for the Euclidean topology.
5) π is an homeomorphism for the regulous topology.
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6) P(X) → P(Y ) satisfies the strong real lying over property i.e. the induced mapping R-SpecP(Y ) →
R-SpecP(X) is a bijection.

Proof. By Proposition 4.3, we know that π is surjective and Y is central.
By 6) of Proposition 4.3 then we get that 1) implies 2).
Assume R0(X) → R0(Y ) is an isomorphism and π is not bijective. There exists x ∈ X such that we

have {y1, y2} ⊂ π−1(x) and y1 6= y2. There exists p ∈ P(Y ) such that p(y1) 6= p(y2). By Proposition
4.3 we get that p ∈ R0(Y ) \ R0(X) since p is not constant on the fibers of π, a contradiction. We
have proved that 2) implies 1).

Clearly, 2) implies 3).
Assume P(Y ) ⊂ R0(X). If π is not a bijection, we can find as above a p ∈ P(Y ) such that

p ∈ R0(Y ) \ R0(X) and it gives a contradiction. We have proved that 3) implies 1). At this level of
the proof, 1), 2), and 3) are equivalent.

It is clear that 4) and 5) imply 1). We are going to prove that 1) implies 4) and 5). Assume
π is a bijection. By Lemma 4.1, π is closed for the Euclidean topology and thus it is clearly an
homeomorphism for the Euclidean topology. Since π is a bijection, we get that R0(X) ≃ R0(Y ) (we
already know that 1) implies 2)). Since the regulous closed sets are the zero sets of rational continuous
functions functions (Remark 3.14) then it follows that π is also an homeomorphism for the regulous
topology. Indeed, let F = Z(f) be a regulous closed subset of Y (f ∈ R0(Y )) then π(V ) = Z(f)∩X
when we see f as a rational continuous function on X.

If we assume ψR : R-SpecP(Y ) → R-SpecP(X) is a bijection then π is clearly injective by re-
stricting ψR to the real and maximal ideals. Since we have already noticed that π is surjective,
we have proved that 6) implies 1). We prove now the converse. Assume π is bijective. It means
that P(X) → P(Y ) satisfies the strong real lying over property for maximal and real ideals. So let
p ∈ R-SpecP(X). By Proposition 4.3 then P(X) → P(Y ) satisfies the real lying over property and
thus there exists p

′ ∈ R-SpecP(Y ) such that p
′ ∩P(X) = p. Assume there exists p

′′ ∈ R-SpecP(Y )
such that p

′′ ∩ P(X) = p. We denote respectively by V , V ′ and V ′′ the irreducible real algebraic

sets Z(p), Z(p′) and Z(p′′). Since the maps
P(X)

p
→֒ P(Y )

p′
and

P(X)

p
→֒ P(Y )

p′′
are integral

then the rings
P(X)

p
,
P(Y )

p′
and

P(Y )

p′′
have the same Krull dimension (Lemma 2.17) that we de-

note by d. Since p, p
′ and p

′′ are real ideals then dimV = dimV ′ = dimV ′′ = d. The inte-

gral maps
P(X)

p
→֒ P(Y )

p′
and

P(X)

p
→֒ P(Y )

p′′
induces two polynomial maps ϕ′ : V ′ → V and

ϕ′′ : V ′′ → V between real algebraic sets. Since π is a bijection then it follows that ϕ′ and ϕ′′ are
both injective. By 5) the sets ϕ′(V ′) and ϕ′′(V ′′) are semi-algebraic subsets of dimension d of V and

thus ϕ′(V ′)
Zar

= ϕ′′(V ′′)
Zar

= V . By Newman’s Theorem as stated in [6] then ϕ′(V ′) contains a
Zariski dense open subset of V . Of course we get the same property for ϕ′′(V ′′) and thus also for
ϕ′(V ′) ∩ ϕ′′(V ′′). Consequently, dim(V ′ ∩ V ′′) = d. By the real Nullstellensatz [7, Thm. 4.1.4],
IP(X)(Z(p)) = p, IP(Y )(Z(p′)) = p

′ and IP(Y )(Z(p′′)) = p
′′ and it follows from above results that

p
′ = p

′′. We have proved that P(X) → P(Y ) satisfies the strong real lying-over property. �

Remark 4.5. Note that a bijective birational polynomial map is not necessarily an isomorphism.
For instance, let X be the cuspidal curve given by y2 = x3 in R2, and X ′ be its normalization. The
normalization map π : X ′ → X is birational, finite and bijective. It is even a homeomorphism with
respect to the Zariski topology (the curves are irreducible, so the Zariski subsets are just points).
However X is singular whereas X ′ is smooth.

Remark 4.6. Let π : Y → X be a finite birational map between irreducible algebraic sets satisfying
one of six properties of Theorem 4.4. It seems not easy to decide whether π is an homeomorphism for
the Zariski topology. It will be the subject of a forthcoming paper [13].
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The following theorem will lead to the introduction of the real seminormalization of an algebraic
set in a forthcoming section.

Theorem 4.7. Let π : Y → X be a finite birational map between irreducible algebraic sets. We assume
moreover that X is central. The following properties are equivalent:

1) P(Y ) ⊂ R0(X).
2) P(X) → P(Y ) satisfies the very strong real lying over property.

Proof. We begin with proving that 1) implies 2). Assume P(Y ) ⊂ R0(X). Since R0(X) ⊂ R0(X)
then the six properties of Theorem 4.4 are satisfied. Let p ∈ R-SpecP(X). Since P(X) → P(Y )
satisfies the strong real lying over property, there exists a unique real prime ideal q of P(Y ) lying over

p. Since the ring extension
P(X)

p
→֒ P(Y )

q
is integral then passing to the fraction fields k(p) →֒ k(q)

is a finite algebraic extension of fields. Assume k(p) 6≃ k(q). It means there exists f ∈ P(Y ) such
that the class of f in k(q) is not contained in k(p). Since f is regulous on X thus the restriction of

f to Z(p) is rational. It means that the image f(q) of f by the map P(Y ) → P(Y )

q
→֒ k(q) belongs

to the fraction field of
P(X)

p
= k(p), a contradiction.

We prove that 2) implies 1). Assume P(X) → P(Y ) satisfies the very strong real lying over property.
Since P(X) → P(Y ) satisfies the strong real lying-over property, according to Theorem 4.4 we have
P(Y ) ⊂ R0(X). Let f ∈ P(Y ). By the above remark we know that f is rational continuous on X.
Let V be an irreducible algebraic subset of X. We denote by p the real and prime ideal of P(X)
corresponding to IP(X)(V ). By the very strong lying over property, there exists a unique real prime
ideal q of P(Y ) lying over p and moreover k(p) ≃ k(q). It follows that f(q) ∈ k(p). Since k(p) is

the fraction field of
P(X)

p
then the restriction of f to V is rational on V . According to the above f is

a rational continuous function on X which remains rational by restriction to any algebraic subset of
X. It follows from the main result of [19, Thm. 10] that f ∈ R0(X). Therefore

P(Y ) ⊂ R0(X).

�

Remark 4.8. Let π : Y → X be a finite birational map between irreducible algebraic sets. By Lemma
4.1 the corresponding morphism P(X) → P(Y ) is injective and integral. Let V ′ be an irreducible
algebraic subset of Y . There exists q ∈ R-SpecP(Y ) such that V ′ = Z(q). We denote by p the
real prime ideal q∩P(X) and by V the real irreducible algebraic subset of X given by Z(p). The
restriction of π to V ′ gives clearly a map π|V ′ : V ′ → V which is finite since the corresponding

morphisms of polynomial functions
P(X)

p
→֒ P(Y )

q
is integral. In general π|V ′ is no longer birational

(cf. Example 6.24). In fact, k(q) is an algebraic extension of k(p). So, π|V ′ is still birational if and
only if k(p) ≃ k(q).

The following definition is inspired by [19].

Definition 4.9. Let π : Y → X be a finite birational map between irreducible algebraic sets. We
say that π is hereditarily birational if the restriction of π to any irreducible algebraic subset of Y (as
explained in Remark 4.8) is still birational.

From Theorems 4.4, 4.7 and Remark 4.8, we get:

Proposition 4.10. Let π : Y → X be a bijective finite birational map between irreducible algebraic
sets. We assume moreover that X is central. The following properties are equivalent:

1) P(Y ) ⊂ R0(X).
2) π is hereditarily birational.
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5. Rational continuous functions and normalization

We are interested in the relationship between the ring of rational continuous functions and the
normalization map. We give in particular a criterion, in terms of rational continuous functions, for
the normalisation map of an algebraic set to be bijective.

Before this, we begin with investigating the integral closure of the ring of rational continuous
functions. Later, we discuss the particular case of curves.

5.1. Integral closure of the ring of rational continuous functions. As a first result, we prove
that the ring of rational continuous functions on a smooth algebraic set is integrally closed.

Theorem 5.1. Let X be a smooth irreducible algebraic set. Then R0(X) = R0(X) is integrally closed
in K(X).

Proof. Assume f ∈ K(X)∗ and there exist d ∈ N∗ and ai ∈ R0(X), i = 0, . . . , d− 1 such that

fd + ad−1f
d−1 + · · ·+ a0 = 0

in K(X). It means that there exists a non-empty Zariski open subset U of X such that ∀x ∈ U we have
fd(x)+ad−1(x)f

d−1(x)+ · · ·+a0(x) = 0. By Theorem 3.10, there exists a composition of blowings-up
with smooth centers π : Y → X such that ãi = ai ◦π is regular on Y for i = 0, . . . , d−1. Then f ◦π is
a rational function on Y which is integral over O(Y ). Since Y is smooth then O(Y ) is integrally closed

in K(Y ) (Proposition 1.9) and thus f ◦ π can be extended to a regular function f̃ on Y . Obviously,

we have ∀y ∈ Y f̃d(y) + ãd−1(y)f̃
d−1(y) + · · · + ã0(y) = 0. Let x ∈ X. Since each ãi is constant on

π−1(x) then ∀y ∈ π−1(x) the real number f̃(y) is a root of p(t) = td+ ãd−1(x)t
d−1+ · · ·+ ã0(x) ∈ R[t].

Since π−1(x) is connected and since f̃ is continuous on Y then f̃ must be constant on π−1(x). Hence

f̃ induces a real continuous function g on X such that f̃ = g ◦ π and g is a continuous extension to X
of f . �

A rational function which is not continuous on an algebraic set may admit several different be-

haviours at a indeterminacy point. It can be unbounded like
1

x
at the origin in R, bounded with

infinitely many limit points like
x2

x2 + y2
at the origin in R2, or bounded with finitely many limit

points like in the case of rational function satisfying an integral equation with rational continuous
coefficients.

Lemma 5.2. Let X be a central irreducible algebraic set. Assume f ∈ K(X) satisfies an integral
equation with coefficients in R0(X). Then f admits finitely many limit points at its indeterminacy
points.

Proof. The rational function f satisfies an integral equation of the form

fd + ad−1f
d−1 + · · ·+ a0 = 0

with d ∈ N∗ and ai ∈ R0(X), for i = 0, . . . , d− 1. Let π : Y → X be a resolution of the singularities
of X. By Remark 3.11, the functions ai ◦ π are regulous on Y . Then f ◦ π is a rational function on Y
satisfying an integral equation with regulous coefficients. By Theorem 5.1, f ◦π can be extended to Y
as a regulous function f̃ on Y . Remark that the fibers of π are non-empty because X is central (see
the proof of [26, Prop. 2.29]). Let x ∈ X. By the arguments used in the proof of Theorem 5.1 then

f̃ is constant on the connected components of π−1(x). Since the restriction of a regulous function is

regulous then f̃ |π−1(x) ∈ R0(π−1(x)). It follows that f̃ is constant on each C-irreducible component

of π−1(x), and these components are of finite numbers (see [11]). As a consequence f̃ takes a finite
numbers of values on π−1(x), and therefore f admits finitely many limit points at x. �
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Definition 5.3. Let X be an algebraic set. Let Y1, . . . , Yk be the C-irreducible components of X. We
say that X is regulously connected by irreducible components or simply that X is regulously connected
if k = 1 or else if ∀i 6= j in {1, . . . , k} there exists a sequence (i1, . . . , il), l ≥ 2, of two by two distinct
numbers in {1, . . . , k} such that i1 = i, il = j, and for t = 1, . . . , l − 1 then Yit ∩ Yit+1 6= ∅.
Remark 5.4. For example, an algebraic set X is regulously connected when X is regulously irre-
ducible, or also when X is connected.

We now extend Theorem 5.1 to some singular cases.

Theorem 5.5. Let X be a central irreducible algebraic set such that there exists a resolution of
singularities π : X̃ → X such that ∀x ∈ X the fiber π−1(x) is regulously connected. Then R0(X) is
integrally closed in K(X).

Proof. Assume f ∈ K(X)∗ there exist d ∈ N∗ and ai ∈ R0(X), i = 0, . . . , d− 1 such that

fd + ad−1f
d−1 + · · ·+ a0 = 0

in K(X). Let π : X̃ → X be a resolution of singularities such that ∀x ∈ X the fiber π−1(x) is
regulously connected. As we have already explained in the proof of Lemma 5.2, the rational function
f ◦ π can be extended regulously to X̃. Let f̃ ∈ R0(X̃) denote the the extension. Let x ∈ X. We

know that f̃ is constant on the connected components of π−1(x). Let Y1, . . . , Yk be the C-irreducible

components of π−1(x). Since for i = 1, . . . , k f̃ |Yi
∈ R0(Yi) (see [11, Cor. 5.38]) then f̃ is constant

on Yi (see [11, Cor. 6.6]). Since π−1(x) is regulously connected then f̃ is constant on π−1(x). We
conclude the proof in the same way we did in the proof of Theorem 5.1. �

Example 5.6. Let X be the cuspidal plane curve given by y2 − x3 = 0. By Theorem 5.5 we know
that R0(X) = R0(X) is integrally closed.

Example 5.7. Let X be the algebraic surface in R3 defined as by y2 = (x2 − z2)(x2 − 2z2). It can be
view as the cone over the smooth curve defined in the plane z = 1 by the irreducible curve with two
connected components y2 = (x2 − 1)(x2 − 2). The origin is the only singular point of XC and thus
X is normal. Moreover the blowing-up of the origin gives a resolution of the singularities of X, with
exceptional divisor a smooth irreducible curve with two connected components. It is in particular
regulously irreducible, therefore it follows again from Theorem 5.5 that R0(X) = R0(X) is integrally
closed.

Example 5.8. Let X be the nodal plane curve given by y2 − (x + 1)x2 = 0. The rational function

f =
y

x
is integral over O(X) (and also over R0(X)) since f2 − (x+ 1) = 0 on X \ {(0, 0)}. It is easy

to see that f cannot be extended continuously to whole X. Hence R0(X) = R0(X) is not integrally
closed. Of course the fiber over the node is never connected when we solve the node.

5.2. An algebraic characterisation of rational continuous functions via the normalization

map. Let X be a central irreducible algebraic set. Let X ′ be its normalization and let π : X ′ → X
be the normalization map. By Lemma 4.3 then X ′ is central and the normalization map is surjective.
By Lemma 4.2, it induces a non-necessarily integral injective ring morphism

π0 : R0(X) →֒ R0(X
′), f 7→ f ◦ π.

Remark that, if in addition X is a curve, then the situation is simpler because then R0(X) = R0(X)
and R0(X

′) = R0(X ′) = O(X) since X ′ is smooth.
Let A be a ring. We denote by Rad(A) (resp. RadR(A)) the (resp. real) Jacobson radical of A,

namely the intersection of all the maximal (resp. and real) ideals of A.
We give an algebraic characterization of the ring of rational continuous functions through the

normalization map.
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Proposition 5.9. Let X be a central irreducible algebraic set. Let X ′ be its normalization. We have

R0(X) = {f ∈ R0(X
′)| fx ∈ OX,x+Rad(R0(X

′)x)}
where R0(X)x = R0(X)IP(X)({x}) and

R0(X
′)x = (R0(X) \ IR0(X)({x}))−1 R0(X

′) = R0(X)x ⊗R0(X) R0(X
′)

and fx is the image of f in R0(X
′)x.

Proof. Let π : X ′ → X be the normalization map. Before proving the proposition we need to
demonstrate the following claim.

Let x ∈ X, we claim that MaxR0(X
′)x = {IR0(X′)x({x′})|x′ ∈ π−1(x)}: Since R0(X)x = (R0(X)\

IR0(X)({x}))−1 R0(X) is a local ring with maximal ideal IR0(X)x({x}) then MaxR0(X
′)x corresponds

to the set of maximal ideals m
′ of R0(X

′) such that m
′ ∩R0(X) = IR0(X)({x}) or equivalently such

that m′∩P(X) = IP(X)({x}). By Corollary 3.17 such m
′ is of the form IR0(X′)x({x′}) for an x′ ∈ X ′

and this proves the claim.
We denote by A the ring {f ∈ R0(X

′)| fx ∈ OX,x+Rad(R0(X
′)x)}. Let f ∈ A. Since f ∈ R0(X

′)
then f is rational on X. By the claim the function f is constant on the fibers of π. By Proposition
4.3, we get f ∈ R0(X).

Let f ∈ R0(X) and let x ∈ X. The function f ◦π takes a constant value α ∈ R on the fiber π−1(x).
Let g ∈ O(X) such that g(x) = α (we can take g = α). By the claim we get f◦π−g◦π ∈ Rad(R0(X

′)x)
and the proof is done. �

If the normalization map is not injective, then we prove that the ring of rational continuous functions
is not integrally closed.

Proposition 5.10. Let X be a central irreducible algebraic set. Let π : X ′ → X be the normalization
map. If π is not injective, then R0(X) is not integrally closed in K(X) and moreover the injective
map π0 : R0(X) →֒ R0(X

′) is not surjective.

Proof. We know that the fibers of π are finite since π is a finite map. Assume there exists x ∈ X
such that we have {y1, y2} ⊂ π−1(x) and y1 6= y2. There exists p ∈ P(X ′) such that p(y1) 6= p(y2).
Obviously p is integral over R0(X) and moreover p 6∈ π0(R0(X)) since p is not constant on the fibers
of π (Proposition 4.3). �

Remark 5.11. Note that even for normal central surfaces, the ring R0(X) = R0(X) is not necessarily
integrally closed. Consider for example the surface X given by z2 = (x2 + y2)2 + x6 in R3. The origin
is the only singular point of XC and thus X is normal (Proposition 1.11). The rational function

f =
z

x2 + y2
satisfies the integral equation f2 = 1 +

x6

(x2 + y2)
with coefficients in R0(X). As a

consequence f2 converges to 1 at the origin, but f has different signs depending on the sign of z.
Therefore f can not be continuous at the origin.

5.3. The case of curves.

Throughout this section X will be a central irreducible algebraic curve. Let π : X ′ → X be the

normalization map. The goal of this section is to determine the integral closure R0(X) of R0(X) in
K(X). The central hypothesis is crucial here since, without it, R0(X) is not included in K(X) [26,
Ex. 2.4]. Recall also that the central hypothesis implies the surjectivity of π. By [12, Prop. 2.4], we
have R0(X

′) = R0(X ′) = O(X ′) and it is an integrally closed ring (Theorem 5.1 or Proposition 1.9).
Hence the following sequence of inclusions

O(X) ⊂ R0(X) ⊂ O(X ′)

induces

(1) O(X) ⊂ R0(X) ⊂ O(X ′)
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i.e R0(X) is an intermediate ring between O(X) and O(X ′). By Proposition 5.9, we know that

R0(X) = {f ∈ O(X ′)| fx ∈ OX,x+Rad(O(X ′)x)}.
The goal of this section is to determine the ring R0(X) in the case X is a curve, it is a non-trivial

problem essentially because O(X ′) is not in general integral over O(X).
For curves, we know exactly when the ring of rational continuous functions is integrally closed (use

Theorem 5.5 and Proposition 4.4).

Proposition 5.12. Let X be a central irreducible algebraic curve. Let π : X ′ → X be the normalization
map. The ring R0(X) is integrally closed in K(X) if and only if π is a bijection.

In the case the normalization map is a bijection we can easily determine the ring R0(X).

Corollary 5.13. Let X be a central irreducible algebraic curve. Let π : X ′ → X be the normalization
map. Then π is a bijection if and only if R0(X) = R0(X) = O(X ′).

Proof. If R0(X) = R0(X) = O(X ′) the π is a bijection by Proposition 5.12. Assume now π is a

bijection. By Propositions 5.12 and 4.4 we get R0(X) = R0(X) = O(X ′). �

Example 5.14. Let X ′ be a geometrically smooth algebraic curve. We can create, as it is explained
in [30], an affine singular real algebraic curve X with a unique singular point by putting together two
complex conjugated points of X ′

C and a point of X ′. Since the normalization map π : X ′ → X is

a bijection then R0(X) = R0(X) = O(X ′) (Corollary 5.13). Since the fiber of πC : X ′
C → XC over

the singular point of X is not totally real then R0(X) = O(X ′) 6= O(X) (Proposition 1.16). In this
example, the first inclusion in (1) is strict and the second one is an equality.

We can also easily determine the ring R0(X) in case the fibers of the complex normalization map
are totally real over X.

Proposition 5.15. Let X be a central irreducible algebraic curve. Let π : X ′ → X be the normalization
map. The fibers of πC : X ′

C → XC over the singular point of the points of X are totally real if and
only if we have

O(X) = R0(X) = O(X ′).

Proof. The proof follows from Proposition 1.16 and (1). �

We finally determine the ring R0(X) in the general case.

Theorem 5.16. Let X be a central irreducible algebraic curve. Let π : X ′ → X be the normalization

map. Then we have R0(X) = O(X ′).

Proof. By Proposition 1.4 and Lemma 1.12, we only have to consider the local case. Let x ∈ X. We
consider the fiber π−1

C (x) = {y1, . . . , yr, z1, σ(z1), . . . , zt, σ(zt)} where r, t are integers, σ is the complex
involution, y1, . . . , yr correspond to points of X ′ (or points of X ′

C fixed by σ) and z1, σ(z1), . . . , zt, σ(zt)
is a set of distinct two-by-two points of X ′

C. By Proposition 4.3, we have r ≥ 1. By Proposition 4.3,
the regulous functions on X correspond to the regular functions on X ′ which are constant on the fibers
of π. It follows that (see also the proof of Proposition 5.9)

R0(X)I
R0(X)({x})

= OX,x+ IO(X′)({y1}) ∩ · · · ∩ IO(X′)({yr}).
By Proposition 1.4, it suffices to prove

R0(X)I
R0(X)({x})

= OX′,y1 ∩ · · · ∩ OX′,yr .

Let f ∈ OX′,y1 ∩ · · · ∩ OX′,yr . For i = 1, . . . , r, there exists αi ∈ R such that f − αi ∈ IO(X′)({yi}).
Consequently

∏r
i=1(f − αi) ∈ R0(X)I

R0(X)({x})
and it proves f ∈ R0(X)I

R0(X)({x})
.

�
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6. Weak normalization and seminormalization

In [24], Marinari and Raimondo have shown that the classical seminormalization of real algebraic
varieties does not have natural universal properties contrary to the seminormalization of complex
algebraic varieties (see also [28]). The goal of this section is to define the concepts of (real) weak
normalization and (real) seminormalization of real algebraic varieties and real rings. We prove that
these concepts are satisfactory since they have natural universal properties. Note that in the real
analytic case, such an approach has been already investigated in [1]. We show in particular that the
notions of real weak normalization and real seminormalization are not equivalent whereas for complex
algebraic varieties weak normalization and seminormalization coincide.

6.1. Several normalizations of a real algebraic set. In this section we will introduce the notions
of real weak normalisation and seminormalization of an algebraic set in parallel with the notion of
normalization.

We need some preliminary results. Let A, A1 and A2 be rings. We says that A is an intermediate
ring between A1 and A2 (in this order) if A1 ⊂ A ⊂ A2.

Proposition 6.1. 1) Let X be an irreducible algebraic set. Let A be an intermediate ring between
P(X) and K(X) such that A is integral over P(X). There exists a unique irreducible algebraic
set Z such that A = P(Z). Moreover the induced map Z → X is birational and finite.

2) Let π : Y → X be a birational finite map between irreducible algebraic sets. Let A be an
intermediate ring between P(X) and P(Y ). There exists a unique irreducible algebraic set Z
such that A = P(Z). Moreover the induced maps Y → Z and Z → X are birational and finite.

When the conditions of 2) are satisfied, we say that Z is an intermediate algebraic set between X
and Y .

Proof. Assume A is an intermediate ring between P(X) and K(X) such that A is integral over P(X).
Since P(X) ⊂ A ⊂ K(X) then A is a domain with K(X) as fraction field. Since A is integral over
P(X) then A is a finite P(X)-module, thus A is a finitely generated R-algebra and therefore it is the
ring of polynomial functions of an irreducible algebraic set Z. The induced map Z → X is finite (A
is integral over P(X)) and birational (K(Z) ≃ K(X)). We have proved 1).

Let π : Y → X be a birational finite map between irreducible algebraic sets and let A be an
intermediate ring between P(X) and P(Y ). Since P(X) →֒ P(Y ) is an integral morphism (Lemma
4.1) then A is integral over P(X). By 1), A is the ring of polynomial functions of an irreducible
algebraic set Z. The rest of the proof follows easily from 1) since P(X) →֒ P(Z) and P(Z) →֒ P(Y )
are both integral morphisms. �

Using Proposition 6.1, we can define several kinds of normalization of an algebraic set.

Definition 6.2. Let X be a central irreducible algebraic set. Recall that we have the following
sequence of inclusions

P(X) →֒ R0(X) →֒ R0(X) →֒ K(X).

1) The (classical) normalization X ′ of X is the algebraic set whose ring of polynomial functions
is the integral closure of P(X) in K(X).

2) The real weak normalization X∗ of X is the algebraic set whose ring of polynomial functions
is the integral closure of P(X) in R0(X).

3) The real seminormalization X∗ of X is the algebraic set whose ring of polynomial functions is
the integral closure of P(X) in R0(X).

The finite birational maps π : X ′ → X, π∗ : X∗ → X, π∗ : X∗ → X are respectively called
the normalization map, the real weak normalization map and the real seminormalization map. The
algebraic set X is called normal if X = X ′, real weakly normal if X = X∗ and real seminormal if
X = X∗.
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Remark 6.3. 1) We do not need that X is central in order to define the normalization of X. On
the contrary, it a necessary hypothesis in order to define the real weak normalization and the real
seminormalization. Indeed, if X is not central then we have already seen that R0(X) and R0(X) are
not necessarily included in K(X).
2) The sets X∗ and X∗ are intermediate algebraic sets between X and X ′. Moreover X∗ is an
intermediate algebraic set between X and X∗.
3) The polynomial functions on X ′ are the rational functions on X that are integral over P(X). The
polynomial functions on X∗ are the rational continuous functions on X that are integral over P(X).
The polynomial functions on X∗ are the regulous functions on X that are integral over P(X). Namely,
we have

P(X∗) = P(X ′) ∩R0(X)

and
P(X∗) = P(X ′) ∩R0(X).

Remark 6.4. Let X be a central irreducible algebraic set. In the spirit of [24], one can mimic
Definition 6.2 replacing P(X) by O(X). However in general, the integral closure of O(X) in K(X) or
R0(X) or R0(X) is not the ring of regular functions of an intermediate algebraic set between X and
X ′ (see Proposition 1.17). This justify why we have decided to work with P(X) rather than O(X)
and why we consider polynomial maps rather than regular maps.

Example 6.5. (1) Let X ⊂ R2 be the cuspidal cubic with equation y2 − x3 = 0. Then P(X ′) =
P(X)[y/x], where the rational function y/x satisfies (y/x)2 = y on X. Note that y/x can be
extended continuously at the origin, so that X ′ coincides with the real weak normalisation of
X. Since X is a curve then X∗ = X∗ (see Remark 6.23).

(2) Consider the nodal curve X ⊂ R2 with equation y2 − x2(x + 1). Then P(X ′) = P(X)[y/x],
where the rational function y/x satisfies (y/x)2 = x+ 1 on X. Here the rational function y/x
cannot be extended continuously at the origin (the limit is ±1 depending on the local branch
one considers), so that X∗ = X∗ is equal to X.

(3) Consider the curve X ⊂ R2 with equation y2−x4(x+1). The origin is the unique singular point
of X, where two distinct branches intersect with tangency. Note that the rational function y/x
satisfies (y/x)2 = x2(x+1), so that it can be extended continuously at the origin with the value
0. A contrario, the rational function y/x2, which satisfies (y/x2)2 = x+1, cannot be extended
continuously at the origin. In this case P(X ′) = P(X)[y/x2] whereas P(X∗) = P(X)[x/y], so
that X∗ = X∗ is given by the nodal curve y2 − x2(x+ 1).

(4) Consider the surface X = Z(x6 − (x2 + y2)2yz). The singular locus of X is the z-axis and
X is central (look at the intersection of X with the planes Ha = Z(z − a), a ∈ R). Then

P(X ′) = P(X)[
x3

x2 + y2
] ≃ R[t, y, z]/(t2 − yz), setting t =

x3

x2 + y2
. Since

x3

x2 + y2
is regulous

on X then X ′ is the real weak normalization and the real seminormalization of X.

6.2. Normalization. In this section, we investigate the universal properties that characterize the
normalization of an algebraic set.

Theorem 6.6. Let X be an irreducible algebraic set and let π : X ′ → X be the normalization map.
Let Y be an irreducible algebraic set and ϕ : Y → X be a finite birational map. Then there exists a
unique map π′ : X ′ → Y such that π = ϕ ◦ π′ i.e Y is an intermediate algebraic set between X and
X ′. If we consider all pairs (Y, ϕ) consisting of an irreducible algebraic set Y and a finite birational
map ϕ : Y → X and we declare (Y, ϕ) ≤ (Z,ψ) if and only if there exists a map φ : Z → Y such that
ψ = ϕ ◦ φ, then (X ′, π) is the maximal pair.

Proof. By Lemma 4.1, ϕ is induced by the integral inclusion P(X) →֒ P(Y ). Since ϕ is birational then
we have moreover P(Y ) →֒ K(X). By definition of the normalization, we get P(X) →֒ P(Y ) →֒ P(X ′)
and thus π : X ′ → X uniquely factors through ϕ : Y → X. The rest of the proof follows easily. �
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Remark 6.7. The previous theorem says that X ′ is the biggest algebraic set (in the sense that its
ring of polynomial functions is the biggest intermediate ring between P(X) and K(X)) among the
irreducible algebraic sets Y with a finite birational map Y → X.

6.3. Real weak normalisation. In this section we will introduce the notion of real weak normalisa-
tion of a ring. We prove afterwards that the two notions of real weak normalizations of algebraic sets
and rings are the same through the equivalence “algebraic sets” with “rings of polynomial functions”.
We begin by giving a characterization of the real weak normalisation by some universal properties.

6.3.1. Universal properties for the real weak normalization of a real algebraic set. By Theorem 4.4,
Proposition 6.1 and since P(X∗) = P(X ′) ∩R0(X), we may characterize the real weak normalisation
of a central irreducible algebraic set X as the biggest intermediate algebraic set between X and its
normalization that satisfies several different but equivalent universal properties.

Theorem 6.8. Let X be a central irreducible algebraic set and let X ′ be its normalization. The
real weak normalization X∗ of X is the biggest algebraic set among the intermediate algebraic sets Y
between X and X ′ (in the sense that its ring of polynomial functions is the biggest intermediate ring
between P(X) and P(X ′)) satisfying one of the following properties:

1) The polynomial functions on Y are rational continuous on X i.e. P(Y ) ⊂ R0(X).
2) The map Y → X is a bijection.
3) X and Y have the same rational continuous functions, namely the ring morphism

R0(X) → R0(Y ) is an isomorphism.
4) The map Y → X is an homeomorphism for the Euclidean topology.
5) The map Y → X is an homeomorphism for the regulous topology.
6) P(X) → P(Y ) satisfies the strong real lying over property i.e. ψR : R-SpecP(Y ) → R-SpecP(X)

is a bijection.

Remark 6.9. Let Y be an intermediate algebraic set between an irreducible central algebraic set X
and its real weak normalization X∗. Let π denote the map Y → X. Then the map π−1 : X → Y is
a rational continuous map in the sense that its components are rational continuous functions on X.
Actually, assume Y ⊂ Rn and consider a coordinate function yi on Y for i ∈ {1, . . . , n}. We want to
prove that the rational function fi = yi ◦ π−1 is continuous on X. However fi ◦ π∗ is polynomial on
Y , so that, by Theorem 6.8, fi belongs to R0(X) as required. In particular, (π∗)

−1 : X → X∗ is a
rational continuous map.

We can rephrase Theorem 6.8 in more geometric terms. The reader is invited to compare with
Theorem 6.6.

Theorem 6.10. Let X be an irreducible algebraic set. Let Y be an irreducible algebraic set and
ϕ : Y → X be a bijective finite birational map. Then there exists a unique map π′ : X∗ → Y such that
π∗ = ϕ ◦ π′ i.e Y is an intermediate algebraic set between X and X∗. If we consider all pairs (Y, ϕ)
consisting of an irreducible algebraic set Y and a bijective finite birational map ϕ : Y → X and we
declare (Y, ϕ) ≤ (Z,ψ) if and only if there exists a map φ : Z → Y such that ψ = ϕ ◦ φ, then (X∗, π∗)
is the maximal pair.

Proof. By Lemma 4.1, ϕ is induced by the integral inclusion P(X) →֒ P(Y ). By Theorem 6.8, we get
P(X) →֒ P(Y ) →֒ P(X∗) and thus π∗ : X∗ → X uniquely factors through ϕ : Y → X. The rest of
the proof follows easily. �

An immediate application of Theorem 6.10 gives a real version of [23, Cor. 2.8].

Proposition 6.11. Let X be a central irreducible algebraic set. Suppose that X is real weakly normal
and that ϕ : Y → X is a finite birational polynomial map with Y an irreducible algebraic set. Then ϕ
is a bijection if and only if ϕ is an isomorphism.
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Proof. If ϕ is a bijection, Theorem 6.10 gives us an inverse polynomial mapping for ϕ. �

Remark 6.12. We can not remove the “finite” hypothesis in the previous proposition. For instance,
let X be the nodal curve given by y2 = x2(x+ 1) in R2, and Y be the hyperbola given by xy = 1 in
R2. The curve X is real weakly normal (see Proposition 6.38). They are both in bijection with the
punctured line R \{1} via the regular maps

R \{1} → X, t 7→ (t2 − 1, t(t2 − 1))

and

R \{1} → Y, t 7→ (t− 1, 1/(t − 1)).

As a consequence, the polynomial map

Y → X, (x, y) 7→ (x(x+ 2), x(x + 1)(x+ 2))

is birational and bijective. It is even a homeomorphism with respect to the Zariski topology. However
they are not isomorphic curves since X is singular whereas Y is smooth. We do not contradict
Proposition 6.11 since the map Y → X is not finite. Indeed, we can see Y as the normalization X ′ of
X where we have deleted one of the real points over the real node of X. Hence P(Y ) is bigger than
P(X ′) and thus there exists an element of P(Y ) that is not integral over P(X).

Weakly normal sets are stable under the product of varieties. It is a real version of [23, Cor. 2.13].

Corollary 6.13. Let X and Y be real weakly normal algebraic sets. Then X×Y is real weakly normal.

Proof. We use the same strategy as in [23]. Let f be a rational continuous function on X×Y which is
integral over P(X × Y ). Then, for any x ∈ X, the restriction fx of f to {x} × Y satisfied an integral
equation over P(Y ). Note however that, if fx is not necessarily a rational function on Y , there exists
a Zariski dense subset U in X such that fx is rational for any x ∈ U . By real weak normality of Y , it
follows that fx belongs to P(Y ) for any x ∈ U . Similarly, there exists a Zariski dense subset V in Y
such that fy belongs to P(X) for any y ∈ V .

We want to conclude that f is a polynomial function on X × Y . We know by Palais [27] that f
is polynomial on U × V , so that there exists a polynomial function p ∈ P(X × Y ) such that f = p
on U × V . Since f is continuous and X and Y are central, it implies that f = p on X × Y . As a
consequence X × Y is real weakly normal. �

6.3.2. Real weak normalization of a ring. We define the real weak normalization of a ring.

Definition 6.14. Let A be an integral domain with integral closure denoted by A′. We assume
R-SpecA 6= ∅. The ring

A∗ = {f ∈ A′| ∀m ∈ R-SpecA ∩MaxA, fm ∈ Am +RadR(A′
m
)}

is called the real weak normalization of A. In case A = A∗, we say that A is real weakly normal.

We prove that in the geometric setting we recover the real weak normalization defined in 6.2.

Theorem 6.15. Let X be a central irreducible algebraic set and let X ′ be its normalization. We have

P(X∗) = P(X)∗

i.e.

P(X∗) = {f ∈ P(X ′)|∀x ∈ X, fx ∈ OX,x+RadR(P(X ′)x)}
where fx is the class of f in P(X ′)x = (P(X) \ IP(X)({x}))−1 P(X ′) = P(X ′)⊗P(X) P(X)IP(X)({x}).
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Proof. Let π : X ′ → X be the normalization map. By definition of P(X)∗ it is clear that P(X)∗ ⊂
R0(X). Indeed, the functions in P(X)∗ are rational on X and are clearly constant on the fibers of π
and we can use Proposition 4.3. It follows that

P(X)∗ ⊂ P(X∗).

The converse inclusion is a consequence of Proposition 5.9 but we still give a short proof it. Let
f ∈ P(X∗) and let x ∈ X. Since f is a rational continuous function on X then f takes a constant
value α on the fiber π−1(x). Consequently fx − α ∈ RadR(P(X ′)x) since the maximal and real ideals
of P(X ′)x correspond to the points in π−1(x). �

6.4. Real seminormalization. Closely related to the notion of “Weak normalization”, Traverso [33]
has introduced the notions of “seminormalization” and “seminormal rings”. Precisely, for an integral
domain A with integral closure denoted by A′, the ring

+A = {f ∈ A′| ∀p ∈ SpecA, fp ∈ Ap +Rad(A′
p
)}

is called the seminormalization of A. The ring A is called seminormal if A = +A. We indicate here the
principal references concerning the seminormality: [33],[35], [14], [32], [17]. The goal of this section is
to introduce the concept of real seminormalization of a ring. We prove that, in the geometric setting,
real seminormalizations of algebraic sets and rings of polynomial functions give the same.

6.4.1. Universal properties for the real seminormalization of a real algebraic set. We adapt the work we
have done for the real weak normalization of an algebraic set, replacing the ring of rational continuous
functions by the ring of regulous functions.

By Theorems 4.7, Proposition 6.1 and since P(X∗) = P(X ′)∩R0(X), we may characterize the real
seminormalization of a central irreducible algebraic set X as the biggest intermediate algebraic set
between X and its normalization that satisfies the following universal properties.

Theorem 6.16. Let X be a central irreducible algebraic set and let X ′ be its normalization. The
real seminormalization X∗ of X is the biggest algebraic set among the intermediate algebraic sets Y
between X and X ′ satisfying one of the following properties:

1) The polynomial functions on Y are regulous on X i.e. P(Y ) ⊂ R0(X).
2) P(X) → P(Y ) satisfies the very strong real lying over property.

Corollary 6.17. Let X be a central irreducible algebraic set and π∗ : X∗ → X be the real seminor-
malization map. Then (π∗)−1 is a regulous map.

Proof. We proceed as in Remark 6.9. Assume X∗ ⊂ Rn and consider a coordinate function yi on X∗

for i ∈ {1, . . . , n}. We want to prove that the rational function fi = yi ◦ (π∗)−1 is regulous on X.
However fi ◦ π∗ is polynomial on X∗, so that, by Theorem 6.16, fi belongs to R0(X) as required. �

Using Proposition 4.10, we can rephrase Theorem 6.16 in more geometric terms. The reader is
invited to compare with Theorems 6.6 and 6.10.

Theorem 6.18. Let X be an irreducible algebraic set. Let Y be an irreducible algebraic set and
ϕ : Y → X be a bijective finite birational map that is hereditarily birational. Then there exists a
unique map π′ : X∗ → Y such that π∗ = ϕ ◦ π′ i.e Y is an intermediate algebraic set between X and
X∗. If we consider all pairs (Y, ϕ) consisting of an irreducible algebraic set Y and a bijective finite
birational map ϕ : Y → X that is hereditarily birational and we declare (Y, ϕ) ≤ (Z,ψ) if and only if
there exists a map φ : Z → Y such that ψ = ϕ ◦ φ then (X∗, π∗) is the maximal pair.

Proof. By Lemma 4.1, ϕ is induced by the integral inclusion P(X) →֒ P(Y ). By Theorem 6.16 and
Proposition 4.10, we get P(X) →֒ P(Y ) →֒ P(X∗) and thus π∗ : X∗ → X uniquely factors through
ϕ : Y → X. The rest of the proof follows easily. �

An immediate application of Theorem 6.18 gives a seminormal version of Proposition 6.11.
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Proposition 6.19. Let X be a central irreducible real algebraic set. Suppose that X is real seminormal
and that ϕ : Y → X is a finite birational polynomial map with Y an irreducible algebraic set. Then ϕ
is bijective and hereditarily birational if and only if ϕ is an isomorphism.

Proof. If ϕ is a bijection that is hereditarily birational, Theorem 6.18 gives us a an inverse polynomial
mapping for ϕ. �

Corollary 6.20. Let X and Y be real seminormal algebraic sets. Then X × Y is real seminormal.

Proof. We use the same proof as in Corollary 6.13. Note that the proof is even simpler since the
restriction of a regulous function is rational, so that we can choose U = X and Y = V . �

6.4.2. Real weak normalization versus real seminormalization. Over the complex number, the notions
of weak normalization and seminormalization coincide [35]. In this section, we investigate the differ-
ences between the notions of real weak normalization and real seminormalization.

Remark 6.21. Let X be a central irreducible algebraic set. Let π : X ′ → X be the normalization
map. We clearly get the following sequence of integral inclusions

(2) P(X) ⊂ P(X∗) ⊂ P(X∗) ⊂ P(X ′)

that induces the following decomposition of the normalization map by finite birational mappings
between central (Proposition 4.3) irreducible algebraic sets

(3) X ′ → X∗
π∗
∗→ X∗ π∗

→ X,

where π∗∗ and π∗ are homeomorphisms with respect to the Euclidean and regulous topologies.

From the definitions of real weak normalization and real seminormalization, we get:

Proposition 6.22. Let X be a central irreducible algebraic set. If R0(X) = R0(X) then X∗ = X∗.

Remark 6.23. It follows that for irreducible algebraic curves, the real weak normalization and real
normalization coincide.

We exhibit now an example of a surface for which the real seminormalization and real weak nor-
malization differ.

Example 6.24. Let X = Z(x3 − y3(1 + z2)) be the surface considered in [19, Ex. 2] and in Example
1.15. Then P(X ′) = P(X)[x/y] ≃ R[t, y, z]/(t3 − (1 + z2)), setting t = x/y. Moreover the rational

function f = x/y can be extended to a continuous function onX, equals to 3
√
1 + z2. As a consequence

X ′ is the real weak normalisation of X (the normalization map is a bijection). However the restriction
of f to the z-axis is no longer rational, so f 6∈ R0(X). In particular X = X∗ 6= X∗ = X ′. By
Theorems 6.8 and 6.16, we know that P(X) →֒ P(X∗) satisfies the strong real lying over property
but doesn’t satisfy the very strong real lying over property. We give an explicit example of that. Let
p = (x, y) ∈ R-SpecP(X) and let q ∈ R-SpecP(X ′) be the unique real prime ideal of P(X ′) such that
q∩ P(X) = p. We have k(p) = R(z) and k(q) 6≃ k(p) since the class of f in k(q) is not contained in

k(p) because f is not rational by restriction to Z(p). In fact we have k(q) = R(z)(3
√
1 + z2). Here,

the normalization map X ′ → X is a bijective finite birational map which is not hereditarily birational.

Remark 6.25. In the previous example the real seminormalization and real weak normalization differ
essentially because the rings of rational continuous and regulous functions are different. However it
may happen that R0(X) 6= R0(X) but still X∗ coincides with X∗. Consider for instance the normal
algebraic hypersurface of R4 defined by X = Z((x3 − (1 + t2)y3)2 + z6 + y7) (cf. [19, Ex. 3]; it is a
perturbation of Example 6.24 so that X becomes normal). Then again there exist rational continuous
functions which are not regulous, nevertheless X = X∗ = X∗ = X ′ since X is normal.
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Remark 6.26. Let X be an irreducible and central algebraic curve. Let π : X ′ → X be the nor-
malization map. Real seminormalization of curves is the subject of the latest section of the paper,
however in the following cases it is easy to determine the seminormalization of X by looking at the
possible intermediate curves between X and X ′.
• If X = Z(y2 − x3) is the cuspidal curve then X∗ = X ′ since π is injective.
• If X = Z(y2 − x2(x+ 1)) is the nodal curve then X∗ = X.
• If the singularities of XC are only ordinary nodes and cusps which belong to X, then X∗ is the curve
we obtain when we blow-up all the cusps of X and we leave intact the nodal singularities.

We end this section with some trivial, but important, consequences of Theorems 6.8, and 6.16
concerning the idempotency and the composition of the notions of real weak normalization and real
seminormalization.

Theorem 6.27. Let X be a central irreducible algebraic set. Then we have:

1) (X∗)∗ = X∗.
2) (X∗)∗ = X∗.
3) (X∗)

∗ = X∗.
4) (X∗)∗ = X∗.

6.4.3. Real seminormalization of rings. Inspired by Traverso’s definition of a seminormal ring given
previously, we propose the following definitions of real seminormalization of a ring and real seminormal
ring.

Definition 6.28. Let A be an integral domain with integral closure denoted by A′. We assume
R-SpecA 6= ∅. The ring

A∗ = {f ∈ A′| ∀p ∈ R-SpecA, fp ∈ Ap +RadR(A′
p
)}

is called the real seminormalization of A. In case A = A∗, we say that A is real seminormal.

Remark 6.29. We have a sequence of inclusions

A ⊂ A∗ ⊂ A∗ ⊂ A′.

It follows that a real weakly normal ring is automatically real seminormal. The polynomial ring of
the surface X = Z(x3 − y3(1 + z2)) of Example 6.24 is a real seminormal ring that is not real weakly
normal.

We prove now that in the geometric setting the real seminormalization of a central irreducible
algebraic set is the algebraic set corresponding to the real seminormalization of its ring of polynomial
functions.

Theorem 6.30. Let X be a central irreducible algebraic set and let X ′ be its normalization. We have

P(X∗) = P(X)∗

i.e.

P(X∗) = {f ∈ P(X ′)|∀p ∈ R-SpecP(X), fp ∈ P(X)p +RadR(P(X ′)p)}
where fp is the class of f in P(X ′)p = (P(X) \ p)−1P(X ′) = P(X ′)⊗P(X) P(X)p.

Proof. By Theorem 6.16, we have to prove that P(X)∗ is the biggest intermediate ring B between
P(X) and P(X ′) such that P(X) → B satisfies the very strong real lying over property.

We begin by proving P(X)∗ satisfies the very strong real lying over property.
Let p ∈ R-SpecP(X). Since P(X)∗ ⊂ P(X)∗, it follows from Theorems 6.15 and 6.8 that P(X) →

P(X)∗ satisfies the strong real lying over property. Let p
′ be the unique real prime ideal of P(X)∗

lying over p. We have to show that k(p) ≃ k(p′). Since the contraction of a real ideal is a real ideal,
since the following sequence of injective maps between semi-local rings P(X)p →֒ P(X)∗

p
→֒ P(X ′)p is
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integral, it follows from Proposition 2.3 that p′P(X)∗
p
= RadR((P(X)∗)p) = RadR(P(X ′)p)∩P(X)∗

p
.

Let b ∈ P(X)∗. By definition of P(X)∗, there exist α ∈ P(X)p and β ∈ RadR(P(X ′)p) such that
bp = α + β. By Proposition 2.16, there exists q

′ ∈ R-SpecP(X ′) such that q
′ ∩ P(X)∗ = p

′. From
the following sequence of injective integral maps between integral domains

P(X)

p
→֒ P(X)∗

p′
→֒ P(X ′)

q′

we get the following sequence of algebraic extensions of residue fields k(p) →֒ k(p′) →֒ k(q′). It follows
that the class b(p′) of b in k(p′) is also the class bp(q

′) of bp in k(q′). Therefore

b(p′) = bp(q
′) = (α+ β)(q′) = α(p) + β(q′).

Since RadR(P(X ′)p) ⊂ q
′ P(X ′)p then β(q′) = 0 and thus b(p′) = α(p) ∈ k(p).

It remains to prove that if B is an intermediate ring between P(X) and P(X ′) such that P(X) → B
satisfies the very strong real lying-over property then B ⊂ P(X)∗. Take such a ring B. Assume
there exists b ∈ B such that b 6∈ P(X)∗. It means there exists p ∈ R-SpecP(X) such that bp 6∈
P(X)p + RadR(P(X ′)p). Let q be the unique real prime ideal of B lying over p. We have the
following sequence of injective maps between semi-local rings

P(X)p →֒ Bp →֒ P(X ′)p.

We clearly have RadR(Bp) = qBp. By Proposition 2.16 we have RadR(P(X ′)p) 6= ∅. Since Bp →֒
P(X ′)p is integral, it follows from Proposition 2.3 that RadR(P(X ′)p) ∩ Bp = qBp. Hence bp 6∈
P(X)p + qBp. Since qBp is the kernel of Bp → k(q) then b(q) = bp(q) ∈ k(q) is not in k(p) =
(P(X)p + qBp) ∩ P(X)p

qBp ∩ P(X)p
, a contradiction. �

We give now some consequences of Theorems 6.27 and 6.30.

Proposition 6.31. Let X be a central irreducible algebraic set. Let π : X ′ → X be the normalization
map.

(1) The ring P(X∗) is real seminormal, namely

P(X∗) = {f ∈ P(X ′)| ∀p ∈ R-SpecP(X∗), fp ∈ P(X∗)p +RadR(P(X ′)p)}.
(2) Let X be a central irreducible algebraic set. The ring P(X∗) is real weakly normal, namely

P(X∗) = {f ∈ P(X ′)| ∀x ∈ X∗, fIP(X∗)({x})
∈ P(X∗)IP(X∗)({x})

+RadR(P(X ′)IP(X∗)({x})
)}.

(3) Let X be a central irreducible algebraic set. The ring P(X∗) is real seminormal, namely

P(X∗) = {f ∈ P(X ′)| ∀p ∈ R-SpecP(X∗), fp ∈ P(X∗)p +RadR(P(X ′)p)}.
Proof. Concerning the first point, it is a consequence of the equality (X∗)∗ = X∗, which is part of the
conclusion of Theorem 6.27. The second point comes from the equality (X∗)∗ = X∗ in Theorem 6.27
also, whereas the third comes from the equality (X∗)

∗ = X∗ ibid. �

6.5. A characterization of real seminormal rings. We focus our interest in this section on general
properties related to real seminormalization and real seminormal rings. We begin with a remark on
the relationships between seminormalization and real seminormalization.

Remark 6.32. Let A be an integral domain with integral closure denoted by A′. We assume
R-SpecA 6= ∅. If we assume moreover that A →֒ A′ satisfies the real lying over property then we
have

+A ⊂ A∗.

Indeed, let p ∈ R-SpecA, we have Rad(A′
p
) ⊂ RadR(A′

p
) if and only if RadR(A′

p
) 6= ∅. Under the

above hypotheses, a real seminormal ring is seminormal.
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Notice that, proceeding analogously to the proof of Theorem 4.7, we can state an abstract form of
it. It gives a real version of Traverso’s theorem [33, 1.1].

Theorem 6.33. Let A be an integral domain with integral closure denoted by A′. We assume
R-SpecA 6= ∅ and moreover that A →֒ A′ satisfies the real lying over property. Then, the real semi-
normalization A∗ of A is the biggest ring among the rings B between A and A′ such that A →֒ B
satisfies the very strong real lying-up property.

We are interested in giving a simple characterization of real seminormal rings. Let us recall the
characterization of seminormal rings by Traverso.

Theorem 6.34. [14, Thm. 1.1]
Let A be an integral domain with integral closure denoted by A′. The following conditions are equiv-

alent:

1) A is seminormal.
2) For each f ∈ A′, the conductor of A in A[f ] is a radical ideal of A[f ].
3) A contains each element f of A′ such that fn ∈ A for all sufficiently large n.

We state a real version of this theorem, assuming now that A →֒ A′ satisfies moreover the real lying
over property. Notice that conditions 2) and 3) must be strengthened since a real seminormal ring is
necessarily seminormal.

Theorem 6.35. Let A be an integral Noetherian domain with integral closure denoted by A′. We
assume R-SpecA 6= ∅ and moreover that A →֒ A′ satisfies the real lying over property. The following
conditions are equivalent:

1) A is real seminormal.
2) For each f ∈ A′, the conductor of A in A[f ] is a real ideal of A[f ].
3) A contains each element f of A′ such that there exist m ∈ N \{0} and f1, . . . , fl ∈ A[f ] such

that f2m + f21 + · · ·+ f2l ∈ A.

Remark 6.36. The condition 2) of Theorem 6.35 is stronger than the condition 2) of Theorem 6.34
since a real ideal is radical [7, Lem. 4.1.5].

Proof. The equivalence between 2) and 3) is given by [7, Prop. 4.1.7].
We prove that 1) implies 2) by adapting the proof of [33, Lem. 1.3] to the real case. Let f ∈ A′.

Let C be the conductor of A in A[f ]. Since C is the greatest ideal of A[f ] contained in A, we have
to prove that the real radical of C in A[f ] is contained in A. Let g ∈ A[f ] such that there exist
m ∈ N \{0} and f1, . . . , fl ∈ A[f ] such that g2m + f21 + · · · + f2l ∈ C. Let p ∈ R-SpecA. If
C ⊂ p then (g2m + f21 + · · · + f2l )p ∈ Cp ⊂ pAp. The extension Ap →֒ A′

p
is integral and clearly

satisfies the real lying-over property since A →֒ A′ does. Consequently, we have RadR(A′
p
) 6= ∅ and

thus it follows from Proposition 2.3 that pAp ⊂ RadR(A′
p
). We have proved that if C ⊂ p then

(g2m + f21 + · · ·+ f2l )p ∈ RadR(A′
p
) and thus gp ∈ RadR(A′

p
) since RadR(A′

p
) is a real ideal. If C 6⊂ p

then clearly Ap = A[f ]p and thus gp ∈ Ap. We have proved that g ∈ A∗ and thus g ∈ A since A is
real seminormal.

To prove that 2) implies 1), we adapt the proof of [14, Thm. 1.1] to our case. We assume that A
satisfies the condition 2) and A is not real seminormal. Let f ∈ A∗ \A. Let C be the conductor of A in
A[f ]. Since A satisfies 2) then we know that C is a real ideal. Since C ⊂ A then C is also a real ideal of
A. Let p be a minimal prime ideal of A that contains C. Since A is Noetherian then p is a real ideal.
We have fp ∈ (A∗)p \ Ap and Rad(CAp) = RadR(CAp) = pAp. It follows that pAp is the conductor
of Ap in Ap[fp] and by hypothesis it is thus a real ideal of Ap[fp]. We clearly get that Ap →֒ (A∗)p
satisfies the real lying over property since A →֒ A∗ (or A →֒ A′) does. Since f ∈ A∗ then A[f ] →֒ A∗.
It follows from Theorem 6.33 that A →֒ A[f ] satisfies the very strong real lying over property. It is
thus clear that Ap →֒ Ap[fp] satisfies the very strong real lying over property. Therefore there exists a
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unique prime and real ideal of Ap[fp] lying over pAp. This ideal is pAp since we have already noticed
that pAp is a real ideal of Ap[fp]. By the very strong real lying over property, the canonical injection
Ap

pAp

→֒ Ap[fp]

pAp

is an isomorphism. It follows that Ap[fp] = Ap and we get a contradiction. �

6.6. Real seminormal algebraic curves. Let X be a central irreducible algebraic curve. The goal
of this section is to determine what kind of singularities can occur when X is real seminormal. Notice
that since R0(X) = R0(X) then X is real seminormal if and only if X is real weakly normal.

Bombieri [8] determined the singularities of seminormal complex algebraic curves. It was a general-
ization of a result of Salmon [29] concerning plane curves. In [10], there is a geometric characterisation
of seminormal local rings of dimension one. Let y be a point of a complex algebraic curve Y . We say
that y is an ordinary k-fold point if y is a point of multiplicity k with k linearly independent tangents
(if Y ⊂ Cn then k ≤ n). It means that the singularity at y is analytically isomorphic to the union of
the k coordinate axes in Ck (see [17]).

Theorem 6.37. [8]
Let Y be an irreducible algebraic curve. Then Y is seminormal (i.e. P(Y ) is a seminormal ring) if

and only if the singularities of Y are ordinary k-fold points.

The following proposition is largely a consequence of the fact that a real seminormal ring is semi-
normal, cf Remark 6.31.

Proposition 6.38. Let X be a central irreducible algebraic curve. Let π : X ′ → X be the normalization
map. The curve X is real seminormal if and only if the following properties are satisfied:

(1) the singularities of XC are ordinary k-fold points.
(2) Sing(XC) ⊂ X.
(3) ∀x ∈ Sing(X) then π−1

C (x) is totally real i.e #(π−1
C (x)) = #(π−1(x)).

Proof. Assume X is real seminormal. Thus P(X) is real seminormal (Theorem 6.30) and it follows
that P(X) is a seminormal ring. From the definitions or by [15, Cor. 5.7], it follows that P(X) is
seminormal if and only if P(XC) is seminormal. By Theorem 6.37, we get (1). Assume XC admit
as singularities two complex conjugated points (which are then non-real). We resolve the singularity
at these two points (by performing a sequence of blowings-up along points) and we get a central
irreducible algebraic curve Y (Proposition 4.3) such that the map Y → X is birational, finite, bijective.
By Proposition 1.5 and since YC and XC are not isomorphic (the map YC → XC is not bijective) then
the map Y → X is not an isomorphism. Since X is real weakly normal then we contradict Proposition
6.11. We have proved (2). Assume now there exists x ∈ Sing(X) such that π−1

C (x) is not totally real.
By Proposition 4.3, we have #(π−1(x)) ≥ 1. We resolve the singularity at the point x and then we glue
together the real points over x. We get a real central irreducible real algebraic curve Y (Proposition
4.3) such that the map Y → X is birational, finite, bijective but not an isomorphism since YC → XC

is not bijective. By Proposition 6.11 we get a contradiction and it gives (3).
Assume now the curve X satisfies the three properties of the proposition. From (2), (3) and the

definitions, it follows that X is real seminormal if and only if X is seminormal. By (1) and Theorem
6.37, it follows that XC is a weakly normal algebraic curve i.e. P(XC) is seminormal. By [15, Cor.
5.7], P(X) is seminormal if and only if P(XC) is seminormal and the proof is done. �

Remark 6.39. By Proposition 1.16, condition (3) of Proposition 6.38 is equivalent to the equality

O(X) = O(X ′).

From Propositions 6.37 and 6.38, we get:

Example 6.40. (1) The cuspidal curve Z(y2−x3) is not seminormal, since the origin is a singular
point of multiplicity 2 which is not an ordinary 2-fold point.

(2) The nodal curve Z(y2 − x2(x+ 1)) is real seminormal.
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(3) The curve Z(y3 − x3(x + 1)) is not seminormal since the origin, which is a singular point of
multiplicity 3, is not an ordinary 3-fold point.

(4) The curve Z(y2− (x2+1)2x) is seminormal but not real seminormal, since the singular points
are not all real.
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