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1 INTRODUCTION 

In the aim of proposing durable structures and reducing the maintenance costs incurred on 
French highways, it is highly necessary to fully comprehend and model the various pavement 
failure mechanisms that often stem from the presence of cracks. Classical semi-analytical mod-
el makes it possible to compute an elastic multilayer lying on a semi-infinite solid submitted to 
circular loading; however, incorporating the viscoelastic characteristic of asphalt layers (Du-
hamel et al., 2005), their damage (Bodin et al., 2004) or the nature of cracks (Tran et al., 2004) 
requires major developmental breakthroughs beyond the typical design methods.  

As pavements are composed by superimposing layers of different materials with different 
elastic properties, it is well known that stress singularities appear at the interface on the free 
edges generated by vertical cracks (Fig. 1).  

 

 

 

 

 

  

 

 

 

 
Figure 1.  Example of stress singularities at the interface near a crack  
on a loaded composite pavement structure (Pouteau et al., 2004) 
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ABSTRACT: To understand how a pre-existing vertical crack can propagate and damage 
pavements an alternative modeling is proposed to be used. For the multilayered pavement struc-
tures, the simplified modelling, named the multi-particle model of multi-layer materials (M4) 
with 5n equilibrium equations (n: number of pavement layers) is linked to the Boussinesq solu-
tion for the soil (Tran, 2004) (Chabot et al., 2005). This approach has the advantage of reducing 
the real 3D problem to the determination of regular plane fields  y,x  per layer and interface. 
Heavy loads, thermal loadings and thermal shrinkage phenomena have been integrated and val-
idated with respect to finite element computations. It shows that the bond between layers near 
vertical cracks is damaged by normal and shear stresses. These combined effects are proposed 
to be modeled to understand corner crack initiation phenomenon of cemented concrete slab. 
Surface observations on concrete pavements with joints help the discussion. 
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The modeling of cracked 3D pavement structures by means of finite elements is indeed pos-

sible (Romanoschi and Li, 2002). Yet the level of mesh refinement near cracks required to ob-

tain significant results makes the method quite costly in terms of computation time and due to 

stress singularities special methods have to be found to analyze correctly the results. In order to 

produce a diagnostic and maintenance software that performs computations quickly and effi-

ciently for use on worn pavements, a dedicated model has been developed at both ENPC and 

LCPC (Tran, 2004) (Tran et al., 2004) (Chabot et al., 2005). It is proposed here to fully present 

it for the mechanical understanding of corner cracks phenomenon in cemented concrete slabs. 

2 THE MODELLING 

To summarize, this paragraph contains only the main equations of the modelling. The interested 
reader can refer to Tran's doctoral thesis (2004) for a complete model description.  

In the following purpose, (x,y,z) will denote the three coordinates of a point in the reference 

system (O,ex,ey,ez). The indices of plane tensor components is denoted by Greek letters (e.g. 

plane components of the stress tensor are written as  ).The n layers of the multilayer assem-

bly are stacked along the downward-oriented direction of the ez axis of this coordinate system. 

Index i designates the layer number within the sequence {1, ..., n}. The double index i, i + 1 in-

dicates the interface between layers i and i + 1 (see Figure 4).  

The layer i is composed of the set of points (x,y,z), such that:   ii hhz ,   
  ii hh 1 . 

  ii
i hhe  represents layer thickness and   2  ii

i hhh  its average dimension on the 

e3 axis. Pavement layers i are chosen to be isotropic linear elastic, with Young's modulus iE  

and Poisson's ratio i . The soil is elastic, linear and isotropic, characterized by its Young's 

modulus sE  and Poisson's ratio s .  

2.1 Multiparticle model of multilayered materials with 5n equilibrium equations (designated 
M4-5n) for pavement layers 

The multiparticle model of multilayered materials (M4) adopted for this bending problem com-
prises five kinematic fields for each layer i (i = 1, ..., n) (5n); this model makes up part of the 
M4 family developed at the Ecole Nationale des Ponts et Chaussées  to study, in elasticity 
(Chabot, 1997) and (Chabot and Ehrlacher, 1998) then in inelasticity (Diaz Diaz et al. 2002), 
edge effects for composite structures.  

Let's denote  zyxu j ,,  (with j = 1,3) the 3D displacement fields, the kinematics of associated 
layers i (i = 1, ..., n) then contain the following average in-plane and out-of-plane displace-
ments: 
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along with the average rotations defined as follows: 
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The M4-5n may be considered like superimposing n Reissner plates. Its construction relies 

on a 1st-degree polynomial approximation of the membrane stress fields in z. The expression of 

3D equilibrium equations yields 2nd- and 3rd-degree polynomials in z per layer for shear 

stresses and normal stress, respectively. The coefficients of these polynomials for each layer are 

correlated with the classical generalized force and moment fields of Reissner plates. Such ap-



 
End of the page 3 

proximations offer the advantage of defining at the 1, ii  interfaces both the shear stresses  

 yxii ,1, 
  and normal stresses   yxii ,1,   such that:      


  133

1, ,,,,, ii
ii hyxhyxyx  

  
and   

     


  13333
1, ,,,,, ii

ii hyxhyxyx  .  

The Hellinger-Reissner function is used to obtain the equations expressed in generalized var-
iables. The actual 3D multilayered problem can then be reduced to determining fields in (x,y) 
for each layer i and each interface between layers i, i + 1, thus transforming the real 3D object 
into a 2D geometric object. Furthermore, the M4 model diverts focus from edge effects, result-
ing in a finite value of stresses at plate edges. Between two adjacent material layers, it then be-
comes possible to express delamination criteria in terms of interfacial forces (Chabot 
et al., 2000) (Caron et al., 2006). On finite structures, the M4-5n fields are very close to those 
obtained from a refined approach involving 3D finite elements (Carreira et al., 2002). 

In sum, after combining the various M4-5n equilibrium and constitutive equations, a system 
of five 2nd-order differential equations for each layer i of the pavement multilayer (i = 1, ..., n) 
in the (x,y) plane can be generated. The system has been presented below under the hypothesis 
that volume forces are negligible.  
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 yx
ini

, ,  yx
ini

,  and  yxd
ini

,  denote respectively inelastic in plane strains, inelastic in 

plane curvatures and inelastic shear strains of the layer i .  yxD inii ,1, 
 , and  yxD

inii
,

1,
3
  are re-

spectively the in plane and out of plane displacement discontinuities at the interface i,i+1. The-

se fields are supposed to be known. 
Similarly, a system of three 1st-order differential equations per interface 1, ii  

)1,...,1(  ni is obtained as follows: 
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Forces at the n, n+1 interface between the last layer n at the bottom of the pavement multi-
layer and the ground are the unknowns to be found. They depend on the interaction (whether 
bonded or not) between ground and the pavement structure (Fig. 4). 

2.2 Boussinesq equations for the soil mass 

For building high-speed computation software, the analytical solution of the Boussinesq model 
stands out as the most viable for the modelling of the semi-infinite elastic soil mass. 

The overlap of the two models proceeds by either the continuity or non-continuity of dis-

placement fields at the 1, nn  interface of the n pavement layers and the ground (Fig. 4). Three 

additional equations yield the relation between surface displacements  yxusurface
j ,     3,2,1j  

of the Boussinesq soil mass and M4-5n interfacial stresses  yxnn ,1, 
   and  yxnn ,1,   as pre-

sented below for the bonded case. 
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In the following discussion, we will refer to the combination of the M4-5n model for pave-
ment layers and the Boussinesq soil model as "M4-5nB". The Figure 4 shows its diagram. 

 

 

 
Figure 4. Diagram of the pavement modelling M4-5nB (Tran et al., 2004) 

2.3 M4-5nB boundary conditions 

Forces at the 1,0  interface between the exterior and the first pavement layer serve as the model 
givens; they are correlated with the set of presumed known loading conditions of a truck wheel 
rolling over the pavement (Fig. 4).  

In order to express the various boundary condition systems of pavement multilayer edges (or 
cracks) as a function of both the kinematic unknowns and interface forces, the constitutive 
equations of layer i from M4-5n are used (Chabot, 1997). Introducing cracks that are either lon-
gitudinal or transverse with respect to traffic load direction, or vertical over the thickness of one 
or several layers, requires considering that crack lips constitute two free edges, whose distance 
interval from one another is assumed nonzero, yet still narrow (on the order of one to several 
millimeters, depending on the type of pavement under examination). 

On the unloaded edges (or vertical cracks) of pavement layers i (i = 1, ..., n), free edge 
boundary conditions are imposed. In this case, they may be expressed in the form of the five 
equation-per-layer system. For purposes of illustration, they have been listed below for any y 
whenever x becomes infinite (or tends to a finite value in the case of a crack): 
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On the blocked edges of pavement layers i (i = 1, ..., n), e.g. far from the loading where the 
material is confined, the boundary conditions are also expressed in the form of the five equa-
tion-per-layer system. Again for illustration, they have been displayed below for any y when-
ever x becomes infinite (or tends to a finite value): 
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2.4 Resolution of the M4-5nB model equations  

To write the overall system of M4-5nB equations, interface equations (8) to (10) are used to 

eliminate forces 1,1,
2

1,
1 ,  iiiiii et   (i = 1, ..., n – 1) in M4-5n equations (3) through (7) 

(i = 1, ..., n) that get associated with equations (11) to (13) from Boussinesq's analytical model. 

Ultimately, presentation of the initial 3D problem is reduced to solving a 2D problem laid 

out in the plane composed of 5n+3 equations with 5n+3 plane unknown fields. Once the load-

ing boundary conditions, known at the pavement multilayer surface, have been applied, system 

generalization can be synthesized in the form a global 2nd-order, 5n-dimensional differential 

system. The system of the three linear equations complementary to Boussinesq's equations (11) 

(12) (13) is provided (Tran, 2004) (Chabot et al., 2005). 

To numerically solve the 5n-differential system, the Newmark finite differences method is 

applied. The 2D plane is discretized into N intervals along the x-axis and M intervals along the 

y-axis. By combining Newmark equations and the pavement multilayer system, the 2nd-order 

derivatives then 1st-order derivatives with respect to x are eliminated. Operation is once again 

employed to eliminate derivatives with respect to y. The resultant linear system thus contains 

  115  MNn  equations. Generalized for n layers, the discretized expression of the five 

boundary conditions for each layer i may be written on each plane edge in the form of the fol-

lowing systems of 1st-order differential NMn 25   remaining equations with 1,01,0
2

1,0
1 ,,   being 

the stress loading boundary conditions. 
To facilitate Boussinesq integration steps, which may be performed analytically, it is as-

sumed in an initial approximation that the interface forces remain constant over all elementary 
surfaces of the discretized plane. By changing variables, the integral of functions can easily be 
computed analytically. 

In the discretized diagram, the crack is numerically represented by a discontinuity between 
two lines of points marking the crack edges. For these crack lip point lines, crack introduction 
into the 5n-dimensionnal previous linear system of equations consists of deleting the corre-
sponding equations and replacing them by boundary condition point lines of the free edge type 
given in previously-discretized systems of boundary conditions. 
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3 VALIDATION WORK 

Depending on the specific case, M4-5nB computations have been compared with either the 2D 
axi-symmetric computation results from the French Alizé software built with the Burmister 
model and 3D finite element results from the CESAR-LCPC code (Tran, 2004).  

As regards multilayered structures, many authors over the past 30+ years (particularly in the 
field of composite materials) have demonstrated that the presence of free edges or cracks, in 
conjunction with material behavior heterogeneity on both sides of interlayer interfaces, leads to 
significant out-of-plane stress concentrations at the interfaces. This phenomenon requires fur-
ther study before structural failure can be effectively predicted. Thus, in the aim of lightening 
the presentation of computation validation results, it was decided to proceed by illustrating just 
those results determined on out-of-plane stress fields at the interfaces. 

In the following, a shrinkage case validation compared with 3D FEM results is presented. 
Figure 5 displays validations of interface stresses between two layers of a semi-rigid pavement 
structure cracked vertically through its cemented concrete layer. The load is expressed in the 
form of a uniform pressure MPaq 662.0  on a rectangular surface of length ma 30.02   (along 
the traffic direction) and width mb 22.02  . The pavement is composed of 2 elastic layers 
( me 1.01  , MPaE 93001  , 35.01  ; me 3.01  , MPaE 230002  , 25.02  ) lying on top of the 
soil mass of the French PF2 type ( MPaEs 50 , 35.0s ). The 3D finite element mesh com-
prises a total of 1,965 20-node volume elements and 7,080 15-node elements. A 5-m transverse 
dimension ensures the sufficiency condition is being met to simulate only a quarter of the struc-
ture. The M4-5nB plane mesh only contains 24  32 links for the all structure. Blocked edge-
type boundary conditions have been chosen for this procedure.  

Due to shrinkage effects, the temperature in all the second layer is assumed to change in a 

uniform way ( CT 10 ) with a coefficient of expansion 16102.1  C . On the edge of the 

vertical crack of the second layer, this condition gives values of inelastic fields as 

T
inin  

2
22

2
11  and TeD

in 2
2,1

3  . All other inelastic fields in2
12  yx

in
,

2
 ,  yxd

in
,

2
  

 yxD in ,2,1
  are zero (Tran, 2004). 

 

 

Figure 5. M4- 5nB interface stress fields validations for a shrinkage application case (Tran, 2004)  

 

The computation of cracked pavement, assumed two-dimensional for this model set-up, re-
veals a very close approximation of stress fields at the various interfaces. For the interface 

2,1 on Figure 5, the difference of stress intensity observed for the normal stress 2,1  is due to 
3D finite element results that become singular as the mesh becomes finer. The solution, pro-
grammed using Matlab software, is obtained by M4-5nB roughly 10 times faster than that de-
rived from a finely-meshed 3D finite element computation near the crack. With shrinkage, 
thermal and loads effects, applying this vertical cracking configuration at the base of the dual 
pavement layer, is enabled analyzing stresses as part of research studies on the reinforcement of 
semi-rigid pavements or bottom-up cracking phenomenon. 
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4 RESULTS ON A COMPOSITE PAVEMENT APPLICATION 

For the last ten years, new composite pavement structures have raised a significant interest. 
These are made of a concrete layer bonded on an asphalt sub-base. If the durability of this bond 
is proved, these structures benefit by a reduction both on the layers thickness and the cost (Pou-
teau, 2004) (Pouteau et al., 2004). However, the restrained shrinkage of the concrete layer leads 
to vertical cracks. To study the bond of composite pavement structures, an in-situ experiment 
has been performed using an accelerated pavement loading facility (Pouteau et al., 2006). With 
that so-called M4-Boussinesq model, it is proposed to analyze the initial mechanical fields of 
that in-situ experiment (Chabot et al., 2004). 

The following section will present, for illustration purposes, an initial elastic approximation 
of these results via the M4-5nB model programmed in its "Research" version and run using the 
Matlab tool (Tran, 2004) (Guillo, 2004), in the case of blocked edges. 

Being in the linear elastic mode, we can superimpose various loading cases. Thus to deter-
mine the interface stress state, it is only necessary to study the case where the load is at the 
edge of the crack. The load is considered rectangular ( ma 28.02   and mb 18.02  ) with a uni-
form pressure MPaq 645.0  while the pavement is considered to be composed of two elastic 
layers 1.95 m wide (French category 5 cement concrete: me 08.01  , MPaE 365001  , 25.01  ; 
asphalt overlay of the French GB3 type: me 095.02  , MPaE 84852   et 35.02  ) on top of the 
soil mass (infinite within the plane) of the French PF3 type: MPaEs 120 , 35.0s . The M4-
5nB plane mesh contains 30  20 links. 

In that case, in the y = 0 plane, following curves of the Figure 6 show maximum shear 
 0,2,1

1 x  and normal  0,2,1 x  stresses at the edge of the crack at the interface between the 
concrete and the asphalt layers where the load is at the left side of the crack (Guillo, 2004) .  

 

 

Figure 6. M4- 5nB stress fields between the cracked concrete layer and the asphalt layer  

 
In this loading position at the crack edge, with the crack centered at zero on curves of the 

Figures 6, it can be observed that the pavement is loaded in mixed mode. These results needs to 
be examined in greater detail under actual experimental conditions (free edges along the y-axis; 
inclusion of thermal gradient effects in the thin bonded cement concrete layer and of the actual 
distribution of tire/pavement contact; comparison with instrumentation-based measurements; 
analysis of viscoelastic effects from asphalt material, etc.). Nevertheless, for the following pur-
pose, it is interesting to notice that Figure 6 shows that the normal interface stress is highly 
negative underneath the load and remains significant in tension on the unloaded side.  

5 FIELD OBSERVATIONS 

Probably one of the most spectacular crack propagation cases might be corner crack damages 
that can be found on structures made with cemented concrete slabs. Here-under to illustrate, 
surface observations of distress from French yachting harbor pavement are given. 
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On pictures of the Figure 7, it shows a travelift crane that is used to take off boats from the 
sea to park them on a harbor. As it can be found in different constructor guides, these travelift 
are particularly heavy cranes (the load of the biggest is 300T) and move very slowly on four 
similar single or twin wheels. With boats, the loading is assumed to be worst.  

 
 

               
 

Figure 7. Pictures of the heaviest travelift  

 
On pictures of the Figure 8, one can see the small travelift used (Fig. 8a) and the pavement 

distress of cemented concrete slabs that are not loaded by the travelift wheels.  
 
 

   
A: concrete slabs and the            b: corner cracks in concrete        c: cracks in concrete slabs and  
“Port Olona” Travelift          slabs near loads                           bitumen structures 

 
Figure 8. Example of pavement damages of a French harbor - Vendée, France  

 

It can be observed that cracks are located especially on corner slabs of cemented concrete 

layer (Fig. 8b) although they exist in the whole bituminous structure under the wheel pass (Fig. 

8c). One can supposed that loading slabs are made with special reinforced steel structure that 

can be true. Nevertheless, in a mechanical point of view it is interesting to correlate why cracks 

are located near corner slabs and high intensity value of normal interface stress that have been 

calculated as previously. On the corner of a slab, two free boundary conditions have to be writ-

ten. That is supposed to be studied at LCPC with the help of the French cemetery industry to 

simulate crack corner distress of Ultra Thin White-Topping structures. In that study a tool for 

engineers on which it can be introduced different configuration of loads, shrinkage, debounding 

and even thermal gradient has to be done. 
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6 CONCLUSION AND PROSPECTS 

To make a proper analysis of crack initiation and propagation in pavement structures, a simpli-
fied model (named the Multi-particle Model of Multi-layer Materials, M4) linked to the 
Boussinesq model for the soil has been developed (Tran, 2004) (Chabot et al., 2005). This ap-
proach has the advantage of reducing the real 3D problem to the determination of regular plane 
fields  y,x  per layer and interface. M4-5nB computations are in good accordance compared to 
3D FEM results and need less time consuming. Several inelastic fields can be introduced as da-
ta for the modelling of shrinkage, thermal conditions and debounding effects. Near a pre-
existing vertical crack through a layer, these special boundary conditions are proposed to be 
modeled to understand slab corner cracks phenomenon of Ultra Thin White-topping. 
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