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1 OVERVIEW
This document presents additional materials for the paper Con-
strained Palette-Space Exploration. It is structured as follows: we
�rst provide a few complementary technical details on our method,
discuss parameters, and evaluate the robustness of several of its
subprocesses. Then, we present additional details on the user study,
such as user statistics and results statistics. Finally, we present more
results obtained with our method.

2 TECHNICAL DETAILS

2.1 Parameter se�ing
We designed our approach to work in semi-automatic and automatic
palette exploration systems. The main parameters of our approach
are the input palettes themselves. We also have constants that can be
tuned in several stages of our approach, see Table 1 for the numerical
values used in our experiments.

Notation Value Equation(s)
β 500 (3)
λ 1000 (4), (11)
γ 1e−5 (11)

Table 1. Parameter values used to generate all the illustrations and results
shown in the paper and in supplementary material.
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The parameter β is de�ned as twice the length of the Lab space
diagonal, in order to be always larger but of the same order of
magnitude than the maximum contrast that can be obtained between
two colors. The parameter λ de�nes the penalty factor we apply
to out of gamut colors. Finally, we set γ to reduce the in�uence
of the Laplacian constraint to under-constrained con�gurations in
interpolation-based interpolation.

2.2 Interpolation-based exploration
2.2.1 Color-spaces. Color interpolation is strongly in�uenced

by the embedding color space. In this work, we use Lab for its
perceptual properties. As demonstrated in our paper, our optimized
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Fig. 1. Comparison of linear interpolation paths for common color spaces,
against our approach, for the scene Small Map (Fig. 4 in the paper). The
first row shows interpolation paths in Lab (slice for L = 50), the second row
the interpolated colors, and the third row the pale�e obtained for α = 0.5.
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interpolation paths outperform linear interpolation in existing color
spaces. For the sake of clarity, we show in Figure 1 a comparison
between linear interpolation in several color spaces, and compare
against our approach.

2.2.2 Bezier curves degree. All interpolation results in the paper
are optimized using 4 degree Bézier path. Using a higher degree
provides slightly smaller error, but increase computation time. Nev-
ertheless, the results are stable, and higher degree do not produced
oscillation as shown Figures 2 and 3. Figure 3 shows how the paths
stay stable as degree increase, while the optimization take the in-
creasing degree of freedom to adapt arc the nodes distribution along
the path changes with the degree. The optimization take the degree
of freedom to adjust speed along each path during the interpolation.

linear degree: 2 degree: 3 degree: 4 degree: 5 degree: 6

4 msec. 10 msec. 11 msec 108 msec 125 msec
12 iter. 17 iter. 12 iter. 83 iter. 67 iter.

Fig. 2. Stability of the paths computation when increasing the path degree.

Fig. 3. The 3D path in Lab space for the interpolation of presented Figure 1
of the paper. From le� to right we use degree 4, 8 and 12 Bézier curves. The
first row displays the curve only, while the second row displays the curve
along with their control polygon.

3 USER STUDY
Figure 4 presents the gender, age and expertise distributions of our
recruited users.
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Fig. 4. User statistics. Le�: ages, right: expertise.

3.1 Task 1: Augmented harmony and color-blindness
User feedback. As stated in the paper, we provided real-time feed-

back during the exploration to help users evaluating their design:
• two views of the palette applied on an image, with and

without deuteranopia simulation (Figure 5-a,b),
• a 2d scatter plot, giving quantitative values of the color

contrasts (both vision types) and harmony deviation ((Fig-
ure 5-c)). These values are computed as the sum of the
residuals of the constraints modeling these relations. Users
where advised to keep the deviations as-small-as-possible.
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Fig. 5. Feedbacks provided to the user for task 1.

Additional results. Figure 6 presents the error distributions for the
(a) harmony, (b) extended harmony and (c) CVD-aware extended
harmony templates.
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Fig. 6. Error distributions for the three tested pale�es: (a) Harmony, (b)
Augmented harmony and (c) CVD-aware extended harmony. Vertical bars
show the distributions mean given in the paper.

4 RESULTS

4.1 Constraint graphs
The constraint graphs of Harmonization and Cell scenes are illus-
trated respectively in Figures 7 and 8. As described in the paper, both
graphs have been generated automatically from the input image
and simple user inputs.
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Fig. 7. Constraint graph of the Harmonization scene, composed by a com-
plete constraint graph and unary anchors constraining the initial saturation
and value components, while conforming the hue components to the input
template.

Fig. 8. Constraint graph of the Cell scene.

4.2 Additional results
Figure 9 shows an example where the energy consumption on a
topographic map is optimized for the sea, the background and the
vegetation. This could be computed once for all or adapted during
navigation. Maps resulting from this exploration preserve both car-
tographic constraints and energy consumption. Moreover, resulting
maps provide interesting symbolizations in a dark night context of
visualization.

a) b)
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Fig. 9. Pale�e exploration using cartographic constraints and three energy
saving constraints on the sea, vegetation and background colors, corre-
sponding to a) blue, white and green in the input pale�e. b) Each optimized
pale�e application is associated to its residual conformity score and the
energy consumption estimation on the resulting anti-aliased map.
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