
HAL Id: hal-01538729
https://hal.science/hal-01538729v1

Submitted on 14 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Weighted Sums of Squares
Decomposition of Non-negative Univariate Polynomials

Victor Magron, Mohab Safey El Din, Markus Schweighofer

To cite this version:
Victor Magron, Mohab Safey El Din, Markus Schweighofer. Algorithms for Weighted Sums of Squares
Decomposition of Non-negative Univariate Polynomials. Journal of Symbolic Computation, 2019, 93,
pp.200-220. �10.1016/j.jsc.2018.06.005�. �hal-01538729�

https://hal.science/hal-01538729v1
https://hal.archives-ouvertes.fr


Algorithms for Weighted Sums of Squares Decomposition of

Non-negative Univariate Polynomials

Victor Magron1 Mohab Safey El Din2 Markus Schweighofer3

June 14, 2017

Abstract

It is well-known that every non-negative univariate real polynomial can be written as the sum
of two polynomial squares with real coefficients. When one allows a weighted sum of finitely many
squares instead of a sum of two squares, then one can choose all coefficients in the representation to
lie in the field generated by the coefficients of the polynomial. In particular, this allows an effective
treatment of polynomials with rational coefficients.

In this article, we describe, analyze and compare both from the theoretical and practical points
of view, two algorithms computing such a weighted sums of squares decomposition for univariate
polynomials with rational coefficients.

The first algorithm, due to the third author relies on real root isolation, quadratic approximations
of positive polynomials and square-free decomposition but its complexity was not analyzed. We
provide bit complexity estimates, both on the runtime and the output size of this algorithm. They
are exponential in the degree of the input univariate polynomial and linear in the maximum bitsize
of its complexity. This analysis is obtained using quantifier elimination and root isolation bounds.

The second algorithm, due to Chevillard, Harrison, Joldes and Lauter, relies on complex root
isolation and square-free decomposition and has been introduced for certifying positiveness of poly-
nomials in the context of computer arithmetics. Again, its complexity was not analyzed. We provide
bit complexity estimates, both on the runtime and the output size of this algorithm, which are poly-
nomial in the degree of the input polynomial and linear in the maximum bitsize of its complexity.
This analysis is obtained using Vieta’s formula and root isolation bounds.

Finally, we report on our implementations of both algorithms and compare them in practice on
several application benchmarks. While the second algorithm is, as expected from the complexity
result, more efficient on most of examples, we exhibit families of non-negative polynomials for which
the first algorithm is better.

Keywords: non-negative univariate polynomials, Nichtnegativstellensätze, sums of squares decompo-
sition, root isolation, real algebraic geometry.

1 Introduction

Given a subfield K of R and a non-negative univariate polynomial f ∈ K[X], we consider the problem of
proving the existence and computing the weighted sums of squares decompositions of f with coefficients
also lying in K.
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Beyond the theoretical interest of this question, finding certificates of non-negative polynomials is manda-
tory in many application fields. Among them, one can mention the stability proofs of critical control
systems often relying on Lyapunov functions [30], the certified evaluation of mathematical functions in
the context of computer arithmetics (see for instance [4]), the formal verification of real inequalities [11]
within proof assistants such as Coq [6] or Hol-light [12] ; in these situations the univariate case is
already an important one. In particular, formal proofs of polynomial non-negativity can be handled with
sums of squares certificates. These certificates are obtained with tools available outside of the proof assis-
tants and eventually verified inside. Because of the limited computing power available inside such proof
assistants, this is crucial to devise algorithms that produce certificates, whose checking is computationally
reasonably simple. In particular, we would like to ensure that such algorithms output sums of squares
certificates of moderate bitsize and ultimately with a computational complexity being polynomial with
respect to the input.

Related Works. Decompositing non-negative univariate polynomials into sums of squares has a long
story ; very early quantitative aspects like the number of needed squares have been studied. For the
case K = Q, Landau shows in [18] that for every non-negative polynomial in Q[X], there exists a
decomposition involving a weighted sum of (at most) eight polynomial squares in Q[X]. In [28], Pourchet
improves this result by showing the existence of a decomposition involving only a weighted sum of (at
most) five squares. This is done using approximation and valuation theory ; extracting an algorithm from
these tools is not the subject of study of this paper.

More recently, the use of semidefinite programming for computing sums-of-squares certificates of non-
negativity for polynomials has become very popular since [19, 26]. Given a polynomial f of degree n,
this method consists in finding a real symmetric matrix G with non-negative eigenvalues (a semidefinite
positive matrix), such that f(x) = v(x)TGv(x), where v is the vectors of monomials of degree less than
n/2. Hence, this leads to solve a so-called Linear Matrix Inequality and one can rely on semidefinite
programming (SDP) to find the coefficients of G. This task can be delegated to an SDP solver (e.g.
SeDuMi, SDPA, SDPT3 among others). An important technical issue arises from the fact that such
SDP solvers are most of the time implemented with floating-point double precision. More accurate
solvers are available (e.g. SDPA-GMP [25]). However, note that these solvers always compute numerical
approximations of the algebraic solution to the semidefinite program under consideration. Hence, they
are not sufficient to provide algebraic certificates of posivity with rational coefficients. Hence, a process
for making exact and with rational coefficients the computed numerical approximations of sums of squares
certificates is needed. This issue has been tackled in [27, 17]. The certification scheme described in [21]
allows to obtain lower bounds of non-negative polynomials over compact sets. However, despite their
efficiency, these methods do not provide any guarantee to output a rational solution to a Linear Matrix
Inequality when it exists (and especially when it is far from the computed numerical solution).

A more systematic treatment of this problem has been brought by the symbolic computation community.
Linear Matrix Inequalities can be solved as a decision problem over the reals with polynomial constraints
using the Cylindrical Algebraic Decomposition algorithm [5] or more efficient critical point methods (see
e.g. [1] for complexity estimates and [16, 9] for practical algorithms). But using such general algorithms
is an overkill and dedicated algorithms have been designed for computing exactly algebraic solutions
to Linear Matrix Inequalities [13, 14]. Computing rational solutions can also be considered thanks to
convexity properties [31]. In particular, the algorithm in [10] can be used to compute sums of squares
certificates with rational coefficients fpr a non-negative univariate polynomial of degree n with coefficients
of bit size bounded by τ using τO (1)2O (n3) bit operations at most (see [10, Theorem 1]).

For the case where K is an arbitrary subfield of R, Schweighofer gives in [32] a new proof of the existence
of a decomposition involving a sum of (at most) n polynomial squares in K[X]. This existence proof
comes together with a recursive algorithm to compute such decompositions. At each recursive step, the
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algorithm performs real root isolation and quadratic approximations of positive polynomials. Later on, a
second algorithm is derived in [4, Section 5.2], where the authors show the existence of a decomposition
involving a sum of (at most) n+3 polynomial squares in K[X]. This algorithm is based on approximating
complex roots of perturbed positive polynomials.

These both latter algorithms were not analyzed despite the fact that they were implemented and used.
An outcome of this paper is a bit complexity analysis for both of them, showing that they have better
complexities than the algorithm in [10], the second algorithm being polynomial in n and τ .

Notation for complexity estimates. For complexity estimates, we use the bit complexity model. For
an integer b ∈ Z\{0}, we denote by τ(b) := log2(|b|) + 1 the bitsize of b, with the convention τ(0) := 1.
We write a given polynomial f ∈ Z[X] of degree n ∈ N as f =

∑n
i=0 biX

i, with b0, . . . , bn ∈ Z. In
this case, we define ‖f‖∞ := max0≤i≤n |bi| and, using a slight abuse of notation, we denote τ(‖f‖∞)
by τ(f). Observe that when f has degree n, the bit size necessary to encode f is bounded by nτ(f)
(when storing each coefficients of f). The derivative of f is f ′ =

∑n
i=1 ibiX

i−1. For a rational number
q = b

c , with b ∈ Z, c ∈ Z\{0} and gcd(b, c) = 1, we denote max{τ(b), τ(c)} by τ(q). For two mappings
g, h : Nl → R, the expression “g(v) = O (h(v))” means that there exists a integer b ∈ N such that for

all v ∈ Nl, g(v) ≤ bh(v). The expression “g(v) =
∼
O (h(v))” means that there exists a integer c ∈ N such

that for all v ∈ Nl, g(v) ≤ h(v) log2(h(v))c.

Contributions. We present and analyze two algorithms, denoted by univsos1 and univsos2, allowing
to decompose a non-negative univariate polynomial f of degree n into sums of squares with coefficients
lying in any subfield K of R. To the best of our knowledge, there was no prior complexity estimate for the
output of such certification algorithms based on sums of squares in the univariate case. We summarize
our contributions as follows:

• We describe in Section 3 the first algorithm, called univsos1 in the sequel. It was originally given
in [32, Chapter 2] ; Section 3 can be seen as a partial English translation of this text written in
German since some proofs have been significantly simplified. In the same section, we analyze its bit
complexity. When the input is a polynomial of degree n with integer coefficients of maximum bitsize

τ , we prove that Algorithm univsos1 uses
∼
O ((n2 )

3n
2 τ) boolean operations and returns polynomials

of bitsize bounded by O ((n2 )
3n
2 τ). This is not restrictive: when f ∈ Q[X], one can multiply it

by the least common multiple of the denominators of its coefficients and apply our statement for
polynomials in Z[X].

• We describe in Section 4 the second algorithm univsos2, initially given in [4, Section 5.2]. We
also analyze its bit complexity. When the input is a univariate polynomial of degree n with integer
coefficients of maximum bitsize τ , we prove that Algorithm univsos2 returns a sums of square
decompositions of n + 3 polynomials with coefficients of bitsize bounded by O (n3 + n2τ) using
∼
O (n4 + n3τ) boolean operations.

• Both algorithms are implemented within the univsos tool. The first release of univsos is a Maple
library, is freely available1 and is integrated in the RAGlib (Real Algebraic Library) Maple package2.
The scalability of the library is evaluated in Section 5 on several non-negative polynomials issued
from the existing literature. Despite the significant difference of theoretical complexity between
the two algorithms, numerical benchmarks indicate that both may yield competitive performance
w.r.t. specific sub-classes of problems.

1https://github.com/magronv/univsos
2http://www-polsys.lip6.fr/~safey/RAGLib/
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2 Preliminaries

We first recall the proof of the following classical result for non-negative real-valued univariate polynomials
(see e.g. [29, Section 8.1]).

Theorem 2.1. Let f ∈ R[X] be a non-negative univariate polynomial, i.e. f(x) ≥ 0, for all x ∈ R.
Then, f can be written as the sum of two polynomial squares in R[X].

Proof. Without loss of generality, one can assume that f is monic, i.e. the leading coefficient (nonzero
coefficient of highest degree) of f is 1. Then we decompose f as follows in C[x]:

f =
∏
j

(X − aj)rj
∏
k

((X − (bk + ick))(X − (bk − ick)))sk ,

with aj , bk, ck ∈ R, rj , sk ∈ N>0, aj standing for the real roots of f and (bk±ick) standing for the complex
conjugate roots of f . Since f is non-negative, all real roots must have even multiplicity rj , yielding the
existence of polynomials g, q, r ∈ R[X] satisfying the following:

g2 =
∏
j

(X − aj)rj , q + ir =
∏
k

(X − (bk + ick))sk q − ir =
∏
k

(X − (bk − ick))sk .

Then, one has f = g2(q + ir)(q − ir) = g2(q2 + r2) = (gq)2 + (gr)2, which proves the claim.

Let K be a field and g ∈ K[X]. One says that g is a square-free polynomial, when there is no prime
element p ∈ K[X] such that p2 divides g. Let now f ∈ K[X] − {0}. A decomposition of f of the form
f = ag11g

2
2 . . . g

n
n with a ∈ K and normalized pairwise coprime square-free polynomials g1, g2, . . . , gn is

called a square-free decomposition of f in K[X].

We recall the following useful classical bounds.

Lemma 2.2. [2, Corollary 10.12] If p ∈ Z[X] and q ∈ Z[X] divides p in Z[X], then one has τ(q) ≤
deg q + τ(p) + log2(deg p+ 1).

The algorithm of Yun [35] (also described in [7, Algorithm 14.21]) allows to compute a square-free
decomposition of polynomials with coefficients in a field of characteristic 0.

Lemma 2.3. [7, § 11.2] Let f ∈ Z[X] with degree at most n with coefficient bitsize upper bounded by τ .
Then the square-free decomposition of f using Yun’s Algorithm [35] can be computed using an expected

number of
∼
O (n2τ) boolean operations.

Lemma 2.4. [24, § 6.3.1] Let K be a field of characteristic 0 and L a field extension of K. The
square-free decomposition in L[X] of any polynomial f ∈ K[X] − {0} is the same as the square-free
decomposition of f in K[X]. Any polynomial f ∈ K[X]− {0} which is a square-free polynomial in K[X]
is also a square-free polynomial in L[X].

The following lemma allows to obtain upper bounds on the magnitudes of the roots of a univariate
polynomial.

Lemma 2.5. (Cauchy Bound [3]) Let K be an ordered field. Let a0, . . . , an ∈ K with an 6= 0. Let
x ∈ K such that

∑n
i=0 aix

i = 0. Then, one has:

|x| ≤ max

{
1,
|a0|
|an|

+ · · ·+ |an−1|
|an|

}
.
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For polynomial with integer coefficients, one has the following:

Lemma 2.6. [24] Let f ∈ Z[X] of degree n, with coefficient bitsize upper bounded by τ . If f(x) = 0 and
x 6= 0, then 1

2τ+1 ≤ |x| ≤ 2τ + 1.

The real (resp. complex) roots of a polynomial can be approximated using root isolation techniques. To
compute the real roots one can use algorithms based on Uspensky’s method relying on Descartes’s rule
of sign, see e.g. [2, Chap. 10] for a general description of real root isolation algorithms.

Lemma 2.7. [22, Theorem 5] Let f ∈ Z[X] with degree at most n with coefficient bitsize upper bounded
by τ . Isolating intervals (resp. disks) of radius less than 2−κ for all real (resp. complex) roots of f can

be computed in
∼
O (n3 + n2τ + nκ) boolean operations.

Vieta’s formulas provide relations between the coefficients of a polynomial and signed sums and products
of the complex roots of this polynomial:

Lemma 2.8. (Vieta’s formulas [8]) Let K be an ordered field. Given a polynomial f =
∑
i=0n aiX

i ∈
K[X] with an 6= 0 with (not necessarily distinct) complex roots z1, . . . , zn, one has for all j = 1, . . . , n:∑

1≤i1<···<ij≤n

zi1 . . . zij = (−1)j
an−j
an

.

3 Nichtnegativstellensätze with quadratic approximations

3.1 A proof of the existence of SOS decompositions

Lemma 3.1. Let K be an ordered field. Let g = aX2 + bX+ c ∈ K[X] with a, b, c ∈ K and a 6= 0. Then,

g can be rewritten as g = a
(
X + b

2a

)2
+
(
c− b2

4a

)
. Moreover, when g is non-negative over K, one has

a > 0 and c− b2

4a ≥ 0.

Proof. The decomposition of g is straightforward. Assume that g is non-negative over K. Remark that

c− b2

4a = g
(
− b

2a

)
; hence since we assume that g is non-negative over K we deduce that c− b2

4a ≥ 0.

It remains to prove that a > 0 which we do by contradiction, assuming that a < 0. Then, this implies

that for all x ∈ K, one has
(
x+ b

2a

)2 ≤ − 1
a

(
c− b2

4a

)
. Thus, there exists C ∈ K such that x2 ≤ C, for

each x ∈ K. This implies in particular for x = 2 that 4 ≤ C and for x = C that C2 ≤ C, thus C ≤ 1.
Finally, one obtains 4 ≤ C ≤ 1, yielding a contradiction.

Let f ∈ K[X] be a square-free polynomial which is non-negative over R. Then, f is positive over R,
otherwise f would have at least one real root, implying that f would be neither a square-free polynomial
in R[X] nor a square-free polynomial in K[X], according to Lemma 2.4. We want to find a polynomial
g ∈ K[X] which fulfills the following conditions:

(i) deg g ≤ 2,

(ii) g is non-negative over R,

(iii) f − g is non-negative over R,
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(iv) f − g has a root t ∈ K.

Assume that Property (i) holds. Then the existence of a sum of squares decomposition for g is ensured
from Property (ii). Property (iii) implies that h = f − g has only non-negative values over R. The aim
of Property (iv) is to ensure the existence of a root t ∈ K of h, which is stronger than the existence of a
real root. Note that the case where the degree of h = f − g is less than the degree of f occurs only when
deg f = 2. In this latter case, we can rely on Lemma 3.1.

Now, we investigate the properties of a polynomial g ∈ K[X], which fulfills conditions (i)-(iii) and (iv)
with t ∈ K. Using Property (i) and Taylor Decomposition, we obtain g = g(t) + g′(t)(X − t) + c(X − t)2
for some c ∈ K. By Property (iv), one has g(t) = f(t). In addition, Property (iii) yields f(x) − g(x) ≥
0 = f(t) − g(t), for all x ∈ K, which implies that (f − g)′(t) = 0 and g′(t) = f ′(t). By Property (ii),
the quadratic polynomial g(X + t) = f(t) + f ′(t)X + cX2 has at most one root. This implies that the

discriminant of g, namely f ′(t)2 − 4cf(t) cannot be positive, thus one has c ≥ f ′(t)2

4f(t) (since f(t) > 0).

Finally, given a polynomial g satisfying (i)-(iii) and (iv) for some t ∈ K, one necessarily has g = ft,c with
f ′(t)2

4f(t) ≤ c ∈ K and ft,c = f(t) + f ′(t)(X − t) + c(X − t)2.

In this case, one also has that the polynomial g = ft,c′ , with c′ = f ′(t)2

4f(t) , fulfills (i)-(iii) and (iv). Indeed,

(i) and (iv) trivially hold. Let us prove that (ii) holds: when deg ft,c′ = 0, then g = f(t) ≥ 0 and when

deg ft,c′ = 2, then g has a single root −f
′(t)
2c and the minimum of g is g

(
−f ′(t)

2c

)
= 0. The inequalities

ft,c′ ≤ ft,c ≤ f over R yield (iii).

Therefore, given f ∈ K[X] with f positive over R, we are looking for t ∈ K such that the inequality
f ≥ ft holds over R, with

ft := f(t) + f ′(t)(X − t) +
f ′(t)2

4f(t)
(X − t)2 ∈ K[X] .

The main problem is to ensure that t lies in K. If we choose t to be a global minimizer of f , then ft
would be the constant polynomial min{f(x) | x ∈ R}. The idea is then to find t in the neighborhood of
a global minimizer of f . The following lemma shows that the inequality ft ≤ f can be always satisfied
for t in some neighborhood of a local minimizer of f .

Lemma 3.2. Let f ∈ R[X]. Let a be a local minimizer of f and suppose that f(a) > 0. For all t ∈ R
with f(t) 6= 0, let us define the polynomial ft:

ft := f(t) + f ′(t)(X − t) +
f ′(t)2

4f(t)
(X − t)2 ∈ R[X] .

Then, there exists a neighborhood U ⊂ R of a such that the inequality ft(x) ≤ f(x) holds for all (t, x) ∈
U × U .

Proof. Set n := deg f . It is easy to see that we can suppose without loss of generality that a is the origin
and that f(0) = 1. Because of the Taylor formula

f =

n∑
k=0

f (k)(t)

k!
(X − t)k,

we have

f − ft =

n∑
k=2

f (k)(t)

k!
(X − t)k − f ′(t)2

4f(t)
(X − t)2 = (X − t)2

(
n∑
k=2

f (k)(t)

k!
(X − t)k−2 − f ′(t)2

4f(t)

)
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for all t ∈ R with f(t) 6= 0. Let h be the bivariate polynomial defined as follows:

h := f(T )

(
n∑
k=2

f (k)(T )

k!
(X − T )k−2

)
− 1

4
f ′(T )2 ∈ R[T,X].

Let us prove that (a, a) is a local minimizer of h.

Since f(0) = 1, there exists c 6= 0, α ∈ N and g ∈ R[X] such that f − 1 = cXα + Xα+1g. Therefore,

limx→0
f(x)−1
cxα = 1. Since f − 1 is non-negative over R, one concludes that c > 0 and α is even. Let us

consider the lowest homogeneous part H of h, that is the sum of all monomials of lowest degree involved
in h. The lowest homogeneous part of f ′(T )2 is c2(α − 1)2T 2α−2 with degree 2α − 2 while the lowest

homogeneous part of
∑n
k=2

f(k)(T )
k! (X − T )k−2 is c

∑n
k=2

(
α
k

)
Tα−k(X − T )k−2 with degree α− 2. Then

H = c

n∑
k=2

(
α

k

)
Tα−k(X − T )k−2 ,

and thus

(X − T )2H = c((T + (X − T ))α − Tn − nTα−1(X − T )) = c(Xα − αTα−1X + (α− 1)Tα).

Since lim‖(x,t)‖→0
h(x,t)
H(x,t) = 1, it is enough to prove that H is positive except at the origin in order to

show that (a, a) = (0, 0) is a local minimizer of h. Let us consider (t, x) ∈ R2 \ {0} and show that
H(t, x) > 0. If t = x, we have H(t, x) = H(x, x) =

(
α
2

)
xα−2 > 0. If t 6= x, then it is enough to show that

(x− t)2H(t, x) = c(xα − αtα−1x+ (α − 1)tα) > 0. This is clear if t = 0 since c > 0 and α is even. Now
suppose that t 6= 0 and define ξ := x

t 6= 1. Then one has t−α(x − t)2H(t, x) = c(ξα − αξ + α − 1) > 0.
The positivity of H follows from the fact that the univariate polynomial r := Xα−αX+α−1 is positive
except at 1 since r′ = αXα−1 − α. The positivity of H implies that (a, a) is a local minimizer of h.

Let us define q(X,T ) := (X − T )2h. Combining the fact that (a, a) is a local minimizer of the two
polynomials h, (X − T )2 and the fact that h(a, a) = f(a)f ′′(a)− 1

4f
′(a)2 = 0, we conclude that (a, a) is

also a local minimizer of q. Since f(x)− ft(x) = f(t) q(x, t), this yields the existence of a neighborhood
O ⊂ R2 of (a, a) such that the inequality f − ft ≥ 0 holds for all (x, t) ∈ O. Since there exists some
neighborhood U ⊂ R of a, such that the rectangle U × U is included in O, this proves the initial claim.

Lemma 3.2 states the existence of a neighborhood U of a local minimizer of f such that the inequality
ft(x) ≤ f(x) holds for all (x, t) ∈ U ×U . Now, we show that with such a neighborhood U of the smallest
global minimizer of f , the inequality ft(x) ≤ f(x) holds for all t ∈ U and for all x ∈ R.

Proposition 3.3. Let f ∈ R[X] with deg f > 0. Assume that f is positive over R. Then, there exists
a smallest global minimizer a of f and a positive ε ∈ R such that for all t ∈ R with a − ε < t < a, the
quadratic polynomial ft, defined by

ft := f(t) + f ′(t)(X − T ) +
f ′(t)2

4f(t)
(X − T )2 ∈ R[X] ,

satisfies ft ≤ f over R.

Proof. The existence of a is straightforward. First, we handle the case when deg f = 2. Using Taylor

Decomposition of f at t, one obtains f = f(t) + f ′(t)(X − T ) + f ′′(t)
2 (X − T )2. Since f has no real root,
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the discriminant of f is negative, namely f ′(t)2− 4f(t) f
′′(t)
2 < 0. It implies that f ′(t)2

4f(t) <
f ′′(t)2

2 , ensuring

that the inequality ft ≤ f holds over R.

In the sequel, we assume that deg f > 2. We can find a neighborhood U as in Lemma 3.2 and without
loss of generality, let us suppose that U = [a− ε0, a+ ε0] for some positive ε0, so that f ′ has no real root
in [a−ε0, a). Then, the inequality ft(x) ≤ f(x) holds for all x, t ∈ U . Next, we write f−ft =

∑n
i=0 aitx

i,
with ait ∈ R and n = deg f > 2 and define the following function:

U → R : t 7→ Ct := max

{
1,
|a0t|
|ant|

, . . . ,
|a(n−1)t|
|ant|

}
.

Note that the Cauchy bound (Lemma 2.5) implies that for all t ∈ U , all real roots of f − ft lie in
[−Ct, Ct]. In addition, the closed interval domain U is compact, implying that the range values of the
function U → R : t 7→ Ct are bounded. Let C ∈ R with C ≥ Ct for all t ∈ U . Then, for all t ∈ U ,
all real roots of f − ft lie in the interval [−C,C] and we can assume without loss of generality that
−C < a− ε0 < a < a+ ε0 < C. Let us define M := min{f(x) | x ∈ [−C, a− ε0]}. By definition, a is the
global minimizer of f , ensuring that f(a) < M . For all t ∈ [a − ε0, a), the quadratic polynomial ft has

one real root Nt := −2f(t)
f ′(t) + t. When t ∈ [a−ε0, a) converges to a, then f ′(t) < 0 converges towards 0 and

−2f(t) converges towards −2f(a) < 0. Thus, the corresponding limit of Nt is +∞. In addition, ft(−C)
tends to fa(−C) = f(a) < M . Therefore, there exists some ε ∈ (0, ε0] such that for all t ∈ (a− ε, a), one
has Nt ∈ [C,∞) and ft(−C) < M . For all t ∈ (a− ε, a), we partition R into five intervals and prove that
the inequality ft ≤ f holds on each interval:

• The inequality ft ≤ f holds over (−∞,−C]: it comes from the fact that ft(−C) < M ≤ f(−C)
and the fact f − ft has no real root in (−∞,−C].

• The inequality ft ≤ f holds over (−C, a− ε0]: ft is monotonically decreasing over (−∞, Nt]. Since
one has −C < a− ε0 < C ≤ Nt, then ft is monotonically decreasing over (−C, a− ε0]. This implies
that for all x ∈ (−C, a− ε0], one has ft(x) ≤ ft(−C) < M ≤ f(x).

• The inequality ft ≤ f holds over [a− ε0, a): it follows from the fact that [a− ε0, a) ⊆ U .

• The inequality ft ≤ f holds over [a,C): ft is monotonically decreasing over (−∞, Nt]. Since one
has a < C ≤ Nt, then ft is monotonically decreasing over [a,C). Since a is a global minimizer of f
and a ∈ U , one has ft(x) ≤ ft(a) ≤ f(a) ≤ f(x) for all x ∈ [a,C) .

• The inequality ft ≤ f holds over [C,∞]: the claim is implied by the fact that ft(Nt) = 0 < f(Nt),
Nt ∈ [C,∞] together with the fact that f − ft has no real root in [C,∞].

Proposition 3.4. Let K be a subfield of R and f ∈ K[X] with deg f = n ≥ 1. Then f is non-negative
on R if and only if f is a weighted sum of n polynomial squares in K[X], i.e. there exist a1, . . . , an ∈ K≥0
and g1, . . . , gn ∈ K[X] such that f =

∑n
i=0 aig

2
i .

Proof. The if part is straightforward. For the other direction, assume that f is non-negative on R and
n is even. The proof is by induction over n. The base case n = 2 follows from Lemma 3.1. For the
induction case, let us consider n ≥ 4.

When f is not a square-free polynomial, we show that f is a weighted sum of n−2 polynomial squares. We

can write f = gh2, for some polynomials g, h ∈ K[X] with deg g ≤ deg f − 2. This gives g(x) = f(x)
h(x)2 ≥ 0

for all x ∈ R such that h(x) 6= 0. Since h has a finite number of real roots, g is non-negative on R. Using
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Input: non-negative polynomial f ∈ K[X] of degree n ≥ 2, with K a subfield of R
Output: pair of lists of polynomials (h list, q list) with coefficients in K

1: h list := [ ], q list := [ ].
2: while deg f > 2 do
3: (g, h) := sqrfree(f) . f = gh2

4: if deg h > 0 then h list := h list ∪ {h}, q list := q list ∪ {0}, f := g
5: else
6: ft := parab(f)
7: (g, h) := sqrfree(f − ft)
8: h list := h list ∪ {h}, q list := q list ∪ {ft}, f := g
9: end

10: done
11: h list := h list ∪ {0}, q list := q list ∪ {f}
12: return h list, q list

Figure 1: univsos1: algorithm to compute SOS decompositions of non-negative univariate polynomials.

the induction hypothesis, g is a weighted sum of n−2 polynomial squares. Therefore, f is also a weighted
sum of n− 2 polynomial squares.

When f is a square-free polynomial, then f has no real root, which implies by Lemma 2.4 that f is neither
a square-free polynomial in K[X] nor in R[X]. Thus, f is positive on R. Using Proposition 3.3, there
exists some t ∈ K (K is dense in R) and a quadratic polynomial ft ∈ K[X] such that the inequalities
0 ≤ ft(x) ≤ f(x) holds for all x ∈ R and ft(t) = f(t). The polynomial f − ft has degree n, takes only
non-negative values. In addition (f−ft)(t) = 0, thus f−ft is not a square-free polynomial. Hence, we are
in the above case, implying that f − ft is a weighted sum of n− 2 polynomial squares. From Lemma 3.1,
ft is a weighted sum of 2 polynomial squares, implying that f is a weighted sum of n polynomial squares,
as requested.

3.2 Algorithm univsos1

The global minimizer a is a real root of f ′ ∈ K[X]. Therefore, by using root isolation techniques [2,
Chap. 10], one can isolate all the real roots of f ′ in distinct intervals with bounds in K. Such techniques
rely on applying successive bisections, so that one can arbitrarily reduce the width of every interval and
sort them w.r.t. their lower bounds. Eventually, we apply this procedure to find a sequence of elements
in K converging from below to the smallest global minimizer of f in order to find a suitable t. We denote

by parab(f) the corresponding procedure which returns the polynomial ft := f ′(t)2

f(t) (X − t)2 + f ′(t)(X −
t) + f(t) such that t ∈ K and f ≥ ft over R.

Algorithm univsos1, depicted in Figure 1, takes as input a polynomial f ∈ K[X] of even degree n ≥ 2.
The steps performed by this algorithm correspond to what is described in the proof of Proposition 3.4
and relies on two auxiliary procedures. The first one is the procedure parab performing root isolation
(see Step 6). The second one is denoted by sqrfree and performs square-free decomposition: for a given
polynomial f ∈ K[X], sqrfree(f) returns two polynomials g and h in K[X] such that f = gh2. When
f is square-free, the procedure returns g = f and h = 1 (in this case deg h = 0). As in the proof of
Proposition 3.4, this square-free decomposition procedure is performed either on the input polynomial f
(Step 3) or on the non-negative polynomial (f − ft) (Step 7). The output of Algorithm univsos1 is a
pair of lists of polynomials in K[X], allowing to retrieve an SOS decomposition of f . By Proposition 3.4
the length of all output lists, denoted by r, is bounded by n/2. If we note hr, . . . , h1 the polynomials
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belonging to h list and qr, . . . , q1 the positive quadratic polynomials belonging to q list, one obtains
the following Horner-like decomposition: f = h2r

(
h2r−1(h2r−2(. . . )+qr−2)+qr−1

)
+qr. Thus, each positive

quadratic polynomial qi being a weighted SOS polynomial, this yields a valid weighted SOS decomposition
for f .

Example 1. Let us consider the polynomial f := 1
16X

6 +X4 − 1
9X

3 − 11
10X

2 + 2
15X + 2 ∈ Q[X].

We describe the different steps performed by Algorithm univsos1:

• The polynomial f is square-free and the algorithm starts by providing the value t = −1 as an
approximation of the smallest minimizer of f . With f(t) = 1397

720 and f ′(t) = −19
8 , one obtains

f−1 = 720
1397 (− 19

16X + 271
360 )2.

• Next, after obtaining the square-free decomposition f(X)− f−1 = (X + 1)2g, the same procedure
is applied on g. One obtains the value t = 1 as an approximation of the smallest minimizer of g
and g1 = 502920

237293 (− 1
18X + 88411

167640 )2.

• Eventually, one obtains the square-free decomposition g(X) − g1 = (X − 1)2h with h = 1
16 (X −

19108973
17085096 ).

Overall, Algorithm univsos1 provides the lists h list = [1, X+1, 1, X−1, 0] and q list = [ 720
1397 (− 19

16X+
271
360 )2, 0, 502920237293 (− 1

18X+ 88411
167640 )2, 0, 1

16 (X− 19108973
17085096 )], yielding the following weighted SOS decomposition:

f :=

(
(X+1)2

(
(X−1)2

( 1

16
(X− 19108973

17085096
)2
)

+
502920

237293
(− 1

18
X+

88411

167640
)2
))

+
720

1397
(−19

16
X+

271

360
)2.

In the sequel, we analyze the complexity of Algorithm univsos1 in the particular case K = Q. We
provide bounds on the bitsize of related SOS decompositions as well as bounds on the arithmetic cost
required for computation and verification.

3.3 Bit size of the output

Lemma 3.5. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ be an upper bound
on the bitsize of the coefficients of f . When applying Algorithm univsos1 to f , the sub-procedure parab

outputs a polynomial ft such that τ(t) = O (n2τ).

Proof. Let us consider the set S ⊆ Q defined by:

S := {t ∈ Q | ∀x ∈ R , f(t)2 + f ′(t)f(t)(x− t) + f ′(t)2(x− t)2 ≤ 4f(t)f(x) } .

The polynomial involved in S has degree 2n, with maximum bitsize of the coefficients upper bounded by
2τ . Thanks to the complexity analysis of the quantifier elimination procedure described in [2, §11.1.1]
the set S can be described by polynomials with maximum bitsize coefficients upper bounded by O (n2τ).
Since t is a rational root of one of these polynomials, the rational zero theorem [34] implies that τ(t) =
O (n2τ).

Lemma 3.6. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ be an upper bound
on the bitsize of the coefficients of f . When applying Algorithm univsos1 to f , the sub-procedure parab

outputs a polynomial ft such that τ(ft) = O (n3τ). Moreover, there exist polynomials f̂ , f̂t, g ∈ Z[X] such

that f̂ − f̂t = (X − t)2g and τ(g) = O (n3τ).

10



Proof. One can write ft = M2(t)X2 +M1(t)X +M0(t) with

M2(t) :=
f ′(t)2

4f(t)
,

M1(t) :=
2f ′(t)(2f(t)− tf ′(t))

4f(t)
,

M0(t) :=
(2f(t)− tf ′(t))2

4f(t)
,

and ‖ft‖∞ ≤ max{M2(t), |M1(t)|,M0(t)}. One has 0 ≤M0(t) = ft(0) ≤ f(0) ≤ ‖f‖∞.

In addition, 0 ≤M0(t) +M1(t) +M2(t) = ft(1) ≤ f(1) ≤ (n+ 1)‖f‖∞ and 0 ≤M0(t)−M1(t) +M2(t) =
ft(−1) ≤ f(−1) ≤ (n + 1)‖f‖∞. Thus, one has M0(t) + |M1(t)| + M2(t) ≤ (n + 1)‖f‖∞, wich implies
that ‖ft‖∞ ≤ (n+ 1)‖f‖∞.

Now let us note t = t1
t2

, with t1 ∈ Z, t2 ∈ Z\{0}, t1 and t2 being coprime. Let us define the polynomials

f̂(X) := t2n2 f(t)f(X) and f̂t(X) := t2n2 f(t)ft(X). By writing f(X) =
∑n
i=0 aiX

i, one has t2n2 f(t) =∑n
i=0 ait

i
1t

2n−i
2 ≤ ‖f‖∞|t1|i|t2|2n−i and τ(f̂) ≤ τ + τ(t2n). By Lemma 3.5, one has τ(f̂) = O (n3τ).

The polynomials f̂(X), f̂t(X) are polynomials in Z[X] and since ‖f̂t‖∞ ≤ (n + 1)‖f̂‖∞, the triangular

inequality ‖f̂ − f̂t‖∞ ≤ ‖f̂‖∞ + ‖f̂t‖∞ implies that τ(f̂ − f̂t) ≤ log2(n+ 2) + τ(f̂). In addition, τ(ft) ≤
τ(f̂t) + τ(t2n2 f(t)) = O (n3τ).

As in the proof of Proposition 3.4, one has (f̂ − f̂t)(t) = 0 which allows to write the square-free decom-

position of the polynomial f̂ − f̂t ∈ Z[X] as f̂ − f̂t = (X − t)2g, with g ∈ Z[X]. By Lemma 2.2, one has

τ(g) ≤ n − 2 + τ(f̂ − f̂t) + log2(n + 1) ≤ n − 2 + 2 log2(n + 2) + τ(f̂) = O (n3τ), which concludes the
proof.

Theorem 3.7. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ be an upper
bound on the bitsize of the coefficients of f . Then the maximum bitsize of the coefficients involved in the
SOS decomposition of f obtained with Algorithm univsos1 is upper bounded by O ((k!)3τ) = O ((n2 )

3n
2 τ).

Proof. With k = n/2 and starting from the polynomial f , Algorithm univsos1 generates, in the worst
case scenario, two sequences of polynomials fk, . . . , f1 ∈ Z[X], qk, . . . , q2 ∈ Z[X] as well as rational
numbers tk, . . . , t2 ∈ Q such that fk = f , ti = ti1

ti2
, with ti1 ∈ Z, ti2 ∈ Z\{0} and

t4ii2fi(ti)fi − qi = (X − ti)2fi−1 , i = 2, . . . , k . (1)

From Lemma 3.6, for all i = 2, . . . , k, one has τ(fi−1) = O (i3τ(fi)). This yields τ(f1) = O
(
(k!)3τ(f)

)
.

Using Stirling’s formula, we obtain k! ≤ 2
√

2πk
(
k
e

)k
and (k!)3 ≤ 1024

√
2π

3
2 k

3
2

(
k
e

)3k
, where e denotes

the Euler number. Since k ≤ ek for each integer k ≥ 1 and 3
2 < 3, one has (k!)3 ∈ O (k3k), yielding

τ(fi) = O ((n2 )
3n
2 τ), for all i = 1, . . . , k. Similarly, we obtain τ(qi) = O ((n2 )

3n
2 τ), for all i = 1, . . . , k.

Finally, using Lemma 3.5, one has τ(ti) = O (i2τ(fi)), yielding the desired result.

3.4 Bit complexity analysis

Theorem 3.8. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ be an upper
bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos1 runs in boolean time

∼
O (k3 · (k!)3τ) =

∼
O
((n

2

) 3n
2

τ

)
.
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Proof. For i = 2, . . . , k we obtain each polynomial fi−1 as in the proof of Theorem 3.7 by comput-
ing the square-free decomposition of the polynomial t4ii2fi(ti)fi − qi. It follows by Lemma 2.3 that

the polynomial fi−1 can be computed using an expected number of
∼
O (i2 · i3τ(fi)) boolean opera-

tions. The number of boolean operations to compute all polynomials f1, . . . , fk−1 is thus bounded by
∼
O
(
k2 · k3τ(lf) + (k − 1)2(k − 1)3k3τ(lf) + · · ·+ (k!)3τ(lf)

)
.

For each i = 2, . . . , k, the bitsize of the rational number ti is upper bounded by O (i2τ(fi)). There-
fore, ti can be computed by approximating the roots of f ′i with isolating intervals of radius less

than 2−i
2τ(fi). By Lemma 2.7, the corresponding computation cost is

∼
O (i3τ(fi)) boolean opera-

tions. The number of boolean operations to compute all rational numbers t2, . . . , tk is bounded by
∼
O
(
k3 · k3τ(lf) + (k − 1)3(k − 1)3k3τ(lf) + · · ·+ (k!)3τ(lf)

)
.

In addition, one has k3 · k3 + (k − 1)3(k − 1)3k3 + · · · + (k!)3 = (k!)3
∑k
i=1

1
(i!)3 ≤ 2k3 · (k!)3. Using

Stirling’s formula, we obtain k3 · (k!)3 ≤ 1024
√

2π
3
2 k

9
2

(
k
e

)3k
. Since k3/2 ≤ ek for each integer k ≥ 1, we

obtain the announced complexity.

For a given polynomial f of degree 2k, one can check the correctness of the SOS decomposition obtained
with Algorithm univsos1 by evaluating this SOS polynomial at 2k + 1 distinct points and compare the
results with the ones obtained while evaluating f at the same points.

Theorem 3.9. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ be an upper
bound on the bitsize of the coefficients of f . Then one can check the correctness of the SOS decomposition
of f obtained with Algorithm univsos1 within

∼
O (k · (k!)3τ) =

∼
O ((

n

2
)

3n
2 τ)

boolean operations.

Proof. From [7, Corollary 8.27], the cost of polynomial multiplication in Z[X] of degree less than n = 2k

with coefficients of bitsize upper bounded by B is bounded by
∼
O (k ·B). By Theorem 3.7, the maximal

bitsize of the coefficients of the SOS decomposition of f obtained with Algorithm univsos1 is upper
bounded by B = O ((k!)3τ). Let us consider 2k+1 distinct integers, with maximal bitsize upper bounded
by log2 n. Therefore, from [7, Corollary 10.8], the cost of the evaluation of this decomposition at the

2k + 1 points can be performed using at most
∼
O (k · (k!)3τ) boolean operations, the desired result.

Remark 3.10. Let fk = f ∈ Z[X]. Under the strong assumption that all polynomials fk, . . . , f1 involved
in Algorithm univsos1 have at least one integer global minimizer, then Algorithm univsos1 has a poly-
nomial complexity. Indeed, in this case, qi = fi(ti), τ(ti) = O (τ(fi)) and τ(fi−1) = O (2(i− 1) + τ(fi)),
for all i = 2, . . . , k. Hence, the maximal bitsize of the coefficients involved in the SOS decomposition of
f is upper bounded by O (k2 + τ) and this decomposition can be computed using an expected number

of
∼
O (k4 + k3τ) boolean operations.

4 Nichtnegativstellensätze with perturbed polynomials

Here, we recall the algorithm given in [4, Section 5.2]. The description of this algorithm, denoted
by univsos2, is given in Figure 2.
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Input: non-negative polynomial f ∈ K[X] of degree n ≥ 2, with K a subfield of R, ε ∈ K such that
0 < ε < fn, precision δ ∈ N for complex root isolation

Output: list c list of numbers in K and list s list of polynomials in K[X]
1: (p, h) := sqrfree(f) . f = p h2

2: n′ := deg p, k := n′/2

3: pε := p− ε
∑k
i=0X

2i

4: while has real roots(pε) do

5: ε := ε
2 , pε := p− ε

∑k
i=0X

2i

6: done
7: ε := ε

2
8: (s1, s2) := sum two squares(pε, δ)

9: ` := fn, u := pε − `s21 − `s22, u−1 := 0, u2k+1 := 0 . u =
∑2k−1
i=0 uiX

i

10: while ε < min0≤i≤k
{ |u2i+1|

4 − u2i + |u2i−1|
}
do

11: δ := 2δ, (s1, s2) := sum two squares(pε, δ), u := pε − `s21 − `s22
12: done
13: c list := [`, `], s list := [h s1, h s2]
14: for i = 0 to k − 1 do
15: c list := c list ∪ {|u2i+1|}, s list := s list ∪ {h (Xi+1 + sgn (u2i+1)

2 Xi)}
16: c list := c list ∪ {ε− |u2i+1|

4 + u2i − |u2i−1|}, s list := s list ∪ {hXi}
17: done
18: return c list ∪ {ε+ un − |un−1|}, s list ∪ {hXk}

Figure 2: univsos2: algorithm to compute SOS decompositions of non-negative univariate polynomials.

4.1 Algorithm univsos2

Given a subfield K of R and a non-negative polynomial f =
∑n
i=0 fiX

i ∈ K[X] of degree n = 2k, one first
obtains the square-free decomposition of f , yielding f = p h2 with p > 0 on R (see Step 1).Then the idea

is to find a positive number ε > 0 in K such that the perturbed polynomial pε(X) := p(X)− ε
∑k
i=0X

2i

is also positive on R (see [4, Section 5.2.2] for more details). This number is computed thanks to the loop
going from Step 4 to Step 6 and relies on the auxiliary procedure has real roots which checks whether
the polynomial pε has real roots using root isolation techniques. As mentioned in [4, Section 5.2.2], the
number ε is divided by 2 again to allow a margin of safety (Step 7).

Note that one can always ensure that the leading coefficient ` := pn of p is the same as the leading
coefficients fn of the input polynomial f .

We obtain an approximate rational sums of squares decomposition of the polynomial pε with the auxiliary
procedure sum two squares (Step 8), relying on an arbitrary precision complex root finder. Recalling
Theorem 2.1, this implies that the polynomial p can be approximated as close as desired by the weighted
sum of two polynomial squares in Q[X], that is `s21 + `s22.

Thus there exists a remainder polynomial u := pε −
`s21−`s22 with coefficients of arbitrary small magnitude (as mentioned in [4, Section 5.2.3]). The magnitude
of the coefficients converges to 0 as the precision δ of the complex root finder goes to infinity. The precision
is increased thanks to the loop going from Step 10 to Step 12 until a condition between the coefficients of
u and ε becomes true, ensuring that ε

∑k
i=0X

2i + u(X) also admits a weighted SOS decomposition. For
more details, see [4, Section 5.2.4].

The reason why Algorithm univsos2 terminates is the following: at first, one can always find a sufficiently
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small perturbation ε such that the perturbed polynomial pε remains positive. Next, one can always find
sufficiently precise approximations of the complex roots of pε ensuring that the error between the initial
polynomial p and the approximate SOS decomposition is compensated thanks to the perturbation term.

The output of Algorithm univsos2 are a list of numbers in K and a list of polynomials in K[X], allowing
to retrieve a weighted SOS decomposition of f . The size r of both lists is equal to 2k+3 = n′+3 ≤ n+3.
If we note cr, . . . , c1 the numbers belonging to c list and sr, . . . , s1 the polynomials belonging to s list,
one obtains the following SOS decomposition: f = crs

2
r + · · ·+ c1s

2
1.

Example 2. Let us consider the same polynomial f := 1
16X

6 +X4− 1
9X

3− 11
10X

2 + 2
15X + 2 ∈ Q[X] as

in Example 1. We describe the different steps performed by Algorithm univsos1:

• The polynomial f is square-free so we obtain p = f (Step 1). After performing the loop from
Step 4 to Step 6, Algorithm univsos2 provides the value ε = 1

32 at Step 7 as well as the polynomial
pε := p− 1

32 (1 +X2 +X4 +X6) which has no real root.

• Next, after increasing three times the precision in the loop going from Step 10 to Step 12, the result
of the approximate root computation yields s1 = X3 − 69

8 X and s2 = 7X2 − 1
4X −

63
8 .

Applying Algorithm univsos2, we obtain the following two lists of size 6 + 3 = 9:

c list =

[
1

32
,

1

32
,

913

15360
,

731

92160
,

7

1152
,

1

32
,

79

7680
,

1

576
, 0

]
,

s list =

[
X3 − 69

8
X, 7X2 − 1

4
X − 63

8
, 1, X,X2, X3, X +

1

2
, X(X − 1

2
), X2(X +

1

2
)

]
,

yielding the following weighted SOS decomposition:

f =
1

32

(
X3 − 69

8
X

)2

+
1

32

(
7X2 − 1

4
X − 63

8

)2

+
913

15360
+

731

92160
X2

+
7

1152
X4 +

1

32
X6 +

79

7680

(
X +

1

2

)2

+
1

576
X2

(
X − 1

2

)2

.

4.2 Bit size of the output

First, we need the following auxiliary result:

Lemma 4.1. Let p ∈ Z[X] be a positive polynomial over R, with deg p = n = 2k and τ be an upper
bound on the bitsize of the coefficients of p. Then, one has

inf
x∈R

p(x) > (n2τ )−n+22−n log2 n−nτ .

Proof. Denoting by τ ′ the maximum bit size of the coefficients of p′ and instantiating α = infx∈R p(x)
with a global minimizer of p, Q with p and A with p′ in the third item of [23, Lemma 3.2], one obtains.

inf
x∈R

p(x) > (n2τ )−n+22−nτ
′

Now, remark that τ ′ ≤ log2 n+ τ . Using this inequality in the one above allows to conclude.

14



Lemma 4.2. Let p ∈ Z[X] be a positive polynomial over R, with deg p = n = 2k and let τ be an upper
bound on the bitsize of the coefficients of p. Then there exists a positive integer N such that for ε := 1

2N
,

the polynomial pε := p− ε
∑k
i=0X

2i is positive over R and N = τ(ε) ≤ O (n log2 n+ nτ).

Proof. Let us first consider the polynomial r := p− pn
2

∑k
i=0X

2i. Using [2, Corollary 10.4], the absolute

value of each real root of the polynomial r is bounded by n 2τ(r) ≤ 2n2τ . By defining R := 2n2τ , it follows
that the polynomial r is positive for all |x| > R. In addition, for all positive integer N and ε = 1

2N
, one

has ε ≤ 1
2 ≤

pn
2 and pε = p − ε

∑k
i=0X

2i ≥ p − pn
2

∑k
i=0X

2i = r, which implies that the polynomial pε
is also positive for all |x| > R. Since R = 2n2τ > 1, one has 1 + R2 · · · + Rn < nRn. Let us choose the

smallest positive integer N such that nRn ≤ 2N inf |x|≤R p. This implies that ε <
inf|x|≤R p

1+R2···+Rn , ensuring
that the polynomial pε is also positive for all |x| ≤ R. Applying Lemma 4.1, we obtain the following
upper bound:

2N ≤ nRn(n2τ )n−22n log2 n+nτ = nn+12n2nτ (n2τ )n−22n log2 n+nτ .

The announced estimate follows straightforwardly.

In the sequel, we denote by z1, . . . , zn the (not necessarily distinct) complex roots of the polynomial pε.
Assuming that we approximate each complex root with a relative precision of δ, we write ẑ1, . . . , ẑn for
the approximate complex root values satisfying ẑi = zi(1 + ei), with |ei| ≤ 2−δ, for all i = 1, . . . , n.

Theorem 4.3. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n and τ be an upper bound
on the bitsize of the coefficients of f . Then the maximal bitsize of the coefficients involved in the weighted
SOS decomposition of f obtained with Algorithm univsos2 is upper bounded by O (n3 + n2τ).

Proof. Let p be the square-free part of the polynomial f (see Step 1 of Algorithm univsos2). Then by
using Lemma 2.2, one has τ(p) ≤ n+ τ + log2(n+ 1) = O (n+ τ).

Let ε = 1
2N

as in Lemma 4.2 so that the polynomial pε = p−ε
∑k
i=0X

2i is positive over R. By Lemma 4.2,
one has N = C(n2 + nτ) for some C > 1. Let us write pε =

∑n
i=0 aiX

i with an = ` and prove that a
precision of δ := N+log2(5n‖p‖∞) = C(n2+nτ)+log2(5n‖p‖∞) is enough to ensure that the coefficients

of u satisfy ε ≥ |u2i+1|
4 − u2i + |u2i−1|, for all i = 0, . . . , k. First, note that e := 2−δ < 1

n(n+1) holds. By

using Vieta’s formulas provided in Lemma 2.8, one has for all j = 1, . . . , n:∑
1≤i1<···<ij≤n

zi1 . . . zij = (−1)j
an−j
`

.

Then one has for all j = 1, . . . , n:

un−j = `
∑

1≤i1<···<ij≤n

(zi1 . . . zij − ẑi1 . . . ẑij ) =
∑

1≤i1<···<ij≤n

zi1 . . . zij
(
1− (1 + ei1) . . . (1 + eij )

)
.

Since e < 1
n , one can apply [15, Lemma 3.3], which yields

∏
1≤i1<···<ij≤n(1+eij ) ≤ 1+θj , with |θj | ≤ je

1−je .

In addition, one has (j + 1)e − je
1−je = e(1−j(j+1)e)

1−je ≥ 0 since e < 1
n(n+1) <

1
j(j+1) , for all j = 1, . . . , n.

Hence, one has |un−j | ≤ |an−j |(j + 1)e, for all j = 1, . . . , n.

This implies that for all i = 0, . . . , k:

|u2i+1|
4

− u2i + |u2i−1| ≤ e‖pε‖∞
(2n

4
+ 2n− 1 + 2n− 2

)
≤ 5ne‖pε‖∞ ≤ 5ne‖p‖∞ .

Since δ = N + log2(5n‖p‖∞), one has 5ne‖p‖∞ = ε. Thus, for all i = 0, . . . , k, ε ≥ |u2i+1|
4 − u2i + |u2i−1|

holds with δ = O (n2 + nτ + log2 n+ n+ τ) = O (n2 + nτ).
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For each j = 1, . . . , n, choosing ej = e = 2−δ and ẑj = zj(1 + 2−δ), yields |un−j | = |an−j ||1 − (1 +
2−δ)j |. Next, we bound the size of the weighted SOS decomposition. One has τ(δ) = O (n2 + nτ)
and for all i = 1, . . . , n, τ(an−i) ≤ τ(ε) = O (n2 + nτ). Therefore, for all j = 1, . . . , n, τ(un−j) ≤
O (n2 + nτ + j(n2 + nτ)) and the maximal bitsize of the coefficients of u is bounded by O (n3 + n2τ).

From Lemma 2.6, one has |ẑj | = |zj |(1 + 2−δ) ≥ 1
2τ(pε)+1

(1 + 2−δ)|, so that it is enough to perform root

isolation for the polynomial pε with a precision bounded by O (τ(pε) + δ) = O (n2 + nτ).

Finally, the weighted SOS decomposition of f has coefficients of maximal bitsize bounded by O (n3 + n2τ)
as claimed.

4.3 Bit complexity analysis

Theorem 4.4. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ be an upper
bound on the bitsize of the coefficients of f . Then, on input f , Algorithm univsos2 runs in boolean time

∼
O (n4 + n3τ).

Proof. By Lemma 2.3, the square-free decomposition of f can be computed using an expected number

of
∼
O (n2τ) boolean operations. Checking that the polynomial pε has no real root can be performed using

an expected number of
∼
O (n2 · τ(ε)) =

∼
O (n3τ) boolean operations while relying on Sylvester-Habicht

Sequences [20, Corollary 5.2].

As seen in the proof of Theorem 4.3, the complex roots of pε must be approximated with isolating intervals
(resp. disks) of radius less than 2−τ(pε)−δ. Thus, by Lemma 2.7, all real (resp. complex) roots of pε can

be computed in
∼
O (n3 + n2τ(pε) + n(δ + τ(pε)) =

∼
O (n4 + n3τ) boolean operations.

As in the proof of Theorem 4.3, one can select |un−j | = |an−j ||1 − (1 + 2−δ)j |, for all j = 1, . . . , n.

This implies that the computation of each coefficient of u can be performed with at most
∼
O (n · τ(δ)) =

∼
O (n3 + n2τ) boolean operations. Eventually, we obtain a bound of

∼
O (n4 + n3τ) for the computation of

all coefficients of u, which yields the desired result.

We state now the complexity result for checking the SOS certificates output by Algorithm univsos2. As
for the output of Algorithm univsos1, this is done through evaluation of the output at n + 1 distinct
values where n is the degree of the output.

Theorem 4.5. Let f ∈ Z[X] be a positive polynomial over R, with deg f = n = 2k and τ be an upper
bound on the bitsize of the coefficients of f . Then one can check the correctness of the weighted SOS

decomposition of f obtained with Algorithm univsos2 using
∼
O (n4 + n3τ) bit operations.

Proof. From [7, Corollary 8.27], the cost of polynomial multiplication in Z[X] of degree less than n

with coefficients of bitsize upper bounded by l is bounded by
∼
O (n · l). By Theorem 4.3, the maximal

coefficient bitsize of the SOS decomposition of f obtained with Algorithm univsos2 is upper bounded
by l = O (n3 + n2τ). Therefore, from [7, Corollary 10.8], the cost of the evaluation of this decomposition

at n points can be performed using at most
∼
O (n · (n3 + nτ)) boolean operations as claimed.
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5 Practical experiments

Now, we present experimental results obtained by applying Algorithm univsos1 and Algorithm univsos2,
respectively presented before in Sections 3 and 4. Both algorithms have been implemented in a tool, called
univsos, written in Maple version 16. The interested reader can find more details about installation and
benchmark execution on the dedicated webpage.3 This tool is integrated to the RAGlib Maple package4.
We obtained all results on an Intel Core i7-5600U CPU (2.60 GHz) with 16Gb of RAM. SOS decomposition
(resp. verification) times are provided after averaging over five (resp. thousand) runs.

As mentioned in [4, Section 6], the SOS decomposition performed by Algorithm univsos2 has been
implemented using the PARI/GP software tool5 and is freely available.6 To ensure fair comparison, we
have rewritten this algorithm in Maple. To compute approximate complex roots of univariate polynomials,
we rely on the PARI/GP procedure polroots through an interface with our Maple library. We also tried
to use the Maple procedure fsolve but the polroots routine from Pari/GPyields significantly better
performance for the polynomials involved in our examples.

The nine polynomial benchmarks presented in Table 1 allow to approximate some given mathematical
functions, considered in [4, Section 6]. Computation and verification of SOS certificates are a mandatory
step required to validate the supremum norm of the difference between such functions and their respective
approximation polynomials on given closed intervals. This boils down to certify two inequalities of the
form ∀x ∈ [b, c], p(x) ≥ 0, with p ∈ Q[X], b, c ∈ Q and deg p = n. As recalled in [4, Section 5.2.5], this
latter problem can be addressed by computing a weighted SOS decomposition of the polynomial q(Y ) :=

(1 + Y 2)n p
(
b+cY 2

1+Y 2

)
, with either Algorithm univsos1 or Algorithm univsos2. For each benchmark,

we indicate in Table 1 the degree n and the bitsize τ of the input polynomial, the bitsize τ1 of the
weighted SOS decomposition provided by Algorithm univsos1 as well as the corresponding computation
(resp. verification) time t1 (resp. t′1). Similarly, we display τ2, t2, t

′
2 for Algorithm univsos2. The table

results show that for all other eight benchmarks, Algorithm univsos2 yields better certification and
verification performance, together with more concise SOS certificates. This observation confirms what
we could expect after comparing the theoretical complexity results from Sections 3 and 4.

Table 1: Comparison results of output size and performance between Algorithm univsos1 and Algo-
rithm univsos2 for non-negative polynomial benchmarks from [4].

Id n τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
# 1 13 22 682 3 403 218 2 723 0.40 51 992 824 0.14
# 3 32 269 958 11 613 480 13 109 1.18 580 335 2 640 0.68
# 4 22 47 019 1 009 507 4 063 1.45 106 797 1 776 0.31
# 5 34 117 307 8 205 372 102 207 20.1 265 330 5 204 0.60
# 6 17 26 438 525 858 1 513 0.74 59 926 1 029 0.21
# 7 43 67 399 62 680 827 217 424 48.1 152 277 11 190 0.87
# 8 22 27 581 546 056 1 979 0.77 63 630 1 860 0.38
# 9 20 30 414 992 076 964 0.44 68 664 1 605 0.25
# 10 25 42 749 3 146 982 1 100 0.38 98 926 2 753 0.39

The comparison results available in Table 2 are obtained for power sums of increasing degrees. For a given

3https://github.com/magronv/univsos
4http://www-polsys.lip6.fr/~safey/RAGLib/
5http://pari.math.u-bordeaux.fr
6https://hal.archives-ouvertes.fr/ensl-00445343v2
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natural integer n = 2k with 10 ≤ n ≤ 500, we consider the polynomial Pn := 1+X+ · · ·+Xn. The roots
of this polynomial are the n + 1-th roots of unity, thus yielding the following SOS decomposition with
real coefficients: Pn :=

∏k
j=1((X − cos θj)

2 + sin2 θj), with θj := 2jπ
n+1 , for each j = 1, . . . , k. By contrast

with the benchmarks from Table 1, Table 2 shows that Algorithm univsos1 produces output certificates
of much smaller size compared to Algorithm univsos2, with a bitsize ratio lying between 6 and 38 for
values of n between 10 and 200. This is due to the fact that Algorithm univsos1 outputs a value of t
equal to 0 at each step. The execution performance of Algorithm univsos1 are also much better in this
case. The lack of efficiency of Algorithm univsos2 is due to the computational bottleneck occurring in
order to obtain accurate approximation of the relatively close roots cos θj ± i sin θj , j = 1, . . . , k. For
n ≥ 300, execution of Algorithm univsos2 did not succeed after two hours of computation, as meant by
the symbol − in the corresponding line.

Table 2: Comparison results of output size and performance between Algorithm univsos1 and Algo-
rithm univsos2 for non-negative power sums of increasing degrees.

n
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 84 7 0.03 567 264 0.03
20 195 10 0.05 1 598 485 0.06
40 467 26 0.09 6 034 2 622 0.18
60 754 45 0.14 12 326 6 320 0.32
80 1 083 105 0.18 21 230 12 153 0.47
100 1 411 109 0.26 31 823 19 466 0.69
200 3 211 444 0.48 120 831 171 217 2.08
300 5 149 1 218 0.74

− − −400 7 203 2 402 0.95
500 9 251 4 292 1.19
1000 20 483 30 738 2.56

Further experiments are summarized in Table 3 for modified Wilkinson polynomials Wn of increasing
degrees n = 2k with 10 ≤ n ≤ 600 and Wn := 1 +

∏k
j=1(X − j)2. The complex roots j± i, j = 1, . . . , k of

Wn are relatively close, which yields again a significant lack of performance of Algorithm univsos2. As
observed in the case of power sums, timeout behaviors occur for n ≥ 60. In addition, the bitsize of the
SOS decompositions returned by Algorithm univsos1 are much smaller. This is a consequence of the
fact that in this case, a = 1 is the global minimizer of Wn. Hence, the algorithm always terminates at the
first iteration by returning the trivial quadratic approximation ft = fa = 1 together with the square-free
decomposition of Wn − ft =

∏k
j=1(X − j)2.

Finally, we consider experimentation performed on modified Mignotte polynomials defined by Mn,m :=
Xn+2(101X−1)m and Nn := (Xn+2(101X−1)2)(Xn+2((101+ 1

101 )X−1)2), for even natural integers n
and m ≤ 2. The corresponding results are displayed in Table 4 for Mn,m with m = 2 and 10 ≤ n ≤ 10000,
m = n−2 and 10 ≤ n ≤ 100 as well as for Nn with 10 ≤ n ≤ 100. Note that similar benchmarks are used
in [33] to anayze the efficiency of (real) root isolation techniques over polynomial with relatively close
roots. As for modified Wilkinson polynomials, Algorithm univsos2 can only handle small size instances,
due to limited scalablity of the polroots procedure. In this case a = 1

100 is the unique global minimizer
of Mn,2. Thus, Algorithm univsos1 always outputs weighted SOS decompositions of polynomials Mn,2

within a single iteration by first computing the quadratic polynomial ft = fa = 2(101X − 1)2 and the
trivial square-free decomposition Wn−ft = Xn. In the absence of such minimizers, Algorithm univsos1

can only handle instances of polynomials Mn,n−2 and Nn with moderate degree (less than 100).
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Table 3: Comparison results of output size and performance between Algorithm univsos1 and Algo-
rithm univsos2 for modified Wilkinson polynomials of increasing degrees.

n τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)
10 140 47 17 0.01 2 373 751 0.03
20 737 198 31 0.01 12 652 3 569 0.08
40 3 692 939 35 0.01 65 404 47 022 0.17
60 9 313 2 344 101 0.01

− − −

80 17 833 4 480 216 0.01
100 29 443 7 384 441 0.01
200 137 420 34 389 3 249 0.01
300 335 245 83 859 11 440 0.01
400 628 968 157 303 34 707 0.02
500 1 022 771 255 767 73 522 0.02
600 1 519 908 380 065 149 700 0.04

Table 4: Comparison results of output size and performance between Algorithm univsos1 and Algo-
rithm univsos2 for modified Mignotte polynomials of increasing degrees.

Id n τ (bits)
univsos1 univsos2

τ1 (bits) t1 (ms) t′1 (ms) τ2 (bits) t2 (ms) t′2 (ms)

Mn,2

10

27 23

2

0.01

4 958 1 659 0.04
102 3

− − −103 85
104 3 041

Mn,n−2

10 288 25 010 21 0.03 6 079 2 347 0.04
20 1 364 182 544 138 0.04 26 186 10 922 0.06
40 5 936 1 365 585 1 189 0.13

− − −60 13 746 4 502 551 4 966 0.33
100 39 065 20 384 472 38 716 1.66

Nn

10

212

25 567 27 0.04

− − −
20 189 336 87 0.05
40 5 027 377 1 704 0.17
60 16 551 235 8 075 0.84
100 147 717 572 155 458 11.1

6 Conclusion and perspectives

We presented and analyzed two different algorithms univsos1 and univsos2 to compute weighted sums
of squares (SOS) decompositions of non-negative univariate polynomials. When the input polynomial
has rational coefficients, one feature shared by both algorithms is their ability to provide non-negativity
certificates whose coefficients are also rational. Our study shows that the complexity analysis of Algo-
rithm univsos1 yields an upper bound which is exponential w.r.t. the input degree, while the complexity
of Algorithm univsos2 is polynomial. However, comparison benchmarks emphasize the need for both
algorithms to handle various classes of non-negative polynomials, e.g. in the presence of rational global
minimizers or when root isolation can be performed efficiently.
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A first direction of further research is a variant of Algorithm univsos2 where one would compute approx-
imate SOS decompositions of perturbed positive polynomials by using semidefinite programming (SDP)
instead of root isolation. Preliminary experiments yield very promising results when the bitsize of the
polynomials is small, e.g. for power sums of degree up to 1000. However, the performance decrease when
the bitsize becomes larger, either for polynomial benchmarks from [4] or modified Wilkinson polynomials.
At the moment, we are not able to provide any SOS decomposition for all such benchmarks. Our SDP-
based algorithm relies on the high-precision solver SDPA-GMP [25] but it is still challenging to obtain
precise values of eigenvalues/vectors of SDP output matrices. Another advantage of this technique is
its ability to perform global polynomial optimization. A topic of interest would be to obtain the same
feature with the two current algorithms. We also plan to develop extensions to the non-polynomial case.
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