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Abstract 

 

In this study, a novel technique for multiple damage detection of structures using modal characterization to evaluate 

the dynamic response of the structure given a damage model is investigated. The damage identification problem is 

seen as an optimization problem to be solved using a firefly optimization algorithm. The objective function is based 

on a numerical damage model that considers the modal response of the structures. We show some implementation 

details and discuss the obtained results for a benchmark problem used to assess the performance of the method and its 

advantages for structural health monitoring. 

 

Keywords: firefly algorithm; optimization; finite element method; modal analysis; structural health monitoring. 

 

Resumen 

 

En este estudio, se investiga una técnica novedosa para la detección de daños múltiples de estructuras mediante la 

caracterización modal para evaluar la respuesta dinámica de la estructura dado un modelo de daño. El problema de 

identificación de daños se plantea como un problema de optimización que se resuelve utilizando un algoritmo de 

optimización tipo firefly. La función objetivo se basa en un modelo de daño numérico que considera la respuesta modal 

de las estructuras. Mostramos algunos detalles de implementación y discutimos los resultados obtenidos para un 

problema de referencia utilizado para evaluar el rendimiento del método y sus ventajas para el monitoreo de la salud 

estructural. 

 

Palabras clave: algoritmo firefly; optimización; método de elementos finitos; análisis modal; monitoreo de salud 

estructural. 
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1. Introduction 

The importance of early detection of damage has become 

more important during the last decades in industry and 

academy, going through visual inspection to vibrational 

analysis for many engineering applications [1]–[5]. 

Structural health monitoring (SHM) systems have been 

implemented widely in bridges such as the Great Belt 

Bridge in Denmark, the Confederation Bridge in Canada, 

among others [6]. The identification of the location and 

the depth of cracks in elements of the structure have 

received considerable attention in the Structural Health 

Monitoring (SHM) field. 

 

Damage detection methods can be classified into two 

categories: those based on identification with dynamic 

data, and methods based on identification with static data 

(deformations and stiffness matrices), the latter having 

less information available for analysis, as well as the 

difficulty to find damage in components of structures 

whose contribution to total deformation is low [7]. 

 

Damage detection in structures through modal analysis is 

one of the most used methods including dynamic data of 

structures. This is based on the fact that deterioration of 

the condition of a structure or element is linked to the loss 

of stiffness [1], [8], affecting the dynamic properties of 

the system. The variation presented in modal parameters 

is an indicator of the magnitude and localization of 

damage [9]–[11]. SHM using dynamic response can be 

classified into two groups according to the 

implementation [12]: experimental methods based on 

non-destructive techniques and numerical methods based 

on FEA (Finite Element Analysis) [2], where the use of 

this analytical tool with previous experimental validation 

is a great asset in the process [13]. The last one has 

particularly led to the development of intelligent 

structures or systems, which are capable of detecting 

damage online and quantifying the degree of severity of 

the damage. 

 

In the literature, there are different methods for the 

detection of damage based on the analysis of the dynamic 

parameters due to changes in the rigidity of the system 

[9], [14]–[16]. In [14], neural networks combined with 

fuzzy pattern recognition were used to do an online 

categorization of the health state of a bridge among four 

categories (healthy, little damage, moderate damage, and 

significant damage) through FEA computations of 

natural frequencies. This algorithm, although its 

satisfactory results in categorization, is not able to 

estimate damage quantity or location. 

 

In [15], genetic algorithms were considered to solve the 

problem of the detection of damage in structures and 

machine elements, which was addressed as an 

optimization problem. In seminal works, binary codified 

genetic algorithms were used, the objective function was 

based on the residual forces vector [16]. Such an 

approach has the disadvantage of requiring full modal 

forms, which in practice is currently not feasible due to 

technical and economic reasons. 

 

Later works proposed to detect the damage dividing the 

process into two stages to define its location and 

magnitude [17]. In the first stage, a set of elements 

possibly damaged was determined through a 

methodology of locating elements with damage based on 

energy. In the second stage, the damage is quantified 

using a micro-genetic algorithm, which performs an 

optimization process, where the optimal combination of 

damaged elements and damage extensions is sought to 

minimize a target function based on natural frequencies 

and modal forms. Metaheuristic algorithms have been 

also used for determining the optimal sensor placement 

(OSP) [18] before the implementation of SHM systems 

in real structures, which is a general concern for this type 

of applications, considering that the number and quality 

of identified mode shapes depend on the type of sensors 

used and their placements [19]. 

 

In [20], a modified genetic algorithm for the detection of 

structural damage was used. The algorithm considers a 

chromosome representation defined with real numbers 

and an objective function based on changes in natural 

frequencies and modal forms. Subsequently, it restarts 

the individuals who present a minimum difference in the 

objective function to define the new population. This 

type of coding is highly applicable to solve the problem 

of damage detection since the number and position of the 

damage elements are not known a priori. 

 

The work in [21] analyzes in detail the rigidity matrix of 

cracked beams and the non-linearity linked to the 

opening employing fracture mechanics. Fault detection is 

performed by comparing the natural frequencies of the 

models. They conclude that plate or brick elements in 

FEA are not necessary for SHM techniques for this type 

of structure. However, further work is required in the area 

since the developed algorithm satisfactorily detects the 

location of the damage, but gives an estimate of damage 

minor than the actual value. 

 

In [22], the failure is modeled by fracture mechanics, and 

using FEA the dynamic mode shapes are determined, 

allowing to associate the modal stiffness with the work 

of the internal forces and the displacement field. Then, 

the virtual work is calculated as a scalar product of the 

mode shapes. This allows computing the Modal 

Assurance Criterion (MAC), knowing that virtual work 
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is the square root of it. Based on this, a failure indicator 

for a life-time and service-life estimation is proposed. 

 

A framework with FEA updating simulations for 

probabilistic lifetime estimation for wind energy 

converter structures is developed by [23]. A detailed 

model of the structure is created using the FEA software 

ANSYS to compute the eigenvalues of the system, then 

a simplified one, with less computational cost, is 

validated, obtaining nearly perfect matches in the 

eigenvalues. The assumption of the reliability of the 

highly detailed FEA model is corroborated in [24] 

finding a 1.3% deviation with respect to measured data. 

This is used to develop a tool for online SHM. The 

eigenvalues are obtained by Operational Modal Analysis 

(OMA) of the real structure and through MAC-matrix 

diagonal values, an optimization problem with an 

objective function of the similarity between real-time 

simulations allows the identification of damage. A 

damage catalog with patterns is created a priori with 

FEA to allow rapid assessment of damage. 

 

In this paper, we propose the use of a metaheuristic 

optimization algorithm, called Firefly Algorithm (FA), 

for the online detection of structural damage through 

modal characterization. The swarm algorithm considers 

variations in the dynamic response of the structure, given 

a simple damage model, which is characterized by a 

decrease in the elastic properties of the damaged 

elements. The modal characterization is done using a 

finite element (FE) numerical model. In the next section, 

we present the problem statement and the definition of 

the optimization problem using FA. Then, numerical 

results are presented for a benchmark problem, where 

different damage configurations are considered. We 

perform the analysis of the different optimization 

parameters and their impact on the proposed FA 

algorithm. Finally, we present the most relevant 

conclusions. 

 

2. Methodology 

2.1. Problem Statement 

Consider the problem of free vibration without damping. 

The mathematical model that defines the equation of 

motion for the system with one degree of freedom can be 

written as: 
 

𝑚𝑢̈(𝑡) + 𝑘𝑢(𝑡) = 0, (1) 
 

where 𝑚 is the mass, 𝑘 is the elastic constant, 𝑢 is the 

displacement solution of the system and 𝑢̈ is its second 

derivative, which depend on the time 𝑡. The general 

solution of (1) is: 

 

𝑥 = 𝐴 sin(𝜔𝑡 + 𝐵) , 𝜔 = √𝑘/𝑚, (2) 
 

where 𝐴 and 𝐵  are real constants and 𝜔 represents the 

natural frequency of the system. Equation (1) can be 

generalized for systems of several degrees of freedom as: 

 

𝐌𝐮̈(t) + 𝐊𝐮(t) = 0, (3) 

 

where 𝐌 is the mass matrix, 𝐊 is the stiffness matrix of 

the system, and 𝐮 is the displacement field. The solution 

of (3) is not unique and for a system of n degrees of 

freedom there are n solutions 𝐮𝑖 or mode shapes, each 

one associated with a natural frequency of the system 𝜔𝑖. 

 

2.2. Finite element formulation and modal analysis 

For a continuous system, it is possible to find the solution 

employing a finite element discretization where, in 

equation (3), 𝐮 represents the nodal displacements 𝐮ℎ 

and matrices 𝐌 and 𝐊 are constructed from the matrices 

evaluated in the domain of each element, defined as: 

 

𝐌e = ∫ 𝐍T𝜌𝐍
𝛺𝑒

dΩ, 

     𝐊e = ∫ 𝐁T𝐃𝐁
𝛺𝑒

dΩ, 
(4) 

 

where 𝜌 is the mass per unit volume, 𝐍 are the basis 

functions used for the finite element approximation and 

𝐁 their derivatives, 𝐃 is the material matrix, and 𝛺𝑒 

denotes the finite domain of the element. 

 

2.3. Firefly Algorithm 

The firefly algorithm was proposed by Yang [25], 

inspired by the behavior of fireflies. It is a metaheuristic 

optimization algorithm for swarm intelligence. This 

algorithm offers advantages of operation when searching 

in extensive solution spaces since it does not have a 

starting point and it avoids falling into local optimum, 

improving its performance in the global space [26]. 

Figure 1 presents the pseudocode proposed in [25]. 

 

Fireflies use light to attract other fireflies during mating. 

In the algorithm, the light intensity can be formulated in 

such a way that it is associated with the objective function 

to be optimized. The algorithm generates a determined 

number of possible solutions within the search field, in 

which the configurations (fireflies) that give the best 

response of the objective function will be those that will 

attract the other configurations that are close. In this way, 

key points of the solution field are examined more 

efficiently. 
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Figure 1. Pseudocode of the FA algorithm. 

 

The control parameters of the FA algorithm are defined 

as: 

 

𝑥: Population of fireflies. 

𝑛: Size of the population, total number of fireflies. 

𝐼𝑖: Light intensity of the firefly i. 

𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Maximum number of generations for 

fireflies. 

𝛼: Sets the randomness of the process. It defines the step 

in the movement of the fireflies. 

𝛾: Coefficient of light absorption. 

Δ: It establishes the reduction of randomness whenever a 

new generation originates. 

𝛽: Attractiveness. Coefficient of attraction between 

fireflies, which varies with respect to the light absorption 

coefficient and the distance between them, given by 

 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟𝑚
, 𝑚 > 1 (5) 

 

where 𝛽0 is the attractiveness at 𝑟 = 0. 

 

Yang [9] established three fundamental rules governing 

the algorithm, which determine the behavior pattern of 

fireflies. These rules include: 

 

Fireflies are unisex, meaning a firefly will be attracted to 

another firefly regardless of sex. 

 

The attractiveness of a firefly is proportional to its 

brightness, and these two (attractiveness and brightness) 

are forced to decrease when the distance from another 

firefly increases. Less bright fireflies will move toward 

one with greater brightness. If a firefly is not attracted to 

any other, because there is none with a brightness greater 

than its own, it will move randomly. The brightness of a 

firefly is obtained by evaluating the objective function. 

 

2.4. Objective Function 

Different objective functions have been proposed in the 

literature for damage detection methods. In [27], [28], the 

authors considered a function using a correlation 

coefficient between the reference and test frequencies. 

However, it may not handle properly the non-uniqueness 

of the solution and the case for symmetric problems as it 

only considers the frequency information. In this study, 

the optimization problem for the detection of structural 

damage is defined through a functional that expresses the 

weighted difference between the response of the test 

model and the damaged models in a database [1], [11]. 

The objective function to be optimized reads: 

 

 

where the difference is minimized as a function of the 

natural frequencies 𝜔 and the mode shapes 𝜙 of the 

problem under consideration normalized to the mass 

matrix, such that the 𝜙 values correspond to the 

eigenvectors. 𝑊𝜔𝑗
 and 𝑊𝜙𝑗𝑖

 are the weighting factors for 

𝜔 and 𝜙 respectively, 𝑛𝜔 represents the number of 

natural frequencies to be considered and 𝑠 defines the 

size of the mode shape vector. 𝜙𝑚𝑗𝑖  and 𝜔𝑚𝑗  are the 

mode shapes and natural frequencies of the test model, 

𝜙𝑎𝑖𝑗  and 𝜔𝑎𝑗  are the mode shapes and natural frequencies 

read from the database during the optimization process. 

In this sense, the objective function will be in charge of 

the comparison of the dynamic characteristics of the test 

model and the models of the database that has 

preconfigurations of possible damages. 

 

2.5. Noise 

In general, it is not possible to measure and obtain exactly 

the natural frequencies and mode shapes for a given 

model. Although these errors are mostly corrected using 

cross- and auto-spectra, it is necessary to consider a 

robust algorithm that can manage certain levels of noise. 

To simulate distortion in the signals of the test model, 

noise was introduced in the values of natural frequencies 

𝜔 and modal forms 𝜙 following the procedure shown in 

references [11], [29]–[33]. Perturbation is expressed in 

𝑓(𝒙) = ∑ 𝑊𝜔𝑗

𝑛𝜔

𝑗=1

[1 − (
𝜔𝑚𝑗

𝜔𝑎𝑗

)]

2

+ ∑ ∑ 𝑊𝜙𝑗𝑖

𝑠

𝑖=1

𝑛𝜔

𝑗=1

(𝜙𝑚𝑗𝑖

− 𝜙𝑎𝑖𝑗), 

(6) 



                           255 
 

 

Structural health monitoring using the Firefly optimization algorithm and finite elements 

terms of small sums or subtractions that could be related 

to the power of the noise in the signal, given by 

 

 

where 𝑁𝜔 and 𝑁𝜙 represent the percentages of noise to 

be used in natural frequencies and mode shapes, 

randomly distributed. 

 

2.6. Algorithm description 

For the solution of the problem two programs are used: 

Ansys APDL and Matlab. First, it is required to evaluate 

the dynamic response to different damage scenarios. In 

Matlab, a database containing the dynamic responses for 

different damage configurations (affected bars and 

percentage of elasticity reduction) is constructed offline. 

Ansys APDL code is used to simulate stiffness losses in 

the bars and to obtain the modal characterization. 

 

𝜔𝑟 = 𝜔(1 + 𝑅𝑎𝑛𝑑(−1,1)𝑁𝜔), (7) 

𝜙𝑟 = 𝜙(1 + 𝑅𝑎𝑛𝑑(−1,1)𝑁𝜙), (8) 

 
Figure 2. Flowchart of the proposed algorithm. 
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With the database already built, the firefly algorithm is 

implemented. The algorithm generates a given number of 

fireflies (possible solutions within the database) that 

explore the solution field. The fireflies are evaluating the 

objective function and, through the intensity, they are 

grouped in the optimal local of the solution space. 

 

The optimization problem proposed by the objective 

function in (6) compares the test model with different 

damage models and finds the one that best fits the input 

data. The general flowchart of the proposed algorithm is 

shown in Figure 2. 

 

 

3. Numerical results 

To evaluate the performance of the proposed 

methodology, we implement the problem of a truss 

subjected to damage in different configurations. Noise is 

introduced into the model to simulate the effect of 

problems in signal capture and processing. We modify 

different optimization parameters to evaluate the 

response of the FA algorithm. 

 

3.1. Truss 

The planar truss in Figure 3 is composed of 13 bars of 

steel A-36, with Young’s modulus 𝐸 = 2 × 1011 𝑃𝑎, 

Poisson's ratio 𝜈 = 0.3 and, density 𝜌 = 7850 𝐾𝑔/𝑚3. 

The structure is simply supported on nodes 1 and 5, as 

shown. The cross-sectional area of the bars is 𝐴 =
4 × 10−4 𝑚2. The total height of the structure is 2.4284 

m and the span is 7.3152 m. The problem is to determine 

if any of the bars of the structure have a failure that could 

put the operation at risk. For the numerical model of the 

structure implemented in Ansys, we considered LINK1 

elements. We solve the problem of free vibration without 

damping in equation (3) to obtain the natural frequencies 

and mode shapes of the system. Initially, to set the 

optimization problem defined by the objective function 

in (6), the weighting is defined as 𝑊𝜔𝑗 = 1 and 𝑊𝜙𝑗𝑖 =

1, representing the same level of uncertainty for both 

measurements. Further study regarding the use of 

different weighting factors may be performed during 

experimental tests. The configuration parameters of the 

FA algorithm, as indicated in [10], are taken as 𝑛 = 40,
𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 5000, 𝛼 = 0.2, 𝛽0 = 1,γ = 1, and 

Δ = 0.97. 

 

The flowchart shows the algorithm process where, in the 

initial stage, the Firefly operating parameters are defined. 

Afterward, the information of the test model is received, 

which will be contrasted with the database in search of 

the term with greater similarity to it using the objective 

function. It is observed how the algorithm performs an 

intelligent scan of the database avoiding finding local 

minimums thanks to the randomly generated swarm and 

the rules of attraction between individuals. 

 

The database containing different damage configurations 

is generated offline to aid in the search for damage in the 

input model. The database contains the responses for 

damages in one or more bars within a range of [0, 95] in 

damage percentage, discretized every 5%. For the 

solution of (3), and to limit the problem size, only the 

extraction of the first 8 modal forms was considered. 

 

The optimization algorithm FA searches within a 

precalculated database, which contains the dynamic 

response of the structure for different faults. We 

determine the damaged elements and quantify the loss of 

rigidity for each element by means of the objective 

function. 

 

3.2. Multiple damage detection 

To evaluate the response of the proposed algorithm 

against noise a set of tests are performed. It is necessary 

to identify the minimum number of mode shapes required 

for the algorithm to behave appropriately, even in the 

presence of noise in the input data. To do that, a set of 

noise-scenarios are defined following (7], as 

N=[𝑁𝜔 , 𝑁𝜙]: N1= [0%, 0%],   N2= [0.5%, 1%], N3= 

[1%, 3%], N4= [2%, 5%], where 𝑁𝜔 represents the noise 

added to the natural frequency value and 𝑁𝜙 is the value 

added to the mode shapes, for a corresponding input. 

 

 
Figure 3. Truss simply supported. 

 

Thus, accuracy tests were performed in the proposed 

algorithm to verify how it responds to the noise, trying to 

emulate the response to an input signal with distortions. 

Three attempts were made for each combination of 

damage configuration and number of modes extracted, 

and the percentage of effectiveness was obtained. 

 

Figure 4 shows the effectiveness of the algorithm against 

noise for a different number of modal forms extracted. 

The results show that when we consider only 2 mode 

shapes the optimization algorithm is very sensitive to 
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noise and is not able to find the damaged elements in 

some cases. Increasing the number of mode shapes 

between 4 and 6 increases the effectiveness of the method 

by having an enriched search space. For 8 modes, the 

percentage of effectiveness of the algorithm looking for 

damaged elements was 100%. Therefore, for subsequent 

analysis of the performance of the optimization 

algorithm, we choose to extract 8 mode shapes. 

 

 
Figure 4. Accuracy of the algorithm versus different 

configurations of noise in the test model: N1 = [0%, 

0%], N2 = [0.5%, 1%], N3 = [1%, 3%], N4 = [2%, 

5%]. 

 

Figure 5 shows the results of the tests performed to 

identify the sensitivity of the algorithm to the noise in the 

natural frequency, modes of vibration, and both. We 

evaluate the accuracy to detect the magnitude and 

location of the damage when a discrete range of noise is 

added to the sensitivity parameters. The input variables 

Damage and Position are generated randomly to consider 

the performance of the algorithm throughout the entire 

database. Once the noise effect is added, the detection 

algorithm is executed and the predictions are obtained, 

which are compared with the original input variables to 

evaluate the accuracy. This process is replicated ten times 

to identify an average accuracy behavior given the 

random nature of the metaheuristic. 

 

Table 1. Damage performance against noise. P: 

Location of damage, D: Magnitude of damage 

 
 NOISE % 

Iter 4% 7% 10% 13% 16% 19% 22% 25% 

1 P D P D P D P D P D P D P D P D 

2 P D P D P D P D P D P D P D P D 

3 P D P D P D P D P D P D P D P D 

4 P D P D P D P D P D P D P D P D 

5 P D P D P D P D P D P D P D P D 

6 P D P D P D P D P D P D P D P D 

7 P D P D P D P D P D P D P D P D 

8 P D P D P D P D P D P D P D P D 

9 P D P D P D P D P D P D P D P D 

10 P D P D P D P D P D P D P D P D 

  

 
 

Figure 5. Accuracy of the model versus noise. 
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It can be observed that an accuracy of 80% can be 

expected if accelerometers with a ±5% noise in their 

measurements are employed.  

 

The algorithm shows excellent performance in detecting 

the position of damage given that noise in the mode 

shapes turns them into scalar multiples of the original 

unaffected ones, allowing the algorithm to identify 

location very accurately. For the magnitude of the 

damage, the results are shown in Table 1, where red 

boxes indicate an incorrect result and green ones a correct 

result, it can be observed for one of the ten data sets, how 

accuracy in the prediction on the magnitude of the 

damage decades for increasing values of noise. 

 

A more detailed analysis of the magnitude of damage 

detection is shown in Table 2. For noise values of 16%, 

the algorithm shows good estimations of the damage 

magnitude being those near the actual value in the input 

data. 

 

For this reason, an accuracy analysis of the algorithm to 

identify the location of the damage under the effect of the 

noise in the input data is executed in the same fashion as 

the previously shown, but considering only the location 

of the damage to computing the accuracy value. 

 

From this test, it can be observed in Figure 6 that the 

algorithm presents high accuracy in the detection of 

damage location under the presence of noise in the input 

data. Thus, the algorithm can be considered as a tool for 

locating the damage and estimating the percentage of 

damage of the affected elements. 

 

 

 

3.3. Analysis of metaheuristic parameters 

To identify the most relevant parameters in the 

performance of the Firefly Algorithm a 𝟐𝒌 experimental 

design is proposed according to [34]. The parameters n 

=[25 40], MaxGeneration=  [2500 5000], γ= [0.21 1], 

with the dependent variable  f(x), value of the objective  

function, as defined in (6). 

 

From Table 3, we can conclude that the most relevant 

factors in the performance of the Firefly Algorithm are n 

and MaxGeneration, since they have a P value lower than 

0.05 and, based on this, it is inferred that they are 

statistically significant. 

 

 
Figure 6. Accuracy of the model against noise 

considering only the damage location. 

 

 

 

 

Table 2. Damage prediction performance under noise conditions. In: input data, Out: output data 

 

  NOISE % 

  4% 7% 10% 13% 16% 19% 22% 25% 

Iter In Out In Out In Out In Out In Out In Out In Out In Out 

1 30-85 30-85 45- 80 45- 80 60-25 45-20 55-50 45-40 95-70 95-70 35-60 15-50 85-75 20-25 90-85 45-75 

2 45-75 45-75 55-80 55-80 85-35 85-35 85-80 70-75 30-65 30-50 50-15 40-10 85-90 40-85 95-60 90-35 

3 15-35 15-35 10-50 10-50 65-25 60-25 70-90 45-80 55-25 55-25 65-80 65-80 85-85 85-75 95-65 70-20 

4 20-75 20-75 60-10 60-10 55-15 45-10 25-85 15-85 20-80 5-70 60-30 35-30 95-65 90-30 10-60 10-60 

5 30-20 30-20 5-15 65-15 45-10 45-10 25-35 5-25 15-65 20-55 45-90 10-75 50-15 30-10 95-50 30-30 

6 45-45 45-45 55-15 55-15 85-25 85-25 45-65 45-65 15-25 10-25 55-40 20-35 40-45 25-35 95-95 50-80 

7 60-75 60- 75 50-65 50-65 75-25 75-25 30-40 30-35 15-80 15-80 45-90 45-80 95-50 65-40 95-50 90-45 

8 90-60 90- 60 85-75 85-70 85-25 85-25 75-60 70-60 45-80 10-75 95-50 55-25 25-55 40-85 85-15 80-15 

9 95-20 95- 20 40-10 35-10 75-45 75-45 35-50 30-45 75-65 60-55 50-55 30-45 45-50 45-50 80-40 30-30 

10 70-40 70- 40 20-10 20-10 85-85 85-85 25-50 25-50 30-35 10-10 70-75 20-25 55-85 25-20 95-70 85-55 
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In Figure 7 the standardized effects of each of the factors 

and their respective interactions are presented. Each of 

the effects of the 3 parameters considered and their 

interactions are in descending order. The dashed red line 

indicates a critical value with 95% confidence, where the 

values farthest to the right of the latter will be relevant.  

It is observed that the effects of the parameters n and 

MaxGeneration are the most significant and, 

additionally, the parameter n is the most relevant of all. 

 

4. Conclusions 

In the present work, a methodology was developed that 

addresses the problem of the detection of damage in 

structures as an optimization problem. ANSYS finite 

element software was used for the dynamic 

characterization of the structures. For the solution of the 

optimization problem, the Firefly Algorithm was chosen 

as the tool to determine the damage condition in the 

models. 

 
Figure 7. Pareto plot of the standardized effects. 

 

The methodology was based on the fact that damage 

affects the stiffness of the system, which results in a 

change in its dynamic response. A database was 

constructed offline with natural frequencies and mode 

shapes precalculated for different types of damage. The 

algorithm evaluates the dynamic response of the test 

model and compares it with the database to determine the 

magnitude and location of the damage. Extension to use 

other damage indicators [35] is also feasible. 

 

The results show that, for various damage configurations 

and a moderate noise percentage (cases R1, R2, R3), the 

algorithm is able to detect the affected elements or 

regions and quantify the damage percentage. When there 

is a severe noise condition (case R4) it is necessary to 

consider a higher number of mode shapes (6 or 8) to 

obtain a reliable response from the algorithm. This 

behavior is due to the fact that, when working with a few 

vibration modes, the algorithm does not have enough 

information on the nodal displacements to determine the 

location and magnitude of the damage. We can conclude 

that the number of shape modes to be extracted should be 

8 or higher. 

 

A more exhaustive analysis of the effect of noise for this 

condition is performed by running tests where the natural 

frequency, shape modes, and both are affected. From 

these analyses, it is concluded that the noise in the shape 

modes has a greater negative effect on the accuracy of the 

results. For tests with noise affecting both natural 

frequency and shape modes it is observed that the 

algorithm presents an acceptable accuracy, as low as 68% 

within a range of 7% of noise, this considering the 

estimation of location and magnitude of the damage. 

When considering the accuracy of only the location of 

damage, much better performance is obtained, getting for 

13% noise an accuracy of 84%. Hence, the algorithm can 

be considered as a tool for damage location and 

estimation of its magnitude. 

 

From the metaheuristic parameters analysis, it is 

concluded that the most relevant parameter is 𝑛, size of 

the population, the total number of fireflies. Then, 

computational resources must be focused on increasing 

this value to obtain better performance of the algorithm. 

 

 

Table 3. Parameter effect analysis 
 

 Effect Coef. Se T value P value 

Constant   0.141 0.007 19.89 0 

n -0.06 -0.03 0.007 -4.24 0 

γ -0.009 -0.004 0.007 -0.64 0.526 

MaxGeneration -0.031 -0.015 0.007 -2.19 0.032 

n γ 0.002 0.001 0.007 0.19 0.848 

n MaxGeneration 0.011 0.005 0.007 0.84 0.404 

γ MaxGeneration -0.027 -0.013 0.007 -1.9 0.062 

n MaxGeneration γ 0.02 0.01 0.007 1.42 0.159 

 

 



260   
 
 

O. A. González-Estrada, C. A. Manrique-Escobar, H. G. Sánchez-Acevedo 

Acknowledgments 

This work was financially supported by the grant UIS 

VIE Capital Semilla (1742). 

 

References  

[1] K. Moslem and R. Nafaspour, “Structural Damage 

Detection by Genetic Algorithms,” AIAA J., vol. 40, no. 

7, pp. 1395–1401, May 2012, [Online]. Available: 

http://arc.aiaa.org/doi/abs/10.2514/2.1800?journalCode

=aiaaj 

[2] O. A. González-Estrada, J. Leal Enciso, J. D. Reyes, 

J. D. Reyes Herrera, “Análisis de integridad estructural 

de tuberías de material compuesto para el transporte de 

hidrocarburos por elementos finitos,” Rev. UIS Ing., vol. 

15, no. 2, pp. 105–116, Jan. 2016, doi: 

10.18273/revuin.v15n2-2016009 

[3] A. M. Agredo Chávez, S. J. Sarmiento Nova, Á. 

Viviescas Jaimes, A. Viviescas Jaimes, “Evaluación de 

la rigidez a flexión de puentes de viga-losa en concreto 

presforzado a partir de pruebas de carga. Caso de estudio: 

puente La Parroquia, vía La Renta - San Vicente de 

Chucurí,” Rev. UIS Ing., vol. 15, no. 2, pp. 145–159, 

2016, doi: 10.18273/revuin.v15n2-2016013 

[4] D. A. Rodríguez-Caro, E. Vera-López, H. M. Muñoz-

Barajas, “Diseño e implementación de un sistema de 

adquisición y monitoreo de datos (shm) para un 

rectificador de protección catódica usado en ductos,” 

Respuestas, vol. 21, no. 1, p. 45, 2016, doi: 

10.22463/0122820X.633 

[5] H. G. Sánchez-Acevedo, F. R. Nova, O. A. González-

Estrada, “Implementation of the Operational Modal 

Analysis technique in a power transmission shaft,” J. 

Phys. Conf. Ser., vol. 1247, p. 12032, 2019, doi: 

10.1088/1742-6596/1247/1/012032 

[6] J. M. Ko, Y. Q. Ni, “Technology developments in 

structural health monitoring of large-scale bridges,” Eng. 

Struct., vol. 27, pp. 1715–1725, Oct. 2005, doi: 

10.1016/j.engstruct.2005.02.021 

[7] F. Bakhtiari-Nejad, A. Rahai, A. Esfandiari, “A 

structural damage detection method using static noisy 

data,” Eng. Struct., vol. 27, pp. 1784–1793, Oct. 2005, 

doi: 10.1016/j.engstruct.2005.04.019 

[8] S. A. Ardila Parra, H. G. Sánchez-Acevedo, O. A. 

González-Estrada, “Evaluation of damage to the lumbar 

spine vertebrae L5 by finite element analysis,” 

Respuestas, vol. 24, no. 1, pp. 50–55, 2019, doi: 

10.22463/0122820X.1804 

[9] H. G. Sánchez-Acevedo, D. M. C. Marulanda, E. G. 

Florez, “Application of vibration based damage 

identification techniques on metallic structures,” Adv. 

Mater. Res., vol. 875–877, pp. 875–879, Feb. 2014, doi: 

10.4028/www.scientific.net/AMR.875-877.875 

[10] H. G. Sánchez Acevedo, J. Uscátegui, S. Gómez, 

“Metodología para la detección de fallas en una 

estructura entramada metálica empleando las técnicas de 

análisis modal y PSO,” Rev. UIS Ing., vol. 16, no. 2, pp. 

43–50, 2017, doi: 10.18273/revuin.v16n2-2017004 

[11] J. M. Pachón, O. A. González-Estrada, H. G. 

Sánchez Acevedo, “Detección de daños en una armadura 

unidimensional por medio del algoritmo de optimización 

de la luciérnaga y elementos finitos,” Av. Investig. en 

Ing., vol. 13, no. 1, pp. 1–7, 2016. 

[12] Y. Zou, L. Tong, G. P. Steven, “Vibration-based 

model-dependent damage (delamination) identification 

and health monitoring for composite structures — a 

review,” J. Sound Vib., vol. 230, no. 2, pp. 357–378, 

2000, doi: 10.1006/jsvi.1999.2624 

[13] C. R. R. Farrar, K. Worden, “An introduction to 

structural health monitoring,” Philos. Trans. R. Soc. A 

Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 303–315, 

2007, doi: 10.1098/rsta.2006.1928 

[14] M. M. M. Reda Taha, J. Lucero, “Damage 

identification for structural health monitoring using 

fuzzy pattern recognition,” Eng. Struct., vol. 27, no. 12 

SPEC. ISS., pp. 1774–1783, Oct. 2005, doi: 

10.1016/j.engstruct.2005.04.018 

[15] A. Rytter, “Vibration Based Inspection of Civil 

Engineering,” Aalborg University, 1993. 

[16] J. F. Schutte and A. A. Groenwold, “Sizing design 

of truss structures using particle swarms,” Struct. 

Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, Oct. 

2003, doi: 10.1007/s00158-003-0316-5 

[17] S. M. Bland, R. K. Kapania, “Damage 

Identification of Plate Structures Using a Hybrid 

Genetic-Sensitivity Approach,” AIAA J., vol. 43, no. 2, 

pp. 439–442, May 2005, [Online]. Available: 

http://arc.aiaa.org/doi/abs/10.2514/1.3857?journalCode

=aiaaj. 

[18] G.-D. Zhou, T.-H. Yi, H.-N. Li, “Sensor 

placement optimization in structural health monitoring 

https://doi.org/10.18273/revuin.v16n2-2017004


                           261 
 

 

Structural health monitoring using the Firefly optimization algorithm and finite elements 

using cluster-in-cluster firefly algorithm,” Adv. Struct. 

Eng., vol. 17, no. 8, pp. 1103–1115, 2014. 

[19] Á. Viviescas Jaimes, L. A. Vargas Carvajal, C. A. 

Riveros Jerez, “Identificación modal de un puente viga 

cajón usando mediciones óptimamente seleccionadas de 

ensayosde excitación ambiental,” Rev. UIS Ing., vol. 18, 

no. 2, pp. 31–40, 2019, doi: 10.18273/revuin.v18n2-

2019003 

[20] J. E. Laier, J. D. V Morales, “Computational 

Structural Engineering: Proceedings of the International 

Symposium on Computational Structural Engineering, 

held in Shanghai, China, June 22--24, 2009,” Y. Yuan, J. 

Cui, and H. A. Mang, Eds. Dordrecht: Springer 

Netherlands, 2009, pp. 833–839. 

[21] M. I. I. Friswell, J. E. T. E. T. Penny, “Crack 

Modeling for Structural Health Monitoring,” Struct. 

Heal. Monit. An Int. J., vol. 1, no. 2, pp. 139–148, Jun. 

2002, doi: 10.1177/1475921702001002002 

[22] W. B. Krätzig, Y. S. Petryna, “Structural damage 

and life-time estimates by nonlinear FE simulation,” Eng. 

Struct., vol. 27, no. 12 SPEC. ISS., pp. 1726–1740, Oct. 

2005, doi: 10.1016/j.engstruct.2005.04.015 

[23] D. Hartmann, K. Smarsly, K. Law, “Coupling 

sensor-based structural health monitoring with finite 

element model updating for probabilistic lifetime 

estimation of wind energy converter structures,” in 

Proceedings of the 8th international workshop on 

structural health monitoring, 2011, pp. 13–15, [Online]. 

Available: http://www.inf.bi.uni-

bochum.de/intern/aigaion/documents/smarsly2011f.pdf-

b6da891bb21981e77144d6893b1a52c3.pdf 

[24] K. Smarsly, K. H. Law,  D. Hartmann, “Towards 

life-cycle management of wind turbines based on 

structural health monitoring,” in Proceedings of the First 

International Conference on Performance-based Life-

cycle Structural Engineering, 2012, [Online]. Available: 

http://eil.stanford.edu/publications/kay_smarsly/smarsly

2012d.pdf 

[25] X. Yang, Nature-Inspired Metaheuristic 

Algorithms, 1st ed. Frome: Luniver Press, 2008. 

[26] X. Yang, X. He, “Firefly algorithm: recent 

advances and applications,” Int. J. Swarm Intell., vol. 1, 

no. 1, p. 36, Aug. 2013, doi: 10.1504/IJSI.2013.055801 

[27] B. H. Koh, S. J. Dyke, “Structural health 

monitoring for flexible bridge structures using 

correlation and sensitivity of modal data,” Comput. 

Struct., vol. 85, no. 3–4, pp. 117–130, 2007, doi: 

10.1016/j.compstruc.2006.09.005. 

[28] S. C. Mohan, D. K. Maiti, D. Maity, “Structural 

damage assessment using FRF employing particle swarm 

optimization,” Appl. Math. Comput., vol. 219, no. 20, pp. 

10387–10400, 2013, doi: 10.1016/j.amc.2013.04.016 

[29] T. Nguyen-Thoi, A. Tran-Viet, N. Nguyen-Minh, 

T. Vo-Duy, V. Ho-Huu, “A combination of damage 

locating vector method (DLV) and differential evolution 

algorithm (DE) for structural damage assessment,” 

Front. Struct. Civ. Eng., vol. 12, no. 1, pp. 92–108, 2018, 

doi: 10.1007/s11709-016-0379-1 

[30] Z. T. Wei, J. K. Liu, Z. R. Lu, “Damage 

identification in plates based on the ratio of modal strain 

energy change and sensitivity analysis,” Inverse Probl. 

Sci. Eng., vol. 24, no. 2, pp. 265–283, 2016, doi: 

10.1080/17415977.2015.1017489 

[31] Y. Z. Fu, J. K. Liu, Z. T. Wei, Z. R. Lu, “A two-

step approach for damage Identification in plates,” 

JVC/Journal Vib. Control, vol. 22, no. 13, pp. 3018–

3031, 2016, doi: 10.1177/1077546314557689 

[32] Z. Y. Shi, S. S. Law, L. M. Zhang, “Structural 

Damage Detection from Modal Strain Energy Change,” 

J. Eng. Mech., vol. 126, no. 12, pp. 1216–1223, 2000, 

doi: 10.1061/(ASCE)0733-9399(2000)126:12(1216) 

[33] J. Xiang, M. Liang, Y. He, “Experimental 

investigation of frequency-based multi-damage detection 

for beams using support vector regression,” Eng. Fract. 

Mech., vol. 131, pp. 257–268, 2014, doi: 

10.1016/j.engfracmech.2014.08.001 

[34] D. Montgomery, Design and Analysis of 

Experiments, 9th ed. Hoboken, NJ: John Wiley & Sons, 

2017. 

[35] Y. L. Zhou,  M. Abdel Wahab, “Cosine based and 

extended transmissibility damage indicators for 

structural damage detection,” Eng. Struct., vol. 141, pp. 

175–183, 2017, doi: 10.1016/j.engstruct.2017.03.030 

 


