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Overview

We use a reconstructed surface based on algebraic
spheres to control the mesh decimation

Mesh simplification from the reconstructed surface (red) based on
the interpolation of algebraic spheres

Context

The use of proxies as a high level control of the surface
has been studied for mesh simplification with planes [3]
and spheres [4]. We propose as a proxy the recon-
structed surface of the input mesh based on algebraic
spheres, which handles curvatures as well as sharp fea-
tures.

Proposition

Mesh simplification algorithm

Input: High resolution mesh
Output: Coarser mesh
begin
for each vertex xi do
pxi = curvature estimation of xi;
end
for each pair (xi, xj) do
(c(xi,xj), xαi) = curvature error metric at (xi,
xj);
push (xi, xj, xαi) in a heap keyed on cost c(xi,xj);
end
while heap not empty do
collapse (xi, xj) on xαi;
pxαi = pxi + αi(pxj − pxi);
update cost of xαi neighbors in the heap ;
end
end

Curvature estimation

We compute the algebraic sphere Si for each vertex
xi of the mesh.

Computing the curvature at any point consists in
interpolating the spheres along the edges and faces,
e.g. for the edge (x1,x2), we have:

Sα = S1 + α(S2 − S1) (1)

Reconstructed APSS curve (blue) from the polyline (black).
Interpolated spheres (red).

Curvature error metric

The contraction cost c(x1,x2) is defined as the volume
between the sphere representing the curvature and
the mesh.

Thanks to the algebraic formulation, the distance
from a point x to the sphere is obtained by com-
puting the field value S(x).

x0

x1 x2

x3

xα

Sα

x0

x1 x2

x3
S1

S2

ecol(x1,x2)

Edge contraction of (x1,x2) on xα. The energy to minimize is
equal to the filled area.

The resulting position xα is obtained by minimizing
the following energy:

argmin
α

(
∫ 1

0
Sα(x0 + µ(xα − x0))dµ‖xα − x0‖

+
∫ 1

0
Sα(xα + γ(x3 − xα))dγ‖x3 − xα‖)

Comparison

Our simplification shows more vertices with a low error.

Simplification and error distribution of Human (8k faces) with our
method (left), QEM method (right)

Simplification and error distribution of Bunny (12k faces) with our
method (left), QEM method (right)

Conclusion

We present a new error metric for mesh simplification
which preserves local curvature. Thanks to the prop-
erties of interpolated algebraic sphere, the curvature is
easily computed.

Future work

•Finding the 3D optimal position by minimizing the
distance face-sphere

• Investigate adaptive kernel size when computing the
algebraic spheres w.r.t. the surface features
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Two views of the Fertility surface simplified to 2k faces
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Original Fandisk (top left) and its simplifications


