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How do Writings in the Early Astral Sciences Reveal Mathematical Practices and 

Practitioners? 

Matthieu Husson (CNRS, SYRTE-Observatoire de Paris, SAW project);  

Richard Kremer (Dartmouth College, SAW project) 

 

Predicting eclipses and planetary phenomena has always been a desideratum for the astral 

sciences, whether in China, India, Babylonia, Egypt, Persia, or Italy. Indeed, we might say that 

it was largely by inventing mathematical procedures for these tasks that sky watchers became 

astral scientists. When sources have been preserved that allow us to observe these procedures, 

we can often learn not only about early astronomical assumptions but also about the 

mathematical practices of the astronomers. Such practices might include the design of 

metrologies and units, types of numbers and their arithmetics (e.g., fractions, sexagesimals), 

computational techniques, or the use of accessories such as diagrams, instruments, or numerical 

tables. 

Consider, for example, the case of the armillary sphere, for centuries an emblem of 

mathematical astronomy. A great diversity of ancient and medieval sources describe this device 

and its uses. For example, official Chinese inventories of the holdings of particular astronomical 

institutions may discuss different kinds of ancient armillary spheres and their uses. Spheres can 

be described in versified Sanskrit treatises with commentaries, describing step-by-step the 

construction of the instrument and defining the astronomical meanings of its parts. Or advanced 

technical treatises may explore intricate cosmological and mathematical questions. Such a 

variety of sources can reveal a corresponding variety of mathematical practices linked to the 

armillary spheres and thus may constitute a methodological challenge for the historian seeking 

to understand the mathematical, astronomical or cultural significance of this instrument. 

Similarly, early astronomers were often confronted by the management of long, complex 

computations, performed individually or collectively, with serious political and social 

consequences in case of perceived mistakes or inaccuracies. Again, a great variety of 

computational practices are attested in the sources. For instance, manuscripts assembled over a 

few years by John Westwyk, a 14th-century monk at the St Albans monastery and Tynemouth 

priory shows its owner learning mathematical astronomy through the compilation of various 

tables and instruments that he progressively adapted for his own purposes and computational 

habits. A much more institutionalized type of source, addressing the same kind of issues, is the 

‘template table’ of Ming China, a printed sheet offering a grid with blank spaces for writing in 

numbers. Officially prepared by the Astronomical Bureau, the templates were designed to 

record intermediate results of an eclipse calculation. Textual labels on the rows and columns 

guide the user at each step of the computation. Here we find a writing support that normalizes 

mathematical practices, removes uncertainty or variation, and presumably would allow less 

experienced practitioners to compute eclipses even if they did not understand the ‘meaning’ of 

the algorithmic steps. The Bureau's template sheets, like the manuscript of John Westwyk, 

enable us to explore mathematical practices, to learn more than we would simply by considering 

the ‘theories’ of the astral sciences. 

All of these instances as well as others are analyzed in this collection of papers. The articles in 

this issue arose within a collaborative research project conducted in Paris, Mathematical 



Sciences in the Ancient World (SAW), funded by the European Research Council for 2012–

2016 and directed by Karine Chemla. Focused on the analysis of sources for the early astral 

sciences, the special issue seeks to build a new awareness of specific features in such sources 

that can allow historians to recover often overlooked information about mathematical practices 

and practitioners. These practices could vary widely across time and geography; some travelled 

with texts or individual people; others remained local and particular. 

The written sources in which such mathematical practices can be found encrypted can range 

widely, from documents produced in imperial offices to computational notes inserted by 

individuals into the blank folios of manuscripts filled with other materials. The more explicit 

texts of the astral sciences include numerical tables, diagrams, instructional canons or 

astrological charts, each laid out or formatted according to local or individual variation as well 

as knowledge of the writing technologies found in earlier astral texts. The sources of the early 

astral sciences often attest to very rich mathematical and writing practices. 

Guided by these concerns, the authors of these case studies seek to explore, in new ways, 

various sources from the early astral sciences. Rather than merely explicating the astral sciences 

themselves, e.g., astronomical theory or computational algorithms, they are interested in 

documentary questions. How do the writing formats and medial conventions shape and reveal 

mathematical practices? Can similarities and differences in mathematical reasoning, 

computational techniques, metrology and units, algorithmic recipes, or the visual grammar of 

diagrams and pictures be explained by reference to writing practices in the early mathematical 

cultures specific to the milieus producing the sources of astral sciences in China, India, and 

Latin Europe? 

Considering the material aspects of documents in the study of early astral and mathematical 

sciences is not new, as can be seen in the work of earlier (Paul Tanery, J.L. Heiberg, Otto 

Neugebauer or David Pingree) or more recent (Alexander Jones, Christine Proust or John 

Steele) scholars. Building on their erudition and results, the authors of the contributions in this 

issue seek to explore new methods to recover mathematical practices that go beyond the 

establishment and dating of definitive texts. The idea to analyse together the physical and 

textual features of historical sources in order to expose various cultural practices of authors, 

scribes, readers, and owners has its own history, stretching across disciplines too complex to 

trace here. Nevertheless, we find our approach informed by the ‘new bibliography’ exemplified 

by D. F. McKenzie, who in his Panizzi Lectures of 19851 called for studying the ‘sociology of 

texts,’ i.e., the social processes of their production, transmission, and consumption and the 

range of symbolic meanings evoked by the signs on the page. We also have learned from the 

seminar ‘History of Science, History of Text’ of the SPHERE Laboratory (Université Paris 7) 

that has, for the past two decades, investigated such issues in the history of science2. In this 

historiographic context, we hope that this special issue will contribute to the history of 

mathematics and astronomy as well as to the cultural history of science by attending to physical 

and textual features of sources for the astral sciences. 

The case studies of this special issue are organised around two themes. Three articles focus on 

computational practices; the other three consider uses of diagrams and instruments. In the first 

set, Sebastian Falk analyses the tabular portion of a manuscript in Cambridge, Peterhouse MS 

75.I. Known as the Equatorie of the Planetis, this late 14th-century English manuscript is 

                                                           
1 D. F. McKenzie, Bibliography and the sociology of texts, London: British Library, 1986 
2 Chemla, K. and Virbel, J. (eds.) (2015) Text, Textual Acts and the History of Science (Basel: Springer). 



written in two hands and two languages plus a secret cipher. Falk argues that an actor probably 

from a monastic context invented a novel astronomical computational tool, brought together in 

the same codex different and sometimes redundant numerical tables to use with the instrument, 

corrected some of these tables and probably computed others as his expertise increased in the 

process of assembling the codex. Falk finds an author experimenting with his material, 

exploring practices such as rounding and the accuracy and precision of various types of 

astronomical computation. 

Li Liang also examines astronomical computation but in the context of late early modern 

astronomical imperial offices in China and Korea. From the Ming dynasty onward, very 

detailed template tables were developed and published by the imperial astronomical offices as 

a means to standardise astronomical computation. Through an examination of these printed 

documents Liang argues that, despite the profound differences in astronomical theory and 

cosmological beliefs, computations were performed with the same tools by actors making the 

traditional Chinese calendar and Arabic and European ephemerides. An analysis of errors in 

extant computations allows Liang to recover important features of rounding and the ways in 

which tables were read. The template tables reveal fundamental features of the computational 

practices in the imperial bureau of astronomy 

Matthieu Husson addresses a solar eclipse computation recorded in 1333 by the Parisian 

astronomer John of Murs in several leaves left blank by the main scribe of a manuscript now in 

the Escorial Library. This document shows how a complex computation is managed by an 

astronomer working in the context of the medieval university. Husson considers multiple 

writing supports, references to astronomical tables built on conflicting parameters, various 

procedures employed at different steps of the computation, and the major ‘choices’ of the 

computation, paying close attention to the temporal dimension of writing. The analysis of the 

document allows Husson to approach mathematical practice on very short time scales. Husson 

wants to know when his actor wrote, turned to an auxiliary codex, perused his memory, 

corrected mistakes, or thought about how he might, in the future, consult the computation 

currently being made. 

The second set of case studies addresses mathematical practices in diagrams and instruments. 

Sho Hirose examines two textual descriptions of the armillary sphere handed down in two 

distinct versions of Paramesvara's Goladīpikā (circa 1440). These texts were both produced by 

the same author in south India, under the same title. Their contrasts reveal how mathematical 

practices surrounding the same instrument may be presented in complementary ways, according 

to genre and intention. The armillary sphere thus appears at the centre of complex mathematical 

practices. On one side, they involve the three-dimensional material object itself. On the other, 

they employ different kinds of textual representations of the instrument. These practices allow 

the instrument's use to be directed toward the definition of fundamental astronomical concepts, 

such as latitude or the design and justification of complex computations, or the discussion of 

cosmological issues. 

Daniel Morgan also considers armillary spheres but in the context of imperial Chinese 

scholarship of the first millennium, with a focus on their differing uses. From documents of a 

very specific type, imperial histories, Morgan demonstrates that the Chinese texts actually 

describe two different kinds of armillary spheres, those provided with sights through which 

users could view and measure astronomical phenomena and those that represented celestial 

motions and may have been used for time keeping. Each type of armillary sphere is associated 

with a specific set of mathematical practices that can be partially excavated from the documents. 



Finally Richard L. Kremer examines a paper instrument printed as a broadside in 1515 in 

Nuremberg, designed by Johann Stabius, historian and mathematician at the court of Emperor 

Maximilian I. The extant sheet offers no proofs or recipes for constructing the instrument and 

only abbreviated instructions for its use. It is nonetheless possible to deduce from Stabius's 

broadside the different geometrical tools that Stabius and his contemporaries would have 

accepted as legitimate and reliable even if they are nowhere discussed, justified, explained or 

demonstrated in the written sources. Innovation in this community of cosmographers could 

occur as practitioners manipulated and rearranged those geometrical tools to solve various 

computational tasks via paper instruments. 

In addition to uncovering usually hidden features of mathematical practices in sources of the 

early astral sciences, these essays illustrate different approaches to the analysis of the 

documents. For example, several of these studies rely on a close analysis of the materiality of 

the extant written sources. How do writing supports shape the production of texts? How did 

actors interact with their writing supports in order to perform computation or other operations, 

reasonings, algorithm construction, or the making of three-dimensional instruments? Did 

writing supports in the astral sciences interact with practice differently from those in other 

domains such as bureaucracy, poetry, or law? Such broad questions about the writings cultures 

which produced the sources examined here can build a greater awareness of details that may 

offer important clues for the recovery of mathematical practices. They also allow scholars to 

critically assess the importance of such sources and what it meant for actors to produce such 

documents. 

Other essays in this issue employ more traditional textual approaches to their sources, including 

palaeography, philology, consideration of technical terminology, grammar, thematic analysis, 

etc. Such methods enable the contributors to assess mutual dependencies among sources, 

relations of their different parts, intellectual tensions around which they were built, multiple 

layers of meanings and the various ways that the sources could have been read and used. When 

coordinated with the material approaches, such textual studies can help us to identify 

trajectories of use for given documents. 

Finally, our contributors also have drawn insights from the history of mathematics. These 

enable the reconstruction of the flow of computations sometimes incompletely recorded in the 

documents. They offer clues about types of numbers, rounding, and tabular interpolation. They 

enable us to assess the significance of specific geometrical arrangements in paper instruments 

or the intricacies of graduating a circle on an armillary sphere. Using mathematical approaches, 

along with the textual and material, we can begin to imagine the ways in which texts, tables and 

geometrical tools were deployed by the actors, how a terse procedural text complements a 

template table, how an incomplete set of tables is linked to a well-designed diagram or how an 

instrument may depict fundamental astronomical ideas. 

We hope that the papers in this special issue may inspire other efforts to recover mathematical 

practices from documents or other materials that comprise the sources of the early astral 

sciences. Conversely we wish to promote the idea that analyses of mathematical practices also 

can yield important insights about the material and textual dimensions of sources. 
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Learning Medieval Astronomy Through Tables: The Case of the Equatorie 
of the Planetis 

 

SEB FALK
* 

Abstract.† Medieval tables can be rich sources of evidence about the practices of the 
mathematicians and astronomers who used them.  This paper analyses an important set of tables, 
revealing their compiler’s learning practices and elucidating a valuable document of inexpert 
science. Peterhouse, Cambridge MS 75.I, ‘The Equatorie of the Planetis’, is a late-fourteenth-
century compilation.  It contains a treatise describing the construction and use of an equatorium 
(an astronomical instrument that computes the positions of the planets), bound with a collection 
of related astronomical tables.  It was long thought to be written by the English poet Geoffrey 
Chaucer, but has recently been shown to be the work of a Benedictine monk, John Westwyk.  
This paper reassesses the manuscript as a monastic compilation.  Westwyk copied a set of 
astronomical tables that suited his needs; their use supported and complemented the equatorium 
he describes in his treatise.  He experimented with different techniques, cited astronomers whose 
work he admired (including Chaucer) and refined his tables in order to obtain the greatest 
possible precision.  By reconstructing Westwyk’s mathematical practices in compiling, computing 
and using tables that required and enabled a range of astronomical techniques, this paper paints a 
vivid picture of inexpert science in medieval Europe.  
 

 

Keywords. Tables, astronomy, medieval, instruments, practices 

 

The fifthe partie shal be an introductorie, after the statutes of oure doctours, in 
which thou maist lerne a gret part of the generall rewles of theorik in astrologie.  In 
which fifthe partie shalt thou fynden tables of equaciouns of houses after the latitude 
of Oxenforde; and tables of dignitees of planetes, and othere notefull thinges [Middle 
English quotations are translated in endnotes].1 
 

Geoffrey Chaucer (1988, p. 663) 
 

Chaucer’s desire to help his son Lewis – and perhaps other readers – ‘lerne sciences 

touching nombres and proporciouns’ is familiar to readers of his Treatise on the Astrolabe (Chaucer, 

1988, p. 662).2  But while the potential for learning through the use of an instrument has been 

accepted and widely discussed since Chaucer’s time, less has been written about the connection 

between tables and learning practices in astronomy.  Tracing past learning processes is always 

                                                 
* Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 

3RH, UK. E-mail: sldf2@cam.ac.uk 
† For comments on earlier drafts of this article, I would like to thank José Chabás, Matthieu Husson, Richard Kremer 
and Richard Oosterhoff, as well as the Centaurus editors and reviewers.  I am also grateful to Karine Chemla, 
Matthieu Husson and Richard Kremer for organising a workshop at which the ideas in this article were refined.  This 
was supported by the European Research Council under the European Union’s Seventh Framework Program 
(FP7/2007-2013) / ERC Grant agreement n. 269804, in the context of the project SAW: Mathematical Sciences in the 
Ancient World.  This article is based on material from my University of Cambridge PhD thesis, funded by the Arts 
and Humanities Research Council.  I would particularly like to thank my supervisor Liba Taub and advisor Nick 
Jardine.   
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difficult, particularly if we wish to focus on the reception and absorption of knowledge rather 

than the mechanisms and institutions through which knowledge was communicated: learning, 

rather than teaching (Bernard and Proust, 2014).3  Moreover, although the abundance of tables in 

medieval scientific manuscripts is testament to their popularity, identifying the methods by which 

astronomers learnt to use tables, or learnt theories and techniques through tables, is especially 

difficult since they are rarely accompanied by didactic text; explicatory canons which do 

sometimes direct their users are invariably written in spare instructional prose, and there are few 

clues as to how, or by whom, such canons were followed. 

Nevertheless, medieval tables can be rich sources of evidence about the practices of the 

astronomers who used them.  And where those astronomers lack expertise, we can draw 

conclusions about the ways that they learnt and practised mathematical techniques through such 

use.  The Equatorie of the Planetis (Peterhouse, Cambridge MS 75.I) is a valuable document of such 

unpolished astronomy.  It comprises a fourteenth-century draft treatise describing the 

construction and use of an equatorium, an instrument that computes the positions of the planets, 

bound with a collection of related astronomical tables.  Its first editor, Derek Price, suggested 

that this treatise was ‘obviously intended for the amateur rather than the professional’ reader 

(Price, 1955, p. 159).  His implication, supporting his contention that the Equatorie represented 

Chaucer’s completion of his Treatise on the Astrolabe (it incorporates much of the content Chaucer 

had promised for the Astrolabe’s third, fourth and fifth parts), was that its author was a competent 

astronomer writing for a less learned pupil.  But Price, concerned above all to prove Chaucer’s 

authorship of the treatise, did not consider it in its codicological context.  He dismissed the tables 

that comprise the bulk of the manuscript as ‘of comparatively slight interest since they are a 

simple modification of the well-known Alfonsine tables’, and thought it ‘only necessary to 

indicate their content and the manner in which they have been modified’ (Price, 1955, p. 75).  

Similarly, John North, despite stating that ‘the sheer aptness of all the tables in the codex for use 

with the equatorium cannot be too strongly emphasized’, gave almost no explanation of that use 

(North, 1988, p. 176; his emphasis).   

North surmised that the Equatorie of the Planetis was the work ‘of a generally competent if 

not fully confident astronomer’ (North, 1988, p. 170); that astronomer has recently been 

identified, on palaeographical grounds, as John Westwyk, a monk of St Albans monastery and 

Tynemouth priory (Rand, 2015).  This paper will analyse the fascinating, varied tables, all either 

written or annotated by Westwyk, alongside the instrument they accompany.  When one 

examines the tables closely and considers their use both with and without the instrument, their 

heterogeneity stands out, and the conclusions of Price and North quoted above begin to seem 
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rather bold.4  These scholars, influenced by the seminal history of mathematical astronomy of 

Otto Neugebauer, rightly saw the Equatorie within a wide-ranging, enduring network that 

communicated astronomical theories and instruments across the medieval world.  I take a 

different approach.  Rather than emphasizing the continuity visible through these tables, this 

paper will emphasize the individuality of their production, the specific historical context of their 

use.  It takes the manuscript’s 78 folios together as a personal compilation, revealing much about 

its producer’s priorities, learning processes, and level of expertise.  At the same time, this paper 

has a mathematical focus, exploring what we can learn through a reconstruction of Westwyk’s 

practices in compiling, computing and using tables that required and enabled a range of 

astronomical techniques.  It is hoped that this combination of computational and contextual 

methodologies will provide new insights into these astronomical tables and instrument, as well as 

the man and environment that produced them.5 

 

The Equatorie: instrument and tables 

John Westwyk’s equatorium (Figure 1) was, he writes, ‘compowned the yer of Crist 1392 

complet the laste meridie of decembre’ (Peterhouse, Cambridge MS 75.I, f. 71v; all folio 

 

Fig. 1: Virtual model made according to the instructions in Peterhouse MS 75.I, by Ben Blundell and Seb Falk for 
the Cambridge Digital Library. See http://cudl.lib.cam.ac.uk/view/MS-PETERHOUSE-00075-00001 for further 
explanation and interactive model. See also Price (1955), pp. 93-118. Reproduced by permission of the Master and 
Fellows of Peterhouse, Cambridge. 
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references will be to this manuscript, unless stated otherwise).6  Like other equatoria, this 

instrument requires an input of mean motion data in order to compute the longitudes of the 

planets (including the Sun and Moon); the necessary tables of mean longitudes and mean 

anomalies, with radices for 1392, are found, written in Westwyk’s hand, in the first folios of the 

manuscript.7  Westwyk names Chaucer as a source for these radices and elsewhere cites the 

Treatise on the Astrolabe; the influence of Chaucer’s remark that ‘smallist fraccions ne wol not be 

shewid in so small an instrument as in subtile tables calculed for a cause’ (Chaucer, 1988, 663)8 is 

apparent in Westwyk’s opening statement that ‘the largere þat thow makest this instrument, the 

largere ben thi devisiouns; the largere þat ben tho devisiouns, in hem may ben mo smale 

fracciouns; and evere the mo of smale fracciouns, the ner the trowthe of thy conclusiouns’ (f. 

71v).9  From the very beginning of the treatise, then, Westwyk shows awareness that instruments 

and tables represented competing (and complementary) methods of computing planetary 

positions; these methods had to balance speed and convenience against precision.10  It may also 

be suggested that learning different techniques was an objective in itself, separate from the 

ultimate outcome of finding positions.  Peterhouse MS 75.I reveals how Westwyk tried two 

alternative techniques: the use of an equatorium with tables, and the use of tables alone.   

For the former, the first set of tables in Westwyk’s hand (folios 1r-13v) is perfectly sufficient; of 

them it would be correct to say, as North rather exaggeratedly said of the whole codex, that they 

are entirely apt for use with the equatorium, and it seems likely that Westwyk drew them up for 

that purpose.  They are broadly standard tables in the Parisian Alfonsine tradition, supplying daily 

and annual changes in position of three sets of data: the planetary apogees, mean longitudes and 

mean anomalies (see Table 1).11  The equatorium incorporates two further sets of data – the 

eccentricity of each planet’s deferent circle, and the relative sizes of their deferents and epicycles 

– so that the user is required only to extract radices and mean motions from the tables, perform 

some simple additions or subtractions, and lay out the instrument’s brass ring and black and 

white threads as Westwyk explains, in order to read the true planetary longitudes on the ecliptic 

scale on the equatorium’s limb.  The 72-inch diameter Westwyk stipulates would allow planetary 

longitudes to be read at a precision of around 2' of arc; the whole process for each planet can be 

accomplished within a few minutes.  It would probably have taken him somewhat longer to carry 

out the calculations and interpolations involved in using the tables on their own. (Those 

methods, using the tables on ff. 45r-61r, are discussed later in this article.) 
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ff. 1r-13v in John Westwyk’s hand 

1r  Note with sexagesimal equivalent of 1392, 1393 years; table to convert years to days 
Radices of mean longitude and mean anomaly of planets for 31 Dec 1393 
Table of annual motion of deferent centre of Moon (radix for Incarnation, London) 

1v-3r  Annual motion of mean longitude and mean anomaly of Moon, Caput Draconis and planets, 
with radices for Incarnation, London 

3v  Annual values for mean motus of ascendant for latitude 51;34°; radix for 28 Feb 1393 

4r-4v  Ascensions of signs for latitude 51;50° 
Tables to convert between hours and sexagesimal fractions of day 

5r  Radices of mean longitudes and anomalies, 31 Dec 1392 and Incarnation, London  
Radices of mean apogees, Incarnation, London 

5v  ‘Radix chaucer’ note giving number of days in 1392 years; note with days in 1395 years 
Multiplication table for orders of sexagesimals; table to convert between years and days 

6r  Daily motion of mean argument of 8th sphere  

6v  Apogees of planets for Incarnation, 1392, 1400 
Radix for mean elongation of Moon, Incarnation, Toledo 

7r Annual motion of mean longitude of apogees; annual motion of mean argument of 8th sphere 

7r-13r  Annual and daily motions of mean longitudes and mean anomalies of Sun, Moon, Caput 
Draconis and planets. Radices for 13 Dec 1392, London 

13v  Daily motion of apogees (linear precession) 

ff. 14r-62r in ‘Hand S’, with annotations by ‘Hand A’ and Westwyk12 

14r-16v  Calendar for motions of apogees; table of equation of the 8th sphere  

16v-30r  Calendars for mean longitudes and mean anomalies of Sun, Moon, Caput Draconis and 
planets, and for motion of deferent centre of Moon  

30v-31v  Calendar for mean centre of Moon; radix for 28 Feb 1392 

32r-38r  Tables for latitudes of Moon and planets  

38v-44v  Tables of proportion for multiplication of sexagesimal numbers  

45r-61r  Double-entry tables for planetary longitudes (headed ‘Equatio [name of planet]’) 

61v  Table of ascensions of signs and houses for latitude 50;50°  

62r  Table of precession for 1349-1468, at rate of 1° in 98-99 years  

ff. 62v-78v in John Westwyk’s hand 

62v  Hourly values (excess degrees) for motion of Moon, 1-12 hours13  

63v  Difference in length of half of longest day over equinoctial day, for latitudes 0-60°  
Planetary longitudes and latitudes for 31 Dec 1393 (attributed to John Somer, Oxford) 

64r  Solar declination and differences in ascensions of signs for latitudes 0-60° 
Radices (including mean centre), 28 Feb 1394, London  

64v  Horoscope with accompanying Latin text (Kennedy, 1959)  

65r-70v  Ascensions of signs for latitude of Oxford, 51;50° (John Walter’s tables) (North, 1988, p. 191)  

71r  Incomplete star table, with altitudes at Oxford (partial) and London  

71v-78v  Canon to the equatorie of the planetis  

Table 1: Contents of Peterhouse MS 75.I 
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Calculation and copying; precision and accuracy 

 Before the mean longitude and mean anomaly of a planet were laid out to find its true 

longitude (as shown in Figure 2), the equatorium could be calibrated so that the lines marking the 

planetary apogees, on which lay the deferent centre and equant, were up to date.  This task was 

not particularly important for a user soon after the equatorium’s production, and it did not have 

to be done every time it was used, but it is clear that John Westwyk attached some importance to 

it.  The parts of the tables and treatise pertaining to this task shed important light on Westwyk’s 

methods and priorities in composing and compiling his manuscript. 

The Alfonsine apogees were thought to move in two ways: a linear precession, increasing 

in longitude by one revolution every 49,000 years, also known as the mean motus of apogees and 

fixed stars; and accession and recession of the eighth sphere, an oscillating motion of up to 9° in 

each direction, with the period of oscillation being 7000 years (Dobrzycki, 1965).  The relevant 

tables are on ff. 5r-7r and 13v.  Radices are given for auges medie (the apogees incorporating only 

linear precession) and auges vere (apogees fully corrected to include accession and recession of the 

eighth sphere).  To find the apogee for the desired date, the radices were to be corrected first by 

the addition of the linear component.  This was provided in tables of annual and daily motion (on 

ff. 7r and 13v); the former was laid out with 1-3 years of 365 days, followed by 4, 8, 12... 56 years 

of 365.25 days, and then 1-3 years of 365.25 days; the latter as 1-59 days.  The linear movement 

Fig. 2: Steps (numbered) in the use of the Peterhouse equatorium to find the true ecliptic longitude (λ) of a superior 
planet. 
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of the apogee since the date of the radix could be added to the radix value to give the ‘mean 

apogee’. 

 Calculating the ‘true apogee’ was slightly more complicated, as none of the tables in 

Westwyk’s hand gives the oscillating component directly.  Instead, he wrote out daily and annual 

tables of what is called argumentum medium vel accessus et recessus 8e spere (ff. 6r, 7r).14  These tables, 

which are laid out in the same way as those just mentioned, give daily and annual fractions of a 

complete revolution in 7000 years.  The values are therefore 7 times those in the tables of linear 

precession.  To convert these fractions of a complete revolution into the correct fractions of a 

complete oscillation of ±9°, Westwyk initially intended to use his equatorium.  He instructs his 

reader to divide ‘the line þat goth fro centre aryn to the hed of capricone which lyne is cleped in 

the tretis of the astrelabie the midnyht line’ into 9: ‘thise last seid 9 divisiouns in the midnyht lyne 

shollen serven for equacioun of the 8e spere’ (f. 72v).15  However, he does not explain the 

technique for using these divisions to compute the equation of the eighth sphere from the mean 

argument of the eighth sphere. 

Why might he have left the treatise unfinished in this way?  Beyond lack of opportunity or 

lack of knowledge, there are several reasons why Westwyk may have chosen not to explain this 

technique in full.  First, although it is important for the long-term maintenance of the 

equatorium’s capabilities, the effects of precession would only be noticed after some years; the 

explanation of this function was thus hardly likely to be a priority.16  Secondly, the technique 

would have been analogous to that of computing the latitude of the Moon on the radius opposite 

the midnight line, which Westwyk explained at great length; he may have felt it unnecessary to 

explain a similar principle again, presuming that a reader could infer the analogy.17  It should be 

noted that the function of accession and recession of the eighth sphere was not as simple as that 

for the latitude of the Moon, so a third (somewhat remote) possibility is that Westwyk realized 

that the same technique would not work so well for the latter function, and abandoned his 

attempt to use the equatorium in this way.  However, a more likely explanation is that he found a 

simpler source of the necessary data.  The large set of tables that are not in Westwyk’s hand (ff. 

14r-62r) contain a table of the equation of the eighth sphere (f. 16), as well as a smaller table 

containing additions to be made to the apogees for each year for 1349-1468 (f. 62r).  The latter, 

which is computed using the two-component Alfonsine precession, functions as a ready-reckoner 

to allow the true apogee to be easily obtained.  These ‘Hand S’ tables had been annotated by 

another hand (‘Hand A’) before Westwyk began to use them;18 but Westwyk’s annotations, and 

the repetition of some material, suggest that he at least began making his own set before using 

them (North, 1988, p. 176).  The fact that he instructed his readers to mark the tool for the 
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equation of the eighth sphere on the face of the equatorium, but did not explain how to use it, 

suggests that he may have obtained the larger set of tables before he completed the treatise, and 

realized that they obviated the need for that tool.  Nevertheless, a reader who could work out its 

use (with or without reference to the explanation of lunar latitude), could still use it; Westwyk 

may have been presenting his reader the same choice of techniques that he enjoyed. 

The tables of linear precession that appear in both Westwyk’s own set of tables and those 

in ‘Hand S’ raise some important questions.  In the first place, it may reasonably be wondered 

what the purpose was of tabulating daily values for an astronomical variable that changed by less 

than half a minute of arc in a whole year, an amount that could not be read on an equatorium 

even if it were constructed at the scale Westwyk recommends.  More striking still is the fact that 

those daily values – and indeed many others in the codex – are given to a precision of 

sexagesimal ninths.  The 37 that appears in the column of ninths for one day’s motion of the 

apogees (f. 13v) is equal to one 98,000,000,000,000,000th part of a complete circle; an equatorium 

capable of displaying such precision would have to be around nine trillion times the size specified 

in Westwyk’s description.  Such precision clearly does not reflect observational accuracy, but 

arising from calculations carried out by standard methods in accordance with Ptolemaic theory, it 

was difficult to discard.  And the same principle gives us the reason for the table of days: smaller 

divisions of the basic unit of one revolution in 7000 years simply seemed more precise. 

 This greater precision is a paradoxical indicator of an amateur compilation: perhaps 

partially motivated by the satisfaction of correct – albeit observationally meaningless – 

calculation, but lacking the sophistication necessary for purposeful rounding.19  For historians, on 

the other hand, it is highly valuable, as it may indicate how the tables were adapted from earlier, 

more rounded versions, and the order in which they were produced.  We can see this in the 

example of annual and daily motions of the mean motus of apogees.  In Westwyk’s table on f. 7r 

we find the motion in one year as 0;0,26,26,56,20,0,0,1,44,15°.  It can immediately be seen, in the 

middle row of Figure 3, that the final 15 was added after the rest of the table was written.  The 

two columns of zeroes in the middle of the figure also attract attention, suggesting that the 

 

Fig. 3: Last five rows of table of annual motion of mean motus of apogees. Peterhouse, Cambridge MS 75.I, f. 
7r. Reproduced by permission of the Master and Fellows of Peterhouse, Cambridge. 
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number was rounded at an intermediate stage.  A full revolution divided by 49,000 years is 

approximately 0;0,26,26,56,19,35,30°; it is clear that this was at first rounded to 0;0,26,26,56,20°.  

We may identify the source of the extra 1,44 by comparing the values in Westwyk’s table of daily 

motions (f. 13v).  The value for one day found there (0;0,0,4,20,41,17,12,26,37°) is exactly equal 

to 0;0,26,26,56,20° ÷ 365.25 (or 6,5;15, as it would have been rendered), to the precision of 

sexagesimal ninths that seems to have been preferred by the creator of these tables.  If that daily 

figure is multiplied by 365.25, again using nine sexagesimal places, we obtain 

0;0,26,26,56,20,0,0,1,44°, which was the figure Westwyk first wrote.  It seems most likely, then, 

that the table of annual linear precession was produced from a table of daily motions, which itself 

had been based on a rounded value for the annual motion.  That may not have been done by 

Westwyk (though I know of no other extant tables, from which he could have copied, with as 

many sexagesimal places as his).  But the last step is clearly Westwyk’s own.  He apparently 

noticed – perhaps as he was rubricating the table – that the figure for 4 years 

(0;1,45,47,45,20,0,0,6,57°) does not match the figure for a single year: the figure ending in 44, 

multiplied by 4, could not result in a number ending in 57.  It was a simple exercise for Westwyk 

to split the difference, squeezing an extra column into the final three rows of the table and 

writing 15, 30 and 45.  He thus made the table appear internally consistent – and gave it a 

precision of sexagesimal tenths. 

 Examination of such precise tables can also reveal how carefully they were computed.  

Here a useful source are the radices of planetary mean longitudes and mean anomalies for era 

Christi (noon, 31 December preceding AD 1), whose values were consistent across manuscripts 

based on the Parisian Alfonsine Tables (Chabás and Goldstein, 2012, pp. 59-61).  These were 

generally given for the meridian of Toledo, but in the tables Westwyk wrote out for use with his 

equatorium, they are recomputed for the meridian of London. This was achieved by subtracting 

8;26° of longitude (0;33,44h of time), which was thought to be the difference in longitude 

between London and Toledo (Price, 1955, pp. 80-82).  In Table 2 Westwyk’s radices for era 

Christi are shown alongside Toledo values at the same epoch.20  They should differ by an amount 

corresponding to the correction for longitude, but this is not always the case: there are small 

scribal errors in six of the ten radices for the era of Christ.  

The quantity of these errors is not unusual for a table of this kind; any theory as to their 

origin must be speculative.  The most likely cause is wavering concentration during the copying 

of so many seemingly random digits.  In some cases, such as the confusion of 12 for 13 in the 

mean longitude of Caput Draconis, it may be suggested that the source text was misread by the 

copyist.  In a few others, it is just possible that errors arose when the calculation was first carried  
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 Toledo values 
(°) 

Westwyk’s radix (f.5r) 
(°) 

Value recomputed for 
meridian of 8;26° (°) 

Argument of the 8th sphere 5,59;12;34 5,59;12,33,59,17,15,7,7,40 (as left) 
Mean longitude of the Sun, 
Venus, Mercury 

4,38;21,0,30,28 4,38;19,37,23,6,45,12,37,4,39 4,38;19,37,23,5,45,12,38,4,39 

Mean longitude of the Moon 2,2;46,50,16,40 2,2;28,19,4,8,34,9,25,53,28 2,2;28,19,4,6,34,19,25,53,28 
Mean anomaly of the Moon 3,19;0,14,31,17 3,18;41,52,42,26,30,20,23,4,24 (as left) 
Mean longitude of Caput Draconis 1,31;55,52,41 1,31;55,48,12,3,5,8,50,13,37 1,31;55,48,13,3,5,8,50,13,37 
Mean longitude of Saturn 1,14;5,20,12 1,14;5,17,22,30,23,29,37,9 (as left) 
Mean longitude of Jupiter 3,0;37,20,44 3,0;37,13,43,22,36,52,36,10,3,20 (as left) 
Mean longitude of Mars 0,41;25,29,43 0,41;24,45,31,12,48,59,38,20 0,41;24,45,31,12,58,59,38,20 
Mean anomaly of Venus 2,9;22,2,36 2,9;21,10,56,45,49,16,40,45,40 2,9;21,10,36,25,49,16,40,45,40 
Mean anomaly of Mercury 0,45;23,58,0 0,45;19,32,0,5,9,40,33,34,40 0,45;19,36,0,5,9,40,33,34,40 

out, and its results transcribed from an abacus or set of counting stones.  It would have been 

easy, for example, to miscount 7 for 8, as in the mean longitude of the Sun, Venus and Mercury.  

Whatever the cause of the errors, they need not have been made by John Westwyk: the fact that 

he is known to have been a careful copyist may make us suppose that he was copying an already 

faulty pre-existing table.21 

 On the other hand, another table adjusted for the longitude of London reveals how easily 

copying errors could slip in, even for a copyist as diligent as Westwyk.  Figure 4 shows a small 

table of the radices of the mean apogees of the planets.  Because the apogees moved at the same 

rate owing to precession, each radix was adjusted by the same amount: 8;26°/360° multiplied by 

the daily motion of 0;0,04,20,41,17,12,26,37°, which is given in a table on the same folio.  

Because they were adjusted to a greater level of precision than the original Toledo radices, the 

final seven columns in the table are the same for each planet.  Yet in the penultimate column the 

final two rows show 4 instead of 8, which must have arisen from a lapse in concentration when 

copying.  (An identical table on f. 5v repeats this error.)  Such a copying error does not prove that 

the re-computation was not the work of John Westwyk: he could have miscopied from his own 

earlier calculations.  But it does reveal how easily mistakes could be made.  The fact that such a  

 

Fig. 4: Table of mean apogees ‘ad tempus Christi’, adapted from Toledo values. Peterhouse, Cambridge MS 75.I, 
f. 13v. Reproduced by permission of the Master and Fellows of Peterhouse, Cambridge. 

Table 2: Radices of mean longitude and mean argument ‘ad eram Christi’, adapted from Toledo values (f. 5r) 
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noticeable error was not corrected may suggest that Westwyk made little further use of this table, 

or that he did not care about the later sexagesimal places when using it. 

 

Experimentation for learning 

 Westwyk did not always challenge himself to perform calculations; after all, his equatorium 

was designed to minimise the need for such tasks.  What he did do was try out a range of 

instrumental and computational techniques for obtaining astronomical answers at different levels 

of precision.  We have already seen that the set of tables he collected for his manuscript included 

not only precise tables of the linear and oscillating components of precession, but also a table in 

degrees and minutes, which functioned as a ready-reckoner to adjust the apogees.  Westwyk 

clearly used both.  Above the ready-reckoner, we find a signe-de-renvoi (the geomantic figure for 

Fortuna Major); the same sign appears eighteen folios earlier (45r), together with a note in 

Westwyk’s hand instructing the reader to use the ready table of additions.  (As Figure 5 shows, 

the reference to the eighteenth folio following has been emended in a different hand, suggesting 

that the tables may not have been in their current order when Westwyk wrote the canon.) 

 

Westwyk’s canon describes the adjustment of the apogees as the final stage in a computation of 

planetary positions that was a complete alternative to the use of his equatorium.  Instead, this 

technique used the tables on ff. 45r-61r, written in ‘Hand S’.  Entitled ‘Equatio [name of planet]’, 

they are double-argument tables at intervals of 6°, allowing the user to find the true longitude 

directly from the mean centre (down the left hand side of the table) and the mean anomaly (along 

the top).  The longitude is given in degrees and minutes, with the names of the signs written 

down the right hand side and demarcated by lines across the table; annotations underneath 

indicate phases of direct and retrograde motion, stations and conjunctions.  The tables are the 

‘1348’ tables associated with Oxford (North, 1977, pp. 279-284; North, 1988, p. 188); the only 

significant difference is that the Oxford tables, following John of Lignières, were given with signs 

of 30°, whereas Westwyk’s tables use signs of 60° for the mean centre and mean anomaly.22   

Fig. 5: Part of canon, with signe-de-renvoi and corrected folio reference. Peterhouse, Cambridge MS 75.I, f. 45r. 
Reproduced by permission of the Master and Fellows of Peterhouse, Cambridge. 
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 Although Westwyk’s canon details the procedure for use of these tables, he does not 

explain how the mean centre, which is not tabulated anywhere in the codex, was to be found.  

Although this could be calculated simply by subtracting the apogee from the mean longitude, it 

represents an added step in the process and an inconsistency in the tables: the mean longitudes 

provided elsewhere in the codex are perfect for use with his equatorium design, as we have seen, 

but are not ideally suited for the use of these Oxford-style tables of equations.  However, once 

the mean centre was obtained, the tables of equations could be used to give an approximation of 

the longitude of the planets in a single step.  However, that would only be a very rough 

approximation, since the tables, like the Oxford tables from which they were presumably copied, 

give mean centres and mean anomalies in 6° increments.  Westwyk does not specify how or when 

he thought interpolation should be used to obtain more precise results: his canon merely advises 

the reader to ‘take the proportional part corresponding to the centre or corresponding to the 

argument if necessary’; a suitable table of proportions appears on the preceding few folios (38v-

44v).23  We cannot be certain how often Westwyk would have deemed it necessary to use the 

table of proportions, but its use had the potential to add significant labour to the procedure of 

computing the longitude.  If, as is most likely, both the mean centre and mean anomaly fell 

between 6° values, the table of proportions would have had to be used for two sets of 

sexagesimal multiplication; for each, the table would have to be consulted four times and the 

resulting four figures added together, taking care to ensure that they were kept in the correct 

sexagesimal column.  Including the addition of the final interpolated figure to the rounded value 

drawn from the table of equations, interpolation could involve up to eight multiplications using 

the tables of proportion and three additions: a time-consuming and error-prone process.  There 

is evidence in the manuscript that Westwyk attempted, and experienced difficulties with, these 

interpolations: a note in ciphered Middle English on the first page of the table of proportions (f. 

38v) emphasizes that for the planets, the proportions of 6° should be used (the table also permits 

working with proportions of 3°).  On the same page Westwyk corrected a note made (in Latin) 

by an earlier user of the ‘Hand S’ tables, reminding the user that degrees multiplied by degrees 

yield degrees (rather than minutes as originally stated), minutes multiplied by minutes yield 

seconds, and so on.  A similar reminder is conveyed by the small multiplication tables that 

Westwyk added to ff. 1v, 5v and 7r.  A note on the last of these folios, concerning the adaptation 

of planetary longitudes to account for the equation of days, refers to the tables of equations, 

suggesting that Westwyk used the tables he had compiled and those in ‘Hand S’together. 

 It is clear, then, that even if Westwyk originally obtained the ‘Hand S’ tables to facilitate 

calculation with his equatorium – and his note ‘pro instrumento equatorii’ on a calendar of the 
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daily motion of the Moon’s deferent centre (f. 20r) is evidence that he did use them in that way – 

he also took advantage of the opportunity they provided to compute positions without the 

equatorium, using interpolation techniques on some occasions to obtain more precise results.  

The fact that Westwyk used both methods indicates that he was learning, or trying out, different 

techniques, perhaps at different times or for different purposes.  For a very rough approximation 

the tables could be used more quickly than the instrument, and were more portable; on the other 

hand, they could perhaps give greater precision, but only via complex and time-consuming 

calculations.  As we have seen, the equatorium provided for a good balance of speed and 

precision, and although it needed instructions for use, so did the tables of equations, as 

demonstrated by the canons that Westwyk added to them.  And of course they could be used to 

learn different techniques, or to emphasise different theoretical points. 

The diversity of methods and content is most obvious in the manuscript’s final set of 

tables, written in Westwyk’s own hand.  Few of these tables are closely related to the equatorium, 

because they are not planetary; some, indeed, are more suited to use with an astrolabe, an 

instrument with which Westwyk was clearly familiar.  They are, however, squarely astrological 

and are thus related to the planetary tables.  Most obvious in this regard is the horoscope of 

Māshā’allāh that appears on f. 64v (Kennedy, 1959), but the tables of right and oblique 

ascensions on ff. 65r-70v should also be noted.  The latter are based on John Walter’s tables of 

astrological houses (North, 1986, pp. 128-130; North, 1988, p. 191), and this set of tables gives 

the strong impression of having been compiled from a wide variety of sources that caught 

Westwyk’s eye.  Their variety, and discrepancy with tables earlier in the manuscript, is striking.  

Most obvious is the fact that the majority of this set were explicitly produced for Oxford, in 

contrast with Westwyk’s first set of tables where it is stated that the radices are for London.  Yet 

this discrepancy is not new: it exists even within the first set, where on f. 3v we see that the table 

of revolutions of years is for latitude 51;34° (suitable for London), while the facing page has a 

table of ascensions of signs for latitude 51;50°, which was probably Oxford.  (St Albans, 

Westwyk’s sometime home, was ascribed a latitude of 51;38°.24)   But other inconsistencies are 

new.  The table on f. 63v, which gives the differences in half the length of the day between the 

equinox and solstice for latitudes from 0 to 60°, incorporates an ecliptic obliquity of 23;35°, 

which contrasts with the figure that appears directly on f. 64r, which is 23;33,30°.25  Finally, a list 

of radices on f. 64r, computed for 28 February 1394, at London, incorporates a longitude of 8° 

east of Toledo.  This contrasts with Westwyk’s first set of tables which, as we saw, were adapted 

from Toledo tables by the subtraction of an arc equivalent to 8;26° of time.  It is likely, therefore, 

that rather than updating his own radices by the addition of a year’s (or in this case a year and 
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two months’) motion to previous radices, Westwyk took these radices ready-prepared from 

another source. 

The source of Westwyk’s radices is significant because the (now settled) arguments about 

Chaucer’s possible authorship of the manuscript pivoted around the ‘Radix Chaucer’ note on f. 

5v.  That note expresses 1392 years sexagesimally and remarks that it is ‘deffea xpi & Rxa chaucer’ 

– the difference between [the era of] Christ and the radix of Chaucer.  John North argued that 

this was Chaucer writing his own name, because no astronomer would cite another for such a 

simple radix; it was, North stated, ‘a trifling matter for anyone who was capable of calculating 

with such a set of tables as we have here, to produce fresh radices for each year’s end’ (North, 

1988, p. 173).  But the evidence we have already seen suggests that, for an amateur astronomer 

such as John Westwyk, that was not the case.  Westwyk was not as capable as North supposed; 

on the other hand, he was keen to draw on a wide range of material, and to cite his sources.  A 

small table of planetary positions for the end of 1393 (f. 63v) is headed ‘J. Somer, oxonia’, 

undoubtedly the same John Somer whose calendar inspired Chaucer (Chaucer, 1988, p. 663; 

Mooney, 1998; O’Boyle, 2005).  On the facing page (f. 64r) is the comment, above a table of 

declinations, that ‘istae sunt declinationes arsachelis ut estimo // verum est quod R.B.’26  

Arzachel (or al-Zarqālī) was and is well known as a leading contributor to the Toledan Tables; 

R.B. may refer to Roger Bacon, who was known to have drawn up tables, and is cited in identical 

terms in other scientific manuscripts of this period (Bacon, 1897, pp. 208-210; Millás Vallicrosa, 

1943; Voigts, 1990).27  Finally, on the penultimate page of the table of ascensions, itself the 

penultimate table of the codex, a note appears referring to the Jewish astronomer Jacob ben 

Makhir Ibn Tibbon (d. 1304), known to Westwyk as Profatius (f. 70r).  The note (shown in 

Figure 6) gives the maximum and minimum values for the equation of days, which is related to 

the modern equation of time (North, 1986, p. 128-29).  The maximum equation is stated to be 

when the Sun is at Scorpio 8-9°, and it cannot be coincidental that the note appears beneath the 

section of the table for an ascendant in Scorpio, where the maximum value is indeed at 8-9°.  

However, the two maximal values for the equation are different: the note says 7;57°, while the 

table gives 7;54°.28  Judging by its appearance before a wedge paragraphus and to the left of an 

 

Fig. 6: Note on referring to Profatius. Peterhouse, Cambridge MS 75.I, f. 70r. Reproduced by permission of the 
Master and Fellows of Peterhouse, Cambridge. 
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otherwise aligned body of text, the reference to Profatius as an authority appears to have been 

added later.  It is possible that Westwyk computed his own value and called upon Profatius as an 

authority, but this seems unlikely to have been within his astronomical capabilities.29  More likely 

is that, as a diligent student and copyist, he had spotted a discrepancy in two sources he was 

using.  He maintained the value he found in John Walter’s tables, but noted that ‘Profatius’ had 

used a different value.  The tables commonly misattributed to Profatius are now known to be by 

Peter of St. Omer, but Westwyk was not alone in this confusion, which arises in several British 

copies of Peter’s Tractatus de semissis (Pedersen, 1983-84, p. 43.)  

 Westwyk’s diligence as a copyist and table-maker is demonstrated by a curious duplication 

that occurs on f. 62v.  This is the first table of Westwyk’s latter set, and the only one of this 

group that could be used – albeit indirectly – with the equatorium: it is a division table allowing 

the user to interpolate hourly values for the longitude of the Moon.  This table, which was useful 

for the prediction of eclipses, has no equivalent in Westwyk’s first set of tables, and it seems that 

he may have chosen to add it later.  A note in Latin instructs the user to first calculate the daily 

motion of the Moon from two successive noon positions ‘in almenac’.  The user then looks for 

this 24-hour difference (in degrees and minutes) on the far right of the table, and can then 

interpolate the motion in 1-12 hours within the table.  Although it is unusual to find a table 

whose entry is on the right, its content is straightforward; however, what is strange is that the 

table appears to be missing every fourth row.30  Such regular omissions are unlikely to be 

inadvertent; nonetheless it was probably dissatisfaction with those gaps that motivated Westwyk 

to redraw the table immediately beneath, identical but for the insertion of the missing rows, and a 

slightly different range.31   

 It is clear from this table, as well as from the radix Westwyk added to the ‘Hand S’ calendar 

of the double elongation of the Moon (f. 30v), that he was particularly interested in lunar 

positions and eclipses.  We should not be surprised, therefore, that his equatorium included a 

tool to compute the latitude of the Moon.  He explained this tool in staggering detail, covering 

three-and-a-half pages of the manuscript, with emphatic repetitions and three worked examples 

(ff. 77r-78v, for 17 December and 19 and 23 February 1391).  The level of worked detail 

indicates that Westwyk lacked confidence with these techniques, and this is supported by some 

errors in his explanation.  He states that Caput and Cauda Draconis are each confined to one half 

of the zodiac, when in fact they both rotate through the zodiac, always opposite each other.  

There is also a mistake in the last of his three worked examples: he gives the latitude as 1;22° N, 

when it was in fact southerly.  This is an understandable error caused, perhaps, by the fact that 

northerly and southerly latitudes were read on the same ±0-5° scale on the equatorium.32  
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Overall, it is hard to escape the conclusion that Westwyk was himself learning these methods as 

he was carefully teaching them to his reader, perhaps inspired by Seneca’s dictum ‘homines dum 

docent discunt’.33 

 The sense of learning through experimentation, at the same time as providing instruction 

for future readers, is perhaps most apparent in the comments in cipher that appear in five places 

within the later sets of tables (ff. 14r, 30v, 38v, 62v, 63v; Price, 1955, pp. 182-187).  Not only is 

the fairly basic substitution cipher itself evidence of experimentation with different techniques 

and ideas; the contents of the ciphered passages suggest incipient understanding of the tables 

being copied and commented on.  For example, the ciphered comment on the table of half-day 

lengths on f. 63v (Figure 7) reads ‘this is how mochel the half ark of the lengest dai is more than 

six houris’, which is a straightforward description of a fairly simple table.34  We thus have a 

glimpse of Westwyk’s enjoyment of the parallel process of learning the use of the tables and of 

cipher.  In cipher, in Latin and in plain English he makes notes on what he sees and copies, cites 

authorities whose achievements he respects, and comments on the results of his computations. 

 

 

Conclusion 

Peterhouse MS 75.I is not an astronomer’s rough workbook.  Although his equatorium 

treatise is a draft, and some of his calculations contain errors, John Westwyk clearly took pride in 

his compilation.  His diagrams are carefully drawn, and the radices he compiled (apparently at the 

same time) for 1392 and 1400 (f. 6v) demonstrate his intention to continue using the tables for 

years into the future.  He surely realized that he still had techniques to learn; the absence of his 

annotations on some of the more complex ‘Hand S’ tables, such as the double-argument tables of 

latitudes, suggest the limitations of his abilities or interests.  And although he perhaps lacked the 

sophistication to realize that great precision did not equate to ‘the trowthe of conclusiouns’, and 

his treatise contains some errors, he was far from incompetent, capable of explaining the 

construction and use of an equatorium in clear prose.   

Fig. 7: Ciphered Middle 
English text. Peterhouse, 
Cambridge MS 75.I, f. 
63v. Reproduced by 
permission of the Master 
and Fellows of 
Peterhouse, Cambridge. 
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More significant than his mistakes is his malleability.  He was willing to try different forms 

of presentation such as signs of 60° and 30°, and years ending on 31 December and 28 February; 

different layouts such as tables of numbered days and calendars grouped by months; even entirely 

different calculation techniques, using tables as well as the equatorium he had designed or 

adapted.  Such variety may have been forced on him by the sources available for his compilation, 

but he was quite willing to use, and perhaps learn from, them.  His suggestibility extends to 

language, where he adopts Latin and Arabic terms from his source texts and incorporates them 

into his own Middle English (whether plain or ciphered).  Sometimes this was for lack of an 

existing term in the vernacular; but in other cases, such as his use of ‘retrogradorum’ when he 

could easily have written ‘planetis’ (f. 38v), we again have the sense of a keen learner trying out 

new ideas and techniques as he computes, compiles and composes a new treatise.35  This 

willingness to experiment was not, perhaps, common to university scholars in this period.  

Rather, it is the hallmark of the amateur: a monk producing an idiosyncratic compilation, perhaps 

for use in his community.36   

If the mistakes and inconsistencies that do occur in Westwyk’s work diminish the 

astronomical value of the treatise and tables very slightly, they enhance its historical value hugely.  

Such imperfections, as is often the case, tell us far more than a faultless document or object 

would do.  In the first place, they remind us of the their author’s humanity and individuality.  We 

still know little about John Westwyk: his life after he returned from crusade against Flanders in 

1383, why he produced tables computed for London, and for whom he was writing.  Such 

questions cannot be answered solely with reference to the astronomical content of Peterhouse 

MS 75.I.  But an analysis of this manuscript has told us much about his abilities, interests and the 

methods through which he learned the science of astronomy.  More broadly, mathematical 

analysis of Westwyk’s tables has revealed important details of the processes of transmission, 

compilation and computation that went into this manuscript and others like it.  Westwyk was an 

individual monk, but one learning the tools and techniques of a mathematical astronomy that 

extended across medieval Christendom, and beyond.  And we too can learn through these tables, 

as such computational case studies offer new insights into the practices of the non-elites who 

learned, developed and communicated the ideas and instruments of medieval astronomy. 

 

 

                                                 
1 ‘The fifth part will be an introduction according to the rules of our experts, in which you may learn a great part of 
the general rules of astrological models.  In this fifth part you will find tables of equations of houses for the latitude 
of Oxford, and tables of planetary dignities, and other useful things.’ 
2 The explicit and potential audiences of the Astrolabe have been discussed by many scholars: see, for example, Laird 
(2007); Mead (2006). 



18 
 

                                                                                                                                                         
3 See particularly the ‘General Introduction’ and contribution by Alain Bernard (2014). 
4 The only other examination of the manuscript from a technical perspective is that of Emmanuel Poulle (1980, pp. 
161-165), but this is limited to an analysis of the equatorium design. 
5 This dual approach is influenced by Soler et al. (2014). See especially the contribution by Karine Chemla. 
6 The manuscript has been fully digitised and is freely accessible at http://cudl.lib.cam.ac.uk/view/MS-
PETERHOUSE-00075-00001. 
7 Medieval planetary theory (based on models set out in Ptolemy’s Almagest) mapped the motion of the planets in the 
plane of the ecliptic.  Mean motions in this theory are the mean anomaly (also known as mean argument), which 
gives the position of the planet on its epicycle; and the mean longitude (or mean motus), which gives the position of 
the epicycle centre on its path around the deferent circle, measured from the vernal point (head of Aries).  Tables 
supplied daily and annual increments of the mean motions, which were added to the radix (the value at some epoch, 
such as the Incarnation of Christ) to give the mean motions at the desired date.  See Chabás and Goldstein (2012). 
8 ‘the smallest fractions will not be shown [as well] on such a small instrument as in ingenious tables calculated for a 
cause’. 
9 ‘The larger you make this instrument, the larger your main divisions will be.  The larger those divisions, the smaller 
the fractions into which they can be divided; and the smaller these fractions, the nearer the truth of your 
calculations.’ 
10 On the importance of convenience to table-makers, see Chabás and Goldstein (2013). 
11 On the forms and contents of the Parisian Alfonsine Tables, see Chabás and Goldstein (2012), pp. 53-61. 
12 Price (1955), p. 75, designated the two main hands of the manuscript as Hand C and Hand S.  Subsequent scholars 
have followed this usage, but Hand C has now been identified as that of John Westwyk.  ‘Hand A’, a hand roughly 
contemporary with Hand S, added canons on two folios; Westwyk subsequently annotated one of those.  Rand 
Schmidt (1993), pp. 111-112. 
13 The fact that f. 63r is blank may suggest that the table on f. 62v is incomplete: it does not contain values for 13-24 
hours.  However, the canon on f. 62v explains how to use the table as it stands to find the motion in 13-24 hours. 
14 The argumentum medium tabulated in the Parisian Alfonsine Tables corresponds to arcs of small circles which, in the 
theory of accession and recession attributed to Thābit ibn Qurra and incorporated into the Toledan Tables, carried 
the Aries and Libra points of the eighth sphere back and forth, causing the oscillating precession.  See Dobrzycki, 
1965; Chabás and Goldstein (2012), pp. 43-52. 
15 ‘the line that goes from centre aryn [the centre of the equatorium] to the head of Capricorn, which line is called the 
Midnight Line in the Treatise of the Astrolabe ... the nine divisions of the midnight line just mentioned will serve for the 
equation of the eighth sphere.’ 
16 The combination of linear and oscillating precession led to a total correction of 1° in about 65 years; the oscillating 
term accounted for around half of this.  See Price (1955), pp. 104-107. 
17 The Moon’s latitude (β) can be computed from the Moon’s distance in longitude (L) from its node, where its orbit 
crosses the ecliptic, by the relationship β = 5sinL (North (1988), pp. 165-168), which was easily modelled on the face 
of the equatorium.  Westwyk described a tool to perform this function, on the upper half of the instrument, in great 
detail (ff. 77r-78v).  The relationship between the equation of accession and recession of the eighth sphere (ψ) and 
the mean argument of the eighth sphere (θ) was of the form sinψ = sin9.sinθ (Chabás and Goldstein (2012), p. 51).  
Nevertheless, an astronomer working to a precision of minutes could use the approximation ψ = 9sinθ to satisfactory 
effect.  
18 Westwyk made additions to the Hand A notes on ff. 31v and 38v. 
19 The word ‘amateur’, although sometimes used by historians of medieval science (quoted, for example, in the 
introduction to this article), is problematic.  Here I am using it to denote lesser expertise, along with the freedom to 
pursue personal interests and satisfaction.  For a discussion of the difficulties of defining professional and amateur 
status, see Berman (1975).  Berman’s definition focuses on the early nineteenth century, when these categories 
became contentious. 
20 These are taken from the first printed edition of the Alfonsine Tables (Alfonso, 1483).  It is highly likely that these 
very common Toledo values were used, but even if not, it would not make any difference to most of the results, as 
most columns in the table were evidently subtracted from zero (because the correction was carried out to a greater 
number of sexagesimal places than the initial Toledo radix). 
21 Westwyk’s copy of the tables in Richard of Wallingford’s Tractatus albionis (Bodleian Library MS Laud Misc. 657, ff. 
32r-45r, is remarkably free from errors. 
22 An example of the more usual 30° presentation is in Cambridge University Library MS Ii.1.27, ff. 23r-33v.  This 
manuscript (dated 1424) also contains canons ascribed to Lignières. 
23 ‘accipe partem proporcionalem tam ex parte centri quam ex parte argumenti si oportet.’  The table allows the user 
to multiply two numbers from 1 to 60, with the results given as a proportion of 6°.  For example, 5 x 5 gives the 
result 4,10. 
24 Bodleian Library MS Laud Misc. 674, f. 74r 
25 North (1986), pp. 128-30, discusses the table of differences in half-day length. 
26 ‘These are the declinations of Arzachel, I believe. Correct, according to R.B.’ 
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27 The tables that survive with the Opus Maius (Bacon, 1897, pp. 208-210) are for calculating the date of Easter; 
however, Bacon refers to other tables which are not extant. 
28 A maximal value of 7;57 does indeed appear in work commonly attributed by medieval astronomers to Profatius 
(in fact it is by Peter of St Omer (fl. 1289-1308)); see Pedersen (1983-84), pp. 42-43, 702; Pedersen (2002), pp. 984-
985.  John of Lignières also uses 7;57. 7;54 is the figure used by al-Battani, the Toledan Tables and Parisian Alfonsine 
Tables.  See Chabás and Goldstein (2012), p. 40. 
29 In order to check his result, we would need to know what value he was using for the solar eccentricity, which is 
not certain; the value incorporated into the equatorium design was 1/30th of the solar radius, but this was quite 
different from the value common to authorities in this period.  See Chabás and Goldstein (2012), p. 66. 
30 The leftmost column gives 24 hours’ motion in minutes; since the maximum value given is 1080', there may be 
some relation with the common division of one hour into 1080 points (ḥelaqim).  Helaqim are used in some tables of 
Jewish origin, and this, as well as the fact that the table is entered on the right, may suggest a Hebrew source.  See 
Chabás and Goldstein (2012), p. 141. 
31 The rows are at intervals of 24'.  The range of the first table is 10;0-17;12°/day; the second is 11;12-18;0.  Both 
ranges exceed anything possible according to Ptolemaic lunar theory.  Values for maximum and minimum daily lunar 
motion varied, but on the equatorium the range of achievable values was certainly no greater than 11;36-14;48°/day, 
so in that sense either table would have been quite sufficient.  See Goldstein (1992). 
32 In Westwyk’s defence, we may note that errors which Price claimed to have identified in his explanation were, in 
fact, correct; Price mixed up figures for the retrograde motion of Caput Draconis and the resulting position, which 
was obtained by subtracting the motion from 360°.  We may therefore reasonably conclude that no scholar is 
immune to such errors, and we should not judge Westwyk’s performance too harshly. 

It is also worth noting that Westwyk had almost certainly not computed these exceptionally accurate (barring his 
one cardinal error) positions on the equatorium, but rather taken them from tables for use in his worked examples.  
See arguments in Price (1955), pp. 72-3, and North (1988), pp. 168-9. 
33 This is an impression sustained throughout the treatise, which is a model of pedagogical writing while still 
containing significant theoretical errors.  Seneca (1917), VII:8.  Seneca’s writings were very popular in this period, 
and his influence on Chaucer has been noted (Wilson (1993)). 
34 ‘This is the amount by which the half-arc [half the daylight hours] of the longest day is more than six hours.’ 
35 On this use of ‘retrogradorum’, which may be influenced by John Somer, see North (1988), p. 188. 
36 Westwyk’s use of the vernacular for the Equatorie treatise may well have been an act of devotionally inspired 
charity.  See Getz (1990). 
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Template Tables and Computational Practices in Early Modern 

Chinese Calendric Astronomy 

Liang Li 

 

Abstract: This article introduces a writing format, the “template table” (suanshi, 算式) 

that was designed to guide the process of calendrical astronomical calculations in 

early modern China. In conjunction with another kind of text, known as “detailed 

procedures” (xicao, 細草), users could perform calculations easily by operating the 

“template table” and extracting data from given numerical tables. This method, that 

not only normalized the use of numerical tables but also linked instructions with the 

corresponding tables in computational practices, became widespread from the Ming 

period (1368-1644) onwards. Wanting to acquire this computational regimen, the 

Joseon court of Korea (1392-1897) even sent skilled officers to China to learn it 

secretly. The circulation of the template method beyond China suggests its 

significance. The article also discusses the advantages and disadvantages of using this 

method.  

 

Keywords: template table, detailed procedures, calendrical systems, astronomical 

tables, transmission of astronomy from China to Korea 

1. Introduction 

Many resources related to ancient astral sciences survive in China. For mathematical 

astronomy, there were theoretical texts and tables to make computations. But 

theoretical texts and tables alone do not suffice; skills to manipulate tables and 

procedures to carry out mathematical practices are also needed.1 The official 

astronomers were very creative in inventing template table to standardize 

computational practices. By using such writing formats, users needed only to add and 

subtract, multiply and divide. Handbooks provided detailed instructions for the 

templates, outlining the procedures step-by-step. When more than elementary 

operations were necessary, the handbooks provided the calculators with tables in 

which they merely looked up a quantity as the instructions demanded. As long as they 

followed instructions, memorized the names of constants and variables and recorded 

these data in the template table, users had no need to suffer from the complicated 

underlying astronomical theories. These algorithmic practices were used in many 

astronomical systems (traditional Chinese, Islamic and European systems used in 

China); even if these traditions employed different “theories,” they shared some 

similar mathematical practices. In this paper I want to show how template tables were 

used as a tool in early modern Chinese astral sciences and to reveal the mathematical 

                                                             
1 For example, the management of large sets of tables, management of long and complex 

algorithms, and decisions about the precision of the computation and rounding, etc..  
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practices behind them. 

As the complexity of astronomical computation practices increased over time, 

users became more inclined to rely on tables.2 Ming scholar, Lang Ying（郎瑛, 

1487-1566), once wrote that calculations carried out using tables did not require as 

high professional skills as earlier: “If one is provided with (tables) to carry out 

(astronomical) computations, even ordinary people can do them” 若夫授以成算，則

中人可為.3 

In order to avoid computational errors that might cause serious political disasters, 

the official astronomers in the Astronomical Bureau (Qintian jian 欽天監)4 were 

inclined to rely on established procedures and template tables. Zhou Xiang 周相 (fl. 

1560s), the director of Astronomical Bureau, once pointed out that the canon of the 

Season granting calendrical system (Shoushi li 授時曆, used between 1280 and 

1385),5 the most sophisticated Chinese calendrical system, was thought to be abstruse 

and difficult to understand 玄奧而難明 and even the official astronomer suffered 

from the calculations 曆官難於考步.6 To address this problem, Yuan Tong (元統, fl. 

1380s), director of Astronomical Bureau in the early Ming, was assigned to design a 

handbook to make the calculations easier. He wrote the General Rules for the Great 

Concordance Calendrical System大統曆法通軌 (henceforth General Rules) and 

ordered the Bureau staff to follow this method. The Great concordance calendrical 

system was mainly based on the Season granting calendrical system, even though 

there were a few differences between them, especially in the part devoted to tables. 

The former only relied on handy tables and explained how to use them. The use of 

tables could simplify calculations, especially when eliminating complicated 

calculations such as a lot of exponentiation calculations. Users only needed to know 

how to carry out addition, subtraction, multiplication, and division to follow the 

                                                             
2 The calculations required in ancient Chinese calendrical systems could use two methods: 

procedures described in texts or specific types of tables named licheng (立成, pick-up table or 

handy table). It seems that there is a correlation between the use of quadratic interpolation and the 

making of tables of a licheng type. With the term licheng one is probably closer to a pick-up table 

expressing a relationship, avoiding computations except for linear interpolation. 
3 Qixiu leigao 七修類稿, Vol.5. 
4 The Astronomical Bureau was a middle-ranking institution serving the emperor. Its main tasks 

included calculation of the calendar, forecasting solar and lunar eclipses and observation of 

abnormal astronomical phenomena. Normally, the Astronomical Bureau had several different 

departments including the department of Calendar (li ke 曆科), the department of Heavenly Signs 

(tianwen ke 天文科) and the department of the Water Clock (louke ke 漏刻科). The Calendar 

department got its name from its duty of making the state calendar and was mainly focused on 

calendrical calculations. The department of Heavenly Signs was in charge of observing celestial 

phenomena and presented their astrological interpretations to the emperor. Time-keeping was the 

simplest service that the Water Clock department provided to the court. For more information on 

the Astronomical Bureau in China see Chang, Ping-Ying (2015) and Deane, Thatcher Elliott 

(1989). 
5 Most astronomical treatises on Chinese calendrical systems, in their surviving forms, contain a 

canon. Canons, sets of instructions for minimally skilled users, neither explain nor justify their 

procedures. Once a user had worked his way through the canon, he could carry on various 

calculations such as the prediction of the winter solstice, solar and lunar eclipses and planetary 

phenomena (Sivin, 2009, p.40). 
6 Daming datong lifa 大明大統曆法 (Great concordance calendrical system of Great Ming) , 4b. 
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General Rules.7 By contrast, the canon of Season granting calendrical system 

presented both procedures and methods based on tables, which were introduced by the 

expression “youshu (another procedure, 又術)”.  

Handbooks in the type of General Rules (Tonggui, 通軌), generally named 

Detailed Procedures (Xicao, 細草) in the Qing dynasty (1644-1911), were compiled 

to guide users to operate templates and numerical tables normatively. In the early 17th 

century, the Jesuits sought to improve the Chinese calendrical system by referring to 

western astronomy. When western astronomical system was adopted in China, the 

method of using detailed procedures and template tables were also borrowed by 

Jesuits serving in the Astronomical Bureau. Hence, Chinese computational practices, 

in the 17th century, were combined with European astronomical theory. 

During the late Koryo dynasty (1303-1304) of Korea, the Season granting 

calendrical system was introduced to Korea. However, it appears as if the Korean 

astronomers at first could not wholly take advantage of the new knowledge. In order 

to develop calendrical astronomy in his kingdom, King Sejong (r.1418-1450) 

imported the new Chinese computational techniques and ordered his astronomers to 

carry out systematic research on the Great concordance calendrical system.8 

Meanwhile, some competent astronomers were sent to China; they brought back many 

astronomical works, including the General Rules, and reprinted these works in Korea. 

Soon after the Qing court promulgated the Xiyang xinfa lishu (西洋新法曆書, 

Books on Calendrical Astronomy According to the New Western Method)9 in 1644 as 

its official calendrical system, the Joseon (1392-1910) court launched a project to 

master the methods of the new western astronomy. For over a century, a series of 

official missions were dispatched to Beijing to acquire astronomical texts and 

instruments as well as to learn calculation methods.10 During the Ming and Qing 

period, the General Rules and Detailed Procedures thus played an important role in 

the transmission of astronomy from China to Korea. 

2. The “template table” in the Qing period (1644-1911) and its origin in 

the Ming period (1368-1644) 

In the Bibliothèque nationale de France (National Library of France), we can find a 

printed Chinese sheet entitled suanshi (算式, calculation form, shelf mark Chinois 

5015) 11, containing two sets of tables for the calculation of solar and lunar eclipses 

                                                             
7 Li Liang (2011), p.12. 
8  Shi Yunli (2003). 

9 Xiyang xinfa lishu is the revised version of Chongzhen Lishu 崇禎曆書 (Books on calendrical 

astronomy of the Chongzhen reign) which was finished between 1629 and 1636. Chongzhen Lishu 

is the main achievement of the astronomical reform under the leadership of Xu Guangqi 徐光啓 

(1562-1633). This set of books introduce a system of computational astronomy based on Tychonic 

system of planetary motions and many new achievements in astronomy since Copernicus. 
10 Lim Jongtae (2012). 
11 The suanshi, sometimes named chengshi 程式(procedure form) , is a technical term which 
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according to the newly introduced western astronomical methods. These template 

tables are printed in red ink, which means that their users were official astronomers in 

the Chinese Astronomical Bureau. The content and layout of the tables show that they 

were specifically designed to guide the process of calculation and to record the results 

of each step as the user filled the table with data extracted from appropriate 

astronomical tables. The template table of solar eclipse, for example, reads: 

“Conjunction day in [blank] year [blank] agricultural year [blank] month under the 

Kangxi reign, the magnitude with the directions of first and last contact of the solar 

eclipse”康熙  年  歲  月初一日朔,日食分秒及起復方位 (Fig. 1).  

 

                                                                                                                                                                               
refers to a type of template tables for calendrical calculations. 
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Fig. 1 The first page of the template table, BnF Chinois 5015 (above), and my 

translation (below).12 

 

This template table contains sixteen steps, each with several sub-steps. This 

hierarchy of step and sub-steps in the template table gives a structure of a long 

computation in line with the instructions of procedure. This structure might help users 

to understand the process and to search for mistakes. The layout shows that the left 

part of the table presents the title of each sub-step, the top lists the units (day/sign 日/

宫, hour/degree 时/度, minute 分 and second 秒), and the right part gives many 

blank cells named “ge” 格 to fill with data. 

 Let us take the first step, “calculate different mean motions” 求諸平行, as an 

example. This step requires the user to calculate five different mean motions using 

astronomical tables, including the mean conjunction time (pingshuo, 平朔), mean 

position of the solar epicycle from perigee (taiyang pingyin, 太陽平引), mean 

                                                             
12 In order to distinguish various shuoce 朔策 (lunation factor), we use lunation factor I to 

lunation factor V in the translation. This figure illustrates step one of the template table. 
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position of the lunar epicycle from apogee (taiyin pingyin, 太陰平引), mean position 

of the ascending node (jiaozhou pingxing, 交周平行), mean position of the sun 

(taiyang jingpingxing, 太陽經平行). To finish these calculations, the user should 

refer to a numerical table named “Table of five motions lasting two hundred years 

after the calendrical epoch” (曆元後二百恆年五行表, liyuanhou erbai hengnian 

wuxing biao) 13. This table (Fig. 2) has seven parts divided with bold lines; the top 

row is the argument “year counting” (jinian, 紀年) 14 and the following six parts are 

different “radix” (gen, 根) for different mean motions—radix time for the first mean 

conjunction after the winter solstice (shoushuo gen, 首朔根), radix position of the 

solar epicycle at the first mean conjunction (taiyang yingen, 太陽引根) 15, radix 

position of the lunar epicycle at the first mean conjunction (taiyin yingen, 太陰引根), 

radix position of the ascending node at the first mean conjunction (jiaozhou dugen, 

交周度根), radix position of the sun at the first mean conjunction (taiyang jingdugen, 

太陽經度根), “lodges” (xiu, 宿)16 and “date counting” (jiri, 紀日).  

 

                                                             
13 The epoch was the mean time of winter solstice for the first year under the Chongzhen reign 

(1628-1644), i.e., 23 December 1627 in the Gregorian calendar. 
14 A Chinese coordinate system for year counted in heavenly stems and earthly branches 干支, 

which has a circle of sixty. This system also can be used for counting dates and was called “jiri” 

(紀日, date counting). 
15 Here, the first conjunction means the first conjunction of the sun and moon after the winter 

solstice (tianzheng dongzhi, 天正冬至). 
16 The Chinese had several different coordinates for locating points in space and time. One 

coordinate system for dates was the twenty-eight lodges, a scheme essential for Chinese astrology. 
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Fig. 2 “Table of five motions lasting two hundred years after the calendrical epoch” 

(above), excerpt in Xiyang xinfa lishu (Vatican Library, R.G.Oriente.III.240 int01, 

1.7b) and and my translation (below). 

 

 Each type of mean motion has its own “lunation factor” (shuoce, 朔策), which 

means the mean displacement of each motion during a mean synodic month.17 The 

basic operation of the first step in the template table is to pick-up different “radices” 

of mean motions from the table and adds them to various lunation factors to get each 

mean position. That is, by adding the radix position of each mean motion at the first 

                                                             
17 The values of shuoce in this system refer to Tycho Brahe. The lunation factor for time of mean 

conjunction, displacement of the solar epicycle, lunar epicycle, ascending node and mean motion 

of sun (in a mean synodic month) are 29 days 12 hours 44 minutes 3 seconds, 0s;29°6′21″, 

0s;25°49′0″, 1s;0°40′14″, 0s;29°6′24″, respectively. 
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conjunction and its displacement between the first and chosen conjunctions, the user 

can find the mean positions at any time of mean conjunction. 

 For example, suppose we need to calculate the “mean position of the solar 

epicycle from perigee” at the Month I conjunction in the thirty-first year under 

Kangxi reign 康熙三十一年正月 (17th Feb., 1692 in Gregorian calendar). We 

extract “radix position of the solar epicycle at the first mean conjunction” 

0s;21°06′18″ in the table (see Fig. 2), and add it to its lunation factor 0s;29°06′21″, 

giving 1s;20°12′39″ for the “mean position of the solar epicycle from perigee”. If we 

need to calculate the Month II, we just need to add the lunation factor twice and get 2s; 

19°19′0″. 

 The form BnF Chinois 5015 is unique. Official astronomical publications in this 

period often include two parts, “the Lizhi (The gist of the calendrical system, or 

theoretical part) was used to clarify its principles, whereas the table part was used for 

placing the data” 曆指以明其理，表以着其数.18 But the BnF sheet was used neither 

for introducing the theories nor for offering data. Rather, it is a specific tool to guide 

the user to follow procedures and select data from given tables.  

Another template table similar to Chinois 5015 can be found in the book Jiaoshi 

Mengqiu dingbu 交食蒙求訂補 (Amendments of elementary course for eclipse 

calculations) by Chinese mathematician Mei Wending (梅文鼎, 1633-1721). It was 

included in the appendix to this book and has not been studied previously by scholars. 

Noteworthy is the fact that, according to Mei Wending, this book is a supplement with 

annotations to a handbook named Jiaoshi Mengqiu 交食蒙求(Elementary course for 

eclipse calculations). The Elementary course for eclipse calculations is one volume in 

the book Chongzhen lishu 崇禎曆書 (Books on calendrical astronomy of the 

Chongzhen reign) which introduces systematically the theories and methods of the 

classic European astronomy. The Elementary course for eclipse calculations was 

finished by Jesuit astronomer Johann Adam Schall von Bell (1592-1666), first 

presented to the emperor Chongzhen (崇禎, r. 1627-1644) in 1634, but remained 

unpublished and later became lost. That is, the extant information suggests that 

Chinois 5015 has some links to the Elementary course for eclipse calculations which 

belongs to the Books on calendrical astronomy of the Chongzhen reign. Mei Wending 

also pointed out that the mengqiu 蒙求 has another name xicao 細草: “The 

[Chongzhen] lishu (Books on calendrical astronomy of the Chongzhen reign) has a 

xicao for the convenience of calculations just as the Season granting calendrical 

system has the General Rules”《曆書》之有《細草》，以便入算，亦猶《授時曆》

之有《通軌》也.19 

That is, template tables are bridges that connect a set of instructions and the 

corresponding tables in computational practices. 

The normalization of tabular use can be perceived in the title of the General 

Rules for the Great Concordance Calendrical System by Yuan Tong. The term tonggui 

(通軌, general rules) suggests that the book prescribes how to perform calendrical 

                                                             
18 Xiyang xinfa lishu 西洋新法曆書, “Tables for planets” 五緯表, vol. 1, 1.1a. 
19 Wuan lisuan shumu 勿庵曆算書目(Wuan’s bibliography on calendrical system and 

mathematics), 12a. 
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calculations with tables quickly and easily. In fact, this book even presents the steps of 

calculations in tabular form. The work has six volumes, covering the calculation of 

solar terms and syzygy, position of the sun, moon, five planets, and siyu 四餘 (that is, 

four hypothetical celestial bodies that were important in astrology) as well as eclipses. 

Each volume contains four parts. Before introducing the procedures in detail and 

offering the appropriate astronomical tables, it gives the yongshu mulu 用數目錄 

(list of the necessary parameters or constants, the values we already have achieved) 

and the chengshi 程式 (procedure form, a type of template table). The template table 

chengshi lists the values we need to calculate and provides blank entries for users to 

fill in the data extracted from appropriate numerical tables. The result of each step is 

recorded in the appropriate cell of the template table, thereby normalizing the process.  

Let us take the planetary part of this book as an example. It emphasizes that “for 

the calculation of planets, [the user] have to follow the form shi20marked with 

boundary and fill in [the data]”凡推算五星者，依此式界劃填寫. The book also 

emphasizes that other calculations should refer to these forms 皆當仿此式. This 

method of calculating with template table was thus an established rule in the 

Astronomical Bureau at least since the Ming period. Beside the General Rules, 

another book Weidu taiyang tongjing 緯度太陽通徑 (Gateway for the position of 

sun with Islamic method) also has a template table chengshi used as a sample to 

calculate the true position of the sun by Huihui lifa 回回曆法 (Islamic calendrical 

system in Ming China), which was an official calendrical system used in parallel with 

the Great concordance calendrical system.21 

In sum, these two books describe how to use prearranged printed forms for 

computations required by the Great concordance calendrical system and the Islamic 

calendrical system, respectively. The kind of template table called chengshi, later 

sometimes named suanshi (算式, calculation form), specifically designed to guide a 

process of calculation and to record the results of each step, was widespread from the 

14th century onwards. This technique helps to normalize the use of numerical tables 

and the computational procedures; it also enables users to check the results of each 

step and reduce chances of error. 

3. The “detailed procedures” and the use of “template tables” 

The term xicao (detailed procedures) initially came from ancient mathematical texts 

and referred to a kind of notebook used to explain algorithms or give detailed 

comments on classic mathematical texts. For example, extant editions of Zhang 

Qiujian Suanjing 張邱建算經(Mathematical Classic by Zhang Qiujian), initially 

composed between 466 and 485, contain “detailed procedures” (草, cao). This form 

of text occurs here for the first time in the extant mathematical texts; in the 11th 

century we have a second occurrence in Jia Xian’s 賈憲 Huangdi Jiuzhang Suanshu 

Xicao 黃帝九章算術細草(Detailed procedures of Huangdi’s Canon of the Nine 

                                                             
20 Sometimes chengshi is also called shi 式 (form) in the astronomical texts. 
21 That is, different types of calendrical systems have their own template tables but handle their 

computational practices in similar ways. 
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chapters on mathematics). Most of the extant mathematical books in the 18th century 

and 19th century offer this type of detailed procedures as do books on the astral 

sciences in the same period.22 The detailed procedures thus occurs both in 

mathematics and in the astral sciences. 

 However the detailed procedures are rare in the extant ancient Chinese 

astronomical texts, this may be because the astral sciences were strictly controlled by 

the imperial court and were only accessible to members of the Astronomical Bureau. 

In this section, I will present the Suan qizheng jiaoshi lingfanfa 算七政交食淩犯法

(Calculation methods for seven luminaries, eclipses and encroachments)23 and 

Xuanxiang xinfa xicao leihui 玄象新法細草類匯 (Collection of detailed procedures 

for new celestial methods) as examples to introduce the contents and circulation of 

xicao in astronomy. The former text, preserved in the Library of Forbidden City, is a 

“detailed procedures” transcribed in the middle period of the Kangxi reign 

(1661-1722). The latter one, now in Kyujanggak Library in the Seoul National 

University, is a manuscript “secretly purchased” 密買 by Korean astronomers from 

China in the early 18th century. 

 The Collection of detailed procedures for new celestial methods gives a set of 

detailed procedures to calculate the position of the sun, the moon and five planets, 

solar and lunar eclipses as well as the lunar and planetary encroachments (the passing 

of the moon or planets through an asterism). In the part on eclipses, we find that the 

procedures the book introduces are fully consistent with the template table recorded in 

BnF Chinois 5015. For example, the “sixteen steps” and “twelve steps” for solar and 

lunar eclipses respectively in these two documents are identical. In both cases the 

procedures for determining the mean motions is identical. 

 In order to illustrate how the detailed procedures works, let us take the “solar part” 

in the Collection of detailed procedures for new celestial methods as an example to 

compare the process of calculations with the “detailed procedures” and “template 

table”. In this book, the “solar part” gives eight steps to calculate the true position of 

the sun according to the western method introduced by Jesuits. The text says:24 

Method for calculating the thread of the sun 

Radix of the year (niangen,年根): First, to pick up the radix of the 

current year, note: The radix of the year corresponds to a computation 

that starts from winter solstice and does not mean it begin calculating 

                                                             
22 In mathematical texts published in the 18th century and 19th century, we can find Detailed 

procedures and illustrated description for nine chapters on the art of mathematics 九章算術細草

圖說 and Detailed procedures of sea island mathematical manual 海島算經細草圖說 by Li 

Huang 李潢 (1746-1812), Detailed procedures of sea mirror of circular measurement 測圓海鏡

細草, Detailed procedures of the procedure of calculation of arcs and sagittas 弧矢算術細草 by 

Li Rui 李銳(1768-1817), and Detailed procedures of Reflections on mathematics up to four 

variables 四元玉鑒細草 by Luo Shilin 羅士琳(1789-1853). These books all belong to the type of 

“detailed procedures” for the ancient classic mathematical texts. 
23 Actually, the initial handbook Calculation methods for seven luminaries, eclipses and 

occultation has no title and preface; a librarian added this title later, based on its contents.  
24 The reader who doesn’t care for the technical sides and the translation can go forth to the next 

section of this paper. You will find an example in the next section which can help you understand 

this texts better. 
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from the first month [of the lunar year]; input this data into the cell 

“radix of the year”. Alongside, record the position of perigee [at 

winter solstice] (gaochong,高衝) this year and write on the [blank] 

paper which put aside. 

 Motion in days (rishu,日數): Second, to check how many days 

there are from the day after the winter solstice of the current [year] to 

a chosen day, then use the number of the days [as the argument]. See 

the table of annual mean motion of the sun, which in volume one, 

page thirteen, When the degrees, minutes and seconds of a sign go 

beyond thirty degrees, move ahead by one sign, and record it in the 

cell “motion in days”. By the way, to record the motion of perigee 

[from winter solstice] (gaoxing, 高行) up to this day in the paper put 

aside, add it [with gaochong , the position of perigee at winter 

solstice], record the result. 

Motion in hours (shishu,時數): Third, from the mid-night to the 

time (hours) of the chosen day, use the number of the hours [as the 

argument]. See the table of mean position of the sun hours in one day, 

which is in volume one, page fifty-five, and record the motion in 

hours in the cell according to the units in degree and second. 

Mean position (pingxing,平行): Fourth, add the data radix of the 

year, motion in days and motion in hours together in degree, minute 

and second, record [it] in the cell “mean position”.  
Position of perigee (gaochong,高衝): Fifth, pick up the sum of 

the two data that have been added in the paper put aside, record [it] in 

the cell “position of perigee”. 

Epicyclic mean anomaly (yinshu,引數, literally argument): Sixth, 

subtract from the mean position the value of the position of perigee; 

if too small to be subtracted, add it with twelve signs and then 

subtract, [the result] as the epicyclic mean anomaly, record [it] in the 

cell “epicyclic mean anomaly”.  

Equation of the sun (junshu,均數): Seventh, use the [data of] 

epicyclic mean anomaly [as the argument] in sign, degree and minute, 

see the table for addictive and reductive corrections [of the tread of the 

sun] (equation table) in volume two, to pick up its corresponding 

equation of the sun, remember to add the plus sign or minus, record [it] 

in the cell “equation of the sun”. To check the equation [in which 

sign], [if] in the first half six signs, which are sign 0,1,2,3,4,5, use the 

upper side and [read the table] forward; if in the second half of the six 

signs, which are sign 6,7,8,9,10,11, use the lower side and [read the 

table] backward. The upper side [results are positive] sign +, the lower 

side [results are negative] sign -. To use the proportional method for 

interpolation (bilifa, 比例法), subtract the pick up value with the 

value of next entry, get the remainder in the unit of seconds. Multiple 

the data with the remainder of the epicyclic mean anomaly, remove 
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the mantissa, then add or subtract it with the pick up value. If the pick 

up value is larger than the value of next entry, use the sign -, if smaller, 

use the sign +. Then get the equation of the sun for the corresponding 

epicyclic mean anomaly, record [it] in the cell “equation of the sun”. 

True position (shixing,實行): Eighth, add or subtract the mean 

position with the value of equation according to the plus or minus 

sign [before the equation value], [the result] is the true position, 

record [it] in the cell “true position”.25 

推日躔法 

年根:一、察本年根，按各年根冬至起算，非各正月起算也，

寫于年根格內。隨錄本年高衝書於傍紙。 

日數:二、察於本冬至後一日至某日，有幾日即用幾日之日數。

至太陽周歲平行表內，一卷三十三張，其宮度分秒之數凡滿三十

度，則進一宮，寫於日數格內，隨錄本日高行於傍紙下，相加得

數記之。 

時數:三、從子正起至某時，止有幾時，用此數。至周日時對

準日行表，在一卷五十五張內，相對分秒寫于時數格內。 

平行:四、年根日數、時數、宮度分秒，一併相加于平行格內。 

高衝:五、將傍紙所記加得高衝之數，寫于高衝格內。 

引數:六、平行內減去高衝之數，若不足減者，加十二宮減之，

為引數，寫於引數格內。 

均數:七、以引數宮度分至二卷加減差表內，察相對之均數，

記書加減號，得數寫於均數格內，但察均數前六宮，〇、一、二、

三、四、五宮者，其度分在上順察，後六宮，六、七、八、九、

十、十一宮者，其度分在下逆察。在上號加，在下號減，若用比

例將先均數與後均數，相減所得之秒數，用此秒與引數之餘分相

乘，所得數去尾數與先均數或加或減。若先均數大於後均數，用

減。若小於後均數，用加，即得。本引數之均數寫於均數格內。 

實行:八、均數依加減號，或加、或減于平行為實行，寫於實

行格內。 

 

From the texts above, we can find some features of this text detailed procedures. 

First, each step has its own title in the beginning, such as the titles “radix of the year”, 

“motion in days” and “motion in hours” for the first several steps and each step of 

calculation is designed in the form of given “cell”. The user only needs to know how 

to extract data from the appropriate tables and how to fill each cell with intermediate 

data. The final result is then secured by simple arithmetic calculation. 

Second, some steps identify the title of table that should be referred to and even 

give the relevant page number. For example, the step “Motion in hours” says“refer to 

the table of annual mean motion of the sun, in volume one, page thirty-three” 至太陽

周歲平行表內，一卷三十三張. Because this detailed procedures only gives the 

procedures without the whole tables, we do not know to which tables they refer. But 

                                                             
25 Suan qizheng jiaoshi lingfanfa 算七政交食淩犯法 (Calculation methods for seven luminaries, 

eclipses and occultation), 1a. 
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with the help of the titles and page numbers, we discover that this set of detailed 

procedures fit the tables in the Books on Calendrical Astronomy According to the New 

Western Method (finished in 1645) instead of the Books on calendrical astronomy of 

the Chongzhen reign (finished between 1629 and 1636) which is the first edition of 

the former.  

 Third, we find that the procedure requires that some values be recorded in the 

template table, while a blank sheet called pangzhi (a paper put aside, 傍紙) is 

required in the process of calculations in addition to the “template table”. Obviously, 

other values such as temporary data only need to be written on the paper put aside.26 

The contents of “detailed procedures” in the Calculation methods for seven 

luminaries, eclipses and encroachments, numerical tables in the Books on Calendrical 

Astronomy According to the New Western Method and the corresponding “template 

table” in BnF Chinois 5015 suggest that these three documents were used together for 

the calendrical calculations. Users who were not professionals or did not understand 

the fundamentals of the western astronomy could still finish the computations with the 

help of a “template table” if they followed the “detailed procedures” and knew how to 

select data from the tables. 

4. An example for the operation of “template tables” 

In order to show how the template table is used with appropriate detailed 

procedures and numerical tables, we will give an example: follow the instructions of 

detailed procedures and pick up data in the given astronomical tables (from fig. 3 to 

fig. 5) to finish the computational practice and complete a template table suanshi (in 

Table 1). Suppose we want to find the true position of the sun at midnight in Beijing 

on the first day in Month One in the fourth year under the Chongzhen reign (1st Feb. 

1631 in Gregorian calendar).27 

In this calculation, three numerical tables are needed: liyuanhou erbai hengnian 

biao 曆元後二百恒年表 (Table for lasting two hundred years after the calendrical 

epoch), taiyang zhousui pingxing biao 太陽周歲平行表 (Table for annual mean 

motion of the sun) and richan jiajiancha biao 日躔加減差表 (Table for addictive and 

reductive corrections of the tread of the sun, which is the equation table of the sun). 

The first table gives both the “radix of the year” (mean position of the sun at the 

winter solstice) and “mean position of perigee” (gaochong) at the winter solstice.28 

The second gives the displacement of mean motion of the sun and the mean motion of 

solar perigee in a whole year by days. The third gives the correction from the mean to 

the true position of the sun. 
                                                             
26 The step and sub-steps in the template suanshi were designed according to the instructions of 

procedure. When we pick up data from astronomical tables, we get the data needed in the current 

step and put it down in the suanshi directly. If the table has offered the data we required in the 

subsequent steps, they can be written on the paper pangzhi temporarily and taken back later when 

needed. 
27 Here, the Month One means the first month in Chinese lunar month system. 
28 This table also gives the date of xiu (宿, lodges) and jiri (紀日, date counting), but they are not 

necessary in this calculation and we can ignore them here. 
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According to the detailed procedures, the operation of these tables is as follows. 

First, we choose the fourth year under the Chongzhen reign, the year xinwei 辛未29, 

in the first table. We find that the values for “radix of the year” and position of perigee 

are “ten fen thirty-seven miao thirty-three wei” (10′37″33) and “six du two fen 

fourteen miao” (6°2′14″) (see Fig. 3).30 So we record the former value in the blank 

cells of “radix of the year” in template table and the latter value on the paper put aside 

(see Table 1).  

Because the first day of Month One is the 41th day after the winter solstice this 

year, we search “41” at the entry of “days” to obtain the two values under this column. 

It says “forty du twenty-four fen forty-one miao thirty-three wei” (40°24′ 41″33) and 

“eight miao” (8″) (see Fig. 4). Then we convert each thirty degrees to one sign, and 

get “1s;10°24′41″33” for the former value. Let us record them in blank cells of 

“motion in days” in template table and “motion of perigee” on the paper put aside, 

respectively. Because the time we chose in this example is midnight, or the beginning 

of a day in Chinese custom, we do not need to take the “motion in hours” into 

consideration here. After adding the values “radix of the year” and “motion in days”, 

we get “sign one ten du thirty-five fen nineteen miao six wei” (1s;10°35′19″6) or the 

“mean position of the sun” at the chosen time that we record in the detailed 

procedures. Now we turn to the paper put aside and add the “position of perigee [at 

winter solstice]” (gaochong) and “motion of perigee [from winter solstice]” (gaoxing) 

to get the “position of perigee” at the chosen time. The result is “six fen two miao 

twenty-two wei” (6′2″22) and we record it in the template table as well (see Table 1). 

Subtracting the “position of perigee” (gaochong) from the “mean position” 

(pingxing), we get the “epicyclic mean anomaly” for the third table. The result of it is 

“sign one four du thirty-two fen fifty-seven miao six wei” (1s;4°32′57″6) that we enter 

in the template table (see Table 1). The third table we rely on is the equation table of 

the sun, whose argument is given in ten-minute intervals from the first to thirtieth 

degree of each sign. The table divides the twelve zodiacal signs in two, with the first 

six running right-to-left across the top of the table and the last six running left-to-right 

at its bottom. With the “epicyclic mean anomaly” (1s;4°32′57″6), we refer to the 

entries “4°30′” and “4°40′” in sign one and find “one du ten fen forty-seven miao” 

(1°10′47″) and “one du eleven fen four miao”(1°11′4″) (see Fig. 5). After using the 

‘proportion method’ (bilifa 比例法, an operation similar to the linear interpolation) 31 

to perform interpolation, we can get the equation “one du ten fen fifty-two 

miao”(1°10′52″). Finally, according to the detailed procedures, we can obtain the true 

position of the sun “sign one and eleven du forty-six fen eleven miao six wei” 

(1s;11°46′11″6) after adding the mean motion and its correction (see Table 1). 

                                                             
29 The year xinwei 辛未 is the eighth year in the sexagesimal circle in heavenly stems and earthly 

branches.  
30 Here, the Chinese writings adopted the sexagesimal system in degree, minute and second. The 

units du 度, fen 分, miao 秒, wei 微 are equivalent to degree, minute , second and one-sixtieth 

second. 
31 Linear interpolation was well known and appears for instance as the Yingbuzu 盈不足(Excess 

and deficit)in the Chinese classical The Nine Chapters on the Mathematical Art 九章算術 which 

dates probably from the 1st century CE (Martzloff, 2006, pp. 336–338).  
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Because the Chinese custom takes the winter solstice (270°) as the starting point, the 

true sun’s position is equivalent to 10s;11°46′11″6 from Aries after converting. 

 

Fig. 3. Table for lasting two hundred years after the calendrical epoch (liyuanhou 

erbai hengnian biao, 曆元後二百恒年表) with translation 

(Vatican Library, R.G.Oriente.III.236 int02, 1. 21a)  
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Fig. 4. Table for annual mean motion of the sun (taiyang zhousui pingxing biao, 

太陽周歲平行表) with translation 

(Vatican Library, R.G.Oriente.III.236 int02, 1. 35a) 
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Fig 5. Table for addictive and reductive corrections of the tread of the sun (richan 

jiajiancha biao, 日躔加減差表) with translation 

(Vatican Library, R.G.Oriente.III.236 int03, 2.2b) 

 

Table 1.The example template table for the calculation of 1st February 1631 (above) 

and appropriate paper put aside (below) 

 日/宮 

Day/Sign 

時/度 

Hour/Deg. 

分 

Min. 

秒 

Sec. 

微 

1/60

Sec. 

  
 

日
躔
算
式 

T
em
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late tab
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n
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read
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年根 

Radix of the year 

  10 37 33 

日數 

Motion in days 

1 10 24 41 33 

時數 

Motion in hours 

 0 0 0 0 

平行 

Mean position 

1 10 35 19 6 

高衝 

Position of perigee 

 6 2 22 0 

引數 

Epicyclic mean 

1 4 32 57 6 



18 

anomaly  

(Argument) 

均數 

Equation 

 1 10 52 0 

實行 

True position 

1 11 46 11 6 

 

position of perigee (gaochong) this year 本年高衝: 6 deg. 2 min. 14 sec. 

motion of perigee (gaoxing) up to this days 本日高行: 8 sec. 

 

5. Transmission of the “template table” and “detailed procedures” from 

China to Korea 

Because the Qing court imposed some restrictions on the circulation of the 

astronomical knowledge, it was difficult for Korean scholars to acquire astronomical 

manuals and instruments in the early Qing period. Even though some official 

astronomical books on theories and tables could be purchased through legal trade, a 

flexible solution was sought by the Joseon court to secure unpublished “top secrets” 

texts such as the detailed procedures. The Joseon king ordered some officers, who 

were actually experts in astronomy, to disguise themselves as normal diplomatic 

officers to the Qing court and to learn the calendrical system secretly. Korean 

astronomers Song Innyong 宋仁龍 and Kim Sangbeom 金尚范 were dispatched to 

Beijing where they eventually learned some basic methods from Adam Schall von 

Bell and Chinese astronomers in the Bureau.32 Consequently, in the year 1654 the 

Korean court was able to issue its own civil calendar consistent with the Qing court. 

But they only learned the method of calculating the solar positions; methods for 

calculating eclipses and positions of the planets were not obtained.  

Fifty years later, obvious discrepancies arose between the calendars of the Qing 

and Joseon courts for the year 1705 because the Chinese had improved their method 

and revised some parameters. The Joseon court thus sent an astronomer named Heo 

Won 許遠(fl. 1708) to Beijing, hoping that he could learn the new method. Heo Won 

was able to establish a favorable relationship with a Qing astronomer named He Junxi 

何君錫 and to learn the calendrical system privately from him. 

 According to Korean records in Seungjeongwon ilgi (承政院日記, The daily 

records of the royal secretariat), Heo Won brought back many books besides the 

detailed procedures after paying considerable rewards to He Junxi for access to the 

forbidden knowledge.33 The preface of Heo Won’s book, Collection of detailed 

procedure for new celestial methods, gives more details about the progress of securing 

these detailed procedures editions: 

                                                             
32 Lim Jongtae (2012). 
33 The electronic texts of Seungjeongwon ilgi are available on the official website of the National 

Institute of Korean History, http://sjw.history.go.kr.  See item King Sukjong 肅宗(1708/12/29). 

http://sjw.history.go.kr/
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Humble servant Heo Won conducted the mission to Yanjing (Beijing) 

and transcribed several kinds of calculating methods for two 

calendrical systems from the [Chinese] Astronomical Bureau officer 

He Junxi. The Chinese literatures and books were sought and 

purchased with no missing. But these things are forbidden secrets. 

The study of the annual radix for Venus and Mercury, solar epicyclic 

motion and eclipse caculations have not been studied yet, so [I was] 

dispatched [to Beijing] again in 1708.…For these methods are 

complex and difficult [to learn], [we] questioned and answered by 

[brush talk, writing Chinese characters] on literary notebook or small 

piece of papers during the teaching. [Finally, the notes] were 

collected into volumes and named the xicao leihui (Collection of 

detailed procedures)…This book is a standard for the calendrical 

scholar just as the yardstick and rule are to the craftsman.34 

臣遠受命而往燕京，從欽天監官何君錫，書得兩曆法推步之術多

種，文法書冊貿覔無遺，而事系禁秘，金、水年根、日躔高衝及

交食推解之法，猶有所未盡學得，又於戊子冬再往，.…蓋此法艱

巨，授受之際，隨端問答，或以片劄，或以小紙者有之，故合成

卷軸，名之曰《細草類匯》。… 此書之於曆家猶之工師之準繩規

矩。 

Because the xicao were essential in its calendrical calculation, the Joseon 

court spared no efforts to appropriate the new version of it. In 1727, officers 

again were dispatched to Beijing to calibrate the calendar and they brought 

back some astronomical books without the latest version of detailed 

procedures. Even though this book was believed to be the utmost urgency and 

importance one 甚緊要, it must be “purchased” in time 不可不及時貿來.35
 

Several decades after Heo Won, the Qing courts again rectified its calendar. 

As an essential book for calculations 推步之緊要方書, the latest detailed 

procedures was secured in 1735 and printed soon thereafter in Korea.36 This 

episode about the transmission of “template tables” and “detailed procedures” 

from China to Korea helps us to realize the important status of these 

computational tools in the maintenance of the calendrical system. 

6. Final Remarks 

As we have seen, a good calendrical system should be precise enough and easy to 

use. The Books on calendrical astronomy of the Chongzhen reign emphasizes that the 

theoretical part of the calendrical system is used to clarify its principles and the 

tabular part is used for placing the data. If the usage was not clarified不明其用, users 

                                                             
34 Xuanxiang xinfa xicao leihui 玄象新法細草類匯 (Collection of detailed procedures for new 
celestial methods), 1b. 
35 Seungjeongwon ilgi, see item King Yeongjo 英祖 (1728/10/24). 
36 Seungjeongwon ilgi, see item King Yeongjo 英祖 (1735/5/19). 
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could not handle the calculations 算者無從下手.37 Actually, the Books on 

calendrical astronomy of the Chongzhen reign is a work compiled in haste; its 

principles do not fit its tables well and many contents contradict each other. Even 

though its revised edition, the Books on Calendrical Astronomy According to the New 

Western Method, made a few rectifications, the book remains far from perfect and 

scholars always puzzle over how its procedures work. The detailed procedures shed 

light on this problem to some extent; it shows that the Astronomical Bureau mainly 

relied on the unpublished detailed procedures to normalize the calculations in practice, 

rather than referring to the implicit method introduced in the published Books on 

calendrical astronomy of the Chongzhen reign. That is, in ancient Chinese astral 

sciences, especially the calendrical system, it was not enough just to have theoretical 

texts and tables; skill in manipulating tables and mathematical practices were also 

necessary. 

 Later scholars felt that the decline of astronomical knowledge in China during the 

Ming dynasty could be blamed on the excessive reliance on tables. As Zhou Xiang 周

相 (fl. 1560s), who attempted to reform the Great concordance calendrical system 

(used between 1386-1644), wrote, the staff in the Astronomical Bureau only 

“respectfully keep the methods handed down from generation to generation and rely 

on its established practical rules” 謹守世業，據其成規.38 A late Ming scholar, Tang 

Shunzhi (唐順之 1507-1560)39, claimed that this led to a degeneration of knowledge 

regarding use of tables. “The [methods] such as using licheng tables and [what was 

introduced] in the General Rules [for the Great concordance calendrical system], he 

claimed, are inferior knowledge based on the writings [of the astronomer] Guo 

[Shoujing (郭守敬, 1231-1316)]40, but they are si shu (dead numbers)”《立成》、《通

軌》云云者，郭氏之下乘也，死數也.41 Scholars of the subsequent Qing dynasty 

concurred with this assessment, perceiving that the tables that had once been 

convenient for calculations had hindered the developments of astronomy. Mei 

Wending (梅文鼎, 1633-1721) pointed out that “The descendants of mathematicians 

and astronomers all followed the General Rules by Yuan Tong (fl. 1380s, director of 

Astronomical Bureau in the early Ming), they gradually forgot the ultimate source 

[theories]” 疇人子弟皆以元統之《通軌》入算，逐末忘源.42 He also worried that the 

calculators yearned unilaterally for the simple and convenient, they set aside the 

canon and neglected it 算者貪其簡便，而全部《曆書》或庋高閣.43 This is one of the 

                                                             
37 Chongzhen lishu, “Tables for planets” 五緯表, vol. 1, 1.1a. 
38 Daming datong lifa 大明大統曆法 (Great concordance calendrical system of Great Ming), 5a. 
39 Tang Shunzhi was a famous Ming mathematician and advocate of the ancient prose style, many 

of his works underlined importance of calendrical studies and mathematics. 
40 Guo Shoujing was a famous Chinese astronomer, engineer, and mathematician who lived during 

the Yuan Dynasty (1271-1368). His main achievement is the compilation of the most sophisticated 

Chinese calendrical system Season granting calendrical system (Shoushi li 授時曆, used between 

1280 and 1385). 
41 Jingchuan xiansheng wenji 荊川先生文集,Vol. 7. 
42 Wuan lisuan shumu 勿庵曆算書目(Wuan’s bibliography on calendrical system and 
mathematics), 8a. 
43  Wuan lisuan shumu 勿庵曆算書目 (Wuan’s bibliography on calendrical system and 

mathematics), 12b. 
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reasons why Mei Wending revised detailed procedures and supplemented it with 

annotations about theory. When he participated in the compilation of the “Monograph 

for the pitch-pipes and calendar” (Lülizhi) for the History of Ming, he also insisted on 

supplementing the theoretical portion and divided the book into three parts: fayuan 法

原 (theories), licheng 立成 (tables) and tuibu 推步(procedures) instead of consulting 

the existing book General Rules directly. That is, creative moves in mathematical 

practices, such as using the template table to carry on computations, had their own 

advantages. But when this method became a bureaucratic routine, users merely knew 

the practical skill but could not grasp the astronomical theories behind these practices. 
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Abstract 

Manuscript Escorial O II 10 is a late 13th-century document containing a well-known collection of 

astronomical texts from the arts faculty context. During the first half of the 14th century, this manuscript 

belonged to John of Murs, an important master of art of the Paris University, responsible, with others 

for the establishment of the Parisian Alfonsine Tables. John of Murs used the Escorial manuscript to 

record a wide range of notes over a 20-year period. Among those notes I examine here one concerned 

with two solar eclipses. Although I will review the relevant information concerning eclipse theory and 

mathematical practices of European astronomers in the 14th century, this essay will not focus directly 

on such matters. Rather I am interested in a documentary question: looking at a specific astronomical 

source I seek clues about the temporal dimensions of a computation as it was recorded in the codex. 

This focus will help assess the computation practices of John of Murs and will allow an understanding 

of the meanings such a computational record could have both for its author and in the more general 

context of early Alfonsine astronomy. 

  



1. Introduction 

Among mathematical practices, computation is fundamental and probably one of the most ubiquitous. 

All sorts of computations are and were performed in various scholarly and professional milieus. 

Computation is a performance embedded in many activities: material, temporal, semantic, individual 

and collective. The semantic dimension of computations–analysing the kind of numbers used, their 

relation to measure and metrology, the type of manipulations and operations made with them–is an 

emerging topic in historiography but will not be at the centre of attention here. The material dimension 

of computation is also an important aspect: are actors computing on an abacus, of which kind, computing 

on paper, on dust or wax tablet, with rods, with a combination of tools? The source examined here will 

give little direct indication about this dimension. Another interesting aspect of computation, which in 

some cases can be addressed, is the relation between the individual and the collective. Are the actors 

computing alone, or in a group? If the latter, how is the computation shaped to allow for a collective to 

perform a computation? On this aspect also our source is mostly silent. 

Computation always takes time. Some of them are thus worthy of being communicated and remembered, 

especially complex computations required to predict some astronomical phenomenon like eclipses. This 

not often studied aspect of ancient computation will be examined here and designated by the term 

‘temporality’. The temporal dimension of eclipse computation will be addressed in two venues: the 

relation of temporality to computation through memory and storage and the relation of temporality to 

computation during the execution or manipulation of numerical quantities. 

Although relevant information concerning eclipse theory and mathematical practices of European 

astronomers in the 14th century will be mentioned, this essay is not aiming at these as such. Rather I am 

interested in a documentary question: can a specific astronomical source offer traces about the temporal 

dimensions of a computation? The way in which the manuscript stores intermediate results of 

computations will be used to consider the relation of computation to memory: the execution of 

computation will be explored by following in the manuscript the sequential steps of the computation. 

The astronomical source for these investigations will be Escorial O II 10, which contains John of Murs's 

computations for the solar eclipses of 1333 and 1337. The first part of our essay will examine the 

manuscript as a storage device; the second part will trace the temporal performance of John's 

computation.1 

 

2 Temporality and Memory in Astronomical Computation: The Manuscript as 

Storage Device 

Escorial O II 10 is a parchment codex of 226 folios, 319 × 206 mm, written in a late 13th-early 14th 

century hand (Guillermo, 1911, pp. 4: 209–211).2 It is well copied with large marginal spaces and 

contains a usual collection of texts covering mathematical astronomy as it was conveyed in medieval 

arts faculties (Pedersen, 2002, 114):  

 Treatises and tables on computistics 

 Sacrobosco: Algorismus, De sphaera 

 Robert Anglicus, De quadrantis 

 Messahala: De astrolabii 

 Theorica planetarum gerardi 

 Thebit, De motu 

                                                           
1 John of Murs's astronomical notes of Escorial O II 10 are not yet edited; this paper offers preliminary work 

toward but not a full edition. 
2 All analyses presented here are made from a microfilm copy of the manuscript. 



 Toledan Canons and tables 

 Eclipse tract from the Toledan canons 

Many comments could be made about this collection of texts. Let me note only a few points, setting a 

background for the analyses to come. 

To begin, the interest for mathematical astronomy is related here to questions concerning the calendar 

and the determination of dates for moveable feasts like Easter. This connection was already old in the 

late 13th and early 14th century and would remain strong for at least two more centuries. Of course 

computus is not the only reason why Latin medieval societies were interested in mathematical 

astronomy; astrology is another obvious motivation, but the former should never be overlooked. 

Another point of interest is the presence of Sacrobosco's Algorismus. This famous adaptation for the 

medieval university context of al-Khwārizmī's eponymous text instructs readers about computation on 

paper with indo-arabic digits. Latin medieval astronomers were computing with sexagesimal numbers 

using integers written with indo-arabic digits. The codex begins with the fundamental text regarding the 

manipulation of these integers. 

The codex includes several texts on the geometrical bases of mathematical astronomy. In the Escorial 

O II 10 the sequence is particularly rich as it has both instrument texts (on the quadrant and the astrolabe) 

and theoretical texts (Sacrobosco, De sphaera, the Theorica planetarum, and De motu). Together these 

texts cover the theory of daily, planetary and stellar motions. It is not uncommon to see only parts of 

these texts in a manuscript and is not rare to find only texts on instruments. Both types of compilations 

offer their readers a qualitative grasp of the different circles and spheres composing the medieval cosmos 

and their possible relative motions. These texts also define the technical vocabulary of mathematical 

astronomy and its geometrical frameworks (Poulle, 1981, 52). If the reading of these texts were 

accompanied by manipulation of actual instrument like the astrolabe or quadrant, readers' qualitative 

understandings would have been more concrete. 

The Toledan Tables and their canons constitute the majority of the codex. This set of mathematical tools 

enables users to compute positions of the celestial objects at any time. It also facilitates computation of 

their various ‘accidents’ as being visible or not, direct or retrograde, in conjunction or opposition, 

eclipsed, etc. The Toledan Tables, translated several times from Arabic in the twelfth century and 

adapted in various ways in Latin and vernacular up into the 13th century, were the main computational 

tools of mathematical astronomy in Europe during the 13th and early 14th century (Pedersen, 2002), 

until they were gradually replaced, and partly incorporated, into the Alfonsine Tables (Chabás and 

Goldstein, 2003; Poulle, 2005). 

Among the various computations an astronomer could make with such a set of instructions and tables, 

eclipse computations were unmistakably among the most difficult and complex. This explains the 

existence of several eclipse tracts both in the Toledan and Alfonsine traditions. In this section of the 

manuscript an unidentified hand copied a fragment of John of Lignères canon on syzygies.3 

If Escorial O II 10 is a noteworthy manuscript, it is not for its highly coherent collection of texts, which 

can be found in other 14th-century codices, but for the exceptional set of marginal notes which it 

contains. Antolin briefly acknowledged the presence of these marginal notes and their relation to 

eclipses (Guillermo, 1911, pp. 3:211), but it was G. Beaujouan who made the real discovery about half 

a century later in 1962. He identified most of these notes as in John of Murs's hand (Beaujouan, 1964). 

John of Murs was a very important Parisian master of arts during the first half of the 14th century (Poulle, 

1973). He contributed important works in each field of the quadrivium, arithmetic, geometry, music and 

astronomy. The notes reveal that Escorial O II 10 belonged to John of Murs for about 25 years. 

                                                           
3 That is the computation of new and full Moon and the first stage of eclipse computation, fol.186r–189v. 



According to L. Gushee, who made a comprehensive study of those notes, focusing on their biographical 

content, the topics covered are broad and include (Gushee, 1970):  

 Commentaries on the principal texts of the manuscript 

 Extensive notes on astronomical subjects 

 Calculation or observational reports of astronomical phenomena 

 Records of book loans 

 Records of financial transactions 

 Miscellaneous 

John of Murs owned the Escorial manuscript for many years and probably carried it on his many travels. 

He used it partly as a notebook to record notes of various elements from his daily life, many of which 

reflect John of Murs's relation to other individuals (books loans) or institutions (financial transactions 

with the College of Sorbonne). Yet most of the notes deal with the content of the manuscript itself, i.e., 

astronomy. They are either directly related to the main texts of the codex or are various addenda 

proposed by John to complement the information in the treatises. 

We might think of John's commentaries as arising from a cursive reading of the texts; he would be 

annotating the pages while he read them, as a way to build his own understanding or to record for later 

occasions his evaluation of the texts. This kind of reading with ‘pen in hand’ certainly does not apply, 

however, to the marginalia where John of Murs inserted into the codex elaborate astronomical content, 

including his own computations and observations. 

For example, John of Murs's notes on eclipses are placed in the manuscript exactly where they are 

pertinent, near the canons to the Toledan Tables. Two folios left blank by the original scribe (92v–93v) 

were available just before the beginning of the Toledan canons where he inserted his observations of 

solar eclipses for 1333 and 1337. Another blank folio (123r-v) was available at the end of the canons on 

which he inserted notes on a lunar eclipse in 1334 (Pedersen, 2002, 114). Moreover in the first three 

folios of the manuscript John provided a summary of the different computational and observational notes 

he added in codex. These notes undoubtedly reflect John's intention not only to keep a memory of these 

computations for himself but also to position them where they would be understandable by any later 

competent reader of the codex. This suggests that John of Murs was probably not only writing solely for 

himself. He wanted his notes, computations and observations, to be remembered in the long term. He 

used the margin and available folios of his manuscript for this end and revealed this intention by the 

places in the manuscript where some of these notes are recorded. This is not only true of strictly 

astronomical notes; for instance, notes in the margin of the Sacrobosco algorism may reflect John of 

Murs's teaching of the topic and thus his desire for their long-term remembrance. In this respect, of 

course, John of Murs reflects the late medieval scholarly culture where an author is someone who adds 

to the existing texts and knowledge. These additions can take all types of textual forms, from humble 

marginal notes to vast treatises, but none should be considered insignificant. 

Marginal notes are arguably less elaborate than full treatises, but some of them are more structured than 

others. In the case at hand, John of Murs showed that he intended his computation and observational 

notes on the 1333 and 1337 solar eclipses to be remembered by the way he organized the notes 

themselves. Thus we have not only external clues about the relation of these computations to the 

astronomical tradition, derived from their position in the manuscript and the habits of late medieval 

scholarly cultures, but also internal clues regarding the way the notes are shaped. 

Describing these computations and observations records as marginal notes, however, is misleading. 

Because of the dimensions of the text that extend over three full pages on two folios, we have here more 

than a small annotation in the margin of the Toledan canons. The text of John of Murs fills the full space 

of the pages and is not related directly as a marginal note to any pre-existing text of the manuscript. The 

text also features another formal aspect untypical of marginal notes and commonly used to mark the 



limits in a codex of an independent treatise. It has, in John's hand, a title, Anno Christi curente 1333 

maio (Figure 1), and an explicit, Explicit verum modum equandi eclipsis solis (Figure 2). The title, or 

incipit, is not very informative about the content of the text but the explicit is very interesting. In writing 

down this text John of Murs sought to explore the various possible methods of solar eclipse computation 

and then selected his own. This explains why the notes are positioned at the opening of the Toledan 

canons, i.e. a treatise instructing readers how to use astronomical tables. Finally John of Murs's text has 

its own internal set of marginal notes, managed by specific tie-marks giving corrections, comments or 

alternative computations. All these features taken together suggest that John Murs's text here is closer 

to a short treatise than to a marginal note. 

 

Figure 1. Escorial O II 10 f. 92v (extract) (Solar Eclipse 1333: title of the text). 

 

Figure 2. Escorial O II 10 f. 93v (extract) (Solar Eclipse 1333: explicit of the text). 

These efforts to shape the text and position it within a relevant manuscript reveal John of Murs's 

intention not only to use the manuscript as a writing support where he could perform his computation. 

John of Murs here acts truly as a medieval author, adding new information to the tradition and to this 

end carefully deploying the codes of a scholarly culture. 

In fact, these records of John of Murs are rare in Latin medieval astronomy. The Parisian astronomer 

could not draw on any well-established genre to convey his astronomical computations and observations. 

John of Murs's text is thus an important element in the history of the relation of astronomy and natural 

philosophy to empirical evidence (Goldstein, 1972). It is interesting to see that for John of Murs the 

purpose of the observation is not primarily to adjust the geometrical model or its parameters but to 

determine a correct procedure for using the tables. In this endeavour, notably William of Saint Cloud, a 

generation earlier in Paris, preceded him (Poulle, 1976; Pedersen, 2014). John of Murs added to William 

by giving much more information about his computations. 

John of Murs had probably many motives that drove him to record in such a careful way these solar 

eclipse computations and observations. Clearly he hoped to shape and position his record so as to ensure 

its remembrance in the tradition. It was possible for him to do so because the manuscript culture in 

which he worked had certain habits and codes that he had mastered and used. First, even if codices often 

convey miscellaneous collection of texts, these sets of texts are assembled, in most cases, through fixed 

patterns with a clear intellectual meaning. This allowed John of Murs to position his text in a related 

context inside the Escorial O II 10 and so to enhance its chances of being understood and kept in the 

long run. Second, John of Murs used different techniques to shape his text and create for it a form 

between a note and a treatise that gives it an identity. In turn, it is possible for historians to grasp and 

interpret these features and establish that, at least in the context of astral sciences, some computations, 



even linked to a particular astronomical event, were considered worthy of being remembered by a 

community.4 

On the other hand, John of Murs did not work only for posterity. He had strong personal interests in 

these eclipse computations and in remembering them for his own sake. The first and obvious clue 

indicating such personal interest is that in 1337, 4 years after his first records of 1333, he observed a 

second solar eclipse and went back to the same manuscript folios to write down his conclusions after 

his second observation. 

Hence, although John of Murs shaped his text in a very specific way so that it would be identified, 

understood and kept in the long term, other features of the text seem to be driven by his own personal 

concerns about eclipse computation and observation and his need to record them for his own efficient 

recall. These features also provide information about the relation of computational practice to the 

individual memory of the computer, in this case, an advanced mathematical performer. 

John of Murs's text is recorded in two different layouts. Some parts are presented sequentially: a series 

of numbers is displayed in two columns, each labelled by a small caption to the right. I call this layout 

‘numerical’ (see Figure 3). Other parts are more usual sections of text, occasionally featuring numbers. 

I call this layout ‘narrative’ (see Figure 4)5. 

 

Figure 3. Escorial O II 10 f. 92v (detail). Solar eclipse of 1333, computation of the true zysygy in numerical layout. 

                                                           
4 Astronomical tables provide another type of testimony of this point, but they store the results of computation 

rather than computation themselves and they are usually not linked to any particular astronomical events. 
5 These terms are convenient descriptive designations, for the purposes of this article, of these two types of texts. 

I have no intention here of elaborating a more general theoretical claim around these writing formats. 



 

Figure 4. Escorial O II 10 f. 92v (detail). Solar eclipse of 1333, description of the eclipse observation in narrative layout. 

The text begins with a long section in numerical layout filling almost all of f. 92v. A mixture of both 

layouts appears on f. 93r. The end of the text is entirely presented in the narrative layout which is the 

only content on f. 93v. This arrangement is not fortuitous. It allows a quick understanding of the main 

lines of John's thought without necessitating a detailed reading of each number and comment. This 

possibility was exploited by G. Beaujouan who was able to summarise John of Murs's records by picking 

up relevant numbers and sentences, guided by the arrangement of the text. The result of this reading can 

be paraphrased as follows (Beaujouan, 1974). 

According to Beaujouan, John of Murs's first computation led him to believe that the solar eclipse was 

to begin 2;37 h after noon on 14 May 1333. He observed, however, that the eclipse in Evreux began 

17 min earlier. The discrepancy resulted in a set of corrections to the first computation as well as in a 

series of comments about its possible origin. John of Murs changed his procedure to compute the time 

of syzygy, equation of day, lunar parallax and the location in the computation where he shifted meridians 

from Toledo to Paris. Some of these corrections are presented as marginal notes to the first numerical 

section of f. 92v, others produce a new numerical section on f. 93r. These alternatives are pondered in a 

final paragraph on f. 93v. Four year later, in 1337, a new paragraph is added, summing up the lessons of 

another solar eclipse observation and confirming John of Murs's conclusions of 1333 that the Alfonsine 

tables were wrong by about 20 min in time in solar eclipse prediction. 

This account is generally satisfying. However the following analysis will adjust it regarding the relation 

of the observation to the various computational strategies explored by John of Murs: not all of which 

were a response to the observed data6. Yet the point of interest here is not the specifics of this account 

but the very fact that such a reading of John of Murs's text is made possible by the way it is written 

down. The structure of the text allows readers to rapidly identify the key computational and astronomical 

choices to be made in the course of the calculation. 

Analysing the layouts of the text and the way certain types of information are thus pushed forward to 

the reader, suggests that John of Murs is interested to keep a memory of the structure of the computation 

(i.e. where are important choices to be made) rather than in the intermediate numerical values 

themselves. Now that this global effect of the arrangement of the numerical and narrative layouts has 

been identified, it is possible to deepen the examination of the content presented in each type of layout. 

The narrative layout is used to convey different kinds of information. The narrative layout first occurs 

on f. 92v. Situated in the middle of numerical material on the page, it describes the circumstances of the 

actual observation (see Figure 4). Folio 93r offers more occurrences of the narrative layout. Most of the 

text is devoted to comments on discrepancies between the various results found using the Alfonsine 

tables with different procedures. Finally, f. 93v features only the narrative layout. It is used for three 

different kinds of content: a summary of the method of eclipse computation John of Murs selected,7 

                                                           
6 The notes of fol. 93r are very likely to record post-observation computations; the more difficult cases of f. 92v 

are discussed below. 
7 This method is qualified in the explicit of the text as ‘Verum modum equandi eclispsis solis’, f.93v. 



some remaining questions about this method and the possible uses of evidence from observation in the 

computation,8 a record of 1337 eclipse observation. 

One might assume that numerical values coming from an observation should be epistemologically more 

weighted than predicted values and that the former should somehow act as a criterion in evaluation of 

methods to compute eclipses. Thus one might argue that, even if quantitatively the main content of these 

narrative sections were concerned with computational methods, the key element of the narrative sections 

should be observation. This would, moreover, nicely contrast with the content of the numerical parts 

devoted to computation. However, a closer look at the different numerical values discussed by John 

Murs quickly undermines this interpretation. 

The first computed value for the initial time of the 1333 eclipse is 2;37 h9 after noon, then two others 

are found using different computation methods. One gives 2;23 h after noon and the next 2;26 h after 

noon. John of Murs observed the beginning of the eclipse at 2;20 h after noon. However John rejected 

the method producing 2;23 h and kept the one producing 2;26 h. He made this choice by comparing the 

procedures especially regarding the location in the computation of the shift from Toledo to Paris. Hence, 

in line with what was concluded from a wide-angle analysis of the text layout, this close-up on the 

narrative shows that John of Murs is concerned primarily with keeping a memory of the structure of the 

computation and the main choices to make in its performance. 

In this respect, it is interesting to compare the accounts of the 1333 and 1337 eclipses. In 1337 John of 

Murs did not record any details of the solar eclipse computation. He thought probably the question of 

the correct procedure for solar eclipse computation had been settled 4 years earlier.10 Because of this 

John of Murs can act as if the Parisian Alfonsine Tables were producing only one value for the beginning 

of the eclipse.11 Thus in the 1337 account John of Murs directly commented on the discrepancy between 

the Alfonsine and observed values for the eclipse. He concluded that the Alfonsine value is later than 

the actual observed value. In drawing this conclusion John of Murs was not original in the medieval 

context. Half a century earlier, astronomers like William of Saint Clould (Poulle, 1976) or Peter of Saint 

Omer (Pedersen, 1979, pp. 59–60) had criticized the Toulouse tables (a variant of the Toledan tables for 

the Julian calendar) on the basis of observation. In 1333 the focus of John of Murs is on computation 

methods and the structure of the procedure is what matters most to him: coherence of the procedure is 

then more important than the proximity to observed values. 

To examine the content of the sections of the text in numerical layout it is necessary to have a general 

idea about how a solar eclipse was computed in the context of 16th century Paris. For this it is possible 

to consider the various texts and tables which John of Murs was more than likely to know: the Toledan 

tables, John of Lignères's tables and canons for 1321 (Saby, 1987) and John of Saxony's canons of 1327 

(Poulle, 1984) which address only a part of the eclipse computation. Our goal here is not to survey in 

detail these different sources but to give a general idea of the structure of eclipse computation and of the 

different features making this computation complex. 

                                                           
8 These include: ‘Questio utrum differentia meridianorum debeat addi post omnem operationem vel ante et si idem 

redeat an non. Et quomodo differentia meridianorum potest simpliciter et infallibiliter experii. Et utrum debeat 

credi uni experentie ?’, f. 93v. 
9 In this article, numbers coming from the textual section are transcribed as in the manuscript while the positional 

way of rendering the order of magnitude for the numbers coming from the numerical section is noted using a 

semicolon. When a number represents time I add ‘h’ for hour; I add ‘°’ when the number represents an arc; ‘°/h’ 

indicates a velocity. 
10 For him only, of course, as it was never fixed in general during the period of medieval Latin mathematical 

astronomy. 
11 In fact the situation is slightly more complex. John of Murs gives three different values for the altitude of the 

Sun at the time of first contact but only one value each for the observed middle and the end of the eclipse. 



A solar eclipse is a true conjunction of the Sun, the Moon and the dragon.12 This true conjunction must 

happen in favourable local conditions, i.e., during the observer's daytime with lunar parallax taken into 

account. The first step of eclipse computation is to determine the position of the Sun and Moon at 

syzygy. First, one finds the mean conjunction, a conjunction of the mean luminaries (assumed to be 

moving at their average speeds, respectively). This is a linear problem that can be solved in a number of 

ways. In the astronomical context one can either use mean motion tables of the Sun or Moon and proceed 

by successive approximation or use specifically dedicated mean syzygy tables. 

Then the true conjunction must be determined. In this second step the varying speeds of the Sun and 

Moon are taken into account. This difficult problem prompted much research by late medieval Arabic, 

Hebrew and Latin astronomers (Chabás and Goldstein, 1997). They produced many possible methods 

to solve the question. On one side of the spectrum are simple, dedicated tables (requiring, however, 

double interpolation) such as John of Murs's Tabule permanentes (Porres and Chabás, 2001). On the 

other side are successive approximation methods such as John of Saxony's 1327 canons for the Alfonsine 

Tables. Once the true conjunction is determined and the latitude condition for the Moon allows for a 

solar eclipse (i.e. the Moon is near enough to its nodes), one needs to adjust to the local conditions of 

observation. One must determine the position of the Sun in the local horizon at time of the true 

conjunction. What is computed is its distance to the meridian, to know whether the eclipse will occur 

during the day. This is done through spherical trigonometry, either with dedicated tables or by direct 

computation. The last question to be answered, before the actual computation of the eclipse duration 

and figure, concerns the lunar parallax. This is the most intricate of all the problems to be solved in an 

eclipse computation. It is solved by successive approximation methods involving specific tables for 

which there is at least two distinct traditions transmitted through Arabic texts: a ‘Ptolemaic’ method 

transmitted mainly by al-Battani and an ‘Indian’ method transmitted mainly through al-Khwārizmī 

(Chabás and Goldstein, 2012, pp. 127–138). 

A final element of complexity in eclipse computation comes from the history of the computational tools. 

Local conditions are a key aspect in eclipse computation and many astronomical computational tools, 

tables or instruments, are fixed for a specific latitude. The performer of an eclipse computation must 

consider whether he requires a latitude for which no specific tables and instruments are available. He 

might have to combine in the same computation tools made for different latitudes, depending on his 

local resources. 

After this description of the many steps in an eclipse computation we are surprised not by fact that John 

of Murs found several different values for the beginning of the eclipse in 1333 but rather by the fact that 

4 years later in 1337 he was able to remember what procedures and tables to apply in order to determine 

a single value that he calls ‘the’ Alfonsine value of the eclipse.13 Hence in writing the Escorial O II 10 

text of 1333 he structured his memory of the computation so that this shift from several procedures to a 

single favoured one was made possible. A part of this work is made visible in the narrative layout section 

of the text but the numerical layout parts are no less important. 

John of Murs did not record every single numerical value generated in the process of his computation. 

For example, in the record of the observation (Figure 4) John of Murs gave the measured beginning time 

of the 1333 solar eclipse as 2;20 h after noon. Unless you had an independent time measuring device 

like a water clock or a sundial this time cannot be directly observed; it is computed from the observed 

altitude of the Sun through specific tables. This particular step of the computation, although it is of 

obvious importance to the general discussion of the text, presented no difficulties for John of Murs. He 

                                                           
12 The nodes of the moon which can actually be up to 12° from the conjunction for partial eclipses. 
13 This identification of the value as Alfonsine is historically interesting because, for the most part, the eclipse 

tables and procedures found in the Alfonsine corpus came from the earlier Toledan Tables. However the mean 

motion and equation tables differ in the Alfonsine and Toledan tables and these tables are the main tools of the 

first steps of a solar eclipse computation. 



was probably confident in the procedure and tools he used there and the kind of accuracy they yield and 

thus did not record anything about it in the Escorial O II 10 notes. 

The numerically laid out parts of the text show only carefully selected intermediate results that for John 

of Murs conveyed essential information about the computation. He cared about the value of certain 

quantities which allow readers to follow the computation from a geometrical perspective. A clear 

instance appears at the very beginning of the computation when the position of the true Sun is presented 

(see Figure 5). 

 

Figure 5. Escorial O II 10 f. 92v (detail, upper part of Figure 3). Solar eclipse 1333: true solar computation. 

John of Murs gives here only the value of the quantities that allow one to represent the geometrical 

configuration, on an instrument, a diagram or even only mentally, in which the Sun is found at this 

particular moment. A similar geometrical reading of the tabular computation is prepared for the Moon 

whose case is a little more complex since the lunar latitude is also important for an eclipse. 

John of Murs also recorded information about the successive approximation processes. For instance the 

parallax procedure used in Figure 6 is essentially that proposed by al-Baltani (Nallino, 1899-1907, pp. 

297–249) that John of Murs could have accessed also in the Toledan tables (Pedersen, 2002, pp. 297–

303) or in John of Lignères Priores astrologi (Saby, 1987, pp. 227–249). 

 2;28,44 h is the result of the true zysygy computation done before. 

 0;27,59 h is a value derived from an unknown parallax table probably for a latitude close to 

that of Paris in the seventh climate. 

 0;30,19 h is equal to 13/12 of 0;27,59 h. This is an approximative adjustment made in 

syzygy and parallax computation, based on the mean lunar and solar velocities (see 

Almagest, VI, 4). 

 0;56,20 h is the result of the division of 0;30,19 h by 0;32,17°/h which is a value for the 

lunar velocity (presumably taken from an unknown table of lunar velocities) at time of true 

syzygy computed previously. This gives a first approximation of the parallax correction. 

 3;25,4 h is the sum of 0;56,20 h and 2;28,44 h, a first corrected time of eclipse with lunar 

parallax. 

 

Figure 6. Escorial O II 10 f. 92v (detail). Solar eclipse 1333, part of the parallax computation. 

The next four values repeat exactly the same computation process with a different value for the parallax. 

It can be seen in Figure 6 that values with the same or similar label are presented successively (i.e. hore 



vere conjonctionis post meridiem…; diversum apsectus…; eadem cm sua 12a….; hore proveniens…). 

John of Murs kept track of the repetition of the computation process using consistently the labels he 

gave to each number so that the repetition appears clearly. This association of the numerical values 

(which might help identify tables) with carefully chosen labels (which display the computation 

procedure) is central to the way John of Murs recorded his computation. 

These two first types of information -about the geometrical configuration and about the successive 

approximation processes- are connected with the flow of one computation at a time. John of Murs 

structured his memory of the computation around two things, the geometrical meaning of the 

arithmetical and tabular manipulations when they have one and the structure and number of steps of the 

successive approximation process which are often disconnected from any direct geometrical meaning. 

In this respect the numerical layout parts complement nicely the narrative layout parts that are more 

concerned with alternative ways to organize the computation. However the numerical layout parts also 

record these alternative computation possibilities. We will look closely in the next section at the 

computation of true conjunction and will examine some instances. It will be enough here to show how 

two different computations of eclipse duration, which were not kept in the end, are presented (see Figure 

7). 

 

Figure 7. Escorial O II 10 f. 92v (detail). Solar eclipse 1333, computation of duration of the eclipse. 

First, the same labels are repeated two times for different numbers (minuta casus ad presens; hore ab 

initii eclipsis; hore finis eclipsis; tempus verisimus, etc.) as was the case in Figure 7. However the two 

series are not exactly in the same order: Tempus verisimus (total duration of the eclipse) is computed 

first in the second version of the calculation while it is the final result in the initial version of the 

computation. Moreover values for the minuta casus are slightly different in the two sections (0;31,47 h 

vs. 0;32,0 h). This probably reflects the use of two different eclipses tables in these two versions of the 

computation.14 Finally, the second computation is labelled aliter et melius secundum alium modum. This 

confirms explicitly what it is implied by the use of numerical values and their labels. Yet the second set 

of values is labeled vacat by John of Murs. Apparently at a later point in time he decided that this second 

computation was also not correct.15 These two sets of computation (see Figure 8) use three ‘external’ 

values (derived elsewhere) to obtain the eclipse duration, following broadly the method of al-Battani, as 

is the case for parallax computation:  

 lunar velocity at time of syzygy: 0;32,17°/h (perhaps taken from an auxiliary table and not 

computed by John of Murs?) 

 parallax-corrected time of mid-eclipse 3;41,15 h (computed using above lunar velocity 

value) 

 argument of lunar latitude at the parallax-corrected time of mid-eclipse 0;51,44° 

                                                           
14 In principle the same table might have been used in both cases with rounding done differently in the interpolation. 

But this option seems less likely to produce a huge discrepancy (13) in the last recorded digit. 
15 As shown above, John of Murs kept a third value as his preference. 



From the last value and an unknown solar eclipse table, John computes first the magnitude and then the 

duration of the eclipse, i.e., the minuta casus ad presens (first 0; 31,47 h, second 0;32,0 h) and adds its 

twelfth to the values thus obtained (first 0; 34,26 h, second 0;34,40 h). This value with the twelfth is 

then divided by the lunar velocity to obtain the hore ab initio …, a first value for half eclipse duration 

(first method gives 1;3,59 h, the second method 1;4,26 h). Here John is using not only different tables 

but also different methods of computation. In the first method, the tempus verisimus is not equal to twice 

the hore ab initio. However it is used directly with the time of mid-eclipse obtained previously 

(3;41,15 h) to compute the time of the beginning of the eclipse (2;37,16 h). In the second method, the 

tempus verisimus is exactly twice the hore ab initio (first value for the half eclipse duration) and the 

difference between the time of the beginning and end of the eclipse is 2;8,48 h, i.e., only 4 s of time 

shorter than the tempus verisimus. 

 

Figure 8. Comparison of two methods for the computation of duration of the eclipse. 

These computations require that parallax corrections be made not only at the time of true syzygy, in 

order to obtain the time of mid-eclipse, but also at the times of the beginning and end of the eclipse. It 

is only when these parallax corrections are included that final values for the eclipse duration, beginning 

and end times are obtained. This probably explains why in the first method the Tempus verisimus is not 

twice the half eclipse duration. The difference in the tempus verismus is 0;01,46, a small amount but this 

suggests that John of Murs cared about differences of this magnitude in his exploration of various 

possible computation methods. It is interesting to note that these parallax corrections to the beginning 

and end of the eclipse, similar in structure to those already recorded for the time of mid eclipse, were 

not entered by John of Murs into the Escorial O II 10 manuscript. 

 

3 Temporality and Execution of the Computation: The Manuscript Page as 

Working Space 

A look at the various numbers so far presented suggests that there is another important aspect to this 

document: the manuscript page was used in the actual performance of at least parts of the computation. 

John of Murs corrects himself, returns to choices made in the initial computation, and adds marginal 

notes to his computation. This text is not cold and distant; it does not look like a clean copy of a finished 

computation. It is close to the original computational performance. The text carefully selects the 

recorded information according to John of Murs's interests; the selections are made in real time as the 

computation is being performed. I will argue that some parts of the computation were made if not only, 

at least mostly, on the manuscript. In this respect it is interesting to see that, when a number is written 

outside of the numerical layout parts of the text, units are noted; inside the numerical layout parts they 

are indicated only by position. This fact follows from the way sexagesimal computations of the period 

are described, either in sexagesimal algorisms like John of Lignères Algorismus minutiarum or in the 



first chapters of canons like those of the Tabule magne from the same author.16 This suggests that the 

numerical layout parts of the text can be used as space where the computation is actually performed. 

Certainly Escorial O II 10 was not the only computational tool and writing support John of Murs used. 

He must have had in front of him codices with astronomical tables, at least a version of the Parisian 

Alfonsine Tables, those of John of Lignères for 1321 and material from the Toledan Tables, which he 

quoted explicitly, and possibly some others which he was evaluating. It is likely that he had other writing 

supports, perhaps wax tablets, a dust board or just rough paper in order to perform some of his 

computations. Such artefacts are commonly referred to in the canons of astronomical tables. My goal 

here is to understand how Escorial O II 10 was used as John performed his computation along with those 

other tools. 

In places where the procedure, although perhaps long, presented no particular problems for John of 

Murs, Escorial O II 10 presents only a selected sample of the more complete set of values John must 

have written on another writing support. Such is the case, for instance, with the first computation of the 

true position of the Sun at the time of mean conjunction (see Figure 5). The manuscript here mentions 

dupla signis, indicating that John used signs of 60° rather than 30°. This comment may also point toward 

John of Saxony's canons for the Alfonsine Tables or to John of Lignères's Quia ad inveniendum… as 

tools being employed in the computation. To obtain the first values recorded in the manuscript (solar 

and lunar mean motions) John of Murs probably used Alfonsine mean syzygy tables which would have 

given him the time and the mean motions directly. John then computed the equation of the Sun as 1;0,52° 

from its mean argument given just above as 5 s 31;2,38° undoubtedly interpolating from a solar equation 

table with argument 5 s 31° and 5 s 32° (see Figure 9). These computations, not recorded in Escorial O 

II 10, include reading tables and adding, subtracting, multiplying and dividing (he also could have used 

tables of proportions). The values I find with the Parisian Alfonsine Tables match exactly those of John 

of Murs. 

 

Figure 9. My tentative reconstitution of John of Murs's solution of the solar eclipse 

The computation necessary to obtain the other solar-related values in Figure 5 require the same or even 

more background computation.17 Thus in this portion of the text the rhythm at which John of Murs 

turned to the Escorial manuscript to record intermediate values is quite slow. He is most of the time 

dealing with the other computing tools of his working environment; only occasionally did he return to 

the Escorial manuscript to enter a significant step in the computation. However when he gives the true 

                                                           
16 The Algorismus minuciarum is transmitted in 19 manuscripts and edited (Busard, 1968). The canons to the 

Tabule magne, not yet edited, can be found in the BnF, lat. 7281, f. 201v–205v; BnF lat. 10263, f. 70r–78r; and 

Erfurt 4° 366, f. 28r–32v. 
17 The computation of the solar apogee is a lengthy process that includes determination of precession. 



longitude of the Sun as 1 s 1;35,24° he is simply adding the equation just obtained to the value of the 

mean Sun obtained earlier. It is possible that in this case the Escorial manuscript was used as the actual 

support of the computation. The two values to be added are written closely to each other on the Escorial 

manuscript. Had John of Murs used a wax tablet or dust board for the Escorial hidden computations, the 

solar mean motion could have been erased when the solar equation appeared; or had John used rough 

paper, the two values could have been written far apart each other, perhaps on different pages, and thus 

would have been less easy to aggregate than on the Escorial manuscript. 

Places where the Escorial manuscript is closer to the actual performance of the computation for a longer 

period of time can also be found, for instance at the beginning of the computation of the true syzygy 

(see Figure 3, l. 12-16):  

 3;43,40° is simply the longitudinal difference between the true Sun (Figure 3 l. 8) and the 

true Moon (Figure 3, l. 10). 

 0;18,38° is the 12 part of 3 s 43;40° which in sexagesimal arithmetic is the result of a 

multiplication by 5 and a shift of position. 

 4;2,18° is the sum of the two preceding lines18 

 2;1,9° is the half of 4;2,18°19 

 Finally, 4 s 39;16,41° is the difference of the argument of the Moon (Figure 3 l. 3) and 

2;1,9°. 

Interestingly John of Murs made a little mistake here; the final difference should be 4 s 39;13,41°. This 

mistake might imply that the Escorial manuscript was here the writing support of the actual computation, 

showing that the computation was made sexagesimal place by sexagesimal place.20 This part of the true 

syzygy computation adjusts the mean argument of the Moon to a specific value before the table of lunar 

velocities is used according to the al-Battani method for finding true syzygy. It is a convoluted point of 

the computation, which is why John of Murs probably was more precise in his text here than when he 

computed (more routinely) the true solar and lunar longitudes. John wanted to record traces of the 

choices he made there. However the general situation is not much different: instead of recording a key 

value on the Escorial manuscript by copying and rounding, John directly performed the delicate portion 

of the computation on the manuscript page. 

John of Murs's small computation mistakes get lost in the next three steps of the computations. There 

are many different lunar velocities tables that John of Murs could have used (Goldstein, 1992). However 

the value 0;32,17°/h (Figure 3 l. 17), computed using 4 s 39;15,41° as argument, undoubtedly derives 

from al-Battani's lunar velocity tables which produce 0;32,16°/h, very close to John of Murs value 

(Pedersen, 2002, p. 1412). 

John's next two values give alternative results for the time interval between mean and true syzygy 

(Figure 3. l.18–l.19). Both require several steps of computation that John did not record in the 

manuscript, probably because they were not problematic to him in this specific context. The value 

7;30,20 h on line 18 is the result of the division of line 14 by line 17, i.e., the time to true syzygy 

according to al-Battani's procedure. It is not clear to me what is the method John described by the 

expression per superatio. 

                                                           
18 The 13/12 factor comes from Ptolemy's method (Almagest VI,4) for finding true syzygy and approximates the 

relative speed of the Sun and the Moon. 
19 The ½ factor comes from al-Battani's method for finding true syzygy and approximates the non-constant speed 

of the Moon between the mean and true syzygy by taking the speed of the moon at midpoint between mean and 

true syzygy. 
20 Of course another interpretation might be that the computation was made on another paper and that the mistake 

occurred during copying into the Escorial manuscript. 



The two results differ only by 20 s of time, i.e., at least one order of magnitude beyond what John of 

Murs might wish to observe and, more importantly, below 1 min of arc. He keeps the lowest value of 

the time correction for the remainder of the computation. This is clear because the next value 14 s 

1;19,50 h (Figure 3 l. 20) is the difference between 14 s 8;49,50 h (Figure 3. l. 1, the time of mean 

conjunction) and 7;30,0 h (Figure 3 l.19, the time correction from mean to true syzygy). These figures 

can be interpreted in the following way. John of Murs had planned in his initial computation to compare 

the two methods for finding the time correction. Seeing that they were in good agreement he decided to 

keep only one value. This point of comparison was important enough, however, for him to record both 

values in Escorial manuscript. This reveals a very important fact about John's computational 

performance. Not only does he know several methods to compute the same value but he compares the 

methods and cross-checks his result. The branching in the computation does not break the flow of the 

computation; the comparison of the superatio method and the al-Battani method seems to be planned in 

the initial computation. 

John's determination of the equation of time 0;20,54 h (Figure 3 l.21) shows a different kind of branching 

in the computation, pointing to a problem in Alfonsine astronomy that will remain debated until the 

early 16th century. At the end of the line, the expression si est bene is followed by a little tie-mark ‘./’ 

which points to the bottom of f. 92v where we read Secundum J. de linieris 21' 16'.'21 The position of 

this additional marginal information suggests that when it was recorded most of the page had already 

been filled up writing. Here John of Murs again compared two possible values for the same quantity. 

However the situation is different; it seems more than likely that he considered John of Lignères's value 

only at a later stage, maybe even after he had observed the solar eclipse. The branching in the 

computation corresponds here to a fold in the temporal flow of the computation, i.e., the computation 

continues with the value 0;20,54 h (John of Murs uses this value at least once below l. 21). Only later 

did John came back and consider another possible value (differing by only 22 s!) for the equation of 

time. 

This analysis of the temporal dimension of John's computation shows that he did not try to perform the 

computation as quickly as possible. Rather, he took his time, exploring possibilities and comparing 

methods by performing the computation in a structured way. Computation, for John of Murs, was not a 

rigid, mechanical activity; it was a form of mathematical thought and exploration. As such and 

independently of the specific numerical values, computational procedures were important to remember 

in the long term, both for John of Murs and for his followers, a conclusion suggested by the numbers 

jotted into the Escorial manuscript. 

 

4 Conclusion 

The Escorial O II 10 notes of f. 92v–93v is a text designed by John of Murs to explore the procedures 

of solar eclipse computation and to identify the key choices in an Alfonsine algorithmic context; the 

notes are not merely a record of eclipse observations. First, it is not the case that the Escorial manuscript 

luckily happened to be there with empty writing space just when John of Murs needed a few pages to 

quickly compute a solar eclipse. Rather, John carefully used the conventions of his scholarly manuscript 

culture to construct his text. Second, John's text is not primarily about observation but rather about the 

correct way (verum according to the explicit) to perform an eclipse computation. This aspect can be seen 

from the way the text is shaped, with two different types of layout that emphasize specific aspects of the 

structure of the computation and the places where important choices must be made. Third, by analysing 

some of the numerical values in the text I have argued that the selectively recorded values reflect John's 

concern for both his personal records as well as what he believed should be remembered in the tradition, 

                                                           
21 Like the preceding alternative, the discrepancy between the two values envisaged by John of Murs differ by less 

than a minute, indicating John Murs's standard of accuracy in this context. 



i.e., for other readers, both present and future. He undoubtedly worked with several computational tools 

(sets of tables) and more than one writing support and performed the eclipse computations at different 

temporal rhythms according to his different interests as he wielded the tools. Escorial O II 10 thus shows 

us an early Alfonsine mathematical astronomer at work. 
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Two versions of a description of the
armillary sphere in Parameśvara’s

Goladīpikā
Sho Hirose *

Abstract. Armillary spheres had been part of the Sanskrit astronomical tradition, and
were used for understanding the structure of the heavens. Goladīpikā (‘Illumination of
the sphere’) is a text in two versions by the same author which deals with structures of the
armillary sphere and various topics in astronomy related to them. A close examination
of the ways the armillary sphere is described in the two versions of the text will help us
understand the main characteristics of the two versions of Parameśvara’s Goladīpikā and
the reasons why the author duplicated his treatise. This case study thus demonstrates
how astral sciences sources from the same author may present mathematical practices
surrounding the same instrument in contrasting and complementary ways according to
intention.

Keywords. Armillary sphere, astronomical instruments, astronomy in India, manuscript,
Parameśvara, Sanskrit

1. Introduction
Parameśvara (c.1360-1460) is an important figure in the Kerala school, a scholarly lineage
of mathematicians and astronomers that flourished in the South Indian region of Kerala.
He is an author and commentator on almost every discipline in Jyotiṣa (mathematics,
astronomy and astrology). Most of his works survive in more than one manuscripts,
indicating his great influence on later generations. One of his important contributions
is the introduction of a new system of astronomy represented by his Dṛggaṇita (Obser-
vation and computation). Parameśvara mentions in this treatise that his aim is to make

*Laboratoire SPHERE UMR 7219, Université Paris Diderot, Case 7093, 5 rue Thomas Mann, Paris
75251, France. E-mail: sg.kippis@gmail.com
The research leading to these results received funding from the European Research Council under the
European Union’s Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement n. 269804
and was conducted in the context of the project SAW: Mathematical Sciences in the Ancient World
(SAW).
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computation agree with observation (Sarma [1963]). Such emphasis on observation is
very rare in Sanskrit sources.
The only surviving records of his observations are those of eclipses given in his Sid-

dhāntadīpikā, a super-commentary on Govindasvamin’s commentary on Bhāskara I’s
Mahābhāskarīya (Kuppanna Sastri [1957]), where he measures the position of the sun
with a gnomon. The shadow of the gnomon was an observational data which could
be converted into parameters such as the longitude of the sun. Knowledge on celestial
spheres is required for such computation. Concerning this topic, Parameśvara composed
the Goladīpikā, literally ‘Illumination of the sphere’. Parameśvara wrote two texts under
this title, which have similar contents in different structures. The most notable common
point is that both texts begin with a description of an armillary sphere.
In the Goladīpikās, the armillary sphere serves as a tool for explaining various circles

in the sky used for locating heavenly objects. A name of a specific ring in the instrument
is also used to address the corresponding celestial circle. Without knowing the rings’
names, positions and motions as given in the beginning of the text, the rest of the
treatise is incomprehensible. Taking into account its significance, we shall focus on this
introductory part and compare the contents and styles of the two Goladīpikās.
Is there any difference in how the texts introduce the rings and shape the armillary

sphere? What are the roles of the sections in both texts? We will try to answer these
questions which will provide a clue to the final question: Are the two Goladīpikās dif-
ferent texts for different purposes, or was one of them a revision of the other?

2. The two Goladīpikās
Both of the two Goladīpikās are found in many manuscripts, most or all of them written
in Malayalam script1 on palm leaves2. I shall follow Sarma [1972] who numbered them
Goladīpikā 1 (hereafter GD1) and Goladīpikā 2 (hereafter GD2). GD1 was edited and
translated by Sarma [1956-57] while GD2 was edited by Sastri [1916].
As we will see in section 2.3, we do not know whether they were composed in this

order.

2.1. Goladīpikā 1 (GD1)
GD1 has 267 verses divided into four chapters. The segmentation was obviously intended
by the author himself, as can be seen from the fact that every manuscript has a colophon
giving the titles of the chapters at each end and that Parameśvara composed an auto-
commentary indicating the same division. The auto-commentary is included in the
critical edition of Sarma [1956-57].
1Every manuscript that has been available to me is written in Malayalam script. Among the

manuscripts that I have not investigated, R.5192 of the Government Oriental Manuscripts Library
(GOML) is written in Grantha script according to Pingree [1981], while Sarma [1956-57] who has
incorporated its content in the edition mentions that it is in Malayalam.

2Most of the palm leaf manuscripts of the Goladīpikās are bundled with other texts which are often
also Jyotiṣa treatises but sometimes of a different genre like poetry.
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Chapter 1 (15 verses), called ‘Rule for constructing the sphere (golabandhavidhi)’ is an
introduction devoted to the armillary sphere. In chapter 2 (50 verses) ‘Rule of planetary
motion (grahacāravidhi)’ the motion of planets along the circles given in the previous
chapter, as well as the nature of the Earth, sun and moon, are explained. Chapter
3 (110 verses) ‘Thoughts on the Earth and the like (bhūmyādicintana)’ deals with the
shape and size of the Earth with a detailed explanation of traditional cosmography in
Hinduism integrated into the theory of a spherical Earth. Finally, the untitled chapter 4
(92 verses) mentions a variety of topics in astronomy that require calculation, including
the gnomon, parallax, eclipses and precession. One of its verse is an example where the
reader is required to perform some computations. In the last two verses (Chapter 4 91
and 92) the author mentions his name Parameśvara, that the treatise was composed in
the Śaka year of 1365 which corresponds to 1443 CE and that he lives in a village whose
Sine of latitude is ‘647’3, which is 10 deg 511 in degrees. This value 647 is also used in
the example of computation.
There are nine known manuscripts of GD14 and two of its auto-commentary5. Among

the manuscripts which were available to me, the oldest one (762E) probably dates back
to around the 17th century from its style of folio numbering6. The others are relatively
new, possibly copied in the 19th century. There are no marginal notes, but 5864A,
8358B, 762E of the ORI& MSS and 13719 Baroda contain corrections by a later hand7.

2.2. Goladīpikā 2 (GD2)
GD2 is composed of 302 verses8 and has no chapters. The topics included in the first
67 verses are: the armillary sphere, various circles in the heavens, nature of heavenly
objects, cosmology and large time periods. In verses 68 and 69 the author mentions
his name, concludes the previous verses (‘thus the nature of the spheres was stated

3This is the Sine of latitude measured in a circle with a radius of 3438.
4I have examined 5864A, 8358B and 762E of the Kerala University Oriental Research Institute and

Manuscripts Library (ORI& MSS), 13719 of the Maharaja Sayajirao University of Baroda Oriental
Institute, and Burnell 17d of the British Library. Sarma [1956-57] mentions four more: L.1313B
and T.341 in the ORI& MSS, which are lost, R.5192 of the GOML in Madras and ‘a transcript with
Sri G. Harihara Sastri, Madras’ which I have not confirmed. The last transcription is probably a
copy of 13719 Baroda which was sold to the institute by the same ‘G. Harihara Sastri’ and contains
the same variant readings. Pingree [1981] further adds another manuscript, 3337 in volume 2 of
the Catalogue of Sanskrit Manuscripts in the Punjab University Library, Lahore, which I have not
confirmed.

5762F of the ORI& MSS and R.5145 of the GOML (unconfirmed).
6Personal communication with P.L. Shaji in 2013.
7Scripts are scratched on palm leaves and black powder with oil is applied afterwards for reading

(Kumar et al. [2009]). Newly made corrections have none or less powder rubbed in the scratches
and are easily recognizable. Corrections found in GD1 and GD2 manuscripts are emendations of
scribal errors and do not provide new interpretations.

8This is the number given by the critical edition to the final verse, but the editor did not number every
verse. There are two half-verses in separate places, and we have to assume that the editor skipped
one and counted the other, or that he collectively counted them as one.

3



concisely by Parameśvara’9) and introduces remaining topics ‘on the spheres’10 such as
‘application of gnomons and the like11’. Here he also refers to his previous work, the
Siddhāntadīpikā. Verses 68 and 69 separate the previous verses from those remaining
which contain every topic appearing in chapter 4 of GD1, as well as new topics such
as epicycles of planetary orbits and the computation of planets’ latitudes. There are
six verses later in the text that contain examples, all of which use 647 as the Sine of
latitude. This is equal to the value given in the example of GD1 as well as the location
of Parameśvara’s village mentioned therein.
There are eleven known manuscripts of GD212, two of which include a partial com-

mentary13 by an unknown author14. One manuscript (475J) was copied in 1553 CE15

while the others appear to be newer, probably copied in the 18th or 19th century. There
is no commentary for the verses which we will deal with in this paper. Every manuscript
that I have examined contains no marginal notes but shows corrections by a later hand,
much like GD1. A typical example is in the latter half of verse 2, where two manuscripts
(17945B and C.224F) wrongly copied yāmyasaumyayor (at south and north) instead of
saumyayāmyayor (at north and south), but manuscript 17945B was later corrected16.
This implies that the reader/corrector was reflecting upon the situation described in this
text or had expert knowledge on the topic and payed attention to the meaning.

2.3. Revision or different work?
As we have seen in the previous sections, the authorship of the two Goladīpikās is at-
tributed to the same Parameśvara. They have seven full verses (including two quotations
from other works) and seven half verses in common. There are about a dozen half verses
which are merely simple paraphrasing. This leads to the possibility that the author
intended to revise his work, using parts of the former version. Parameśvara is known to
have repeatedly worked on some topics, sometimes making revisions of the same content.
For instance, there are two versions of his Grahaṇamaṇḍana (Ornament of eclipses)

left in manuscripts, one in 89 verses and the other in 100. Sarma [1965] mentions that
the eleven additional verses do not introduce much by way of new material, and that
9paramādinoktam evaṃ saṃkṣepād īśvareṇa golasya saṃsthānaṃ (GD2 68). Here the name is given

in the form paramādi īśvara, which was common with this author; c.f. his commentary on the
Āryabhaṭīya (Kern [1874, p.1, 100]) and on the Sūryasiddhānta (Shukla [1957, p.144]).

10golagatam (GD2 68)
11yuktiḥ ... śaṅkvādeḥ (GD2 69)
12I have examined 475J, 5867A, 8327A, 10583A, 13259A, 17945B, C.224F, C.1024D of the ORI& MSS

and Burnell 107b, Burnell 17c and IO Sanskrit 3530 of the British Library. Pingree [1981] further
lists L.1313A of the ORI& MSS which is lost. Sastri [1916] uses three manuscripts but does not
provide any kind of catalog number. Based on textual analysis, I assume that two of them are
10583A and C.224F.

13Manuscripts 13259A and IO Sanskrit 3530
14Considering the style of the sentence, it is unlikely to be Parameśvara himself.
15The colophon of 475A, contained in the same bundle with 475J and written by the same hand,

mentions that the date of copying was 1,699,817 days after the beginning of the Kali Yuga, which
amounts to December 23rd, 1552. 475J must have been copied around this date too.

16C.224F was left uncorrected, and in the critical edition Sastri [1916] adopted its wrong reading.
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the differences in the remaining verses are minor. Sarma concludes that the work was
first composed with 89 verses and later revised with the addition of eleven verses.
Meanwhile, the Dṛggaṇita is divided into two parts and the first half of the second part

begins with a restatement of part I using a different numeral notation (Sarma [1963]).
In the introductory verse of this second part Parameśvara announces that his purpose
is ‘to clarify (spaṣṭīkartum) the Dṛggaṇita’ and that it is ‘prepared for young people’s
studies (balābhyāsahitaṃ)’. In this case the second part is not a mere revision but a text
intended for different students in different levels.
Some aspects of the two Goladīpikās suggest that they might also be individual texts

for different curricula: GD1 is segmented and arranged while GD2 is continuous; GD1
has a commentary for elucidation by the author himself while GD2 is mostly uncom-
mented; GD2 contains more topics on computation than GD1.
Both texts were copied and read in many manuscripts, and there is no sign that one

was more popular than the other. The manuscripts of GD1 and GD2 are preserved in
different bundles with only two exceptions17, suggesting that they spread independently
as two different treatises.
Sarma was the first to reflect on the two versions of the Goladīpikā. He does not

mention whether one is a revision of the other, but he seems to think that GD2 was
composed later, as he writes ‘In the Goladīpikā published in the Trivandrum Sanskrit
Series (=GD2), ... some topics like cosmogony are left out; others, like the conception
of the yuga-s and calculation of the latitudes of planets, are newly introduced’ (Sarma
[1956-57, page 3]). Probably this is the reason why he numbered them GD1 and GD2 in
his survey (Sarma [1972])18. Sarma gives no arguments for their order otherwise. GD2
is undated and we have no definitive clue for the chronological order of the two texts.
Pingree [1981] comments that GD2 refers to GD119, but this is not correct.
In the following I will argue that these two texts are two independent treatises, treating

the same topic in two distinct fashion. This, we will see, can be revealed by the different
ways in which they treat the armillary sphere.

3. The structure of an armillary sphere
The Sanskrit word used for ‘armillary sphere’ in GD1 and GD2 is gola, which can refer to
all kinds of spheres such as celestial spheres, heavenly bodies with the form of a sphere,
or even the name of a topic in astronomy or cosmography concerning them. Treatises
often refer to an extremely complex system of ‘gola’, such as the system with fifty-
one moving circles in Brahmagupta’s Brāhmasphuṭasiddhānta (Ikeyama [2002]), which
17L.1313B and L.1313A of the ORI& MSS which is lost and cannot be confirmed, and Burnell 17d and

Burnell 17c of the British Library which were copied for A.C. Burnell (Keith [1935])
18Meanwhile he first numbered the texts in reverse order (Sarma [1960], Sarma [1963], Sarma [1965]),

possibly due to the order the editions were published
19‘A Goladīpikā in 302 verses in which Parameśvara refers to his first Goladīpikā and his Karmadīpikā

on the Mahābhāskarīya.’ (page 191) However, GD2 69 refers to the Siddhāntadīpikā, Parameśvara’s
super-commentary to the Mahābhāskarīya, but not to the Karmadīpikā which is his direct commen-
tary on the treatise.
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Figure 1: A representation of the entire armillary sphere (All representations are drawn
by the author and do not appear in manuscripts and critical editions)

is unlikely to have been actually built. Meanwhile, whenever the word gola is used in
combination with yantra (instrument), or has some reference to its material (typically
wood or bamboo), the object described is much simpler20.
The armillary sphere appearing in GD1 and GD2 consists of two layers of rings con-

nected by an axis (Fig. 1). The inner set of rings showing the coordinates of stars
and planets revolves on the axis while the outer set of rings are fixed and represent the
observer’s horizontal coordinate. This double-layered armillary sphere appears to have
been common, and can be seen in older texts such as the commentary on the Āryab-
haṭīya by Bhāskara I (629 CE), the Śiṣyadhīvṛddhidatantra (8th century) by Lalla, the
later Sūryasiddhānta (c. 800 CE), the Siddhāntaśekhara (1039) by Śrīpati and the Sid-
dhāntaśiromaṇi (1150) by Bhāskara II.
In most of the texts, including the two Goladīpikās, the armillary sphere is only used

for demonstration (in all senses of the word, that is to exhibit properties, manifest and
prove them)21.
The following description of an armillary sphere applies not only to GD1 and GD2

but also to the aforementioned treatises in general.
The inner set of rings called the ‘stellar sphere (bhagola22)’ (Fig. 2) contains three

20For example, the Śiṣyadhīvṛddhidatantra has a chapter labeled yantra where among other instruments
a gola made of wood with only two sets of circles is described, while in another chapter called
golanibandha (constructing the gola) the gola is complex and has fifty-one moving circles like the
Brāhmasphuṭasiddhānta.

21However, Ohashi [1994] quotes from the Siddhāntaśekhara what appears to be a measurement of the
sun’s position in the sky using an armillary sphere.

22Each part of the armillary sphere is often called by different Sanskrit terms in different texts and
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Figure 2: Stellar sphere Figure 3: Celestial sphere

rings representing the equatorial coordinates: celestial equator (ghāṭika), solstitial colure
(dakṣiṇottara) and equinoctial colure (viṣuvat). A fourth ring tilted 24 degrees against
the celestial equator represents the ecliptic (apama), the path of the sun in a solar year.
Each of the rings are graduated: The celestial equator has 60 marks, each representing
one ghaṭikā, a time unit equivalent to one sixtieth of a day. The two colures and the
ecliptic have gradations for 360 degrees. Optionally, diurnal circles (svāhorātra) parallel
with the celestial equator that are approximations of the path of the sun on a given
day23 and orbits of the moon and other planets (vikṣepamaṇḍala) can be added. An axis
(daṇḍa) pierces the stellar sphere in the two celestial poles, i.e. the intersections of the
two colures, so that the whole sphere can rotate to represent the geocentric motion of
heavenly objects. A miniature Earth made of wood or clay is placed in the middle of
the axis (see Fig.1).
The outer set of rings, or the ‘celestial sphere (khagola)’ (Fig. 3) represents the hori-

zontal coordinates with the prime vertical (samamaṇḍala), the prime meridian (dakṣiṇot-
tara) and the horizon (kṣitija). The polar axis carrying the stellar sphere is attached to
the prime meridian, tilted so that the celestial north pole is elevated against the horizon
by an angle corresponding to the local latitude. Two pieces of reed on the axis separate
the two sets of rings. Finally a fourth ring is attached to the celestial sphere so that
it goes through the horizon at the east and west and through the two tips of the axis.
This is the six o’clock circle (unmaṇḍala)24.

more than one term is used even within the works of Parameśvara. In such cases I only give the
term most frequently used by Parameśvara.

23An approximation in the sense that the sun is assumed not to move along the ecliptic in the course
of that day. Otherwise it could not form a single closed loop.

24The modern term is due to the fact that the sun will always pass this circle at six o’clock in the
morning and in the evening, but the Sanskrit term is not at all related to it.
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4. Comparing the descriptions of GD1 and GD2
The first chapter in GD1 is about the armillary sphere (1.3-1.1525, excluding introductory
invocation), and likewise the GD2 refers to it at the beginning (2-1726).
Both texts seem to describe the same and physically realizable armillary sphere. For

instance, they both refer to the material of the miniature Earth27. The structure of the
instrument, as well as the terminology used for describing the rings and their orientation
are also identical. Later in the texts, the same terminology is used for introducing
new arcs and segments28 that form various figures, especially right triangles. Such
visualization might have served as a grounding for computations appearing in both
Goladīpikās, most of which are rules of three or Pythagorean theorems.
Meanwhile, GD1 and GD2 describe the same instrument in contrasting styles and

arrangements.
The corresponding Sanskrit texts and translations are provided for reference in the

appendix. For GD1 (Appendix A) I have used the Sanskrit edition by Sarma [1956-
57], but modified the translation to make it more literal. The Sanskrit text for GD2
(Appendix B) shall be based on Sastri [1916] with amendments (based on my examina-
tion of manuscripts) given in the footnote. I have extracted the translations for GD2
from my forthcoming doctoral dissertation which will provide its first complete English
translation and a new critical edition of the text.

4.1. Description of the stellar sphere
There are two large differences between the two texts in the description of the stellar
sphere: gradation and the order of rings.

GD1 mentions the three orthogonal rings first, then describes how they are graduated
and then introduces the ecliptic.

Here the celestial equator has 60 divisions.
Here the other two [circles] have 360 divisions. One should attach yet another
circle called the ecliptic, likewise [having 360 divisions], passing through the
east and west crosses, to the solstitial colure at 24 degrees north and south
[respectively] from the [crosses at] the below and the top. (GD1 1.4d-1.6ab)

The auto-commentary explains the meanings of the gradations as follows:

... the celestial equator is marked with 60 lines. The use of marks is for
knowing that it is the Ghaṭikā. ...the other two circles are marked with 360

25For GD1 ‘1.3’ stands for the third verse of chapter one, ‘1.4’ for the fourth verse, and so on.
26For GD2, which has no chapter, the number indicates the verse number itself.
27‘clay and the like’ (GD1 1.10), ‘piece of wood or clay’ (GD2 6).
28For example, the sun’s declination is given as the separation between the celestial equator and the

diurnal circle.
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lines. The use of marks with these two is to know the units of 30 degrees2930.

The gradation for degrees in the solstitial colure could immediately be used in the
next step for tilting the ecliptic 24 degrees against the celestial equator. Thus this
passage, especially with the commentary, would have helped the reader assemble the
rings, whether it be with his hands or in his mind.
In contrast, GD2 mentions nothing about gradations on the rings. The inclination

of the ecliptic is only mentioned as the ‘greatest declination’. Furthermore, the ecliptic
is introduced after the solstitial colure and the celestial equator, without waiting for
the third orthogonal ring (the equinoctial colure). This might be due to the fact that
the ecliptic is far more important than the equinoctial colure. In fact the latter is never
mentioned again once the description of the armillary sphere is completed31. The celestial
equator is important because it is the reference for sidereal time32 and the solstitial colure
is the circle on which the ecliptic is separated from the celestial equator by its greatest
declination, so there is good reason that these two come before the ecliptic.
In GD1 the equinoctial colure plays a role in introducing the ecliptic: it produces two

crosses in the east and west with the celestial equator, which are the points that the
ecliptic has to pass through.

4.2. Introducing the latitude
GD1 does not take into account the local latitude at the beginning, as if the observer
were on the equator. It first describes the three orthogonal rings of the stellar sphere
with their six conjunctions facing below, above and the four cardinal directions.

Here, a circle passing below, above, south and north is to be called the
solstitial colure. There is also a circle inside it [attached to it at] the below
and top, [passing through] the east and west, called the celestial equator.
Outside them both horizontally should be another circle [producing] crosses
in the four quarters. (GD1 1.3-1.4ab)

In this situation the ‘another circle’ (the equinoctial colure) is placed parallel to the
horizon, and so is the polar axis which will pierce it at the north and south. Then the
celestial sphere is introduced, aligned with the stellar sphere (Fig. 4). After that, the
stellar sphere and the axis is tilted against the celestial sphere to represent the terrestrial
latitude as in the following passage.

29Here a circle is divided into 12 signs each consisting of 30 degrees. Angles larger than 30 degrees in
modern usage are always described using signs.

30rekhāṇāṃ ṣaṣṭyā aṅkitaṃ ghaṭikāmaṇḍalam/ ghaṭikājñānārtham aṅkavidhiḥ// ...rekhāṇāṃ ṣaṣṭyut-
taraśatatrayeṇāṅkitam anyat maṇḍaladvayam/ triṃśāṃśakaparijñānārthaṃ tayor aṅkavidhiḥ/

31The word viṣuvat which is used for the equinoctial colure alone and also as a collective name for the
three orthogonal rings in the stellar sphere only appears in verses 4 and 5 of GD2. In GD1 we can
see it later in 2.18, but it is used to indicate the equinoctial point and not the circle itself.

32‘Here, the time in which a sixtieth of the celestial equator rotates is called a nāḍikā, not the sixtieth
of a day, because a day is longer than a revolution of the [stellar] sphere.’ (GD2 9)
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Thus should be the state of the sphere at a latitude-less location (equator).
However for a given location, one should make two holes in the celestial
sphere down and up from the south and north crosses [respectively] at the
distance of the Sine of latitude and then make the axis of the celestial sphere
pierce them. (GD1 1.11-1.12ab)

This is where the latitude is taken into account for the first time. The description of
the six o’clock circle follows this in GD1 1.12cd-1.13ab.

Figure 4: The celestial sphere put together outside the stellar sphere in exactly the same
alignment.

By contrast, the celestial sphere in GD2 is inclined in accordance with the latitude
from the very beginning, as we can see from the position of the celestial equator in verse
2.

This circle going below, above, south and north is called the solstitial colure.
The celestial equator is adhering at the tip of [an arc of] latitude north and
south from below and above [respectively]. (GD2 2)

There is no reference to the state of the spheres at the terrestrial equator, and the
word latitude does not appear again until the introduction of the six o’clock circle in
GD2 14. Therefore, unlike GD1, the inclination of the axis is consistent throughout the
explanation in GD2.

4.3. Function of the instrument and cosmology
GD1 hardly ever explains the function or meaning of the rings. For example, the word
‘sun’ does not appear in GD1 in chapter 1 nor in its commentary, despite the ecliptic

10



and diurnal circles being described. There is only some brief mention of the rotation of
the spheres and their cause (a wind or pneumatic force called pravaha) in verse 14, after
both the stellar sphere and celestial sphere have been described.

This stellar sphere continually rotates towards the west by the thrust of the
pravaha. The celestial sphere should be completely still, for this is prepared
in order to establish the directions and so forth.(GD1 1.14)

Meanwhile, GD2 blends descriptions of rings with explanations on their functions or
cosmological meanings. The sun is mentioned several times, where its motions conceived
on the celestial circles as well as the resulting phenomena are explained:

The sun always moves eastward on the circle called the ecliptic. (GD2 4)

It is called the diurnal circle, the place of the revolution of the sun. Many
of them exist, because for each day there is a difference in the motion of the
sun. (GD2 10cd-11ab)

Therefore when the sun is to the north [of the celestial equator] the day is
long and when to the south it is the night that is long. (GD2 16cd)

The rotation of the stellar sphere and the pravaha wind are mentioned right after the
description of the stellar sphere, before the celestial sphere is introduced. By comparison
with GD1, they are described in much greater detail.

The stellar sphere hurled by the pravaha wind goes clockwise around the
Earth and rotates continuously towards the west in sixty ghaṭikās. (GD2 7)

The pravaha wind should have a constant movement towards the west above
the Earth’s surface at a distance of twelve yojanas. The wind of the Earth
having a different movement is below it. (GD2 8)

Here, the time in which a sixtieth of the celestial equator rotates is called a
nāḍikā, not the sixtieth of a day, because a day is longer than a revolution
of the [stellar] sphere. (GD2 9)

Verses 7, 8 and 9 of GD2 are identical with 2.2, 2.3 and 2.4 of GD1 apart from a small
paraphrasing in the last pair33. As we can see in this example, GD2 guides the reader
to cosmology from the very beginning, whereas GD1 completely separates cosmological
explanation from the description of the instrument in different chapters.
One manuscript34 of GD2 inserts quotations from the first verses of a chapter on gola

(here in the sense of cosmology and geography) from the Siddhāntaśekhara35 and the
Brāhmasphuṭasiddhānta36 right after the first invocation verse.
33ghāṭikaṣaṣṭyaṃśasya bhramaṇe in GD1 9 and ghaṭikākhyaṣaṣṭibhāgabhramaṇe in GD1 2.4, both mean-

ing ‘in which a sixtieth of the celestial equator rotates’.
34Indian Office 3530 of the British Library
35Verses 15.1-6
36Verse 21.1
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The rotation of the planets and nakṣatras is not the same everywhere for the
residents of the Earth. Because the knowledge about that is from the sphere,
therefore I will explain the sphere. (Brāhmasphuṭasiddhānta 21.1)37

We can assume that the copier’s attention was drawn to cosmology from the very
beginning of GD2.

4.4. Forms of verb
Verbs conjugated in the optative38, which are frequently used in astronomical and math-
ematical texts to express prescription (Keller [2015]), are more frequently used in GD1
than in GD2:

One should attach (bādhnīyāt) yet another circle called the ecliptic ... to
the solstitial colure. (GD1 1.5bcd-1.6ab)

one should make (kuryāt) the axis of the sphere pierce them (GD1 1.12ab)

Meanwhile the author prefers nominal constructions that indicate a fixed situation in
GD2:

The ecliptic is adhering (lagnam) at its greatest declination likewise from
below and above. (GD2 3ab)

This axis of the sphere goes through (yātas) the crosses of the six o’clock
circle and the prime meridian. (GD2 15ab)

This contrast gives the impression that GD1 describes how to construct an armillary
sphere while GD2 describes the instrument in complete form from the beginning. How-
ever, there are two usages of the optative kuryāt in GD2. One is the description of the
miniature Earth:

One should make (kuryāt) a uniformly round Earth located at the middle
of the stellar sphere’s axis out of either a piece of wood or clay. (GD2 6abc)

It is interesting that this statement also refers to the material of the miniature Earth.
This is the only reference to the material of any part in the armillary sphere that appears
in GD2. We can only guess what Parameśvara’s intention was, but the reader’s attention
would surely be drawn to the instrument.
The second kuryāt appears in the last verse concerning the armillary sphere in GD2:

37Translation from Ikeyama [2002]
38I have not included the optative of as (to be), syāt, which appears many times in both GD1 and

GD2. Although it may prescribe a certain situation, it does not directly ask the reader to take some
action.
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Or, having made the the celestial equator in the east-west direction, and
having made another [circle?] according to it, one should make (kuryāt)
an axis piercing the crosses of the six o’clock circle and the prime vertical.
(GD2 17)

The meaning of the verse is ambiguous, but it most likely describes another ring,
the representation of the celestial equator on the celestial sphere. Such a ring is not
mentioned in GD1. In addition to the optative, the verse uses the expression ‘or (vā)’.
This implies that the ring is optional, and not necessarily included in the armillary
sphere described in GD2, which appears to be complete from the beginning.

4.5. Describing the instrument and explaining the heavens
Let us summarize the differences between GD1 and GD2.

GD1 takes the form of a set of instructions to generate an armillary sphere. As we
saw in the order of the equinoctial colure and the ecliptic, the rings are introduced so
that the previously installed rings can help the reader to locate where to attach the new
ones. The latitude is introduced by moving a part of the instrument. Verse 14, while
being the only verse in chapter 1 to mention a cosmological element (the pravaha wind),
can also be read as a guidance on the movement of the instrument – that the stellar
sphere is constantly rotating while the celestial sphere is fixed.
Meanwhile, GD2 focuses more on explaining the circles in the heavens and motions of

objects, especially the sun, taking place on the circles. There are some phrases which
enable us to imagine the armillary sphere, such as the description of the miniature
Earth. Unlike GD1 which seems to be instructing the reader on how to construct the
instrument, the armillary sphere in GD2 is described as if it were complete: rings are
mentioned for their significance rather than for their role in construction and the latitude
is introduced from the very beginning. The reader has to understand what each part of
the instrument represents, rather than just its shape.

5. Conclusion
GD1 was divided into four chapters, and we have seen that the first chapter was com-
pletely dedicated to the armillary sphere and left cosmological matters for the following
chapters. The text proceeds as if one were building the instrument, although we cannot
rule out the possibility that the reader might have simply followed the text with a fin-
ished armillary sphere on his side, or tried to imagine it in his head. I assume that target
readers of GD1 were not familiar with the armillary sphere and had to concentrate on
the instrument at first.
On the other hand, my hypothesis with GD2 is that Parameśvara supposed that the

reader had better access (either physical or mental) to the instrument. Some crucial
information about its form is missing, notably the gradation of rings and the specific
inclination of the ecliptic against the celestial equator (24 degrees). This requires the
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reader to have some knowledge beforehand. There are expressions which recall the
instrument in between explanations of the heavens. Probably the armillary sphere was
a medium for the reader to understand cosmology.
Some points that have been raised by focusing on the first parts of GD1 and GD2,

seem to agree with what we can see by looking at the entirety of the two treatises. GD1
explains different topics step by step in a relatively organized manner, especially with
the sectioning into four chapters. By contrast, GD2 tends to jump between topics39.
The explanation itself in GD1 tends to be clearer, especially with the auto-commentary,
while GD2 often brings out new terms and concepts without explanation, implying that
the reader must know them in advance.
Therefore I conclude that GD1 and GD2 were composed as different texts for different

readers. They might have been parts of different curricula, GD2 being more advanced.
Considering the overlap it is unlikely that the reader of GD1 would read GD2 afterwards.
To verify this, we would need to take a closer look at other texts in the same bundle or
collection of manuscripts, as well as to carry on a thorough comparison of the remaining
parts of both Goladīpikās. The question remains whether Parameśvara changed his
text to fit another curriculum or composed two texts for two curricula. Whatever his
intention, GD1 and GD2 spread independently and were being read independently.
Incidentally, we have also seen the difference between GD1 and GD2 in how they

describe rings and locate them in relation to other rings in an armillary spheres. The
rings represent celestial circles where arcs and segments are formed in order to com-
pute positions and motions of heavenly objects. Therefore readers of different modes
of descriptions might have interpreted and imagined the circles in distinct ways, and
might have build different reasonings for the computations generated within them. The
remaining parts of the two Goladīpikās must be examined from this viewpoint.
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A. Text and translation from GD1 (1.3 - 1.15)
adha-ūrdhvayāmyasaumyagam iha vṛttaṃ dakṣiṇottarākhyaṃ syāt /

tanmadhye ’py adha-ūrdhvaṃ vṛttaṃ pūrvāparaṃ tu ghaṭikākhyam //1.3//

Here, a circle passing below, above, south and north is to be called the solstitial colure.
At its middle is a circle, also [passing] below and above, then [passing through] the east
and west, called the celestial equator. //GD1 1.3//

bahir anayos tiryak syāc caturāśāsvastikaṃ paraṃ vṛttam /
viṣuvatsaṃjñitam etat tritayaṃ kharasāṅkam atra ghaṭikākhyam //1.4//

Outside them both horizontally should be another circle [producing] crosses in the four
quarters. These three are known as the equinoctial [circles]. Here the celestial equator
has 60 divisions.//GD1 1.4//

kharasāgnyaṅkam ihānyad dvitayaṃ tadvat punaḥ paraṃ vṛttam /
pūrvāparasvastikagam adha-ūrdhvābhyāṃ ca saumyadakṣiṇayoḥ //1.5//
jinabhāge badhnīyād apamākhyaṃ dakṣiṇottare vṛtte /(1.6ab)

Here the other two [circles] have 360 divisions. One should attach yet another circle
called the ecliptic, likewise [having 360 divisions], passing the east and west crosses, to
the solstitial colure at 24 degrees north and south [respectively] from the [crosses at] the
below and the top. //GD1 1.5-1.6ab//

ghaṭikākhyobhayapārśve ’bhīṣṭakrāntyantare tatas tadvat //1.6//
svāhorātrākhyāni ca badhnīyān maṇḍalāny atulyāni /(7.ab)

One should attach, on both sides of the celestial equator, at a given declination from
it, likewise, circles called diurnal [circles] of unequal [sizes].//GD1 1.6cd-1.7ab//

apamagapātadvayagaṃ saumye yāmye tataś ca bhatritaye //1.7//
paramakṣepāntaritaṃ candrādeḥ kṣepamaṇḍalaṃ bhavati / (8.ab)

The orbit of [each planet] beginning with the moon goes through the two nodes on the
ecliptic and is separated by their maximum latitude north and south at [the two points]
three signs from there.//GD1 1.7-1.8ab//

viṣuvadbhavayāmyodaksvastikayor goladaṇḍakaḥ protaḥ //1.8//
nakṣatragola eṣa syād iha bāhye khagolo ’sti /
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The axis of the sphere pierces the south and north crosses produced by the equinoctial
[circles]. This is the stellar sphere. Here, outside, is the celestial sphere.//GD1 1.8cd-
1.9ab//

tasmin viṣuvattritayaṃ prāgvat, kṣitijākhyam eṣu tiryakstham //1.9//
samamaṇḍalaṃ tu pūrvāparagaṃ, yāmyottarākhyam aparaṃ syāt /

Within it are the three equinoctial [circles] as before. Among them the [one] lying
horizontally is called the horizon, the prime vertical passes through the east and the
west and the other is to be called the prime meridian.//GD1 1.9cd-1.10ab//

kalpyā bhūḥ samavṛttā mṛdādinā goladaṇḍamadhyagatā //1.10//

A uniformly round Earth should be arranged with clay and the like at the middle of
the sphere’s axis.//GD1 1.10cd//

golasthitir evaṃ syāt nirakṣadeśe hy abhīṣṭadeśe tu /
adha ūrdhvaṃ ca khagole yāmyodaksvastikāt palajyānte //1.11//
kṛtvā vedhadvitayaṃ tatprotaṃ goladaṇḍakaṃ kuryāt /

Thus should be the state of the sphere at a latitude-less location (equator). However
for a given location, one should make two holes in the celestial sphere down and up from
the south and north crosses [respectively] at the distance of the Sine of latitude4041 and
then make the axis of the sphere pierce them.//GD1 1.11-1.12ab//

unmaṇḍalākhyavṛttaṃ golagadaṇḍāgrayugmakaprotam //1.12//
kuryāt pūrvāparagasvastikagaṃ ceṣṭadeśagolo ’yam /

A circle called the six o’clock [circle] fixed to the two tips of the axis going through
the [stellar] sphere and passing the east and the west crosses should be made. This is
the sphere at a given location.//GD1 1.12cd-1.13ab//

śaradaṇḍike ca yojye daṇḍe golāntare sthiratvāya //1.13//

40“Sine” is capitalized to indicate that it is not the modern sine defined in a circle of unit radius, but
measured in a circle with a radius R other than 1. In modern notation Sinθ = R sin θ

41Sarma [1956-57] comments that “Pala-jyā, here, as also elsewhere below, means only the latitude,
akṣa, and not sine latitude, akṣa-jyā”. However in verse 4.51 (p.117) he does translate it as “sin.
latitude”. Moreover, whenever Parameśvara gives the value of a geographic latitude, it is always by
its Sine (For example, verses 3.34 and 4.23 in GD1: translations in Sarma [1956-57] are respectively
p.88 and p.107). For this reason, I have chosen to translate palajyā literally.
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Two stalks of reed are attached to the axis between the spheres for stability.//1.13cd//

bhramati hy aparābhimukhaṃ pravahākṣepāt sadā bhagolo ’yam /
sthira eva khagolaḥ syād digādisiddhyai prakalpito hy eṣaḥ //1.14//

This stellar sphere continually rotates towards the west by the thrust of the pravaha.
The celestial sphere should be completely still, for this is prepared in order to establish
the directions and so forth.//GD1 1.14//

lambākṣajñānārthaṃ prakalpyate daṇḍanābhiharijānte /
anyad dyuvṛttam anyair bhūjyākṣajyeha lambakaḥ krāntiḥ //1.15//

In order to know the co-latitude and latitude, another diurnal circle is assumed by
others at the end of the horizon which has the axis as center42. Here the Sine of Earth
is the Sine of latitude and the declination is the co-latitude.//GD1 1.15//

B. Text and translation from GD2 (2 - 17)
adha-ūrdhvayāmyasaumyagam iha vṛttaṃ dakṣiṇottarākhyaṃ syāt /
adha-ūrdhvābhyāṃ ghāṭikam akṣāgre saumyayāmyayor43 lagnam //2//

This circle going below, above, south and north is what is called the solstitial colure.
The celestial equator is adhering at the tip of [an arc of] latitude north and south from
below and above [respectively]. //GD2 2//

tasyāpy adha-ūrdhvābhyāṃ tadvat paramāpame ’pamaṃ lagnam /
ghāṭikamadhye tiryag raśanāvartasya44 vṛttam aparaṃ syāt //3//

The ecliptic is adhering at its greatest declination likewise from below and above. A
girdle at the middle of the celestial equator, transverse to the rotation, is another circle.
//GD2 3//

42daṇḍanābhiharijānte is one compound in the locative case in the singular form. Therefore daṇḍanābhi
(having the axis as center) must be an adjective modifing harija (horizon) or anta (end). The latter
is impossible as an interpretation, and even the former sounds strange; the axis indeed goes through
the center of the circle of the horizon, but it makes no sense in the context. The translation by
Sarma [1956-57], “…a diurnal circle …with [a point on] the central axis as the centre and just touching
the horizon …”, interprets this compound as an adjective of dyuvṛttam (diurnal circle), but then the
compound must be in the adjective (daṇḍanābhiharijāntaṃ).

43yāmyasaumyayor in Sastri [1916], which is only supported by C.224F. IO Sanskrit 3530 reads
saumyayor and every other manuscript supports my amendment.

44vṛttasya in Sastri [1916], which is only supported by C.224F. Every other manuscript supports my
amendment.
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etad viṣuvatsaṃjñaṃ ghāṭikamapi dakṣiṇottaraṃ ca tathā /
apamaṇḍalākhyavṛtte pūrvābhimukho raviḥ sadā carati //4//

This is known as the equinoctial colure [or equal division circle] (viṣuvat). The celes-
tial equator and the solstitial colure are also [called] likewise45. The sun always moves
eastward on the circle called the ecliptic. //GD2 4//

ghāṭikamadhyagaviṣuvadyāmyottaravṛttayor mithoyogāt /
svastikayugmaṃ yat syāt tatproto golamadhyagatadaṇḍaḥ //5//

Since the equinoctial colure and the solstitial colure which are inside the celestial equa-
tor are connected to one another there is a pair of crosses. The axis passing the middle
of the sphere pierces them. //GD2 5//

samavṛttām api bhūmiṃ bhagoladaṇḍasya madhyagāṃ kuryāt /
kāṣṭhena vā mṛdā vā prāṇinivāsādi kalpayet tasyām //6//

One should make a uniformly round Earth located at the middle of the stellar sphere’s
axis out of either a piece of wood or clay. The dwelling of living beings and so forth are
assumed to be within it. //GD2 6//

pravahamarutprakṣipto bhagola urvīṃ pradakṣiṇīkṛtya /
aparābhimukhaṃ ṣaṣṭyā ghaṭikābhir bhramati bhūyo ’pi //7//

The stellar sphere hurled by the pravaha wind goes clockwise 46 around the Earth and
rotates continuously towards the west in sixty ghaṭikās. //GD2 7//

bhūpṛṣṭhād upari marud raviyojanasaṃmitāntare pravahaḥ /
niyatagatir aparagaḥ syād bhūvāyur adhaś ca tasya bhinnagatiḥ //8//

The pravaha wind should have a constant movement towards the west above the
Earth’s surface at a distance of twelve yojanas. The wind of the Earth having a differ-
ent movement is below it. //GD2 8//

ghāṭikaṣaṣṭyaṃśasya bhramaṇe kālo ’tra nāḍikety uditā /
na tu divasaṣaṣṭibhāgo golabhramaṇād yato ’dhiko divasaḥ //9//

45The term viṣuvat, literally “in the middle” or “central”, can stand for the equinoctial colure alone,
but can also be used to indicate the set of three circles.

46pradakṣiṇī, literally “towards the right/south”, as seen from the north pole.
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Here, the time in which a sixtieth of the celestial equator rotates is called a nāḍikā, not
the sixtieth of a day, because a day47 is longer than a revolution of the [stellar] sphere.
//GD2 9//

ghāṭikamaṇḍalapārśve ghāṭikavṛttānusāri yad vṛttam /
sūryasya bhramaṇasthaṃ svāhorātrākhyavṛttam48 uditaṃ tat //10//

On the side of the celestial equator is a circle that is a companion of the celestial
equator. It is called the diurnal circle, the place of the revolution of the sun. //GD2
10//

tāni bahūni bhavanti ca divase divase yato ’rkagatibhedaḥ /
nakṣatragola eṣa hi bāhye ’sya ca niścalaḥ khagolaḥ syāt //11//

Many of them exist, because for each day there is a difference in the motion of the
sun. This is the stellar sphere. The celestial sphere outside it should be [considered]
immovable. //GD2 11//

pūrvāparādha-ūrdhvagam uditaṃ samamaṇḍalaṃ khagolastham /
yāmyottarādha-ūrdhvagam asminn api49 dakṣiṇottarākhyaṃ syāt //12//

The prime vertical located on the celestial sphere is said to go through the east, west,
below and above. What is called the prime meridian on it (the celestial sphere) should
go through the south, north, below and above. //GD2 12//

pūrvāparayāmyodaggatam iha bhūpārśvasaṃsthitaṃ kṣitijam /
tasminn udayāstamayau sarveṣāṃ bhagrahāṇāṃ50 staḥ //13//

Here, the horizon located on the side of the Earth goes through the east, west, south
and north. The rising and setting of all the stars and planets takes place on it. //GD2
13//

yāmye ’dhaś cordhvam udak kṣitijād akṣāṃśakāntare lagnam /
prāgaparayoś ca lagnaṃ vidyād unmaṇḍalaṃ khagolastham //14//

47Average civil day.
48svāhorātrārdhavṛttam in Sastri [1916], which is only supported by C.224F. C.1024D, Burnell 107b

and Burnell 17c read svāhorātrākhyam, others support my amendment.
49api tasmin in Sastri [1916], which is only supported by C.224F. Every other manuscript supports my

amendment.
50hi grahāṇāṃ in Sastri [1916], which is only supported by C.224F. Every other manuscript supports

my amendment.
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One should know that the six o’clock circle which is located on the celestial sphere is
adhering at a distance in degrees of latitude below [the horizon] in the south and above
the horizon in the north, and is adhering to the east and west. //GD2 14//

unmaṇḍalayāmyodaksvastikayātaś ca goladaṇḍo ’yam /
unmaṇḍalordhvabhāge bhramaṇaṃ golasya khāgnināḍībhiḥ //15//

This axis of the sphere goes through the crosses of the six o’clock circle and the prime
meridian. In the part above the six o’clock circle the revolution of the sphere takes
thirty nāḍī s. //GD2 15//

unmaṇḍalād adhaḥsthaṃ saumye yāmye tadūrdhvagaṃ kṣitijam /
tasmāt saumyagate ’rke dinam adhikaṃ yāmyage niśā hy51 adhikā //16//

The horizon is situated below the six o’clock circle in the north and goes above it in
the south. Therefore when the sun is to the north [of the celestial equator] the day is
long and when to the south it is the night that is long. //GD2 16//

kṛtvā vā prāgaparaṃ ghāṭikam anyac ca tadvaśāt kṛtvā /
unmaṇḍalayāmyodaksvastikaniṣprotadaṇḍakaṃ kuryāt //17//

Or, having made the celestial equator in the east-west direction, and having made
another [circle] according to it, one should make an axis piercing the crosses of the six
o’clock circle and the prime meridian. //GD2 17//

51niśāpy in Sastri [1916], which is only supported by 5867A and C.224F. Every other manuscript
supports my amendment.
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Sphere Confusion: 
a Textual Reconstruction of Astronomical Instruments and 

Observational Practice in First-millennium CE China 

Daniel Patrick MORGAN
*
 

 
Abstract: This article examines the case of an observational and demonstration-

al armillary sphere confused, one for the other, by fifth-century historians of 

astronomy He Chengtian and Shen Yue. Seventh-century historian Li Chunfeng 

dismisses them as ignorant, supplying the reader with additional evidence. Using 

their respective histories and what sources for the history of early imperial ar-

millary instruments survive independent thereof, this article tries to explain the 

mix-up by exploring the ambiguities of ‘observation’ (guan) as it was mediated 

through terminology, text, materiality and mathematics. Reconstructing the 

material features of the ‘sight’ (yi) and ‘effigy’ (xiang), the article will reflect 

upon the mathematics necessary for their operation. The ‘effigy’, as Li Chun-

feng defines it, is a substitute for observation; the ‘sight’, however, is so mediat-

ed by the material and mathematical sphere as to confound Li’s distinction be-

tween looking through and looking at. In the end, however, the difference is 

moot, since the observational model appears to have played a negligible role in 

the history of astronomy in first-millennium China, leaving us to wonder what 

instrument(s) were used for observation. 

Introduction 

The most important thing to know about the Chinese armillary 
sphere is that it was made of money. You could use iron, or even 
wood, but to do it right you needed bronze, and bronze was the 
basis of the currency. It is for this most mundane of reasons—
liquid capital—that the history of the armillary sphere in China 
was largely one of making do without. So too must the historian 
make do without, because, prior to the fifteenth-century reproduc-
tion of Guo Shoujing’s 郭守敬 (1231–1316) ‘simplified instru-
ment’ at Purple Mountain Observatory, all we have to go on is 
texts and second-millennium illustrations—texts that reveal little 
about the instrument’s operation beyond words like ‘observation’ 
(guan 觀) and ‘watching’ (hou 候). Studies of more technically 
forthcoming traditions like Włodarczyk (1987) remind us that there 
is more to ‘observation’ than the tool, and that the tool, in this case, 
was the most unwieldy of the observer’s options. Absent any dis-
cussion of practice, the armillary sphere nevertheless enjoys a cult 
status among sinologists, Needham (1959, p. 339), for example, 
calling it ‘the indispensable instrument of all astronomers for the 
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determination of celestial positions before the invention of the tele-
scope’.  

This paper offers a preliminary exploration of the practice(s) 
and physical realities of armillary-sphere ‘observation’ in first-
millennium CE China. In the absence of the instrument, the ques-
tion of practice is one that we must approach through text, for 
which we shall focus specifically on written traces of Zhang Heng 
張衡  (78–139) and Kong Ting’s 孔挺  (fl. 323) ‘sphere sights’ 
(hun yi 渾儀). Our primary source in this regard will be the histo-
ries of astronomical instrumentation written by Li Chunfeng 李淳
風 (602–670) and Shen Yue 沈約 (441–513) in their respective 
dynastic-history monographs on ‘heavenly patterns’ (tianwen 天
文). Writing on the Jin (265–420) and Five Dynasties (502–618), 
in the case of Li Chunfeng, and the Liu-Song (420–479), for Shen 
Yue, their histories overlap as concerns the lead-up to the fifth cen-
tury. Weaving lengthy descriptions and citations into a chronicle of 
‘creations’ (zao 造) and ‘awakenings’ (wu 悟), these histories pre-
serve most of what we know about astronomical instrumentation 
prior to the seventh century.

1
 The one exception here is Zhang 

Heng’s treatise on constructing, measuring and extrapolating algo-
rithms from a physical sphere, The Sphere Heaven Sight (Hun-tian 
yi 渾天儀), preserved in Li Xian’s 李賢 (654–684) commentary to 
the Book of Later Han. 

We shall focus on the Zhang Heng and Kong Ting spheres to 
reveal some of the confusion surrounding this topic in early 
sources—a confusion of two physical instruments bespeaking a 
greater confusion about what it means to ‘observe’. In brief, the 
one disappeared from Luoyang in the fog of war, and when the 
other was captured a century later in Chang’an, fifth-century ex-
perts believed themselves to have recovered the wrong sphere. 
Their confusion is difficult for the seventh-century expert to under-
stand, because the one sphere was built to look through, and the 
other, at. As different as that sounds, I will attempt to explain this 
confusion via the terminology, text, materiality and mathematics 
through which ‘observation’ is in this case mediated. 

Note that, for the sake of concision, I shall translate reign-years 
into Julian years (e.g. ‘164’ for ‘Huandi, Prolongation of Bright-
ness 7’) and reduce compound decimal length measures into the 
equivalent number of chi 尺 (e.g. ‘14.61 chi’ for ‘1 zhang 4 chi 
6 cun 1 fen’), using 1 chi = 23.1–31.6 cm based on the inflationary 
historical rates in Qiu (1992). As to astronomical units, our sub-
jects work in du 度 (‘measure/crossing’): a linear measure of the 
circumference of a great circle whereby one du equals the distance 
travelled by the mean sun in one day, and the ‘circuit of heaven’ 
(zhou tian 周天) thus equals the length in days of the tropical year, 
i.e. 360° ≈ 365¼ du (Huang, 1992; Cullen, 1996, pp. 35–66). 

Lost & Found 

The term that sinologists translate as ‘sphere’ is hun 渾/混, invok-
ing the ‘confused’ and ‘undifferentiated’ state of matter at the be-
ginning of time to describe the tian 天 ‘heaven(s)’. The rubric 
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‘sphere/confusion’ could not be more appropriate. The earliest 
reference to a hun-tian comes from Yang Xiong 揚雄 (53–18 BCE), 
the vagueness of which makes it difficult to distinguish the cos-
mology from the instrument (Cullen, 1996, pp. 53–59): 

或問渾天，曰：「落下閎營之，鮮于妄人度之，耿中丞象之，
幾乎幾乎！莫之能違也。」 
Someone inquired about sphere heaven, [to which Yang Xiong re-
sponded]: ‘Luoxia Hong (fl. 104 BCE) worked it out, Xianyu 
Wangren (fl. 78–74 BCE) du-measured it, and Geng [Shouchang] 
the palace assistant (fl. 52 BCE) made an effigy of it. How exact it 
is! No one can contradict it (Yangzi Fayan, 7.2a–b). 

It is only with the ‘Grand Clerk yellow-path bronze sight’ 太史黃
道銅儀 of 103 that we see unequivocal evidence of something re-
sembling an armillary sphere. Commissioned for the state observa-
tory at the (late) behest of General Jia Kui 賈逵 (30–101), Cai 
Yong 蔡邕 (133–192) and Liu Hong’s 劉洪 (fl. 167–206) mono-
graph in the Book of Later Han offers the following description of 
the device: 

以角為十三度，亢十...凡三百六十五度四分度之一。冬至日在
斗十九度四分度之一。史官以郭日月行，參弦望，雖密近而
不為注日。儀，黃道與度轉運，難以候，是以少循其事。 
With Horn.L01 as 13 du, Neck.L02 [as] 10, (see fig. 1)... it totalled to 
365 du & ¼ du. The winter solstice was at Dipper.L08 19 du & 
¼ du. The Clerk’s Office perimetered (?) solar & lunar motion and 
checked quarter & full moons, and though it was tight & close (ac-
curate), it was not used for noting the sun/days. As to the sight, the 
yellow path and du (equator ring) rotated; it was difficult to watch 
(hou) with, which is why [the order to use it] was rarely heeded 
(Hou Han shu, zhi 2, 3029–30). 

The ‘rotating’ equator and ecliptic identify this as an armillary 
sphere, ‘watching’ suggests one made for looking through, but this 
is all we really know about the sphere prior to Zhang Heng. 

As concerns instrumentation, Zhang Heng’s Book of Later Han 
biography attributes him with having ‘created [the] sphere heaven 
sight/s’ 作渾天儀 (Hou Han shu, 59.1898), which likely refers to 
the treatise by that name. Later sources like Li Chunfeng highlight 
a physical installation: 

至桓帝延熹七年，太史令張衡，更以銅製，以四分為一度，
周天一丈四尺六寸一分。亦於密室中，以漏水轉之。令司之
者，閉戶而唱之，以告靈臺之觀天者，琁璣所加，某星始見，
某星已中，某星今沒，皆如合符。 
In 164, Prefect Grand Clerk Zhang Heng redesigned [a sphere] in 
bronze with 4 fen (9.4 mm) to the du, for a circuit of heaven of 
14.61 chi (343.34 cm). It was placed in a sealed chamber and ro-
tated by means of waterclock water. The person charged with its 
operation called it out from behind closed doors to announce to the 
observers of heaven of the Numinous Terrace (observatory) the 
add[ed hour] (?) of the ‘rotating mechanism’, that such-and-such 
star was first visible, that such-and-such star was already [culmi-
nated], and that such-and-such star was currently setting—all of  
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Fig. 1 Twenty-eight lodges and equatorial du-widths (above) vs ‘corners & chronograms’ 

hour angles (below). Above, the inner circle provides the ‘guide stars’ (ju xing 距星) 

marking the beginning of each lodge; the outer circle provides the equatorial du-widths 

between these stars; and around the circle are arranged the solstices (zhi 至), equinoxes 

(fen 分) and ‘establishments’ (li 立) of the 24 qi of the solar cycle. Below, note that the 

24 ‘added hours’ feature the twelve ‘earthly-branch’ double-hours (B01–B12) interposed 

with the four trigram ‘corners’ and eight of the ten ‘heavenly stems’ (S01–S10) (see Qu, 

1994).  
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which were like matching [the two halves of] a tally (Sui shu, 
19.516–17).

2
 

Unmentioned in his biography, the device is attributed to a date 
twenty-five years after Zhang Heng’s death in 139. Whatever that 
tells us, this sphere-clock turned indoors, separate from the activity 
of ‘watching’, which distinguishes it from the observational ‘sight’ 
of 103. Arai (1989, p. 325) labels this device a ‘computer’. 

Both the 103 and 164 spheres were installed at the Numinous 
Terrace observatory at Eastern Han (25–220) Luoyang. Excavated 
in 1974–1975, this 44,000 m

2
 walled site revealed nothing but ru-

ined foundations, floor tiles and the earthen terrace where the 
sphere once stood (Kaogu 1978.1, pp. 54–57). Much had happened 
in the meantime. In 189, Military Governor Dong Zhuo 董卓 
(d. 192) sacked the city in a succession struggle between the palace 
and civil service. With Luoyang in flames, a child emperor was 
installed in Xuchang while real power devolved upon warlords 
fighting military rebellions, millenarian uprisings and one another 
in his name. In 220, the Han emperor abdicated to his generals, the 
Cao 曹 of Wei 魏, who abdicated to their generals, the Sima 司馬 
of Jin 晉, in 265. The Cao and Sima clans re-established Luoyang 
as their capital over the Three Kingdoms (220–280) but only after 
massive reconstruction. Upon reunification, Jin Wudi 晉武帝 
(r. 265–290) split the empire amongst his sons, who would go on 
to flood the central plains with mercenary steppe tribes in a new 
war for the imperial seat. So they fought, and so they eventually 
found themselves fighting rebellions within their armies until, in 
311, an alliance of mercenary tribes sacked the capital and drove 
the Jin city by city into the south. 

The heartland was lost, and so too in the fog of war and exodus 
had the spheres of the Luoyang observatory gone missing. A cen-
tury later, in the 417 siege of the Qiang 羌 proto-Tibetan capital at 
Chang’an, General Liu Yu’s 劉裕 (363–422) armies made an un-
expected discovery amongst the city’s ruins: a two-metre bronze 
sphere inscribed with astral symbols along its rings. The general 
transported his find to the new capital at Jiankang in 418 (where, 
with his armies, he would usurp the throne in 420). In 439, within 
the framework of Xu Yuan’s 徐爰 (394–475) history project to 
legitimize the new dynasty, He Chengtian identified this instru-
ment with Zhang Heng’s water-driven ‘sphere sight’ of 164. In his 
493 history, Shen Yue reiterates He’s identification, noting that 
‘though the sight was visibly intact, it was [no longer] ornamented 
with the canon stars or seven luminaries’ 儀狀雖舉，不綴經星七
曜 (Song shu, 23.678). 

This, according to Li Chunfeng’s Book of Sui monograph, is 
what they were looking at (cf. fig. 2): 

其制則有雙環規相並，間相去三寸許。正豎當子午。其子午
之間，應南北極之衡，各合而為孔，以象南北樞。植楗於前
後，以屬焉。又有單橫規，高下正當渾之半，皆周帀分為度
數，署以維辰之位，以象地。又有單規，斜帶南北之中，與
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春秋二分之日道相應。亦周帀分為度數，而署以維辰，並相
連著。屬楗植而不動。 
[Six-joint sight:] Its construction featured a pair of ring-circles 
joined [parallel] to one another with a space of roughly 3 cun 
(9.09 cm) between them. It stood upright to serve as the zi.B1–
wu.B7 (the ‘00:00–12:00’, or meridian). Between zi.B1 & wu.B7, ac-
commodating the traverse (diameter) [between] south & north 
poles, [the parallel rings] each joined to form a hole in effigy of 
the southern & northern pivots [of the celestial sphere]. Lock pins 
in the front & back allowed joining [other rings] to it. In addition, 
it had a single horizontal circle at a height corresponding exactly 
with half the [vertical diameter of the] sphere, which was divided 
all around [its perimeter] into du numbers and inscribed with the 
positions of the corners & chronograms in effigy of the earth (the 
horizon). In addition, it had a single circle that belted at an incline 
midway between south & north (i.e. at an incline to the horizon 
circle and perpendicular to the N–S axis), corresponding to the 
path of the sun at spring & autumn equinox. It too was divided 
around its circumference into du numbers and inscribed with the 
corners & chronograms, the two of which were written together in 
a single [band]. It was held in place by a connecting bolt and did 
not move. 
 
其裏又有雙規相並，如外雙規。內徑八尺，周二丈四尺，而
屬雙軸。軸兩頭出規外各二寸許，合兩為一。內有孔，圓徑
二寸許。南頭入地下，注於外雙規南樞孔中，以象南極。北
頭出地上，入於外雙規規北樞孔中，以象北極。其運動得東
西轉，以象天行。 
[Four-direction displacement sight:] Its interior had another pair 
of circles joined [parallel] to one another, like the outer double-
circle (i.e. an internal meridian ring). [The double-circle’s] inner 
diameter was 8 chi (242.4 cm), its circumference was 24 chi 
(727.20 cm), and it was connected to the axle pair (i.e. it was fixed 
to and turned around the N–S axis ‘pivots’ of the six-joint sight). 
The two axle heads each protruded roughly 2 cun (6.06 cm) from 
the [four-displacement] circle, joining the two [parallel circles] as 
one. Inside of these were holes with a circular diameter of roughly 
2 cun. The southern head went beneath the earth (horizon circle), 
where it was inserted into the southern pivot hole of the outer dou-
ble circle in effigy of the south [celestial] pole. The northern head 
protruded from the earth, going into the northern pivot hole of the 
outer double circle in effigy of the north [celestial] pole. Its 
movement allows for east-west rotation in effigy of heaven’s mo-
tion. 
 
其雙軸之間，則置衡，長八尺，通中有孔，圓徑一寸。當衡
之半，兩邊有關，各注著雙軸。衡既隨天象東西轉運，又自
於雙軸間得南北低仰。所以準驗辰曆，分考次度，其於揆測，
唯所欲為之者也。 
[Sighting tube:] Between its two axles was installed a traverse 
8 chi (242.4 cm) in length, through the centre of which was a 
[sighting] hole 1 cun (3.03 cm) in diameter. Halfway down the 
traverse was, on either side, a [pivot] bolt, each of which were in-
serted & connected to [another] axle pair (at the midpoint of an 
unmentioned crossbar). The traverse could both rotate east–west to 
follow heavenly phenomena and achieve of itself north–south 
lowering & raising between the axle pair. This is how one levelled 
& verified the chronograms & li (time) and distinguished & exam-
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ined the stations & du (space). In regards to observation & meas-
urement, it did truly everything that one could desire (Sui shu, 
17.517–18; cf. Maspero, 1939, pp. 322–23). 

This, however, was not Zhang Heng’s armillary sphere. In saying 
that it was, He Chengtian and Shen Yue were, in Li Chunfeng’s 
words, ‘both off by far’ 皆失之遠矣 (Sui shu, 19.518). 

A Sphere for Calculation 

Of everything that is wrong with He Chengtian and Shen Yue’s 
identification of the preceding instrument, Li Chunfeng points to 
the most obvious: ‘Inspection of the engraving [reveals that] this 
was constructed by Clerk’s Office Assistant Kong Ting of Nan-
yang in 323, under the rule of the [Xiongnu] imposter Liu Yao 
(r. 318–329)’ 檢其鑴題，是偽劉曜光初六年，史官丞南陽孔挺
所造  (Sui shu, 19.518). There is also the fact that Kong Ting 
sphere was fitted with a sighting tube for use outdoors. On this 
point, Li insists on a rectification of names: 

渾天儀者，其制有機有衡。既動靜兼狀，以效二儀之情，又
周旋衡管，用考三光之分。所以揆正宿度，準步盈虛，來古
之遺法也。 
The sphere heaven sight is constructed with both engine (cage) 
and traverse. Not only in its at once moving & static state does it 
replicate the true situation of [yin & yang], the complete rotation 
of the transverse (sighting) tube allows examination of the frac-
tions of the three lights (the sun, moon and stars). It is that by 
which one estimates & corrects the lodge du (widths) and levels & 
paces excess & void—a method handed down from antiquity (Sui 
shu, 19.517). 
 
渾天象者，其制有機而無衡... 不如渾儀，別有衡管，測揆日
月，分步星度者也。 
The sphere heaven effigy is constructed with engine and no trav-
erse... It is inferior to the sphere sight, which has in addition a 
traverse tube—the thing that [allows] the measure & estimation of 
sun & moon and the division & pacing of stars & du (Sui shu, 
19.519). 

By Li Chunfeng’s definition, Zhang Heng’s indoor sphere was an 
‘effigy’, Kong Ting’s outdoor sphere was a ‘sight’, and ‘the sight 
& effigy are two [distinct] devices with nothing whatsoever to do 
with one another’ 儀象二器，遠不相涉 (Sui shu, 19.519). 

The terminology is however less clear than Li Chunfeng would 
make it. The term yi 儀 derives from the graduated sight/range-
finder pegs of early missile weapons, which, extended to the 
sphere, came to stand for sighting pegs, graduated rings and the 
instrument itself, while xiang 象 refers to an ‘effigy’ or ‘simula-
crum’ linking something in the world of man to a truth in the be-
yond (Li, 2014, pp. 171–77; Schafer, 1977, pp. 54–56). In second-
millennium parlance, ‘sight’ refers to an armillary sphere, and  
 



Centaurus, 58.1 (2016) 

D.P. Morgan – Sphere Confusion (26 May 2016) POST-PRINT 

 
Fig. 2 Su Song’s 蘇頌 (1020–1101) sphere heaven sight and component groups, from Xin 

yixiang fayao, A.9a, 11a, 13a, 14a. These illustrations are supplied for reference; note 

that Kong Ting’s 323 ‘sight’ is absent a ‘three-chronogram sight’. 

 
 
‘effigy’, a celestial globe, the differences being that between a hol-
low and solid sphere; for Li Chunfeng, however, the difference is 
between looking through and looking at, and the fact that the 
demonstrational sphere had rings (and that the observational 
sphere was an effigy) afforded a certain ambiguity as to which 
applies to a given sphere (Wang, 2015). Indeed, Qian Lezhi’s 錢樂
之 (fl. 436–443) non-observational ‘sight’ of 436 later presents Li 
Chunfeng with a conundrum:  

至如斯制，以為渾儀，儀則內闕衡管。以為渾象，而地不在
外。是參兩法，別為一體。就器用而求，猶渾象之流。 
As to this construction, it could be taken for a sphere sight, but the 
sight is absent a traverse tube inside; it could be taken for a sphere 
effigy, but the earth is not on the outside. This references both 
models

3
 but constitutes a separate form (ti). Gathering from the 

device’s use, it would seem to belong to the current (school) of 
sphere effigies (Sui shu, 19.519). 

Zhang Heng’s reputation for having ‘created [the] sphere heaven 
sight/s’ would seem to suggest the label for his unnamed (and 
posthumous?) computer of 164, and The Sphere Heaven Sight, for 
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its part, deals with computation. At its core, the treatise is about 
measuring the ecliptic, which, without spherical trigonometry, 
means using a ruler: 

是以作小渾，盡赤道黃道，乃各調賦三百六十五度四分之一，
從冬至所在始起，令之相當值也。取北極及衡，各（誠）
〔鍼〕㧻之為軸，取薄竹篾，穿其兩端，令兩穿中閒與渾半
等，以貫之，令察之與渾相切摩也。乃從減半起，以為〔百〕
八十二度八分之五，盡衡減之半焉。又中分其篾，拗去其半，
令其半之際正直，與兩端減半相直，令篾半之際從冬至起，
一度一移之，視篾之半際（夕）多〔少〕黃赤道幾也。其所
多少，則進退之數也。從（此）〔北〕極數之，則（無）
〔去〕極之度也。 
For this, make a small sphere complete with red & yellow path, 
then allocate each with 365 du & 1/4 du and make sure to align 
their relative values starting from the position of winter solstice. 
Take the north pole and [the other end of the] transverse (i.e. the 
south pole) and stick each with a needle to form an axle. Take a 
thin bamboo strip and punch a hole at either end so that the dis-
tance between the two holes is exactly one half [of the circumfer-
ence] of the sphere and that [the pins] may be run through them 
(affixing each end to opposite poles). Make sure to check that [the 
bamboo strip] rubs closely against [the surface of] the sphere. 
Then, starting from the diminished half-[way point] (the northern 
axis), make 182 du & 5/8 [du] [running] all the way down to the 
half-[way point] diminished at the transverse (the southern axis). 
Furthermore split the strip [along the] middle and remove its [one] 
half, making sure that the edge of its half (centreline) is true & 
straight and that it is aligned with the diminished half-[way points] 
(the poles) at both ends. Make sure to begin with the [centreline] 
edge of the bamboo strip at winter solstice and shift it one du at a 
time, looking at how much [is the north-polar distance of the eclip-
tic on] the half-edge of the bamboo strip and how many [du of 
longitude and RA have elapsed on] the yellow & red path. [The 
amount] by which [the latter] differ is the number of ad-
vance/retreat, while counting from the north pole [down the grad-
uated bamboo strip] is (sic.) the du of polar distance (Hou Han shu, 
zhi 3, 3076 comm.). 

Having thus determined the limits of ‘advance/retreat’ 進退 (the 
reduction to the equator) to be zero at the solstices and equinoxes 
and 3 du at the halfway points in between (the ‘establishments’ 
li 立), The Sphere Heaven Sight concludes with an algorithm for 
interpolating intermediate values by which to freely convert be-
tween ecliptic and equatorial ‘lodge-entry du’ (ruxiu du 入宿度). 
Deferring the reader to Western-language studies in Maspero 
(1939, pp. 337–52), Cullen (2000) and Lien (2012), one notes that 
the interest of this step function is in avoiding complex fractions 
by rounding quarter circuits (91

5

16
 du) to 15- and 16-du blocks and 

‘advance/retreat’ to ¼ du intervals.  
The point here is that Zhang Heng’s ‘small sphere’, like his wa-

ter-driven sphere of 164, is a material means to a computational 
end. These are spheres for looking at, and where the latter was in a 
‘sealed chamber’, Zhang explains the former thus: 



Centaurus, 58.1 (2016) 

D.P. Morgan – Sphere Confusion (26 May 2016) POST-PRINT 

本當以銅儀日月度之，則可知也。以儀一歲乃竟，而中閒又
有陰雨，難卒成也。 
What one should do is du-measure these [advance/retreat numbers] 
over days and months via the bronze sight—then could [they] be 
known—[but as] this would take a year at the sight to complete, 
and [as] there would furthermore be overcast & rainy [days] inter-
spersed therein, it would be difficult to bring to successful comple-
tion (Hou Han shu, zhi 3, 3076 comm.). 

In the end, the sphere was a substitute for observation, and the al-
gorithm, a substitute for the sphere. Tellingly, in 721, the answer to 
Monk Yixing’s 一行 (683–727) petition that ‘[we] must know the 
yellow-path advance/retreat [numbers]’ 須知黃道進退 was that 
‘[the clerk’s] office does not have a/the yellow-path displacement 
sight [and thus] has no means of measure-watching [it]’ 官無黃道
游儀，無由測候 (Jiu Tang shu, 35.1293–94). Six centuries later, 
the physical sphere was apparently still the basis of coordinate 
conversion. 

A Sphere for Observation 

Let us return to the observational sphere of 323 by point of com-
parison. As described above, the Kong Ting sphere was comprised 
of two of three component groups typical to later models (fig. 2). 
The first was the ‘six-joint sight’ (liu he yi 六合儀), a fixed outer 
cage ‘joining’ a horizon, meridian and equator ring at six points 
(and to a platform). Aligned at the horizon and celestial pole, the 
outer cage provided a fixed coordinate grid within which to turn 
interior rings. The second component group was the ‘four-
[directional] displacement sight’ (si you yi 四遊儀), a meridian 
ring turning east–west around the polar axis and fitted with a sight-
ing tube that pivoted north–south through its centre (Maspero, 
1929, pp. 306–27). 

The key to any precision instrument is graduation, without 
which a cage of rings is no more an armillary sphere than a metal 
slat a ruler. Shen Gua 沈括 (1031–1095) offers the following med-
itation on the subject: 

度不可見，其可見者星也。日、月、五星之所由，有星焉。
當度之畫者凡二十有八，而謂之舍。舍所以絜度，度所以生
數也。度在天者也，為之璣衡，則度在器。度在器，則日月
五星可摶乎器中，而天無所豫也。天無所豫，則在天者不為
難知也。 
Du cannot be seen; what can be seen are stars, and the course of 
the sun, moon, & five [planets] is replete with stars. Those [stars] 
that act as demarcations of du, they are twenty & eight in total, 
which we call lodges. Lodges are that by which du are measured 
out, and du are that by which numbers are born. Du are in heaven; 
but make a ‘device-traverse’ (sphere sight), and you have du on an 
apparatus. If you have du on an apparatus, then the sun, moon, & 
five [planets] can be modelled

4
 within the apparatus, and heaven 

will have no play.
5
 And if heaven has no play, then the things in 

heaven will not be difficult to know (Song shi, 48.954–55). 
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If the sphere sight were to be a microcosm of the sphere heaven, 
one would expect that it be graduated accordingly—into the du of 
the mean sun’s daily progress over one tropical year as counted 
from twenty-eight unevenly spaced reference stars (fig. 1). The 
fact that lodge-entry du are indeed the only measures of RA and 
longitude attested in li 曆 mathematical astronomy makes it diffi-
cult to imagine the alternative. 

Luckily, we need not rely on imagination. Li Chunfeng reports 
that Kong Ting’s (fixed) equator ring featured ‘du numbers and... 
the corners & chronograms’, the latter a twenty-four point refer-
ence grid—twenty (stem and branch) ‘chronograms’ and four (tri-
gram) ‘corners’—counted ‘leftward’ (clockwise) from due north. 
Familiar from compass and divination boards, the ‘corners & 
chronograms’ scheme typically features in observational data and 
li procedure texts as an expansion of the standard duodenary (dou-
ble-hour) civil day as counted from midnight. On a fixed equator 
ring, this would give the user a Mediterranean-looking ‘hour angle’ 
counted from the opposite (midnight) meridian line (fig. 1). Cor-
roboration for the use of these ‘added hours’ (jia shi 加時) as spa-
tial coordinates furthermore appears in a set of eclipse data pre-
sented as evidence in a debate of 226 (Jin shu, 17.500; cf. Qu, 
1994).  

For observational data to be of any use to li calculation, one 
needs lodge-entry du. For equatorial du, one would have had two 
options: (a) a sphere with a ‘three-chronogram sight’ (san chen yi 
三辰儀), a moving equator and ecliptic ring, mounted on the polar 
axis, which allowed one to align the stars of the instrument with 
those of heaven as per the description of Shen Gua (fig. 2); (b) an 
algorithm for converting from the transit times and ‘added hours’ 
supplied by stationary instruments such as the gnomon and ‘six-
joint sight’. For ecliptic du, actors likewise speak of needing: (a) a 
‘three-chronogram sight’ or (b) an algorithm, i.e. ‘advance/retreat’, 
for converting from equatorial du. Actors like Zhang Heng make it 
clear that the algorithmic solution was something of a ‘plan b’, but 
‘plan a’, let us not forget, depends on the material availability of a 
giant instrument made of money, which should probably not be 
taken for granted. 

What we read of known historical ‘sights’ confirms our suspi-
cions. The last mention of the (unused) Luoyang observatory 
sphere of 103 comes in 178 (Song shu, 23.673), the instrument 
having likely been melted down between the sack of 189 and the 
loss of the city in 311. Judging from Shen Yue and Li Chunfeng’s 
histories, the next observational armillary to grace a Chinese capi-
tal was the Xiongnu sphere of 323, which was captured and 
brought to Jiankang in 418. After that was an iron version of the 
same design made in 398 for the Xianbei Tuoba-Wei 拓跋魏 
(386–535) court at Pingcheng, which was captured and moved to 
Chang’an by the Xianbei Yu-Zhou 宇周 (557–581) in 577, later 
passing hands with the city to the Sui 隋 (581–605). Installed at the 
Chang’an observatory in 583, the Xianbei sphere would see offi-
cial use there until replaced by Yixing’s in 725 (Wu & Quan, 2008, 
pp. 433–40). In short, what observational spheres Chinese courts 
did possess prior to 725 were mainly barbarian hour-angle models 
sans lodges and sans ecliptic. 
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Availability, of course, depends as much on allocation as loca-
tion. When we hear that ‘[the Clerk’s] Office does not have a/the 
yellow-path displacement sight’ in 721, for example, our source is 
referring to the sphere by that name finished by Li Chunfeng in 
633. Financed in 627 to replace the Xianbei observatory sphere, 
whose ‘design & construction were loose & rough’ 法制疏略 (Jiu 
Tang shu, 35.1293), Li’s was the first observational model in 520 
years to incorporate an ecliptic ring. Unfortunately, 

其所造渾儀，太宗令置於凝暉閣以用測候，既在宮中，尋而
失其所在。 
[Tang] Taizong (r. 627–649) ordered the sphere sight that [Li 
Chunfeng] had constructed installed in the Pavilion of Congealed 
Light so as to [personally] use it for measuring & watching, and 
though it was right there in the palace, when [later] looked for, 
[they] had lost track of where it went (Jiu Tang shu, 35.1293). 

Li’s was not the only priceless observational instrument to become 
a lawn ornament. What we know about the chain of custody for 
Kong Ting’s Xiongnu sphere, for example, is that General Liu Yu 
‘donated it to the capital’ 獻于京師 (Song shu, 2.42), bringing it 
‘to [a] royal palace’ 及王府 in Jiankang (Yiwen leiju, 1.6a–b), 
where, by the sixth century, it would be installed within the closed 
imperial park at Hualin 華林園 (Sui shu, 17.517). It is no wonder 
that He Chengtian, Shen Yue and other fifth-century writers man-
aged to miss the ‘made in Chang’an’ label: they probably never 
saw the thing in person. 

Where and when an observational armillary sphere was accessi-
ble, experts would have had to make do with a fixed equatorial 
ring. To work with the ecliptic, one would thus have had no other 
option but ‘advance/retreat’ unit conversion. Cited both north and 
south, The Sphere Heaven Sight clearly saw interstate circulation, 
as did the ‘advance/retreat numbers’ in the tables of 174 (Hou Han 
shu, zhi 3, 3074). The period likewise saw an explosion of ‘effigy’ 
production, by which one could reproduce Zhang Heng’s meas-
urements (Wu & Quan, 2008, pp. 466–73). As to equatorial units, 
we do not know how actors converted from ‘added hours’ to equa-
torial lodge-du, as the Xiongnu and Xianbei spheres would have 
necessitated, but one imagines that it would have worked like this: 
(1) align an object at the centre of the sighting tube; (2) note the 
time or the ‘meridian star’ (zhong xing 中星) centred between the 
double meridian rings; (3) find the ‘added hour’ (the hour angle 
counted from the midnight meridian line) by noting where the 
double meridian circles of the ‘four-displacement sight’ intersect 
the graduated equatorial ring of the ‘six-joint sight’; (4) ‘add the 
hour’ to the lodge-entry du of the midnight meridian line as deter-
mined by either the time or the star opposite it on the meridian. 
The fact that the Kong Ting sphere’s equatorial ring featured ‘du 
numbers’, one notes, would have facilitated ‘adding the hour’ 
without converting from ‘corners & chronograms’. 

This raises the question of du-graduation and its precision. Shen 
Gua, above, juxtaposes the celestial and material du, but he fails to 
mention the mathematical du, for which li experts used values like 
365

385

1539
 and 365

455

1843
 du to the ‘circuit’. In practice, there must 
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have been some compromise—some ‘play’—between the material 
and mathematical du, the question being how much. Pan (1989, 
pp. 271–72) argues that, up until the thirteenth century, the Chi-
nese armillary sphere was only ever graduated to the integer du, 
the trailing fractions of shao 少 (‘lesser’ = 1/4), ban 半 (‘half’) and 
tai 太 (‘greater’ = 3/4) seen in observational data being the product 
of estimation. Pan’s argument rests on three points. The first is that, 
in 1280, Guo Shoujing claims to have been the first to really em-
pirically measure the twenty-eight lodges down to fractional 
widths. The second is the degree of precision witnessed in the ob-
servational record, where trailing fractions are rough and rare. The 
third is unequivocal documentation of 365-du observational 
spheres in late sources. The first two points are arguments from 
authority and absence, respectively, but the third gives us food for 
thought. 

The 365-du sphere sight appears in four sources relating to three 
devices. First, Shen Gua complains in 1074 that the observatory’s 
observational sphere ‘could only be allocated 365 du with no way 
to possess the remainder part’ 但可賦三百六十五度，而不能具
餘分 (Song shi, 48.959). His description matches that of a 365-du 
sphere sight constructed in 995 ‘on the basis of the method inherit-
ed from [Li] Chunfeng and Monk Yixing’ 本淳風及僧一行之遺
法 (Song shi, 48.952). The Old Book of Tang indeed confirms that 
the Li Chunfeng sphere was graduated with ‘365 du in warp (RA) 
& weft (declination)’ 經緯三百六十五度 (Jiu Tang shu, 79.2718), 
but things get weirder when we turn to Yixing’s 725 design: 

黃道單環：外一丈五尺四寸一分，橫八分，厚四分，直徑四
尺八寸四分。日之所行，故名黃道。古人知有其事，竟無其
器...臣今創置此環，置於赤道環內，仍開合使隨轉運，出入四
十八度，而極畫兩方，東西列周天度數，南北列百刻，使見
日知時，不有差謬。上列三百六十策，與用卦相準，度穿一
穴，與赤道相交。 
Yellow-path single ring: exterior (circumference) 15.41 chi 
(466.92 cm), traverse (width) 8 fen (2.42 cm), thickness 4 fen 
(1.21 cm), diameter 4.84 chi (146.65 cm). [This is] where the sun 
travels, thus is it named the yellow path. The ancients knew that 
there was such a thing and yet never possessed the apparatus... 
Your servant now creates & installs this ring, installing it within 
the red path ring and then opening & closing [it to] make [it] rotate 
accordingly (i.e. locking it to the rotating equator ring at the ap-
propriate obliquity), emerging & entering 48 du (the difference in 
declination from winter to summer solstice). The solstices are 
drawn in two places; east–west are arrayed the du-numbers of the 
circuit of heaven, north–south are arrayed the 100 notches, making 
it so that one sees the sun and know the time without error or 
blunder, and atop are arrayed the 360 rods, levelled with the reign-
ing hexagrams. At each du is drilled a hole (?) [where the ecliptic 
ring] crosses with the red path (thereby allowing for the reposi-
tioning of the ecliptic ring to accommodate precession) (Jiu Tang 
shu, 35.1297-98). 

Curiously, the ecliptic ring is graduated with du, the 100 water-
clock ‘notches’ (ke 刻) of the civil day, and the 360 ‘rods’ of Book 
of Changes numerology, thus providing the user with du, ‘hours’, 



 

 
 
 
 
 

Year Given name Obs Owner Maker City Diameter Circumference π Grad. Unit size 

      chi (cm) chi (cm)   fen (mm) 

103 Yellow-road bronze sight X state – Luoyang 8.0000 (188) *25.1327 (590.6) – 365¼ du *6.88 (16.2) 

< 139 Small sphere  priv. Zhang Heng Luoyang – – – – – 365¼ du – – 

?164 Sphere heaven sight  state Zhang Heng Luoyang *4.6505 (109.3) 14.6100 (343.3) – *365¼ du 4.00 (9.4) 

< 266 Sphere effigy  – Wang Fan Jianye *3.4879 (83.7) 10.9575 (263.0) – *365¼ du 3.00 (7.2) 

323 Sphere sight X st. / roy. Kong Ting Chang’an 8.0000 (195.2) 24.0000 (585.6) *3 24 hrs 

? du 

100 

– 

(244) 

– 

398 Sphere sight (iron) X state Chao & Xie Pingcheng " " " " " " " " 

436 Sphere heaven sight  state Qian Lezhi Jiankang 6.0825 (150.2) 18.2625 (451.1) *3 *365¼ du 5.00 (12.4) 

440 Small sphere heaven  state Qian Lezhi Jiankang 2.2000 (54.3) 6.6000 (163.0) *3 – 2.00 (4.9) 

633 Sphere sight X st. / roy. Li Chunfeng Chang’an – – – – – 365 du – – 

725 Yellow-road displ. sight X state Yixing & Liang Chang’an 4.5900 (139.1) 14.6100 

14.5900 

" 

(442.7) 

(442.1) 

" 

*3.18 365¼ du 

100 ke 

360 ce 

4.00 

14.59 

4.05 

(12.1) 

(44.2) 

(12.3) 

995 Bronze watch/sphere sight X state Han Xianfu Bianjing 6.1300 (193.7) 18.3900 (581.1) *3 365 du 5.04 (15.9) 

 

Table 1 Ring dimensions and graduation of sphere instruments to 1000 CE as mentioned in this article. For more on these and other, more poorly-documented 

instruments from this period, see Wu & Quan (2008). Whether or not an instrument is observational (obs) is determined by context (attested use, presence of sighting 

tube vs. ‘earth’-model, etc.). The asterisks indicate values calculated according to the data provided. Note that the entry for the 725 sphere includes the measurements 

of two separate rings. 
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and a functional equivalent of the 360° circle recently introduced 
from India. 

Whatever Yixing and Li Chunfeng’s choice of ‘circuit’, we do 
see documentation of the 365¼-du sphere prior to Shen Gua’s call 
to action. As to observational spheres, we have the ‘Grand Clerk 
yellow-path bronze sight’ of 103 (above), but it is the ‘effigy’, 
oddly enough, where one finds consistent evidence of 365¼-du 
rings. The Sphere Heaven Sight, as we saw, has one ‘allocate each 
with 365 du & 1/4 du’, making for ‘182 du & 5/8 du’ per hemi-
sphere. The Shen Yue and Li Chunfeng histories cite Wang Fan 王
蕃 (228–266) describing historical ‘effigies’ of 2, 3, and 4 fen to 
the du, the circumference of which works out in each case to 365¼, 
e.g. ‘[I, Wang Fan,] have redesigned the sphere effigy taking 3 fen 
to the du, for a total circuit of heaven of 1095 fen & 3/4 fen 
(365

1

4
× 3 fen)’ 更制渾象，以三分為一度，凡周天一丈九寸五

分四分分之三也 (Song shu, 23.677; Jin shu, 11.288). Shen Yue 
and Li Chunfeng likewise attribute Qian Lezhi with demonstra-
tional spheres at 2 and 5 fen to the du that work out to the same 
total (Song shu, 23.678–79; Sui shu, 19.519–20). It is difficult to 
know how actors could have worked to a precision of ‘5/8 du’ or 
‘3/4 fen’, but the fact that contemporary chi-rules were graduated 
down to the fen does testify to the capacity for fractional gradua-
tion at a scale of at least 4 fen per du (Qiu, 1992). 

If the potential for a 365¼-du sphere sight was there in the sec-
ond century, why then would later constructions opt out? I think 
the answer lies in the way that the real-world practice of ‘observa-
tion’ was mediated by the material and arithmetic sphere. On the 
material end, there is always going to be ‘play’. Whether or not 
one rounds the quarter du, the material ‘circuit’ will never meet the 
precision of its mathematical counterpart. Nor for that matter does 
precision translate into accuracy. Of the iron sphere of 398, for 
example, Yixing complains that ‘the ring construction is crude & 
rough manner, and its du notches are uneven’ 規制朴略，度刻不
均, rendering an error of some ±2½ du when measuring lunar 
anomaly (Jiu Tang shu, 35.1295). Whatever the quality of con-
struction, the fact that this and the Kong Ting sphere were war 
booty transported to new latitudes would have introduced further 
alignment errors (and damage). On the mathematical end, ‘obser-
vation’ was less spontaneous than our sources let on. For centuries, 
actors had developed ‘effigies’ and algorithms as a computational 
substitute for an ecliptic ring, and the rings they did build were 
graduated to unlikely integers, reminding us that the difference 
between a 365- and 365¼-du ‘sight’ is simply one of quotidian unit 
conversion. Either way, the absence of spherical trigonometry pre-
cludes corrections like refraction and parallax, otherwise necessary 
in, say, a Ptolemaic tradition to ensure an accuracy of anywhere 
near to 1/4 du (Włodarczyk, 1987).  

Conclusion 

From what we read about the material ‘sphere heaven’ we can in-
fer something of how the ‘observation’ of the celestial sphere was 
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mediated by its material and mathematical counterpart. First-
millennium sources tend to efface these processes of mediation, the 
inherency of which we recall when we turn to Ptolemaic writings, 
wherein ‘observation’ is mostly calculation. The difference, how-
ever, is less to do with ‘East vs West’ than the way that early Chi-
nese observational practices are, in turn, mediated by our sources. 
Treatises like The Sphere Heaven Sight go into the details of prac-
tice—be it the extraction of a mathematical substitute for the mate-
rial substitute for heaven—but the majority of what survives of 
such literature survives as excerpted in histories, the point of 
which is to provide names, dates and a narrative to what one (once) 
could read about somewhere else. Still, histories like Shen Yue and 
Li Chunfeng’s leave us just enough to reconstruct some of what 
‘observation’ entailed. ‘Looking through’, for one, was necessarily 
mediated by algorithms for converting between ‘added hours’ and 
‘lodge-entry du’ and between equatorial and ecliptic units, and so 
too was it mediated by material factors such as the precision and 
accuracy of graduation.  

The most important material factor as concerns the history of 
the ‘sphere sight’, however, is its absence. However our sources 
philosophise about the object, the history of the observational ar-
millary sphere in first-millennium China was one of want, waste, 
confusion and foreign production. Prior to 725, the only state ob-
servatories in possession of such ‘sights’ were those of Han-Wei-
Jin Luoyang (103–189/311), Xiongnu-Qiang Chang’an (323–417), 
Xianbei Pingcheng (412–577) and Sui-Tang Chang’an (583 on), 
and those that did see use in Chinese hands were misaligned, 
‘loose & rough’ and ‘difficult to watch with’. It would have been 
simpler and cheaper to refine observational practice at the compu-
tational end, which might explain the relative outpouring of 
demonstrational ‘computers’ by the likes of Zhang Heng, Wang 
Fan, Qian Lezhi and others in the intervening centuries. There was 
no shortage of armillary spheres, but the majority, as in the West, 
were made for looking at. This qualifies them as ‘effigies’ by Li 
Chunfeng’s definition, but others used these terms rather fluidly, 
leading one to wonder whether looking at is not incompatible with 
their idea of ‘observation’. Either way, He Chengtian and Shen 
Yue had ‘looked at’ neither of the spheres that they confused, for 
Zhang Heng’s had long since turned into cash, and Kong Ting’s, 
into an imperial lawn ornament. 

Rather than leave things there, I would like to end on a question: 
What did actors rely upon for observational data all these centuries 
in the absence and dereliction of the ‘sphere sight’? And what was 
this perfect armillary sphere that the Shen Guas of the world are 
describing? 
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1
 For a translation of Li Chunfeng’s Book of Jin monograph, see Ho (1966). 

2
 Ge Hong 葛洪  (283–343) offers the same basic description of Zhang 

Heng’s water-driven sphere as cited in Jin shu, 11.281–84; Ho (1966), pp. 55–

56. 
3
 The term fa 法 (‘model’) refers to a ‘method’, ‘exemplar’, ‘norm’, or ‘law’ 

for one to fa (‘model’) oneself upon to do something correctly. The ‘sight’ and 

the ‘effigy’ are thus different ‘models’ in the sense that ‘road’ and ‘mountain’ 

are different ‘models’ of bicycle adapted to different functions. 
4
 The term tuan 摶 (‘modelling’) refers to the action of ‘moulding’, ‘model-

ling’ or ‘kneading’ as concerns, in particular, round forms and materials like 

clay and glutinous food objects. Shen Gua is clearly using the term in a more 

abstract sense of instrumental and mathematical reproduction. 
5
 The term yu 豫 (‘play’) means ‘comfort/relaxation’, the ‘play/sport’ leading 

thereto, and, consequentially, ‘laxity’ or ‘looseness’ in relation to one’s duties, 

thus encompassing nicely the semantic range of ‘play’ in a technical context. 


