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Optimization by Disseminated Energy

B. Ravi Kiran et Jean Serra

2, January 2016

1 Notation

E : space under study; x, y points of E; P(E) : set of the subsets of E, also called classes;
S,A : classes of E; Tj the sibling classes of S
π = π(E) : partition of E;
π(S) : partial partition ( in short p.p.) of support S ∈ P(E)); the notation τ(S) is also

used for p.p.
{S} p.p. with unique class S (when there is no ambiguity, {S} is just written S) ;
D(E) set of all p.p. for all supports S ∈ P(E);
≤, ∧,∨: when applied to partitions, are relative to the refinement ordering;
t: concatenation of classes and p.p. i.e. π(S) = S1 tS2 ⇔ S1 ∪S2 = S and S1 ∩S2 = ∅;
H = {πi, i ∈ I}: hierarchy, i.e. family of increasing partitions;
cut π: partition of E into classes taken in H;
Π(≤, H): set of all cuts of H, viewed as a lattice for the refinement ordering
ω: energy, i.e. scalar function on D(E);
�ω,fω,gω: ω-energetic ordering, infimum, and supremum, w.r.t. energy ω;
Π(ω,H): ω-energetic lattice on the cuts of H;
π∗ minimal cut in an energetic lattice;
π∗ϕ (resp. π∗∂) minimal cut in the energetic lattice of energy ωϕ (resp. ω∂).

2 Introduction

Two questions:
1/ How to introduce localization in constrained optimization (compare Everett with and

without localization)
2/ Lagrange approach for hierarchies gives upperbounds only
Lines of thought (history of the ideas) and plan of the paper
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3 Two reminders

3.1 Hierarchies, climbing energies, and energetic lattices

We denote a partition of space E by π and a partial partition (p.p.) of subset S ⊆ E by
π(S) [9]. The family of all partial partitions of E is D(E). A hierarchy of partitions (HOP)
is a finite chain of partitions H = {πi, i ∈ [0, n]}, with πi ≤ πj , i < j, where ≤ stands for
the refinement ordering. The minimal element π0 of H is called the leaves partition, while
the maximal element is the one class partition {E}, called the root. A cut of hierarchy H
is a partition of E whose elements are composed of classes in H. The set of all cuts of H is
Π(≤, H).

An energy ω : D → R+ is a non-negative function that is defined on the family of partial
partitions. The energy of a partial partition π(S) is often obtained by composition comp of
the energies of its constituent classes Tj . If the composition is the addition, we have

ω[π(S)] = comp{ω(Tj), Tj v S} =
∑

ω(Tj), Tj v S

The additive composition law is the most investigated one, but some problems require other
laws, as supremum [17], [1], or infimum (e.g. composition of distances functions, in Ch. 4 of
[8]).

In [3], [10], and [6], where the composition law is the addition, one introduces the cut
π∗∗ = π∗∗(E) of minimal energy. This cut is calculated by aggregating, over all classes S ∈ H,
the local minima π∗∗(S) which choose between the parent S and its children according to
their energies, i.e.

π∗∗(S) =

{
{S}, if ω(S) ≤ comp{ω(Tj), Tj v S}⊔
{Tj , Tj v S} otherwise

(1)

Cut π∗∗(E) is obtained by scanning the classes of H following a lexicographic order, and
taking the provisional minimum in equation (1) according to a dynamic program.

As it is presented, this dynamic program does not extend to non linear energies. Take
for example the hierarchy of figure 1a. The indicated energies hold on classes, and one goes
to the p.p. by supremum composition. Algorithm (1) yields the cut π∗∗, whose energy 5 is
indeed the lowest one, but the three other cuts in dotted lines have the same energy.

If we want to extend the dynamic program to non linear energies, it has to be presented
differently, from the two notions of singularity and h-increasingness [11] [12]:

Definition 1. A energy ω is said to be singular when for all p.p. π(S) we have

either ω({S}) < ω(π(S)), or ω({S}) > ω(π(S)) S ⊆ E.

It is said to be h-increasing when

ω(π(S)) ≤ ω(π′(S))⇒ ω(π(S) t π0) ≤ ω(π′(S) t π0), ∀S ⊆ E. (2)
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Figure 1: a)In case of ∨-composition, there is a unique minimal cut π∗ and its energy is
minimal, but other cuts can have the same energy. b) and c) depict a non h -increasing
energy ω(π) which depends on the number of classes of the p.p. π. The two cuts surrounded
by ellipses are minimal (hence no energetic lattice here), but none of them is obtained by
dynamic program, which gives the cut in grey.

where the symbol t indicates the concatenation of any p.p π0 with support that is disjoint
with S). A singular and h-increasing energy is said to be climbing. It is strictly climbing
when the ≤ relations become < in implication (2).

The energies composed by addition, by supremum, by infimum, and many other laws are
are climbing [12] [14].

In algebra, a classical way to ensure the existence and the unicity of a minimum element
in a set consists in providing the set with a lattice structure. For the set of cuts Π(≤, H) [12]
of hierarchy H we can proceed as follows. Given H and an energy ω, the cut π1 ∈ Π(≤, H)
is said to be less energetic than π2 ∈ Π(≤, H), and one writes π1 �ω π2 when in each class S
of π1 ∨ π2 the energy of the partial partition of π1 is smaller or equal to that of π2: :

π1 �ω π2 ⇔ {S ∈ π1 ∨ π2 ⇒ ω(π1 u {S}) ≤ ω(π2 u {S})} (3)

When the energy ω is climbing, the relation �ω turns out to be an ordering, and we can state
[12] [14]:

Proposition 2. The set of all cuts of H forms a complete lattice Π(ω,H) for the energetic
ordering �ω if and only if the energy ω is climbing.

When the energy ω is not climbing the property disappears as shown by the counter
example of figure 1b and c. The minimal element π∗ of lattice Π(ω,H) is unique, and
coincides with the cut of minimal energy π∗∗ only when ω is strictly h-increasing.

Proposition 2 provides a theoretical background to dynamic programming since [3], [10],
[6] speak of cut of minimal energy, but their algorithm calculates the minimal cut π∗ in the
sense of the energetic lattice. Figure 2 depicts energetic order and lattice on a toy example.

The domain of validity of this approach encompasses the hierarchies and applies to the
more general class of the braids, i.e. to families of partitions of E which is monitored by H,
in the following sense [14]:
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Figure 2: Three cuts of a hierarchy. The energies ω are indicated above the classes are
composed by sum. We have π3 �ωπ2 and π3 �ωπ1, but π1 and π2 are not comparable.

Definition 3. (Braid of Partitions) A braid B of monitor H is a family in Π(E) where the
refinement supremum of any pair π1, π2 in B is a cut of H, other than {E}:

∀π1, π2 ∈ B ⇒ π1 ∨ π2 ∈ Π(E,H) \ {E} (4)

3.2 inf-modularity

Inf-modularity is the concern of a monotonicity condition on energies [8]:

Definition 4. An energy ω∂ : D(E)→ R+on partial partitions is said inf-modular when for
each p.p. π(S) of support S ∈ P(E) we have

ω∂({S}) ≤ ω∂ [π(S)],. (5)

which implies ω∂({S}) ≤ ∧ω∂ [π(S)] when π(S) spans the set of all p.p. of support S.

Super-modularity is defined by replacing ≤ by ≥ in the inequality (5).

Examples of inf-modular energies For each energy, we define some functional on sets S,
plus a law of composition which extends the functional to p.p.. We consider also a numerical
function f on the space E

inf-modular ω perimeter, Euler constant of S sum composition

super-modular variance of f in S sum composition

(sup f − inf f) in S sup composition

The area of S, and the integral of fα(x) over S, for any real number α, with sum compo-
sition, are both inf- and super-modular.

inf-modularity Vs subadditivity Inf-modularity is to be compared with subadditivity.
Remember that a set-wise energy ω : P(E)→ R is subadditive when ω(A∪B) ≤ ω(A)+ω(B),
A,B ∈ P(E). This property, and more generally the sub-modularity, serves as substitute for
the convexity when dealing with the subsets of E [4], .

For comparing inf-modularity versus subadditivity we must match sets and partial par-
titions in some sense. In particular, if Tj , 1 ≤ j ≤ p are the classes of the p.p. π(S) and if
ω∂ [π(S)] is ≤ to the sum of the ω∂(Tj) then the inf-modular ω∂ is also subadditive.
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For example, in a hierarchy of partitions of the Euclidean plane, the perimeters ω∂ of the
classes generate an inf-modular and subadditive energy on the partial partitions. Unlike, the
super-modular energy ω∂ =(sup f − inf f) is neither subadditive nor superadditive.

4 Constrained minimization by Lagrangian

In this section we present the classical Lagrangian based approach [5] applied to constrained
minimization in hierarchies [10], [6], and we show by means of a counter example that it
does not result in the expected minimal cut [8] [15]. The need for a constrained minimal
cut appears when the cuts are subject to conditions. Suppose for example that one wishes
to transmit an image f at a given cost (defined by an upper-bound C of the number of
transmitted bits), but with the best possible quality [10]. A hierarchy H of segmentations of
f has been performed, so that the question comes down to extract the minimal cut w.r.t. a so
called objective energy ωϕ among a set of cuts π which satisfy the cost constraint ω∂(π) ≤ C
for some constraint energy ω∂ .

Consider the hierarchy H of Figure 3, where the objective energy ωϕ and the constraint
energy ω∂ are depicted for the classes. Their extensions to p.p. are obtained by addition of
the classes, i.e. ω(π(S)) =

∑
Tjvπ(S) ω(Tj). Further when we have equal parent and child

energies, we pick the parent. Both ωϕ and ω∂ are climbing, and ω∂ is also inf-modular (they
have the same features as in [6], [10]). We want to find the cut π∗ϕ of minimal energy ωϕ
which satisfies ω∂(π∗ϕ) ≤ C, where C is a cost here set to 7.5.

Introduce the family of Lagrangians {ω(λ) = ωϕ + λω∂ , λ ≥ 0}. The minimal cut of the
energetic lattice (ω(λ), H) is denoted by π∗(λ). For the chosen features of ωϕ and ω∂ , the
energy ωϕ[π∗(λ)] increases with λ, and ω∂ [π∗(λ)] decreases [15]. We have:

λ min cut π∗(λ) ω[λ, π∗(λ)] ωϕ[π∗(λ)] ω∂ [π∗(λ)]

0 ≤ λ < 2 (a, b, c, d, e, f) 6 + 9λ 6 9

2 ≤ λ < 3.5 (a, b, c, d, i) 8 + 8λ 8 8

3.5 ≤ λ (g, h, i) 15 + 6λ 15 6

As a result, ω∂ is never equal to the cost C = 7.5 at any time. Finally, the λ-cut π∗(λ∗)
which minimizes ωϕ(π∗(λ) ) while satisfying ω∂(π∗(λ)) ≤ C, is (g, h, i).

Consider now the two other cuts π = (g, c, d, i), and π′ = (a, b, h, i) which are not minimal
cuts π∗(λ). Cut π obviously provides a better minimum than the minimal λ-cut (g, h, i) since
ω∂(π) = 7 (still below the cost C = 7.5), for an energy ωϕ(π) = 11.5 (also smaller objective
ωϕ(g, h, i) = 15). And it is the same for π′, since ω∂(π′) = 7 and ωϕ(π′) = 11.5. There are thus
several constrained minimal cuts for the energy ωϕ, and none of them belongs the sequence
{π∗(λ), λ ≥ 0} of λ-minimal cuts! And we cannot take their infimum π ∧ π′ = (a, b, c, d, i)
because ω∂(π ∧ π′) = 8, which is above the constraint C = 7.5. Uniqueless is lost even when
the ω(λ) are strictly ioncreasing. We could bring the minimal λ-cut (g, h, i) closer to one
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Figure 3: Bottom left, a hierarchyH . The two trees of the top row indicate the two
energiesωϕand ω∂ , written in the corresponding classes. π and π′ are two cuts of H. Bottom
right, the values indicated in the nodes are the energies obtained by equating parent and
child energies. Their level sets give the minimal cuts w.r.t. ω(λ). They are drawn in dotted
lines for λ = 1, 3, 4 as π∗1, π∗3 and π∗4.

of the optimal solutions π or π′ by techniques of small perturbations, but we cannot, by no
mean, reduce the number of these optimal solutions1

A similar trouble also arises in convex optimization [4], where the dual Lagrangian serves
only as an upper bound on the optimum corresponding to the primal Lagrangian. In our
words, π∗(λ∗) provides only an upper-bound of the constrained minimal cuts.

5 Optimization by Disseminated Energy (ODE ?)

The above Lagrange type approach fails in finding the minimal cut, because the problem is
not defined enough . It is implicitly assumed that a cut is characterized by its energy. Now
we saw that the two different cuts may have the same conditional minimal energy (e.g. π
and π′ in figure 3).

The initial intuition of Lagrange and Euler was to substitute an absolute minimum to the
conditional one by changing the space. When dealing with numerical functions in Euclidean
spaces, the Lagrangian is the tool which translates this intuition (and it works!), but it is not
well adapted to a space of partitions. Can we express the same intuition by different means?

The energetic lattices offer an alternative approach, where both constraint and minimiza-
tion can directly be defined on partitions and no longer on partitions via their energies. In

1The lack of unicity, observed here on a toy example, becomes catastrophic for larger partitions. One easily

proves that a binary hierarchy, with p levels and connected classes has more than 22p−1

classes[16]. Even for
a range of energies of 106 the correspondence “energy-partition” is far from being one-to-one. To give an idea,
the number of cuts of a hierarchy with six levels only equals one hundred times the number of the humans on
the earth (which was 7, 125 billions in 2013)
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this alternative method, we keep the same types of energies as in Lagrange formulation: an
objective energy ωϕ and a constraint energy ω∂ , both climbing, with ω∂ inf-modular. But
the other inputs are different:

• the energy ωϕ holds on a braid the cuts of a braidB, and the energy ω∂ holds on the
cuts of a hierarchy H, possibly different from B but with the same leaves;

• the previous scalar cost C is replaced by a cost cut πC , i.e. by a partition of the space
Π(ωϕ, B).

The families Π(B) and Π(H) of all cuts of B and H are the matter of three different
lattices which interact:

• Π(B) = Π(≤, B), lattice w.r.t. the refinement ordering ≤, with the leaves as minimal
cut and E as maximal one. The set Π(H) = Π(≤, H) is usually a sub-lattice of Π(≤, B)

• Π(ωϕ, B) (resp. Π(ω∂ , H)), lattice w.r.t. the energetic ordering w.r.t. ωϕ, of order �ϕ
and infimum fωϕ (resp. the energetic ordering w.r.t. ω∂ , of order �∂ and infimum fω∂

). The minimal cut of Π(ωϕ, B) is written π∗ϕ = fωϕ{π, π ∈ Π(ωϕ, B)}.

The following two problems will be treated separately:

Problem 5. Characterize the family ΠC of cuts of H which are �ω∂
than πC ,

Problem 6. Find the minimal cut in the energetic lattice Π(ωϕ, B) subject to be �ω∂
πC .

Note that the constraint condition is stated in the energetic lattice Π(ω∂ , H), though the
minimization occurs in the lattice Π(ωϕ, B). Unlike, in the classical Lagrange approach, the
same lattice of numbers is used for both constraint condition and minimization.

6 Problem 5

The problem 5 concerns the relations between the two lattices Π(≤, H) and Π(ω∂ , H). It
does not involve either the energy ωϕ or the energetic lattice Π(ωϕ, B), but uniquely ω∂ .

6.1 An equivalence between energetic ordering ω∂ and refinement ordering

In H, the energetic ordering w.r.t. ω∂ and that by refinement are linked. We can see it by
comparing π = π(E) ∈ ΠC to πC . Consider the class SC of πC . As H is a hierarchy, SC is

1. either the support of a p.p. π(SC) of π(E), i.e. π(SC) = π(E) u SC

2. or a class of a p.p. π(S) of πC whose support is the class S of π, i.e. π(S) = π(E) u S,
with SC ⊆ S.
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Figure 4: Left: initial hierarchy H; Right:new hierarchy H ′, formed by all classes above πC ,
and completed by the leaves.

Suppose we are in the first case. By inf-modularity of ω∂ we have ω∂(SC) ≤ ω∂(π(SC)). But,
as π �ω∂

πC we have also ω∂(π(SC)) ≤ ω∂(SC). Now by singularity of ω∂ , these two energies
cannot be equal. Therefore the first case is impossible and

π(E) ≥ πC (6)

Conversely, if the inequality (6) is true, then each class S of π(E) contains a p.p. πC(S)
of πC and by inf-modularity of ω∂ , we have ω∂(S) ≤ ω∂(πC(S)), hence π �ω∂

πC . We can
state:

Proposition 7. When energy ωδ is inf-modular, then the set ΠC of the cuts of H which are
�ω∂

than πC is identical to the family of all cuts of H coarser than πC for the refinement
ordering:

π �ω∂
πC ⇔ π ≥ πC π ∈ Π(H) (7)

Proposition 7 answers Problem 5. The key equivalence (7) suggests to interpret the classes
of πC as the set of leaves of a new hierarchy H ′, identical to H above and on πC , but where
all classes below πC are removed (see Figure 4). The cuts π of H ′ are exactly those of H that
satisfy the constraint π �ω∂

πC . The set ΠC = Π(≤, H ′) turns out to be a complete lattice
for the refinement order, with πC and E as extremal elements, hence a (pseudo) sub-lattice of
Π(≤, H) 2. In the sub-lattice Π(≤, H ′) absolute minimizations replace the constrained ones
of lattice Π(≤, H) 3.

Dualities The canonical dualities inherent to lattices lead to three variant of Proposition
7. Introduce the hierarchy H ′′ which is identical to H below and on πC , but where all classes
above πC are removed. We have the following truth table:

π �ω∂
πC π �ω∂

πC
inf-modular ω∂ H ′ H ′′

super-modular ω∂ H ′′ H ′
(8)

2(“pseudo” because ΠC and Π(≤, H) have not the same leaves
3Lagrange’s intuition is met again, but differently!
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Figure 5: Example of marker & propagation strategy (by courtesy of Ph. salembier). Top:
hierarchy of partitions where two markers are indicated. Bottom: result of the propagation
process.

An example The “Marker & propagation” strategy introduced by Salembier and Garrido
[10] is an interactive tool where some leaves are manually marked as belonging to phase α, or
β, etc., and automatically propagated to their maximal extension w.r.t. the following energy
ω∂ , firstly over the classes S:

ω∂(S) = 0 if S contains markers of one type only (9)

ω∂(S) = 1 if S has no marker

ω∂(S) = 2 if S contains markers of more than one type,

and secondly extended to p.p. by supremum, i.e.

ω∂(π) = ∨{ω∂(Tj), Tj v π} + ε π ∈ D(E).

The arbitrary small number ε > 0 serves to ensure singularity. The energy ω∂ is climbing
and super-modular. Take the leaves partition for cost cut πC . According to Proposition 7,
and to table (9), the infimum fω∂

, obtained by dynamic program, is also the largest cut (for
the refinement) whose non leave classes contain one type of marker only.

6.2 Scalar cost for classes

Let us go back to Problem 5. Can we replace, the cost partition πC by a numerical cost
C acting on the classes? A model of this type is studied in [8] section 2.40, and stated as
follows:

Problem 8. Let H be a hierarchy on E, and C a non negative cost. Given the inf-modular
energy ω∂ , with ω∂(E) ≤ C, find the family Π′C of cuts π of H:

π = t{S | ω∂(S) ≤ C} (10)

whose each class S has an energy ≤ C.
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Figure 6: Minimal cut πC . The + classes S satisfy ω∂(S) > C, and the - classes ω∂(S) ≤ C .

Problem 8 turns out to be, indeed, a particular case of Problem 5. Span top-down the
hierarchy H , and stop at each class S whose all ancestors (S included) have energies ≤ C
and whose all siblings have an energy > C. Such limit class SC does exist, since ω∂(E) ≤ C,
are disjoint and partition the space E. The various SC generate the partition πC = tSC , as
shown in the toy example of figure 6. Now the cuts of H larger than πC for the refinement
ordering are the only ones which satisfy relation (10). We find Problem 5 again, and the
family Π′C is thus equivalent to:

Π′C = {π ≥ πC} = ΠC

Note that one can make variable the cost parameter C, in accordance with the inf-modularity
condition [8].

An example of Problem 8 is proposed by P. Soille in [17] for the super-modular variant.
A non negative function f is defined on E, in association with H. The energy ω∂ at each
node S is given by

ω∂(S) = max[f(x), x ∈ S]−min[f(x), x ∈ S] (11)

and extended to p.p. by supremum. The mapping ω∂ : D(E) → R+ is obviously super-
modular, and the largest π �ω∂

πC is given by π = ∨{π ≤ πC , π ∈ Π(≤, H)}. For Soille, H
is generated by a condition on | f ′(x) |which is more and more relaxed along the increasing
levels. He thus maximizes a gradient feature subject to the constraint of a bounded variation
of the function on each class. But one can apply the super-modular energy ω∂ of Relation
(11) to any hierarchy.

7 Problem 6

7.1 Case of a hierarchy

We firstly treat the case when the braid B is identical the the hierarchy H. Then, owing
to the equivalence (7), the problem 6 amounts to find the minimal cut of H ′ w.r.t. ωϕ, a
question that we already know how to treat. The minimization is understood in the ωϕ-
energetic lattice Π(ωϕ, H

′) relative to hierarchy H ′. This minimal cut π′∗ϕ is unique, since the
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energy ωϕ is climbing, and its energy ωϕ(π′∗ϕ ) is minimal in the energetic lattice Π(ωϕ, H),
conditional upon π �ω∂

πC .

Proposition 9. When ωϕ and ω∂ are climbing energies, and in addition ω∂ is inf-modular,
then the minimal cut π∗ϕ(πC) of the ωϕ-energetic lattice Π(ωϕ, H), subject to be �ω∂

πC , is
also the minimal cut in the energetic lattice Π(ωϕ, H

′).

(similar statements for the three other cases of table (8). The optimal cutπ∗ϕ(πC) is
computed by a dynamic programing where the climbing process is restricted to the regions
of H which are above πC .

The particular case when, in addition, ωϕ is super-modular is somehow trivial. It suffices
to apply Proposition 7 by replacing “ωϕ sup-modular” by “ω∂ inf-modular” since then the
constrained minimal cut π∗ϕ(πC) coincides with πC (Proposition 7). As an example, we can
revisit the counter-example of figure 3. The two cuts π and π′ are minimal, in Lagrange
sense, for the scalar cost C = 7.5, with ω∂(π) = ω∂(π′) = 7 though ω∂(π∧π′) = 8 (i.e. above
the cost). If now the scale cost is replaced by the cut πC = (a, b, c, d, i), then both π and π′

belong to Π(≤, H ′) as well as their refinement infimum π ∧ π′, which turns out be πC .

7.2 A constraint ω∂ for describing proximity

The spatialization brought by the partition constraint πC may serve to express proximity
criteria such as an image segmentation close to some ground truth, or a population who
whishes to live near cities, or near the sea, etc.. Denote by A this pole of attraction, hence a
set, and by fA a convex numerical function which decrease rapidly near A and more slowly
with the distance to A. For example, one can take fA = [1− d(x,A)

dmax(x,A)
]α where d(x,A) stands

for the distance from point x ∈ E to set A [13]. The exponent α ≥ 0 which appears in fA
modulates the importance of the pole A. For α = 0 the optimal cut π∗ϕ(πC) is ∂A itself, for
0 < α < 1, the positive influence of the proximity reduces as α increases, and for α > 1 the
close classes are disadvantaged.

The continuation is exactly that described in section 6.2 with the energy ω∂ of relation
(11) for f = fA, and with a given upper-bound C. The parameter C represents the largest
variation of fA acceptable in each class S. Therefore, for 0 < α < 1 the minimal cut πC of
the energetic lattice Π(ω∂ , H) has small classes near the pole A, and larger ones as moving
away from A.

7.3 Two examples

Here are two examples of optimization by disseminated energy which involve constraints of
proximity.

Minimization subject to ground truth It happens that some manual drawing A accom-
panies an image to segment, and indicates some essential features to preserve [13]. Suppose
that a hierarchy of segmentations H has been computed on the image (by increasing water-
sheds, or by connected filters, etc.), and that one seeks the optimal the cut w.r.t. Mumford
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and Shah energy, denoted here by ωϕ. We want to improve the optimization by tacking the
drawing A into account.

The process comprises two steps:

1. Calculate the minimal cut πC of Π(ω∂ , H) for the super-modular energy ω∂ defined
by(11) and for a given upper-bound C,

2. calculate the minimal cut π∗ϕ(πk) of the lattice Π(≤, H ′′) of the cuts ≤ πC .

Space distribution of a service The administrative structure of France comprises seven
levels. This hierarchy H is composed of the quarters (in cities), the communes, the communes
communities, the counties, the departments, the regions, and the country itself. Because of
their climate, or the proximity of the sea, some regions attract retired persons, a phenomenon
which leads to some distortions. For example, the distribution of the physicians is concen-
trated around the cities, whereas the recent retired populations live in housing estates, usually
created in the countryside (see C. Voiron’s works). How to find an optimal matching?

Consider an attractive region R. Some statistical surveys to the physicians allow us to
allocate a quality index ωϕ(S) to each class S of H. This index is a positive number which
depends on the proximity to the city center, to services (schools, entertainment), to the sea,
to the highways, etc.. Some of these parameters are defined at the level of the quarter, other
for larger classes. In addition, the index takes into account the tax advantages given by some
communes or some departments. All in all, the energy ωϕ can increase or decrease when
going up in the administrative hierarchy. We admit that the quality index of each p.p. is the
sum of the indexes of its classes: this makes sense and permit to interpret ωϕ as an energy
on H.

The constraint energy ω∂ is defined like in the previous example, from the convex function
fA of the distance to the housing estates A, with C as maximal acceptable distance. The
minimization process is then led in two steps as in the previous example.

7.4 Logical combinations of the constraints

In the multi-constraints situations, the minimization of ωϕ becomes subject to p constrained
energies ω∂j and p cost partitions πCj , 1 ≤ j ≤ p. We draw from Relation (7) that, for ω∂
inf-modular, the logical intersection (resp. union) of p constraints π �ω∂j

πCi is equivalent
to the unique condition π ≥ ∨{πCj , 1 ≤ j ≤ p} (resp. π ≥ ∧{πCj , 1 ≤ j ≤ p}), which brings
us back to the scalar case. Note that the situation when one constraint at least is satisfied
cannot be solved by a Lagrangian based approach.

Multi-constrained situations occur with multi-spectral images [2], [18] or also with color
images. One seeks the largest partition into classes where each color of f varies at most by
C1 for the reds, C2 for the greens, and C3 for the blues. A solution can be the following. A
hierarchy H of segmentations of the image color f has been obtained from the luminance. It
yields the refinement lattice Π(≤, H). The energy ωϕ to minimize is climbing, e.g. Mumforf
and Shah functional, and holds on the luminance. The constraints are three sup-modular
functions
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ω∂j(S) = max[fj(x), x ∈ S]−min[fj(x), x ∈ S] j ∈ [1, 2, 3] (12)

which must be ≤ kj respectively. These three conditions yield to three constraint partitions
πCj of refinement supremum πC = ∨πCj . The problem amounts now to find the minimal cut
in the energetic lattice Π(�ϕ, H ′′) where H ′′ is the partial hierarchy identical to H below and
on πC , and where all classes above πC are removed.

8 Conclusion

An alternative solution to the constrained optimization problem has been proposed. The
classical technique, which goes back to Lagrange, consists in

1. giving a numerical value to each element (e.g. in giving an energy to each partition),
and minimizing this numerical function,

2. setting the problem in a new space, where the constrained optimization becomes an
absolute one.

We have shown, by the toy example of figure 3, that in case of partitions, the first point was
not sufficient. A partition should not be equivalent to a significant energy. Indeed, Lagrange
method works if we introduce some additional constraint which restricts the domain of the
solutions.

In the proposed alternative, the partitions are not compared via their energies, but by
an ordering relation which diretcly holds on these partitions, and generates the so called
energetic lattice. In the energetic lattice perspective, the second point, above, is expressed
by the creation of a new hierarchy, where the energetic minima become absolute.

The two methods do not exactly address the same family of applications. If the numerical
value (energy, cost) is the dominant parameter of the problem, then lagrange approach is
probably better adapted, though it remains under-determined. If the spatial dissemination
of the energy is the most important feature of the problem, then the proposed altenative by
energetic lattices will be more adapted.
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