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MIXING AND DECORRELATION IN INFINITE MEASURE: THE CASE
OF THE PERIODIC SINAI BILLIARD

FRANCOISE PENE

ABSTRACT. We investigate the question of the rate of mixing for observables of a Z%-extension
of a probability preserving dynamical system with good spectral properties. We state general
mixing results, including expansions of every order. The main part of this article is devoted to
the study of mixing rate for smooth observables of the Z?-periodic Sinai billiard, with different
kinds of results depending on whether the horizon is finite or infinite. We establish a first order
mixing result when the horizon is infinite. In the finite horizon case, we establish an asymptotic
expansion of every order, enabling the study of the mixing rate even for observables with null
integrals.

INTRODUCTION

Let (M,v,T) be a dynamical system, that is a measure space (M, r) endowed with a mea-
surable transformation T : M — M which preserves the measure v. The mixing properties deal
with the asymptotic behaviour, as n goes to infinity, of integrals of the following form

Cn(f,g) = /M f.goT"dv,

for suitable observables f,g: M — C.

Mixing properties of probability preserving dynamical systems have been studied by many
authors. It is a way to measure how chaotic the dynamical system is. A probability preserving
dynamical system is said to be mixing if Cy,(f, g) converges to [,, fdv [,, gdv for every square
integrable observables f,g. When a probability preserving system is mixing, a natural question
is to study the decorrelation rate, i.e. the rate at which C,(f,g) converges to zero when f or
g have null expectation. This crucial question is often a first step before proving probabilistic
limit theorems (such as central limit theorem and its variants). The study of this question has a
long history. Such decays of covariance have been studied for wide classes of smooth observables
f,g9 and for many probability preserving dynamical systems. In the case of the Sinai billiard,
such results and further properties have been established in [26, 3, 4, 1, 2, 30, 6, 27, 28].

We are interested here in the study of mixing properties when the invariant measure v is o-
finite. In this context, as noticed in [13], there is no satisfactory notion of mixing. Nevertheless
the question of the rate of mixing for smooth observables is natural. A first step in this direction
is to establish results of the following form:

lim oann(f,g):/Mfdu /Mgdy. (1)

n—-+o00

Such results have been proved in [29, 15, 10, 5, 14] for a wide class of models and for smooth
functions f, g, using induction on a finite measure subset of M.

An alternative approach, specific to the case of Z%extensions of probability preserving dy-
namical system, has been pointed out in [21]. The idea therein is that, in this particular context,
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2 FRANCOISE PENE

(1) is related to a precised local limit theorem. In the particular case of the Z?-periodic Sinai
billiard with finite horizon, it has been proved in [21] that

CO/ fdu/ gdv+o(n),

for some explicit constant ¢y, for some dynamically Lipschitz functions, including functions with
full support in M.

This paper is motivated by the question of high order expansion of mixing and by the study of
the mixing rate for observables with null integrals. This last question can be seen as decorrelation
rate in the infinite measure. Let us mention the fact that it has been proved in [23], for the
billiard in finite horizon, that sums 7, / ulf-fo T* dv are well defined for some observables
f with null expectation. In the present paper, we use the approach of [21] to establish, in the
context of the Z?-periodic Sinai billiard with finite horizon, a high order mixing result of the
following form:

- c (f7 g) -K
Cn(f,g)zz%%—o(n )- (2)
m=0
This estimate enables the study of the rate of convergence of nCy,(f, g) to fM fdv fM gdv and,
most importantly, it enables the study of the rate of decay of C),(f, g) for functions f or g with
integral 0. In general, if f or g have zero integral we have

Culfg) ~ L)

but it may happen that

Cn(f, 9) ~

and even that C,,(f, g) = o(n~3). For example, (2.6) gives immediately that, if S fav [y 9dv #
0, then

cZ(fag)
nd

Cn(f_foTag) = Cn(f7g)_cn—1(f7g)
cOfodV-fMng _ Cl(f_foTag)

n2 n?

(3)
and

Cn(2f—foT—foT’1,g) = Cn(f—fOT,g—gOT)
2C (f, )_ n— l(f, )_ n+1(fa )

N 2C°/fdu/ gdv — c(f—foT,g— goT)

n3

General formulas for the dominating term will be given in Theorem 4.5, Remark 4.6 and Corol-
lary 4.7. In particular ¢1(f, g) and ca(f, g) will be precised.

We point out the fact that the method we use is rather general in the context of Z%-extensions
over dynamical systems with good spectral properties, and that, to our knowledge, these are the
first results of this kind for dynamical systems preserving an infinite measure.

We establish moreover an estimate of the following form for smooth observables of the Z2-
periodic Sinai billiard with infinite horizon:

Culf.9) = o | fav [ gavto((niogn) ).

The paper is organized as follows. In Section 1, we present the model of the Z?-periodic Sinai
billiard and we state our main results for this model (finite/infinite horizon). In Section 2, we
state general mixing results for Z%extensions of probability preserving dynamical systems for

nlogn



DECORRELATION IN INFINITE MEASURE 3

which the Nagaev-Guivarc’h perturbation method can be implemented. In Section 3, we recall
some facts on the towers constructed by Young for the Sinai billiards. In Section 4, we prove
our main results for the billiard in finite horizon (see also Appendix A for the computation of
the first coefficients). In Section 5, we prove our result for the billiard in infinite horizon.

1. MAIN RESULTS FOR Z2-PERIODIC SINAI BILLIARDS

Let us introduce the Z2-periodic Sinai billiard (M, v, T).

Billiards systems modelise the behaviour of a point particle moving at unit speed in a domain
@ and bouncing off 9Q with respect to the Descartes reflection law (incident angle=reflected
angle). We assume here that Q 1= R?\ Jycz2 UL, (O; + ¢), with T > 2 and where Oy, ..., Oy are
convex bounded open sets (the boundaries of which are C3-smooth and have non null curvature).
We assume that the closures of the obstacles O; + ¢ are pairwise disjoint. The billiard is said to
have finite horizon if every line in R? meets Q. Otherwise it is said to have infinite horizon.

We consider the dynamical system (M, v, T') corresponding to the dynamics at reflection times
which is defined as follows. Let M be the set of reflected vectors off 9Q), i.e.

M :={(q,7) € 0Q x 5" : (ii(q),v) > 0},

where 7(q) stands for the unit normal vector to 9Q at ¢ directed inward ). We decompose this
set into M := Jyez2 Cp, with

I
Co:= {(q,ﬁ) EM : g€ U(@Oi +€)} .
i=1
The set Cy is called the ¢-cell. We define T': M — M as the transformation mapping a reflected
vector at a reflection time to the reflected vector at the next reflection time. We consider the
measure v absolutely continuous with respect to the Lebesgue measure on M, with density
proportional to (g, ?) — (7i(q),¥) and such that v(Cy) = 1.
Because of the Z2-periodicity of the model, there exists a transformation T : Cy — Cy and a
function & : Cy — Z? such that

V((g,0),€) € Co x 2%, T(q+£,0) = (¢’ + £+ (g, 7),7) , if T(q,7) = (¢', 7). (4)

This allows us to define a probability preserving dynamical (M, i, T) (the Sinai billiard) by
setting M := Co and fi = v|¢,. Note that (4) means that (M,v,T) can be represented by the
Z2-extension of (M, i, T) by . In particular, iterating (4) leads to

¥((q,9),0) € Co x Z2, T™(q + £,7) = (a, + £ + Sn(q,9), T,) , (5)
if T"(q,v) = (q,,,7",) and with the notation

n—1
Sy 1= Z koTF.
k=0
The set of tangent reflected vectors Sy given by

So :=A{(g,0) € M : (¥,7(q)) = 0}

plays a special role in the study of 7. Note that T defines a C''-diffeomorphism from M \ (Sp U
Tﬁl(SO)) to M \ (80 U T(SOZ) ~

Statistical properties of (M, i, T") have been studied by many authors since the seminal article
[26] by Sinai.

In the finite horizon case, limit theorems have been established in [4, 2, 30, 6], including
the convergence in distribution of (S, /y/n), to a centered gaussian random variable B with
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nondegenerate variance matrix Y2 given by:

»? .= ZEﬂ[ﬂ@JnoTk],
kEZ

where we used the notation X ® Y for the matrix (z;y;);j, for X = (2;);,Y = (y;); € C2
Moreover a local limit theorem for S, has been established in [27] and some of its refinements
have been stated and used in [9, 19, 20, 22] with various applications. Recurrence and ergodicity
of this model follow from [8, 24, 27, 25, 18].

In the infinite horizon case, a result of exponential decay of correlation has been proved in [6].
A nonstandard central limit theorem (with normalization in v/nlogn) and a local limit theorem
have been established in [28], ensuring recurrence and ergodicity of the infinite measure system
(M,v,T). This result states in particular that (S,/v/nlogn), converges in distribution to a
centered gaussian distribution with variance ¥2_ given by

d2
Too 1= S (k(2))%2,
mesgﬂ;x:m 2"%('%')‘ ZZ‘IZI ’802’

where d, is the width of the corridor corresponding to x.
Our main results provide mixing estimates for dynamically Lipschitz functions. Let us intro-
duce this class of observables. Let £ € (0,1). We consider the metric d¢ on M given by

Va,y € M, de(z,y) == 5@V,

where s is a separation time defined as follows: s(x,y) is the maximum of the integers k > 0 such
that z and y lie in the same connected component of M \ U?:_ i T778,. For every f: M — C,
we write L¢(f) for the Lipschitz constant with respect to dg:

o @)~ 1)
Le(f) = sup 5

We then set
I flle) = I flloo + Le(f) -

Before stating our main result, let us introduce some additional notations.

We will work with symmetric multilinear forms. For any A = (A, i), .im)e{1,2)m and
B = (Bh,---,ik)(il,...,ik)e{l,Z}k with complex entries (A and B are identified respectively with a
m-multilinear form on C? and with a k-multilinear form on C?), we define A® B as the element

C of 12y (identified with a (m + m’)-multilinear form on C?) such that
v’ilaa---,im-i—m’ € {152}5 C(

For any A = (A, i) (i150erik)

entries with k < m, we define A « B as the element C' of C{1:2"" (identified with a (m — k)-
multilinear form on C2) such that

v’il, ) "'aim—k‘ S {1’2}’ C(il,,...,im_k) = Z A(il,...,im)B(im_k+1,...,im)'

im—k+17---7ime{172}

iln---vim-km/) = (il7"'7im)B(im+1""im+m/) ’

ye{1,2}m and B = (Bi17.,,7ik) e{1,2}k symmetric with complex

ily---yim

We identify naturally vectors in C? with 1-linear functions and symmetric matrices with sym-
metric bilinear functions. For any C™-smooth function F : C2 — C, we write F(™) for its m-th
differential, which is identified with a m-linear function on C2. We write A®* for the product
A®...® A. Observe that, with these notations, Taylor expansions of F' at 0 are simply written

Z F®)(0) % 2%k
k=0
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It is also worth noting that A« (B ® C) = (A x B) x C, for every A, B,C corresponding to
symmetric multilinear forms with respective ranks m, k, £ with m > k + /.

We extend the definition of x to M by setting x((q + ¢, 7)) = k(q,¥) for every (¢q,v) € M and
every ¢ € Z2. For every k € Z and every x € M, we write Zy(x) for the label in Z? of the cell
containing T*z, i.e. Tj, is the label of the cell in which the particle is at the k-th reflection time.
It is worth noting that, for n > 0, we have Z,, — 7y = Z;é koTk andZ_,,—Ty = — zlz:lfn koTk.

Now let us state our main results, the proofs of which are postponed to Section 4. We start
by stating our result in the infinite horizon case, and then we will present sharper results in the
finite horizon case.

1.1. Z*-periodic Sinai billiard with infinite horizon.

Theorem 1.1. Let (M,v,T) be the Z? -periodic Sinai billiard with infinite horizon. Suppose that
the set of corridor free flights {k(x), € Sy, Tx = x} spans R?. Let f,g: M — C (with respect
to de¢) be two dynamically Lipschitz continuous functions such that

> (UL llos + lgle, o) < oo (6)

LeZ?

1
goT"™dy = / dl// dl/—|—01>.
/Mfg 27n/det2§onlogn< Mf Mg W)

1.2. Z?-periodic Sinai billiard with finite horizon. We first state our result providing an
expansion of every order for the mixing (see Theorem 4.5 and Corollary 4.7 for more details).

Then

Theorem 1.2. Let K be a positive integer. Let f,g : M — C be two dynamically Lipschitz
continuous observables such that

D IPE (e, e + lgte,lle) < oo,
Lez?
then there exist co(f,q),...,cx—1(f,g) such that
K—1
/ fgoT"dv = Z Cm(f,9) +o(n k).
M

n1+m
m=0

We precise in the following theorem the expansion of order 2.

Theorem 1.3. Let f,g: M — R be two bounded observables such that
S IR e Nl ) + llgte,lle) < oo-

(€72
Then
goT"dy = ———— / dy/ dV—i——E * A
| 19 X TMQ{ fav [ g n
_ - —2\®2 —92
+4!n2 /Mfdu /Mgdl/(E ) *A4}+o(n ), (7)
with ¥72 = (X2

: / fdvB5 ( —/Mgdy%;(f)—/Mfdu/Mgdu%oHﬁBf(f)@ﬁBl(g),

B5(f) ;= lim f (TS —m¥?) dv,

m——+00 M
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B, (9) == lim 9. (52 — |m|¥?) dv,

m——0o0

M
B (f) = lim /f-Ide, B, (¢9) := lim 9L, dv,
M M

m——+00 m——00
_ : 2 more®2
By = mgrfm(mz Ez[S57])
and ®4 2(v2\®2
E; — pM
As = lim plS0] = 307 ()

n—-+oo n

+6%2 ® By .
Observe that we recover (3) since $2 % ¥ 72 = 2,

B (f—foT) :mlirilw/Mf.mondV:0
and

BI(f—foT) = lim /Mf.<1?;2—1?;2_1>

n——4oo
m—2
— : ®2 m—1 k m—1
= lim_ Mf.(/@ oT™ 42 (koT*)®KkoT )du
k=0
m—1
n®2+22n®noTk
k=1

)
m—-+00

= 22/ fdv,
M

where we used Proposition A.1.

= lim /fdyEM
M

Remark 1.4. Note that
B () = Z / f(roT! @koT™ —Eplko T’/ @ koT™)) dv
M

J;m=0

+/ f1§2dy+22/ f.Zo®/<;ondV—‘Bo/ fav,
M M M

m>0
By (9) = Z /g'(’%OTj®ﬂon_Eu["€OTj®/<;on])dy
jm<—1YM
+/ g.ngdy—Q Z / g'IO®/fOdeV—’BO/ ng’
M m<—1“M M
%f(f)ZZ/ f.nondu+/ FTodv,
M M

m>0

Brg)=— / g-ffondwr/ 9Ty dv,
m<—1 M M

and )
By = Z Im|Eplk ® ko T™].
meZ

Corollary 1.5. Under the assumptions of Theorem 1.8, if [,, fdv =0 and [, gdv =0, then

gy SR OBI)
ffaemm = E e e o™,
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Two natural examples of zero integral functions are 1¢, — 1c,, with e; = (1,0) or fCo with
fCo fdv =0. Note that

2
0322

T n2 27 (det ¥2)3/2”

/ (Lo — 1., ).(1ey — 1e,,) o T") du
M

with X2 = ( Z])Zj:LQ and that

1
/M(flco.lco oT™)dv ~ 3 S (det 22)3/2 Z Exl 02 oK1 + 07 k) o T™],

with k = (K1, k2), provided the sum appearing in the last formula is non null. As noticed in
introduction, it may happen that (7) provides only [,, f.g o T™ = o(n™?). This is the case for
example if fMgdy = 0 and if f has the form f(q + ¢,9) = fo(q,?).he with E;[fo] = 0 and
2phe=0.

Hence it can be useful to go further in the asymptotic expansion, which is possible thanks
to Theorem 4.5. A formula for the term of order n=2 when [,, fdv = [,, gdv = As(f,g) = 0
is stated in theorem 4.8 and gives the following estimate, showing that, for some observables,
Cn(f,g) has order n=3

Proposition 1.6. If f and g can be decomposed in f(q+ ¢,7) = fo(q,V).he and g(q +0,7) =

90(q,0).q¢ with Eg[fo] = Eglgo] = 0 and > ,q0 = Y ,he = 0 such that Y ,cq0 s (Hflch(g +
HglCeH(é)) < 00. Then

M 2V det ¥22n3 4 ’
with here
BT (f) @By j m
(f) . 2(9) _ Z het |® ZEﬂ[fo.FL oT’] |® Z @l |® Z Enlgo.k o T™]
1€72 §>0 Le7? m<—1

2. GENERAL RESULTS FOR Zd—EXTENSIONS AND KEY IDEAS

In this section we state general results in the general context of Z%-extensions over dynamical
systems satisfying good spectral properties. This section contains the rough ideas of the proofs
for the billiard, without some complications due to the quotient tower. Moreover the generality
of our assumptions makes our results implementable to a wide class of models with present and
future developments of the Nagaev-Guivarch method of perturbation of transfer operators.

We consider a dynamical system (M, v,T) given by the Z%extension of a probability preserv-
ing dynamical system (M, i, T) by & : M — Z%. This means that M = M x Z%, v = 1 @ my
where my is the counting measure on Zd and with

V(z,0) e M x 728, T(x,0) = (T(z),+ r(x)),
so that
V(z,0) e M xZ% ¥n>1, T"(x,0) = (T"(z),l+ Sp(x)),
with .S, := Zz;é koT*. Let P be the transfer operator of T, i.e. the dual operator of f — foT.
Our method is based on the following key fomulas:

/ ngTndI/ = Z ]Eﬁ[f("6)'1571:[/76-9(1?”('),(,)] (8)
M L0e72
= > EalP"(Ls,—ee F(0)g(0) )

0,07
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and
n 1 —itx n( itk
Pt = g [,

1 —it* n
_ W/[_Mwe PR () d (10)

with P, := P(e'**.). Note that (9) makes a link between mixing properties and the local limit
theorem and that (10) shows the importance of the study of the family of perturbed operators
(P;)¢ in this study.

We will make the following general assumptions about (P;);.

Hypothesis 2.1 (Spectral hypotheses). There exist two complex Banach spaces (B, |-]|) and
(Bo, || - llo) such that:
e B By— L'(M,ji) and 1;; € B,
e there exist constants b € (0,7], C >0 and ¥ € (0,1) and three functions \. : [~b,b] — C
and 1, R. : [~b,b] — L(B, B) such that limy o \; = 1 and limy_.g L —E L[ 15zl 28,80) =
0 and such that, in L(B,B),

Vu € [<b,b]¢, P, =ML, + Ry, II,R,= R, =0, II2=II,, (11)
sup || REll o5, < CV", sup I1PF]| 2(8,80) < COF. (12)
u€[—b,b]? u€[—m,m]%\[—b,b]¢

Note that (11) ensures that
Yu € [=b,b], P =1L, + R . (13)
We will make the following assumption on the expansion of A at 0.

Hypothesis 2.2. Let Y be a random variable with integrable characteristic function a. = e~ %)
and with density function ®. Assume that there exists a sequence of invertible matrices (Op)n
such that lim, 1 @;1 =0 and

Yu, ~e W —qa, . asn— 400 (14)

n
—1
1O, u

(where 'O, 1 stands for the transpose matriz of ©,') and

Vu e [=b,b)%, A" < 2 ‘e_w(te"'“)

Note that, under Hypothesis 2.1 and if (14) holds true, then
vueR?, e ™ = lim A7 = lim [Ez[P}? 1] = lim Ep[ei”*((a;ls")],

te -1 te- 1
n—+oo On u n—4o0 On u n—-+00

and so (©,1S5,,), converges in distribution to Y. If Y has a stable distribution of index o €
(0,2] \ {1}, i.e.
P(u) = /Sl |u * s|*(1 + tan gsign(u *s))dl(u),
where T is a Borel measure on the unit sphere S! = {z € R? : z %z = 1} and if
Ay = e Y@L 4 g (Ju[*L(jul™)) , asu—0,

with L slowly varying at infinity, then Hypothesis 2.2 holds true with ©,, := a,, Id with a, :=
inf{x >0 : nlz|"*L(z) > 1}.

But Hypothesis 2.2 allows also the study of situations with anisotropic scaling.

Before stating our first general result, let us introduce an additional notation. Under Hypoth-
esis 2.1, for any function u : M — C, we write [ulls, = suppep, [Eplu-h]].
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Theorem 2.3. Assume Hypotheses 2.1 and 2.2. Let f,g: M — C be such that
£l = D 1F GOl <oo and igllymy =Y g0l < oo

Lcza (e7,a

)
/Mf.goTNdy: det(((i))n (/Mfdy /Mgdy+0(1)> , asn — +00.

Proof. For every positive integer n and every ¢ € Z¢, combining (10) with Hypothesis 2.1, the
following equalities hold in £(B, By):

Then

1 4
P*(1g,=¢ —/ eI, () dt + O (9"
(Usimr) = g [, ¢ NI+ O
1
. S— —iux(®n >”_H7-d "
BB, o e vertlleah () duT O
1
— —iux(0710) ,— (W] () d
(2m)? det ©,, . o) du+eng
©(0,'0)
= 2O Y, 15
det ©, 0% Enge (15)
with sup [lenellzs,8,) = o(det©,1) due to the dominated convergence theorem applied to
‘ )‘?eglun@ﬁlu - eiw(U)HOHL(B,BO) Lig, [—pp)(u). Setting up := f(-,£) and v, := g(-,£) and using
(9), we obtain
PO, 11— 1))
f.gOTn dv = <n—E Up Ez Vyr + E; VprEn,e\Uy
/| 3 (M P EuduBalue] + Eyloventun
(0,1 (¢~ 1))
= ) (WEM[W] Ealoe] )+ O | Y Nvelsy lenel sl
00zl " ¢z
®(0, (¢ 1)) -
= > T@nEﬂ[w] Eulve] +&n(f.9), (16)
ezl
with lim,_, oo sup detOnnlfa) — ), Now, due to the dominated convergence theorem and
529 Tl sy 1711+
since ® is continuous and bounded,
Jim > @ (0,1t — ) Eulug Eplve] = 2(0) > Eplue Exlve] = / fdy/ gdv,
e,0ezd L0er?

which ends the proof.

We will reinforce Hypothesis 2.2. Notations )\(k), a((]k), H(()k) stand for the k-th derivatives of
A, a and II at 0.

Theorem 2.4. Assume Hypothesis 2.1 with By = B. Let K, M, P be three integers such that
K>d/2,3<P<M+1 and
M M
NI "

P

Assume moreover that X. is CM-smooth and that there exists a positive symmetric matriz X2
such that

1
Ay — 1~ =p(u) = —522*u®2, asu— 0. (18)
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Assume that, for every k < P, )\(()k) = a((]k) with a; = e=*D | for every k < P. Assume moreover
that the functions II and R are C*X-smooth. Let f,g: M — C be such that

S UFEON+ N9 Olls) < oo (19)
ez

Then

sm+i Pm+7) (%) d
/ fgoT"dv =3 Zm,Z g+ Ealoe I (wn)Jo O ")) +on ).

2,074 m=0 7=0

(20)
1f moreover X geza [0P< (£, 0)] + g0+ €)137) < oo, then
Z’j-f—m (I)(j+m+7") (0) G
) " — i n/ n\(J)
/Mfgo dV n%;r m'T']' < n]+d~;m+r * ()\ /a/ )0
£ 3 (0= 0% @ Ealop ™ (ug)] + o(n K~%), (21)

XA/

where the sum is taken over the (m, j,r) with m, j,r non negative integers such that j+m+r € 27
and % - 5] < K.

Observe that

COTREDS ™ (O fa)ym - (afyme

my!---mpl(n —m -m
kimi+...4+krmy-=j 1 r ( 1= T)

where the sum is taken over r > 1, my,...,m, > 1, k. > ... > k; > P (this implies that
mi + ...+ m, < j/P). Hence ()\"/a")(()j) is polynomial in n with degree at most [j/P].

Remark 2.5. Note that (17) holds true as soon as M > 2K P/(P —2) and M in (20) can be
replaced by (2K — m)P/(P — 2).
Moreover (21) provides an expansion of the following form:

m=0 n§+m

oT"dy — Cm(f’ ) anf%l
/Mf.g T"d Z + o ).

Remark 2.6. IfII is CM-smooth, using the fact ()\"/a”)(()j) = Omb/PL) it S eqa 1M1 £ G, 0]+
llg(-,€)||g’) < oo the right hand side of (21) can be rewritten

8L (! ny2,,®2 d
E- [ . —it*(£ —ﬁ))\nH ] } RY2xt ) K-35y
z'ZeZdLZonL/2 L' 8tL < ave-e e |t=0 +o(n™ )

wm| =

If moreover sup,c(_p e [|(R mym))|| BB = O(W") for every m = 0,..,M, then it can also be
rewritten

o) ., 9" iy Sn=(=0) _
nd Z Z L! )iLﬁ (EM [W-elt Vg OT”} 6522*t®2> +o(n K2,
nz -

where we used (13).
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Proof of Theorem 2.4. We assume, up to a change of b that Hypothesis 2.2 holds true. Due to
(10) and to (13), in £(B, B), we have

n 1 —itx n
P"(1g,—¢) = (271_)6[/[ ]de Epr() dt
1 —itxl\n n
~ (20 /[bb]d6 EAPIL() dt + O(97)
)
= — VA +() dt + O(0")
(2m)ins J[-bymbym itV
2K
1 it 1 (m tem _d
= [ e O o),
(2m)dn2 J[-by/nby/n)d = m nz

due to the dominated convergence theorem since there eXistS Typm € (0,t/ \/_ ) such that

My () = oo 6™ () g+ 16 (21 )+ . Recall that (" /a™)§) = O(nbi/ ™)),
SO
N |
1 . +®J M t|M
Ny = o> 500« | < o e,
=0 n?2 n?2

with lim;—07(t) = 0 and sup;_y 4« [n| < oo. Due to (17), we obtain

, 2K som

—itk—=  _1312,4®2 (m)
€ € > mlH ()=

m=0

1
(2m)dnz J[-by/nby/n)

M .
1—|—Z]l()\"/a ) ﬁ dt—l—o(n_K_%>

j=P "

= 22 <%>*(Hém)(-)eaw/an)gj’)+o(n—K—%).

m=0j=0 1 2 m"

m
2

n

[SIS

This combined with (9) and (19) gives (20).

We assume from now on that e |2 (1 (Ol + llg(- O)ls). Recall that (/) s
polynomial in n of degree at most [j/P|. Hence, due to the dominated convergence theorem,

we can replace ®("+7) <%) in (20) by

2K —m—j+2| L]

D

r=0

—— I ()« (1 — 0)®7 .

rin2
Hence we have proved (21). O

Now, we come back to the case of Z2-periodic Sinai billiards, with the notations of Section 1.

3. YOUNG TOWERS FOR BILLIARDS

Recall that, in [30], Young constructed two dynamical systems (M, T, ) and (M,T, i) and
two measurable functions 7: M — M and #: M — M such that

Fol =Tox, Fyi=f, 7ol =To%, #uji=
and such that, for every measurable f: M — C constant on every stable manifold, there exists
f M — C such that f om = fox. We consider the partition D on M constructed by Young in
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[30] together with the separation time given, for every z,y, by
so(x,y) == min{n > —1: D(IT™z) £ DT y)}.

It will be worth noting that, for any z,y, the sets 77~ {2z} and #7~!{y} are contained in the
same connected component of M \ UZOZ(S’y) T7kS,.

Let p > 1 and set ¢ such that % + % =1. Let ¢ > 0 and 3 € (0,1) be suitably chosen and let
us define

@) = F W)l

2 ; —t
171l = sup 14, loce™ + sup esssup, e s =200

AeD

Let B := {f € LL(M, f1): 1]l < oo} Young proved that the Banach space (B, - ||) satisfies
Il - llg < Il - ||, that the transfer opertor P on B (P being defined on L? as the adjoint of the
composition by T on LP ) is quasicompact on B. We assume without any loss of generality (up
to an adaptation of the construction of the tower) that the dominating eigenvalue of P on B is
1 and is simple.

Since k: M — Z? is constant on the stable manifolds, there exists #: M — 7?2 such that
foft =kor. Weset S := Z;é oT*. For any u € R? and f € B, we set Pu(f) = P(e“‘*"‘f)

Proposition 3.1. t — \; is an even function.

Proof. Let ¥ : M — M be the map which sends (q,7) € M to (q,7') € M such that (ﬁm’) =

—(7i(q),¥). Then ko T* oW = —k o T~*~1. Hence, S, as the same distribution (with respect to
@) as —S,, and so

Vi € [<b,b%, E,le” 5] = K, [ ] ~ NPE, 1] ~ A" B, [T 1]
as n goes to infinity, and so A is even. U

Let Z" be the partition of M \ U;”:k T79(8Sp) into its connected components. We also write
22 = Vs Z].

Proposition 3.2. Let k be a nonnegative integer and let u,v : M — C be respectively ka—
measurable and Z°5 -measurable functions.

Then there exists i, : M — C such that uo TkAo T=uom and vo TFor =00x.
Moreover, i € B and for every t € R, P2k (e=15kq) = P2 (eitSkoT™ ) and

A . A OAk/\ _
1P (e a)|| < (142871 [lulloo (22)

and
Vn >k, Eilu.e™5vo T = Eylo.e™5% PP (e™*5kq)] . (23)

Proof. Using several times Pm(f.g oT™) = g.P™f and Ptm = pm(e“gm-), we obtain

Eulu.e™mvo T =

since S,,_r o T* = S, — Si.. Hence, we have proved (23) (since P preserves ). O
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4. PROOFS OF OUR MAIN RESULTS IN THE FINITE HORIZON CASE

We assume throughout this section that the billiard has finite horizon.

The Nagaev-Guivarc’h method [16, 17, 11] has been applied in this context by Szdsz and
Varju [27] (see also [19]) to prove Hypotheses 2.1 and 2.2 hold for By = B the Young Banach
space. More precisely, we have the following.

Proposition 4.1 ([27, 19]). There exist a real b € (0,7) and three C* functions t — Ay, t — II,
and t — Ny defined on [—b,b]? and with values in C, L(B,B) and L(B,B) respectively such that
(i) for everyt € [—b,b)?, Pt" = A\IL; + Nt and 11y = Eg[-], ILP, = PIL, = M\, 2 = 1I;

(ii) there exists ¥ € (0,1) such that, for every positive integer m,

sup (V)™ |l os.my = O(W")  and sup B les = OW™);
te[—b,b]2 te[—m,m]2\[—b,b]2
(iif) we have Ay = 1 — 322 % t®2 = O(Jt?);

(iv) there exists o > 0 such that, for any t € [=b,b]2, |Ae| < e " and e

< el

Our first step consists in stating a high order expansion of the following quantity
Eglu.lg,—¢.voT"]

for u and v dynamically Lispchitz on M. Let us recall that, due to (8), this result corresponds
to a mixing result for observables supported on a single cell. We start by studying this quantity

for some locally constant observables. This result is a refinement of [22, prop. 4.1] (see also [21,
2)-1,,©2
=9

. . . . . _ 6_
prop 3.1]. Let @ be the density function of B, which is given by ®(x) = T
4.1. A first local limit theorem. We set a; := 6_%22”@2. Note that the uneven derivatives
of A/a at 0 are null as well as its three first derivatives.

Proposition 4.2. Let K be a positive integer and a real number p > 1. There exists ¢ > 0 such
that, for any k > 1, if u,v: M — C are respectively Zﬁk—measumble and Z°%9 -measurable, then

for any n > 3k and { € 7>

2K—2 , 2K—2—-m (m+2j) (L
1 m+2j‘1> (\/ﬁ) (2j
Ej [ulgs, g0 0 T"] — . A (u, A" /) )
2K —1
o SR ol o
K+
with, for every m € {0,...,4K — 4},
o (Eglu.e®% v o T o
A = g (P ) < cman ol (25)
t |t=0
[An(u,0)] < ck™Jolpllullss and (A" /a")g"™ = O(™*). (26)
In particular, for K =2, we obtain
@(%) i l

Eﬂ [’U,l{sn:g}.’l} (¢] Tn] —

_(b??(

n2

C e Aoy — AoV gy (€N @
< kvl el

— 9
n4
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Remark 4.3. Due to (25) and (26), (24) can be rewritten as follows:
AK—4 . H(m) (L
- L (\/ﬁ) * <e%22*t®2Eﬂ[u.eit*Sn.v o T”]) o

E; [ulig _p.voTm| — — e
M[ {Sn=0} ] m! T [t=0

m=0

< ol el
= nK'f‘% .

Proof of Proposition 4.2. Since uo T* is ng—measurable and v o TF is Zy°-measurable, there
exist 4,0 : M — C such that to7 =uoT* o7 and Do7t =voT" o7&, with & € B. As in the
proof of [22, Prop. 4.1], we set

Cr(u,v,0) := Eplu.1yg, —gy.v 0 T"].
Due to (23), we obtain

Cp(u,v,0) = /[ . e R [u.e™5n w0 T dt

_ A4 itxS) 5 PR, —itxSk A
= e /[W,WPG Eple™*0. P (e Fa)] dt . (27)

Let Zp ¢ = eit*g’fﬂt(e_”*g’f-). We will write E,(:fé) for gt—Z(Ek,t)‘tzo. Due to items (i) and (ii) of
Proposition 4.1 and due to (22), it comes

1 —itxl \n— itxSp 5 —itxSy n—
Cn(u,’l),f) = (27T)2 % bb]26 t f)\t 2kEﬂ[6t SkU.HtPtZk(e t S’“u)] dt—|—0(19 ZkHUHOoH’UHp)
_ 1 —itxl yn A=A n—
- (2m)2 /[ bb]26 ¢ g)\t Eﬂ[v.:k,tu] dt + OV 2/’“||u\|(x,.||v||p), (28)

since I, P, = A1, and 112 = II, so that

S = )\;leit*ﬁkﬂtpfk(efit*ﬁk‘) ‘ (29)
Observe that
1 / ) 1 / S 2
S PNt < ——— e " qt 30
(2m)? [—b,b}2| " (2r)2n'5" [fm,ww' | o
and so
2K —2
1 : 1 K]l [[ul]
C, 0) = —itxl\n — A, ™ dt + O p oo 31
(U7U’ ) (271')2 /[_b7b}2e t mZO m' (U,U)* * nKJr% ’ ( )

with Ay, (u,v) :=E; [@.Eg%)a]. Indeed El(ff_l)zl is a linear combination of terms of the form

eis*ﬁk .(iSk)®a ® Hgb)P2k(®(ZSk ° Tk‘)@ceis*ﬁkof’kﬁ) ® ()\f2k)gd)

over nonnegative integers a,b,c,d such that a + b+ c+ d = 2K — 1, and these terms are
in O(k*~!ul|o) in B, uniformly in k. Moreover, due to (29), to (23) and to Item (i) of
Proposition 4.1, we obtain

)\?_QkE,; [@.eit*ﬁk Htpt2k (efit*gk ﬁ)]
AL
Eﬁ [u.eit*S” Vo Tn] _ Eﬂ [eit*gk @.Nz%kaptZk(e—it*Sk ,&)]
A} ’

Vi € [<b,b)%, Ei[0.E.0] =
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so that

E,[0.

[1]

m) E, [u.et*Sn o TP\ ™ —
i = (Bl T O (= )
Af =0

Recall that a; = =35 Gince the three first derivatives of A and a coincide, we have
()\"/a")gj) = O(n?/*) and

4K —4—2m
J i 4K =3=2m 4K—3-2
AP — ay E _—'(A”/a")é )5 t®| < cpn” 4 ay'lt| .
J=0 ’

Due to the analogue of (30) with \; replaced by a;, we obtain

Cy(u,v @) _ L efit*Z67%E2*t®2 2%:2 LA (u v) £ 1O
n » Y - m I
(27)% Ji—p 2 m!
’ m=0
4K—4—-2m
1 . } E2K—1
1+ > ﬁ(A"/a")éﬁ «t%9 | dt+0 ( Hﬂ’%”“”‘”) :
j=4 ’ n
Note that
(21)2 / eIl TR m gy
T b2
S — 7 o o E I gy
Y
(2m)2n= " Jibynbym?
") (L K1
B ) AL &2
Hence we have proved that
2K—2 m@(m)(i)
- i
Eﬂ [U]'{Sn:f}'v © Tn] - Z WnTg * Am(u’ U)
m=0
2K —24K —4—2m m+i

— 4 _
m=0  j=4 m! jin'
< S ollp el

= 1 9
nf+ti

and so (24) using (32) and the fact that the uneven derivatives of (A\/a) at 0 are null. O
4.2. Generalization.

Proposition 4.4. Let K be a positive integer. Let & € (max(€,9),1). There exists cg > 0 such
that, for every u,v : M — C dynamically Lipschitz continuous functions, with respect to d¢ with
¢ €(0,1) and for every £ € 7

B 2K—2 | 2K=2-m ;) & (m+29) (

m=0 j=0

¢ )
Jn

% (Am(u,0) @ (\"/a™)57)

(logn)4K72
< @ E ol g )
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with Ay (u,v) such that

A, 0) = (Balue™S 00 TN | < colluley lulligy 6" (34)
and |Ap (u,v)| < collull(g [|vlle)-
Proof. For every positive integer k, we define

up, = Eg[u|2¥] and vy, :=Ep|Z%,].
Note that
lu = uglloo < L)€, [l = vploo < Le(v)E,

and

[Er [ (5,0 0 T"] = Eg [uslys, =y vk 0 T"]| < Jlullg) 0]l )"

Now we take k = k,, = [(logn)?]. Note that, for n large enough, n > 3k,. We set
Apon(u,v) = (Eﬂ[u.eit*S”.v o T"]/)\?)(m)

[t=0 *
om <6it*5n )
™\ A/ =0

Emn™[|ullg) V]l &) €*

Note that, for every integers k,n > 0,

[ A (1, 0) — A (we, vi) | lull ey loll ) €*

L ()

IN

For every integers n,n’ such that 0 < n < n/ < 2n, we have
|Am7n(u, v) — Apw (u, v)‘
| A (W s V) = At (Ui Ok, )| 4 (14 2™)Emn™ [ull e [[0]] ) €F
< Knllullgllvllgé

due to (25). Hence, we conclude that (A, ,(u,v)), is a Cauchy sequence so that A, (u,v) is
well defined and that

k.
[Am (1, 0) = A (w,0)] < Kmllullg) vl Y &% =0 (HUH(@ HUH(@&)") :

Jj=0
Since Applying Proposition 4.2 to the couple (uy,), v,)) leads to (33). O
4.3. Proofs of our main results.

Theorem 4.5. Let f,g: M — R be two bounded observables such that
> (If el + llge,lle) < oo

72
Then
]/ f.goT"dv
2K-2 | 2K=2-m o Zu/ g2 @) (28] 5 (A (ug, vp)
Z ZO n](+1+22 « (Va4 o(n~{35)

with ue(q, V) = f(q+ £,70) and ve(q,v) = f(q+ ¢,7) and with Ap,(u,v) given by (34).
1f moreover, ez 1075 2(1f1c, e + lge, ley) < oo, then

K-1 . 2K-2-2L D+ ()

/M fgoTrdv=3" nf% 3 (_WW « (A /a3 + o(n~ ) (36)

L=0 §=0
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with
=N

cr(f.g) = S o 2 (W0 ® Anurve).

rm>0 : r4m=2L 072

Since ()\"/a”)(()Qj) = O(n?/?), we conclude that:

Remark 4.6. Assume ), ;o |€|2K—2(||flcz||(§) + llgle, ) < oo and [, f.gdv = O(n~K).
Then

/M Fody— <I>(2K2>(03;EK—1(J”, 9) to(nK).

- . —_1)K-1 2K —2 —n it _(p_ -
and ¢x_1(f,g) = limy, o0 ((2[1()7,2). voerz Ep [Wgtzw <)‘t neits(Sn—(€ g>)>| Upr O T"] )
Corollary 4.7. Under the assumptions of Theorem 4.5 ensuring (36), using the fact that

(Aa)g™ = O/, as in Remarks 2.6 and 4.3, if Yyepe 0154 1e,lig) + l9e, @) < oo,
the right hand side of (36) can be rewritten

AK—4
oL (0) , oL ity Sn=(¢'=0) _
n=% Z Z L'( )iLﬁ <Eu [uz.e” i g oT"} 6%22*,@2) +o(n™ ).
00ez? L=0 : |t=0

Proof of Theorem 4.5. We have

/ fg oT"dv = Z Eﬁ[U(l{Sn:g/,g}’Ugl @) Tn]
M 0,072

Hence, (35) follows directly from Proposition 4.4. Due to the dominated convergence theorem,

lim nK—1-"5 Z H(m+i) (—El — £> - ZK_Q_Zm:_(j/Q) ‘1>(m+j+7’)(0) * (6/ — €>®r
e 0,072 vn —0 r! Vi

* <(A”/a”)8j) ® Am(w,vz')) =0,
(where we used (26)) and to the fact that the uneven derivatives of ® are null and that ®(%)(0) =
(—¥2)®kd(0). Therefore

2K—-2 2K-—-2—-m

. ®(0) XTI (1) (xR0 o
/Mf'QOT o= D D 2 (27)! R TR
=0

m=0 r=0:r+me2Z

x A" =0 ® Ap(ug,vp) + o(n” ),
INA=y

which ends the proof of (36). O

Proof of Theorem 1.2. This comes from (36) combined with the fact that (A\"/ a")gfj )is a poly-
nomial in n of degree bounded by j/2. O

Proof of Theorem 1.3. Due to (36) of Theorem 4.5, we obtain (7) with

As(f,9) = a200(f,9) + a020(f,9) + ar10(f,9),
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where a, ;(f,g) corresponds to the contribution of the (m,r, j)-term in the sum of the right
hand side of (36). Moreover, due to Proposition A.2,

ar00(fr9) = Y As(ugvp)

00ez?

n—-+o00

— — lim /fdy Z / (koT!@KoT™ Eﬂ[/@oTJ@;@on])]du

j,m=—n

/gdz/ Z / flroT! @KkoT™ —EplkoTV @ ko T™)]dv

7,m=0

—1—22/ froT dv® Z/gﬁ;ondu

+ / rav | gdu(Eu[s;?ﬂ—nz?)},
M M
a20(f,9) =— Y Ao(ugve). (0 =) =— > (€/_£)®2/ de/ gdv,
0,072 0072 Co Cyr

al,l,O(f’ g) = =2 Z Al (Ug, Ug/) ® (6/ - f)

00 ez?
= 2 1i (- "
Jlm Z /C gduZ/f((f H@KkoT")dv
L e7? r=0
—1
+ Z fdv Z g((l' =) @Ko T™)dv
teezz’C m=—n"Ce

For the contribution of the term with (m,r,j) = (0,0, 2), note that
(W fam)§) = n(r/a)y? = n(rg” - 3(£%)9).
Moreover, due to Proposition A.3,

Ex[59] - 302(5%)%

AW Z 3322 = 1im +652® By = Ay4.

n—-+4o00 n
Note that
ag00(f,9) = — lim {/ de/ 9((To = T-n)®* = Ep[Sy7?]) dv
n—-+o0o M M

+/ gdu/ F(Zy — T0)®? — Ez[S2%) dv
—|—2/ f I I(]) dl/@/ (I()—I,n) dv

/fdl// gdu%o},
ao20(f.9) = —/M f.I(?QdV /Mgdl/—/Mfdl/ /Mg.Igz’QdV%—Q/M fIOdV®/MgIOdV
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and

aao(f,g) = lim {2 /M 9Ly dv ® /M f(Z, — Zp)dv — 2/Mgd1/ /M [y ® (I, — Iy) dv

n—-+4o0o

+2 /M fdv /M 9T ® (To — I_p) dv — 2 /M fTodv @ /M 9(To—T_0) dy} .

Hence we have proved (7) with

o (f,g) ::—/Mfdui%2<g>—/Mgdu%zﬂf)+/Mfdu/MgdusBo+mf<f>®%1<g>,
with

By (f) = lim f (28 —E[S5?) dv,

m—-+00 M

B, (g) = lim g (T8* — E[S;%ﬂ) dv.
m——0oQ M
O
Remark 4.8. Let f,g: M — R be two bounded observables such that
S 1t (I 1e, e + llgtelle) < oo (37)
LeZ?
Assume moreover that [, fdv [,,gdv =0 and that ng(f, g) = 0. Due to Remark 4.6,
/ f.goT™dv
M
__(Z)® . <A4(W,W) n Ao(uz,vw)(g/ T i Ay (ug, vpr) 2 (¢ — 0)®
27V det X22n3 = 24 24 6

1 |
~Aa(ue, ) (€ = 0% = Ll 0) & (€ = 0) + ),

where uy(q,v) := f(q+ ¢, 7) and ve(q, V) := g(q + £, ).

Proof of Proposition 1.6. We apply Remark 4.8. Using the definitions of Ay and A;, we observe
that

Ve, s Z2, AQ(Ug,Ug/) = Al(Ug,?}g/) =0

(since Egfug] = Egzlvg] = 0) and

> Au(ugop) =Ag | Y ug, > we | =0.

Ll eZ? ez? 0ez?

Moreover

Y Asupve) @ (=0 = > hegrAs(fo,90) @ (¢ =€) =0

Ny 0,0 €72
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since Y pcz2 he = >, qr = 0. Therefore

/ f.goT™dv
M
1 (=2
= RN A u7’0/ 6/—£®2+07’L_3
e 3, A 8 € =0+ oo™
1 (x72)®2 -
SN o Y A heqe As(fo, go) @ L & 0 + o(n™>
oA s MZEZQ eqe A2 (fo, 90) (n™)
lﬂ 2(f0 gO) ® Z hol & Z qKI.E,_Fo(’I’L_S)
227’1’ det 22 3 €72 vez?
O (S Edno e Y Edlaono T @ Y bt YD ant | o)
= —-——— ﬂ 0. ﬂ O. Z. gl.
2mvdet X2n? | 7 me1 tez? =%
_ (E_— Z/ [To®@koT dv® Z/gI(]@medu +o(n™?).
21/ det 2n3 m<—1

5. PROOF OF THE MIXING RESULT IN THE INFINITE HORIZON CASE

Proof of Theorem 1.1. In [28], Szdsz and Varji implemented the Nagaev-Guivarc’h perturbation
method via the Keller- Liverani theorem [12] to prove that Hypothesis 2.1 holds true for the

dynamical system (M, /i, T) with the Young Banach space B, with By := L!(ji) and with A
having the following expansion:

A — 1~ %2 % (t9%)log |t] .
Hence Hypothesis 2.2 holds also true, with ©,, = v/nlogn Id and with Y a gaussian random vari-
able with distribution A/(0, $2_) with density function ®(z) = exp(—3 (X% )~ 1x2®2)/(2m\/det X2.).
Let k, := [log?n]. Let u,(x) and v,(z) correspond to the conditional expectation of respec-

tively f and g over the connected component of M \ U
that

/M f.goT"dl/:/Mun.vnoT”du+O <<L§(f) /M lg| dv + Le(g) /M|f|du> 5’%) . (38)

As noticed in Proposition 3.2, there exist fn, Jn : M x Z? — C such that

Vi€ M, Julf(3),0) = un(TH () +0),

Vie M, gn(it(&),0) = va(T* (7(%)) + ),
with the notation (g, ) + ¢ = (¢ + ¢, ¥) for every (q,¥) € M. For n large enough, n > 3k, and,
due to (23),

ek, I'""Sp containing z. First note

/M Up. Uy 0 T dv = Z Eﬂ[un( + 6).15n:g1_g.vn(T"(-) + gl)]

00 €72
1 —t* 1t*xSp n
R W/[ L& B4 0. (T7() )
L.0'€72 -mm
1 L . i ol A .
R <2w>2/[ L ORGP P B )]

0072
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where Fn,t, Gn,t : M — 72 — C are the functions defined by
B, 0) i= fuli, 0).€*Sn (TH @)
G, 0) = G (i, ).k @)
<

Moreover sup,, ; | P Fy i (0| < (1426711 f1e,|loo- Hence, due to Hypothesis 2.1,

/ Up.-Up 0 T dv
M

- 1 —it*k(¢' — A n—2ky > -
—ow )+ Y o | LB G ON T TP (B, 0)
20,072 ™
n— 1 —iu*el_e A n " 5k [
= 09" %) + Z m/{ ] e m EalGhu/an (5 gl)Au/azk 1L, 0, PP (B, e, (-, 0))] du
€7£/€ZQ n —OAnT,0n T
_ 1 A _1s2 .2 A .
=@+ Y s | H‘—}?g[Gn,o(',f')e PRSP (B, ()] du
ez A TT,0n 0
2 1 / T2 4u®2n 2
=o(a, )+ Y 220 | ana H‘-]?#[G o+ 0)]e” Eu[Fno(-,0))] du,
ez " T nT

where we used the change of variable u = a,, t with a, := \/(n — 2k,) log(n — 2k,), and twice
the dominated convergence theorem. Therefore

/ UnUp 0 T dv = — -~ /undy/ v dv + o(a;?).
M ar 27'('

The conclusion of the theorem follows from this last formula combined with (38) and with the
facts that a2 ~ nlogn and that

/undy/ vnduz/ de/gdl/,
M M M M

due to the dominated convergence theorem. O

APPENDIX A. BILLIARD WITH FINITE HORIZON: ABOUT THE COEFFICIENTS Am

Let W* (resp. W") be the set of stable (resp. unstable) H-manifolds. In [6], Chernov defines
two separation times s; and s_ which are dominated by s and such that, for every positive
integer k,

VWY e WY, Va, 5 € WY, sH(T %z, T%y) = st(z,y) + k,
VWS e We, vz, 5 € W, s (T"2,TFy) = s~ (z,y) + k.

Proposition A.1 ([6], Theorem 4.3 and remark after). There exist Co > 0 and 9 € (0,1) such
that, for every positive integer n, for every bounded measurable u,v : M — R,

|[Eplu.v o T = Exlu]Eg[v]|| < Co (L l[vlloo + L lullos + llulloollv]les) 95
with
Ly = sup sup  (Ju(z) — u(y)|¢> =),
WueeWwr ¢ yeWe, x#y
and

Ly= sup  sup (ju(z) —o(y)|¢ ).
WseWws zyeWs, x#ty

<
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Note that
Ly < Le(ulyy), Ly < Le(uly),
Lt - <Li¢" and L ., <Lj¢".
We will set @ := u — Ezfu] and 0 := v — Eg[v]. We will express the terms A,,(u,v) for

m € {1,2,3,4} in terms of the follwing quantities:

ZE u.rkoTI], B[(v):= Z Eglv.k0T™,

7>0 m<—1

Bf(u) = BglikoT! @roT™, By(v):= Y. EilowoT!@rol™|,

J,m=>0 jm<—1
o ()= |klEBa[0.k0 T, Bf(u) =) kEglikoT",
k<-1 k>0
By := By (k) + B (k) = Y [m[Ealk @ ko T™,
meZ

BO*:Q(u) = Z max(k, m)E;[i.k o T @ ko T™].
k,m>0

Bjo(v) = Z max(k, m)E;[o.60 T @Kk oT™™],
km>1

B;;r (u) — Z Eﬂ [ﬁ/{ ° Tmin(k,r,m)
k,r,m>0

<Ii o Tmax(k,r,m) QKo Tmed(k,r,m) _ Eﬂ[li ° Tmax(k,r,m) ® Ko Tmed(k,r,m)])] ’

By (v) = Y. EglokoTmmg

m,r,s<—1
(K} ° Tmin(m,r,s) QKo Tmed(m,r,s) _ Eﬂ [Ii ° Tmin(m,r,s) QKo Tmed(m,r,s)])] ’
with med(m,r, s) the mediane of (m,r, s).

Proposition A.2. Let u,v : M — C be two dynamically Lipschitz continuous functions, with
respect to d¢ with £ € (0,1). Then

Ag(u,v) = Eglu].Ezv] (39)
A (u,v) = zngrfooE [u.Sp.v o T"] =i Bf (w)Egz[v] +i By (v)Ej[u] (40)
As(u,v) = nll)r_{lm(n Ea[u|Ez[v]E? — Bplu.SE%v 0 T™) (41)
= —2B{ (u) ® By (v) — Ealv] By (u) — Eplu] By (v) + EluEalv] By, (42)
Moreover
As(u,v) = lim (3@'7122 ® Eglu.Spvo T — iEs[u.S2% v o )

n—-+00
= 3A41(u,v) ® By + 3i%* @ (Eg[u] By (v) + Ep[v] By (u))
—iEu[v] By (u) — iEalu] By (v) — 3iBy (v) ® By (u) — 3iBy (u) @ By (v) (43)



DECORRELATION IN INFINITE MEASURE 23

and

Ag(u,v) = lim Ezu.S2*woT" + ()\_")(()4)Eﬂ[u]Ep[v] +6n%? @ Ez[u.SS2v o T

n—r+00
= 6By Az(u,v) — 652 @ (Ealu] By, (v) — 6Eg[v] Bf5(v))
+E[ulEp[v](A4(1, 1) — 6B57)
—125% @ (By (u) ® By (v) + By (v) @ By (u) = B (u) @ By (v))
+4B; (u) ® By (v) + 6By (u) ® By (v) + 4 By (v) @ Bf (u).
Proof. As in the proof of Theorem 4.4, we set

Ay (u,v) 1= (Eﬂ[v.eit*S" AU O T”]/)\?)EZ)O .

We will only use Proposition A.1 and the fact that Ay = 1 — 352 % ¢®2 4 L )\(4) #19% 4 o(|t|*) to
compute A, (u,v) = limy, 400 Ap n(u, v).

e First we observe that Ag,(u,v) = Ez[u.v o T"] and we apply Proposition A.1.

e Second,
n—1
A p(u,v) = iEzuS,voT =i ZEﬂ[u.,«; oT*wvoT"
k=0
[n/2) ) n1 ) B
= i Y EnlunoTVE o] +i . EpfuEalos o T-"P] 40 (m90 Hu||(£)||u\|(5)>
[n/2]+1
— QEal] Y Epfur o TV +iEnfu] 3 Egl v/-ion]+O(n19n/ el ey [l ¢ )
k>0 m<—1

where we used several times Proposition A.1, combined with the fact that E;[x] = 0.
e Third,

Agp(u,v) = —Ef[u S92 .00 T" + nX?E;[u]Ez[v] (44)

= - Z u.(koTF @ ko T™)w o T + nS2E s [u)E,[v]
k,m=0

= - Z EplikoTF @ ko T™.5 0 T

k,m=0
_ Z ( /foTk(X)/fonvoT”]—i—E[uﬁoTk®non]E[]>
k,m=0
n—1
+(n¥? = Y EplkoT" @ ko T™])Eg[ulEp[v] (45)
k,m=0
— On the first hand
n—1 n
nx? — Z ExlkoT" @ KkoT™ = nZEﬂka@noT’“]— Z (n — |k|)Ezlk ® ko T
k,m=0 keZ k=—n
= Zmln NEDEalk ® ko T,
keZ

which converges to >,z [k|Ez[k ® ko T*].
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— On the second hand, for 0 < k < m < n, due to Proposition A.1 (treating separately
the cases k >n/3, m—n>n/3 et n —m >n/3),

EalikoTF @ ko T™4 0 T = Epltk o T @ Egfo.k 0 T ™) + O(J|ullce) HvH(g)ﬂg/g). (46)

Analogously
Eplk o TF @ 5 0 T3 0 T = O([[v]|(ey05 /%) (47)
Eplir o TF @ ko T™ = O(|lull 95" (48)
Hence
n—1
Eglir o T ® ko T™) = BE (@) + O |lull¢)) .
k,m=0
n—1
M EalkoTF @ ko T30 T") = By (v) + 005 Julle) - (49)
k,m=0
and

n

—1
Z Epliik o TF @ ko T™.5 0 T

k,m=0

n—1
= ZIE TF50T" 42 Z EultkoTF @ ko T4 0 T"]

k=0 0<k<m<n

~ 3 n—m n 2

= 2 Egfi. (s 0 T9)] @ Ba[6.f o T" ™) + O [lull g) 0] )

0<k<m<n

n 2

= 2B; (u) ® By (v) + 005 |ull g lvlle)) »

where we used the fact that E;[a.6%% 0o TF.5 0 T"] = O(HuH(g)HvH(g)vﬂg/z).
Therefore we have proved (42).
e Let us prove (43). By bilinearity, we have

Az n(u,v) = Azn (1, 0) + Eplu] Az n(1,0) + Epv] A3, (3, 1) + Epfu]Eg[v]A30(1,1). (50)
Note that
A3 ,(1,1) = —E4[S$%) = 0.
since (Sp,)n has the same distribution as (—S,,), (see the begining of the proof of Proposi-
tion 3.1). We will use the following notations: ¢ ) denotes the number of uples made

—~
of k,m,r (with their multiplicities) and we will write F for F' — E;[F]| when F is given
by a long formula.

— We start with the study of Az, (a,1).

Az n(,1) = —iEa[a.89%] 4 3in¥X? @ E;[a.S,)
= —i Z ChmsBalik o TP @ ko T™ @ ko T"] + 3in¥? @ Bj[i1.S,)]
0<k<m<r<n-—1
= —i Z ChmsBalis o T @ Bylk o T™ @ k 0 T"] 4 3in%? @ B[S,
0<k<m<r<n-—1

——~—

— — —
—1 E ChmrEp [UkoT"@KkoT™ @Ko T"
0<k<m<r<n—1
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Az (0, 1) (51)
= —32’2 Z max(0,n — |m| — k)Eg[d.k o T @ Eplk.k 0 T™] + 3in¥? @ E;[a.S,,]

k>0meZ

e~ — e~ —

n—1
Z EM iL. KOTmln(kmr) ® KOTmed(kmr) ® KOTmax(kmr)
k,m,r=0

= 3i» Y _(Im|+k)Eglik o T" @ Bglk.ic 0 T™]

k>0mEeZ

—3in (Bf (u) - Egla.S,]) © 52 — By (@) + 00 [|ul| ¢))

(52)
and so
A3 (i,1) = —iBy (@) + 3iBg (i) ® ¥* + 3iBy @ B (@) (53)
— Analogously,
A3 ,(1,0) = —iBy (0) + 3iBy () ® X% + 3iBy ® By (1). (54)
— Finally
Az (0,0) = —iEz[a.85%.9 0 T + 3in¥? @ E[a.S,,.9 0 T"]
n—1 _
= —i > EylikoT"@KoT"@koT".50T" + 3inS® @ Ay (i, D)
k,m,r=0
n—1
= —i > EylikoT"@koT"@koT 501" + 029y |ull g 1ol e)) -
k,m,r=0

Assume 0 < k < m < r < n — 1. Considering separately the cases k > n/4,
m—k>n/4, r—m >n/4 and n —r > n/4, we observe that

EplikoTF @ ko T™. @ ko T4 0 T"
= Eplik o TH @ Eplow o T~ @ ko T-(7m))
+Ea[0.5 0 T~ @ Eglik o T @ ko T + O [oll ey lulle)) (55)
And so
Az (1,0) = —3iB; (@) B, (0) — 3By (0) By (). (56)

This combined with (50), (53) and (54) leads to (43).
e It remains to prove (44). Observe first that

Agp(u,v) = (A"
—

Ex[@]Ex[0] + 6n2? @ Bpu.SE%v 0 T 4+ Ez[u.S5% v o T
Ez[a]Eg[v] + 6nY? ® (n22Eﬁ[u]Eﬂ[v] — Az (u, v)) + Eﬂ[u.S,?‘l.v o fS?’)
where we used (44). Note that

)5
)5

+Ea[v|Eg[a.S5) + Eg[u]Ea[v]Ex[SE). (58)

We now study separately each term of the right hand side of this last formula.
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n—1
= Z EplikoTF @ ko T™ ko T" @ ko T%.5 0 T
k,m,r,s=0

—~—

L _ _
= Z Clk,myr,s)Ei akoT"@Kk@koT  ™oT™koT 50 T"
0<k<m<r<s<n-—1

+ Z Ck,m,r,s)Epll-k 0 TFroT 00T @Esk @ ko T ™) (59)
0<k<m<r<s<n—1

with ¢(g m,rs) the number of 4-uples made of k,m,r, s (with the same multiplicities).

Due to (46),
Z Clkeym,r,s)Epll-k 0 TF @ KkoT*bo ™ ® Exlk®@ ko "™
0<k<m<r<s<n—1
~ - ~ = (n— r— 3
= Z Clk ) Bpliik o TF @ Bl o T~ @ Epli @ k0 T 7] +0(n'oy/ [l 1ol e
0<k<m<r<s<n-—1
n—s n—s
~ r ~ o Fr— 3
= EplikoTF @Y Ealoko T 1® D > chummn—s)Balk @ £ T + O(n*vy/ lulley o]l e))
k>0 s>1 m=kr=m
- - ~ T 3
=Y EilanoTH @ > Exlvk o T7% @ 12E5[SS2, 1] + Oy [ull ¢ llvlle))
k>0 s>1
=Y EalikoTH @Y Eplo.o T*112((n — s — k+ 1)52 = Y [r[Ea[s ® & 0 T7] + O(n* 05> [ull g ||v
k>0 s>1 rez
— 12B; () By (v) <n22 ) IrEailk @ o TT])
rez

~12) Eulako TH® Y Eplo.k o T~%)(s + k — 1) @ £2 + O(n0y*|[ullg) 0]l e)) -
k>0 s>1

But, on the other hand, treating separately the cases k > n/5, m—k >n/5, r—m >
n/5, s—r >n/5and n—s > n/5, we obtain that, for every 0 < k <m <r < s <mn,

—_—

_ —~—_ _ _
Ez dkoTF@k@KkoT ™MoT"™®kKkoT 5o T"

_ —_——— _ _
=Epluko T @Eplk @ ko T ™o T™ @ ko T%.5 0 T
+ EplikoTF @ o T™| @EplkoT" ® ko T.5 0 T"]

_ —— _ _ _
+ Eﬂ[ﬁ.h} o Tk RERXQKoT ™o Tm] ® Eﬂ[lﬁi oT%do Tn] + 0(793/5”21“(5) ”U”(g)) (61)

Due to (48),

e~

— _ _
Eﬂ KkoT"  ™MoT™ koT* DoTm :O(Vﬂg_mHUH(OHUH(g)),
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_, ——— _ _ _
Eﬂ[ﬂ.m oTF kkoT ™o Tm]Ep[/{ oT*voT"| = O(ﬁgbﬂg*sHuH(g)||v||(£)),

Epli.k o TF ® ko T™) = O3 [|ull¢))-
Therefore
Z C(k,m,r,s)Eﬂ[ﬂ.I{ oTk @koT"@KkoT"®@KkoT* Do Tn]
0<k<m<r<s<n-—1

=4 Epli.ko T B; (0) +4B3 () ® Y EplkoT™*

k>0 s>1
+6 Z UKZOTk@HZOTm]@ZE[@.KOT_T@)HOT_S]
m,k>0 rs>1
+0 (9 lull el - (62)
Putting together (57), (59), (60) and (62) leads to
Agn(@,0) = =12 EulakoT*Y Eplko T .0)(s +k—1) @3
k>0 s>1

+4B; (u) ® B3 (9) + 4 By (v) ® By (1)
+6B7 (u) ® By (v) = 12B{ (@) © B (5) ® Bo + O (95 Jullg lvlle) ) (63)
— Second:

Eﬂ[ﬂ.Sf?‘l] = Z Clkm,rs)Ep | Uk © TF@rkoT™"@KkoT @Ko TS} . (64)
0<k<m<r<s<n-—1

But, due to (55), for 0 <k <m <r <s<n-—1, we have
Eﬂ[ﬂﬂoTk@)ﬂon@moTr@noTS]
=EilikoTF|@EBak @ ko T" ™ @ k0o T5™™)
FEgltno T @ ko T @ Baln @ ko 7]+ O(lulli ol 93%)-

Therefore
@53 =4 Ea[SE3,]
k>0
+6 Z Z max(0, (n — max(k,m) — |r|))Egla.k o T" @ k o T™] @ Byl @ k0 T7]
k,m>0reZ

= 6nBy (1) @%% -6 Z Zmaxk:m +|r)Eplik o T* @ ko T™ @ B[k @ k0 T
k,m>01reZ

since E;[S23] = 0. It comes

Eu[a.52%] = 6nB5 (@) ® £% — 6B ,(a) ® £* — 6By (@) © By + O(9;'*) (65)
— Analogously,
Eq6 0 T".5%Y = 6nB; (5) ® % — 6B, ,(8) © X2 — 6B, (8) ® By + O(9;'”).  (66)

Formula (44) follows from (58), (63), (65) and (66).
O
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Proposition A.3. The fourth derivatives of A at 0 are given by

_[Q®4] _ 2/(32\®2

n—-+oo n

+3(2%)%? 4 6%? @ By .

Proof. Derivating four times Ej[e?*5] = AIE; [ /A7] leads to

EalS7Y) = (5 + 6005 © Aan(1,1) + Agn(1,1)
= A +3n(n — DO + 600 ® Ay (1,1) + Agp(1,1),
and we conclude due to (34) and due to )\((]2) = —%2 (coming from Item (iii) of Proposition
4.1). O
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