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We investigate the question of the rate of mixing for observables of a Z d -extension of a probability preserving dynamical system with good spectral properties. We state general mixing results, including expansions of every order. The main part of this article is devoted to the study of mixing rate for smooth observables of the Z 2 -periodic Sinai billiard, with different kinds of results depending on whether the horizon is finite or infinite. We establish a first order mixing result when the horizon is infinite. In the finite horizon case, we establish an asymptotic expansion of every order, enabling the study of the mixing rate even for observables with null integrals.

Introduction

Let (M, ν, T ) be a dynamical system, that is a measure space (M, ν) endowed with a measurable transformation T : M → M which preserves the measure ν. The mixing properties deal with the asymptotic behaviour, as n goes to infinity, of integrals of the following form

C n (f, g) := M f.g • T n dν, for suitable observables f, g : M → C.
Mixing properties of probability preserving dynamical systems have been studied by many authors. It is a way to measure how chaotic the dynamical system is. A probability preserving dynamical system is said to be mixing if C n (f, g) converges to M f dν M g dν for every square integrable observables f, g. When a probability preserving system is mixing, a natural question is to study the decorrelation rate, i.e. the rate at which C n (f, g) converges to zero when f or g have null expectation. This crucial question is often a first step before proving probabilistic limit theorems (such as central limit theorem and its variants). The study of this question has a long history. Such decays of covariance have been studied for wide classes of smooth observables f, g and for many probability preserving dynamical systems. In the case of the Sinai billiard, such results and further properties have been established in [START_REF] Sinai | Dynamical systems with elastic reflections[END_REF][START_REF] Bunimovich | Markov partitions for dispersed billiards[END_REF][START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF][START_REF] Bunimovich | Markov partitions for two-dimensional hyperbolic billiards[END_REF][START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF][START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF][START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF][START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF][START_REF] Szász | Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon[END_REF].

We are interested here in the study of mixing properties when the invariant measure ν is σfinite. In this context, as noticed in [START_REF] Krengel | On mixing in infinite measure spaces[END_REF], there is no satisfactory notion of mixing. Nevertheless the question of the rate of mixing for smooth observables is natural. A first step in this direction is to establish results of the following form:

lim n→+∞ α n C n (f, g) = M f dν M g dν . (1) 
Such results have been proved in [START_REF] Thaler | The asymptotics of the Perron Perron-Frobenius operator of a class of interval maps preserving infinite measures[END_REF][START_REF] Melbourne | Operator renewal theory and mixing rates for dynamical systems with infinite measure[END_REF][START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF][START_REF] Bruin | Upper and lower bounds for the correlation function via inducing with general return times[END_REF][START_REF] Liverani | Mixing for some non-uniformly hyperbolic systems[END_REF] for a wide class of models and for smooth functions f, g, using induction on a finite measure subset of M . An alternative approach, specific to the case of Z d -extensions of probability preserving dynamical system, has been pointed out in [START_REF] Pène | Mixing rate in infinite measure for Z d -extensions, application to the periodic Sinai billiard[END_REF]. The idea therein is that, in this particular context, which the Nagaev-Guivarc'h perturbation method can be implemented. In Section 3, we recall some facts on the towers constructed by Young for the Sinai billiards. In Section 4, we prove our main results for the billiard in finite horizon (see also Appendix A for the computation of the first coefficients). In Section 5, we prove our result for the billiard in infinite horizon.

Main results for Z 2 -periodic Sinai billiards

Let us introduce the Z 2 -periodic Sinai billiard (M, ν, T ). Billiards systems modelise the behaviour of a point particle moving at unit speed in a domain Q and bouncing off ∂Q with respect to the Descartes reflection law (incident angle=reflected angle). We assume here that Q := R 2 \ ℓ∈Z 2 I i=1 (O i + ℓ), with I ≥ 2 and where O 1 , ..., O I are convex bounded open sets (the boundaries of which are C 3 -smooth and have non null curvature). We assume that the closures of the obstacles O i + ℓ are pairwise disjoint. The billiard is said to have finite horizon if every line in R 2 meets ∂Q. Otherwise it is said to have infinite horizon.

We consider the dynamical system (M, ν, T ) corresponding to the dynamics at reflection times which is defined as follows. Let M be the set of reflected vectors off ∂Q, i.e. M := {(q, v) ∈ ∂Q × S 1 : n(q), v ≥ 0}, where n(q) stands for the unit normal vector to ∂Q at q directed inward Q. We decompose this set into M := ℓ∈Z 2 C ℓ , with

C ℓ := (q, v) ∈ M : q ∈ I i=1 (∂O i + ℓ) .
The set C ℓ is called the ℓ-cell. We define T : M → M as the transformation mapping a reflected vector at a reflection time to the reflected vector at the next reflection time. We consider the measure ν absolutely continuous with respect to the Lebesgue measure on M , with density proportional to (q, v) → n(q), v and such that ν(C 0 ) = 1.

Because of the Z 2 -periodicity of the model, there exists a transformation T : C 0 → C 0 and a function κ : C 0 → Z 2 such that ∀((q, v), ℓ) ∈ C 0 × Z 2 , T (q + ℓ, v) = q ′ + ℓ + κ(q, v), v ′ , if T (q, v) = (q ′ , v ′ ). [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF] This allows us to define a probability preserving dynamical ( M , μ, T ) (the Sinai billiard) by setting M := C 0 and μ = ν |C 0 . Note that (4) means that (M, ν, T ) can be represented by the Z 2 -extension of ( M , μ, T ) by κ. In particular, iterating (4) leads to

∀((q, v), ℓ) ∈ C 0 × Z 2 , T n (q + ℓ, v) = q ′ n + ℓ + S n (q, v), v ′ n , (5) 
if T n (q, v) = (q ′ n , v ′ n ) and with the notation

S n := n-1 k=0 κ • T k .
The set of tangent reflected vectors S 0 given by

S 0 := {(q, v) ∈ M : v, n(q) = 0}
plays a special role in the study of T . Note that T defines a

C 1 -diffeomorphism from M \ (S 0 ∪ T -1 (S 0 )) to M \ (S 0 ∪ T (S 0 )).
Statistical properties of ( M , μ, T ) have been studied by many authors since the seminal article [START_REF] Sinai | Dynamical systems with elastic reflections[END_REF] by Sinai. In the finite horizon case, limit theorems have been established in [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF][START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF][START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF][START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF], including the convergence in distribution of (S n / √ n) n to a centered gaussian random variable B with nondegenerate variance matrix Σ 2 given by:

Σ 2 := k∈Z E μ[κ ⊗ κ • T k ] ,
where we used the notation X ⊗ Y for the matrix (x i y j ) i,j , for X = (x i ) i , Y = (y j ) j ∈ C 2 . Moreover a local limit theorem for S n has been established in [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] and some of its refinements have been stated and used in [START_REF] Dolgopyat | Recurrence properties of planar Lorentz process[END_REF][START_REF] Pène | Planar Lorentz process in a random scenery[END_REF][START_REF] Pène | Asymptotic of the number of obstacles visited by the planar Lorentz process[END_REF][START_REF] Pène | Back to balls in billiards[END_REF] with various applications. Recurrence and ergodicity of this model follow from [START_REF] Conze | Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications[END_REF][START_REF] Schmidt | On joint recurrence[END_REF][START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF][START_REF] Simányi | Toward a proof of recurrence for the Lorentz process[END_REF][START_REF] Pène | Applications des propriétés stochastiques de billards dispersifs[END_REF].

In the infinite horizon case, a result of exponential decay of correlation has been proved in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]. A nonstandard central limit theorem (with normalization in √ n log n) and a local limit theorem have been established in [START_REF] Szász | Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon[END_REF], ensuring recurrence and ergodicity of the infinite measure system (M, ν, T ). This result states in particular that (S n / √ n log n) n converges in distribution to a centered gaussian distribution with variance Σ 2 ∞ given by

Σ 2 ∞ := x∈S 0 | T x=x d 2 x 2|κ(x)| I i=1 |∂O i | (κ(x)) ⊗2 ,
where d x is the width of the corridor corresponding to x.

Our main results provide mixing estimates for dynamically Lipschitz functions. Let us introduce this class of observables. Let ξ ∈ (0, 1). We consider the metric d ξ on M given by ∀x, y ∈ M, d ξ (x, y) := ξ s(x,y) , where s is a separation time defined as follows: s(x, y) is the maximum of the integers k ≥ 0 such that x and y lie in the same connected component of M \ k j=-k T -j S 0 . For every f : M → C, we write L ξ (f ) for the Lipschitz constant with respect to d ξ :

L ξ (f ) := sup x =y |f (x) -f (y)| d ξ (x, y) .
We then set f (ξ) := f ∞ + L ξ (f ) . Before stating our main result, let us introduce some additional notations.

We will work with symmetric multilinear forms. For any A = (A i 1 ,...,im ) (i 1 ,...,im)∈{1,2} m and B = (B i 1 ,...,i k ) (i 1 ,...,i k )∈{1,2} k with complex entries (A and B are identified respectively with a m-multilinear form on C 2 and with a k-multilinear form on C 2 ), we define A ⊗ B as the element

C of C {1,2} m+m ′ (identified with a (m + m ′ )-multilinear form on C 2 ) such that ∀i 1 , , ..., i m+m ′ ∈ {1, 2}, C (i 1 ,,...,i m+m ′ ) = A (i 1 ,...,im) B (i m+1 ...,i m+m ′ ) .
For any A = (A i 1 ,...,im

) (i 1 ,...,im)∈{1,2} m and B = (B i 1 ,...,i k ) (i 1 ,...,i k )∈{1,2} k symmetric with complex entries with k ≤ m, we define A * B as the element C of C {1,2} m-k (identified with a (m -k)- multilinear form on C 2 ) such that ∀i 1 , , ..., i m-k ∈ {1, 2}, C (i 1 ,,...,i m-k ) = i m-k+1 ,...,im∈{1,2} A (i 1 ,...,im) B (i m-k+1 ,...,im) .
We identify naturally vectors in C 2 with 1-linear functions and symmetric matrices with symmetric bilinear functions. For any C m -smooth function F : C 2 → C, we write F (m) for its m-th differential, which is identified with a m-linear function on C 2 . We write A ⊗k for the product A ⊗ ... ⊗ A. Observe that, with these notations, Taylor expansions of F at 0 are simply written m k=0

F (k) (0) * x ⊗k .
It is also worth noting that A * (B ⊗ C) = (A * B) * C, for every A, B, C corresponding to symmetric multilinear forms with respective ranks m, k, ℓ with m ≥ k + ℓ.

We extend the definition of κ to M by setting κ((q + ℓ, v)) = κ(q, v) for every (q, v) ∈ M and every ℓ ∈ Z 2 . For every k ∈ Z and every x ∈ M , we write I k (x) for the label in Z 2 of the cell containing T k x, i.e. I k is the label of the cell in which the particle is at the k-th reflection time. It is worth noting that, for n ≥ 0, we have

I n -I 0 = n-1 k=0 κ•T k and I -n -I 0 = --1 k=-n κ•T k .
Now let us state our main results, the proofs of which are postponed to Section 4. We start by stating our result in the infinite horizon case, and then we will present sharper results in the finite horizon case.

1.1. Z 2 -periodic Sinai billiard with infinite horizon. Theorem 1.1. Let (M, ν, T ) be the Z 2 -periodic Sinai billiard with infinite horizon. Suppose that the set of corridor free flights {κ(x), x ∈ S 0 , T x = x} spans R 2 . Let f, g : M → C (with respect to d ξ ) be two dynamically Lipschitz continuous functions such that

ℓ∈Z 2 ( f 1 C ℓ ∞ + g1 C ℓ ∞ ) < ∞ . ( 6 
)
Then M f.g • T n dν = 1 2π det Σ 2 ∞ n log n M f dν M g dν + o(1) .
1.2. Z 2 -periodic Sinai billiard with finite horizon. We first state our result providing an expansion of every order for the mixing (see Theorem 4.5 and Corollary 4.7 for more details).

Theorem 1.2. Let K be a positive integer. Let f, g : M → C be two dynamically Lipschitz continuous observables such that

ℓ∈Z 2 |ℓ| 2K-2 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ) ) < ∞ ,
then there exist c 0 (f, g), ..., c K-1 (f, g) such that

M f.g • T n dν = K-1 m=0 c m (f, g) n 1+m + o(n -K ) .
We precise in the following theorem the expansion of order 2.

Theorem 1.3. Let f, g : M → R be two bounded observables such that

ℓ∈Z 2 |ℓ| 2 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ) ) < ∞ . Then M f.g • T n dν = 1 2π √ det Σ 2 1 n M f dν M g dν + 1 2 n 2 Σ -2 * Ã2 (f, g) + 1 4! n 2 M f dν M g dν (Σ -2 ) ⊗2 * Λ 4 + o(n -2 ) , (7) 
with Σ -2 = (Σ 2 ) -1 and

Ã2 (f, g) := - M f dν B - 2 (g) - M g dν B + 2 (f ) - M f dν M g dν B 0 + 2 B + 1 (f ) ⊗ B - 1 (g) , B + 2 (f ) := lim m→+∞ M f. I ⊗2 m -mΣ 2 dν , B - 2 (g) := lim m→-∞ M g. I ⊗2 m -|m|Σ 2 dν , B + 1 (f ) := lim m→+∞ M f.I m dν , B - 1 (g) := lim m→-∞ M g.I m dν , B 0 = lim m→+∞ (mΣ 2 -E μ[S ⊗2 m ]
) and

Λ 4 := lim n→+∞ E μ[S ⊗4 n ] -3n 2 (Σ 2 ) ⊗2 n + 6Σ 2 ⊗ B 0 .
Observe that we recover (3) since Σ 2 * Σ -2 = 2,

B + 1 (f -f • T ) = lim m→+∞ M f.κ • T m dν = 0 and B + 2 (f -f • T ) = lim n→+∞ M f.(I ⊗2 m -I ⊗2 m-1 ) = lim m→+∞ M f. κ ⊗2 • T m-1 + 2 m-2 k=0 (κ • T k ) ⊗ κ • T m-1 dν = lim m→+∞ M f dνE μ κ ⊗2 + 2 m-1 k=1 κ ⊗ κ • T k , = Σ 2 M f dν ,
where we used Proposition A.1.

Remark 1.4. Note that

B + 2 (f ) = j,m≥0 M f. κ • T j ⊗ κ • T m -E μ[κ • T j ⊗ κ • T m ] dν + M f I ⊗2 0 dν + 2 m≥0 M f.I 0 ⊗ κ • T m dν -B 0 M f dν , B - 2 (g) = j,m≤-1 M g.(κ • T j ⊗ κ • T m -E μ[κ • T j ⊗ κ • T m ]) dν + M g.I ⊗2 0 dν -2 m≤-1 M g.I 0 ⊗ κ • T m dν -B 0 M g dν , B + 1 (f ) = m≥0 M f.κ • T m dν + M f.I 0 dν , B - 1 (g) = - m≤-1 M g.κ • T m dν + M g.I 0 dν , and 
B 0 = m∈Z |m|E μ[κ ⊗ κ • T m ] .
Corollary 1.5. Under the assumptions of Theorem 1.3, if M f dν = 0 and M g dν = 0, then

M f.g • T n dν = Σ -2 * (B + 1 (f ) ⊗ B - 1 (g)) n 2 2π √ det Σ 2 + o(n -2 ) .
Two natural examples of zero integral functions are 1 C 0 -1 Ce 1 with e 1 = (1, 0) or f C 0 with

C 0 f dν = 0. Note that M ((1 C 0 -1 Ce 1 ).(1 C 0 -1 Ce 1 ) • T n ) dν ∼ σ 2 2,2 n 2 2π(det Σ 2 ) 3/2 ,
with Σ 2 = (σ 2 i,j ) i,j=1,2 and that

M (f 1 C 0 .1 C 0 • T n ) dν ∼ - 1 n 2 2π(det Σ 2 ) 3/2 m≥0 E μ[f.(σ 2 2,2 κ 1 + σ 2 1,1 κ 2 ) • T m ] ,
with κ = (κ 1 , κ 2 ), provided the sum appearing in the last formula is non null. As noticed in introduction, it may happen that [START_REF] Chernov | Chaotic billiards[END_REF] provides only M f.g

• T n = o(n -2
). This is the case for example if M g dν = 0 and if f has the form f (q + ℓ, v) = f 0 (q, v).h ℓ with E μ[f 0 ] = 0 and

ℓ h ℓ = 0.
Hence it can be useful to go further in the asymptotic expansion, which is possible thanks to Theorem 4.5. A formula for the term of order n -3 when M f dν = M g dν = Ã2 (f, g) = 0 is stated in theorem 4.8 and gives the following estimate, showing that, for some observables, C n (f, g) has order n -3 . Proposition 1.6. If f and g can be decomposed in f (q + ℓ, v) = f 0 (q, v).h ℓ and g(q

+ ℓ, v) = g 0 (q, v).q ℓ with E μ[f 0 ] = E μ[g 0 ] = 0 and ℓ q ℓ = ℓ h ℓ = 0 such that ℓ∈Z 2 |ℓ| 4 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ) ) < ∞. Then M f.g • T n dν = (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 * B + 2 (f ) ⊗ B - 2 (g) 4 + o(n -3 ) ,
with here

B + 2 (f ) ⊗ B - 2 (g) 4 = -   ℓ∈Z 2 h ℓ .ℓ   ⊗   j≥0 E μ[f 0 .κ • T j ]   ⊗   ℓ∈Z 2 q ℓ .ℓ   ⊗   m≤-1 E μ[g 0 .κ • T m ]   .

General results for Z d -extensions and key ideas

In this section we state general results in the general context of Z d -extensions over dynamical systems satisfying good spectral properties. This section contains the rough ideas of the proofs for the billiard, without some complications due to the quotient tower. Moreover the generality of our assumptions makes our results implementable to a wide class of models with present and future developments of the Nagaev-Guivarch method of perturbation of transfer operators.

We consider a dynamical system (M, ν, T ) given by the Z d -extension of a probability preserving dynamical system ( M , μ, T ) by

κ : M → Z d . This means that M = M × Z d , ν = μ ⊗ m d
where m d is the counting measure on Z d and with

∀(x, ℓ) ∈ M × Z d , T (x, ℓ) = ( T (x), ℓ + κ(x)) , so that ∀(x, ℓ) ∈ M × Z d , ∀n ≥ 1, T n (x, ℓ) = ( T n (x), ℓ + S n (x)) ,
with S n := n-1 k=0 κ• T k . Let P be the transfer operator of T , i.e. the dual operator of f → f • T . Our method is based on the following key fomulas:

M f.g • T n dν = ℓ,ℓ ′ ∈Z 2 E μ[f (•, ℓ).1 Sn=ℓ ′ -ℓ .g( T n (•), ℓ ′ )] (8) = ℓ,ℓ ′ ∈Z d E μ[P n (1 Sn=ℓ ′ -ℓ f (•, ℓ))g(•, ℓ ′ )] (9) 
and

P n (1 Sn=ℓ u) = 1 (2π) d [-π,π] d e -it * ℓ P n (e it * Sn u) dt = 1 (2π) d [-π,π] d e -it * ℓ P n t (u) dt , (10) 
with P t := P (e it * κ •). Note that (9) makes a link between mixing properties and the local limit theorem and that [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF] shows the importance of the study of the family of perturbed operators (P t ) t in this study. We will make the following general assumptions about (P t ) t .

Hypothesis 2.1 (Spectral hypotheses). There exist two complex Banach spaces (B, • ) and

(B 0 , • 0 ) such that: • B ֒→ B 0 ֒→ L 1 ( M , μ) and 1 M ∈ B ,
• there exist constants b ∈ (0, π], C > 0 and ϑ ∈ (0, 1) and three functions λ

• : [-b, b] d → C and Π • , R • : [-b, b] d → L(B, B) such that lim t→0 λ t = 1 and lim t→0 Π t -E µ [•]1 M L(B,B 0 ) = 0 and such that, in L(B, B), ∀u ∈ [-b, b] d , P u = λ u Π u + R u , Π u R u = R u Π u = 0, Π 2 u = Π u , (11) 
sup

u∈[-b,b] d R k u L(B,B 0 ) ≤ Cϑ k , sup u∈[-π,π] d \[-b,b] d P k u L(B,B 0 ) ≤ Cϑ k . ( 12 
)
Note that [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF] 

ensures that ∀u ∈ [-b, b], P n u = λ n u Π u + R n u . (13) 
We will make the following assumption on the expansion of λ at 0.

Hypothesis 2.2. Let Y be a random variable with integrable characteristic function a . := e -ψ(•) and with density function Φ. Assume that there exists a sequence of invertible matrices (Θ n ) n such that lim n→+∞ Θ -1 n = 0 and ∀u, λ

n t Θ -1 n •u ∼ e -ψ(u) = a u , as n → +∞ ( 14 
)
(where t Θ -1 n stands for the transpose matrix of

Θ -1 n ) and ∀u ∈ [-b, b] d , |λ n u | ≤ 2 e -ψ( t Θn•u) .
Note that, under Hypothesis 2.1 and if ( 14) holds true, then

∀u ∈ R d , e -ψ(u) = lim n→+∞ λ n t Θ -1 n •u = lim n→+∞ E μ[P n t Θ -1 n •u 1] = lim n→+∞ E μ[e iu * (Θ -1 n Sn) ],
and so (Θ

-1 n S n ) n converges in distribution to Y . If Y has a stable distribution of index α ∈ (0, 2] \ {1}, i.e. ψ(u) = S 1 |u * s| α (1 + tan π α sign(u * s)) dΓ(u),
where Γ is a Borel measure on the unit sphere

S 1 = {x ∈ R d : x * x = 1} and if λ u = e -ψ(u)L(|u| -1 ) + o |u| α L(|u| -1 ) , as u → 0 ,
with L slowly varying at infinity, then Hypothesis 2.2 holds true with Θ n := a n Id with a n := inf{x > 0 : n|x| -α L(x) ≥ 1} . But Hypothesis 2.2 allows also the study of situations with anisotropic scaling. Before stating our first general result, let us introduce an additional notation. Under Hypothesis 2.1, for any function u : M → C, we write u

B ′ 0 := sup h∈B 0 |E μ[u.h]|.
Theorem 2.3. Assume Hypotheses 2.1 and 2.2. Let f, g : M → C be such that

f + := ℓ∈Z d f (•, ℓ) < ∞ and g +,B ′ 0 := ℓ∈Z d g(•, ℓ) B ′ 0 < ∞. Then M f.g • T n dν = Φ(0) det Θ n M f dν M g dν + o(1) , as n → +∞ .
Proof. For every positive integer n and every ℓ ∈ Z d , combining [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF] with Hypothesis 2.1, the following equalities hold in L(B, B 0 ):

P n (1 Sn=ℓ •) = 1 (2π) d [-b,b] d e -it * ℓ λ n t Π t (•) dt + O(ϑ n ) = 1 (2π) d det Θ n t Θn[-b,b] d e -iu * (Θ -1 n ℓ) λ n t Θ -1 n u Π t Θ -1 n u (•) du + O(ϑ n ) = 1 (2π) d det Θ n R d e -iu * (Θ -1 n ℓ) e -ψ(u) Π 0 (•) du + ε n,ℓ = Φ(Θ -1 n ℓ) det Θ n Π 0 + ε n,ℓ , (15) 
with

sup ℓ ε n,ℓ L(B,B 0 ) = o(det Θ -1 n ) due to the dominated convergence theorem applied to λ n t Θ -1 n u Π t Θ -1 n u -e -ψ(u) Π 0 L(B,B 0 ) 1t Θn[-b,b] d (u). Setting u ℓ := f (•, ℓ
) and v ℓ := g(•, ℓ) and using [START_REF] Dolgopyat | Recurrence properties of planar Lorentz process[END_REF], we obtain

M f.g • T n dν = ℓ,ℓ ′ ∈Z d Φ(Θ -1 n (ℓ ′ -ℓ)) det Θ n E μ[u ℓ ] E μ[v ℓ ′ ] + E μ[v ℓ ′ ε n,ℓ (u ℓ )] = ℓ,ℓ ′ ∈Z d Φ(Θ -1 n (ℓ ′ -ℓ)) det Θ n E μ[u ℓ ] E μ[v ℓ ′ ] + O   ℓ,ℓ ′ ∈Z d v ℓ ′ B ′ 0 ε n,ℓ L(B,B 0 ) u ℓ   = ℓ,ℓ ′ ∈Z d Φ(Θ -1 n (ℓ ′ -ℓ)) det Θ n E μ[u ℓ ] E μ[v ℓ ′ ] + εn (f, g) , (16) 
with lim n→+∞ sup f,g det Θn εn(f,g) g +,B ′ 0 f + = 0. Now, due to the dominated convergence theorem and since Φ is continuous and bounded,

lim n→+∞ ℓ,ℓ ′ ∈Z d Φ Θ -1 n (ℓ ′ -ℓ) E μ[u ℓ ] E μ[v ℓ ′ ] = Φ(0) ℓ,ℓ ′ ∈Z 2 E μ[u ℓ ] E μ[v ℓ ′ ] = Φ(0) M f dν M g dν ,
which ends the proof.

We will reinforce Hypothesis 2.2. Notations λ

(k) 0 , a (k) 0 , Π (k) 
0 stand for the k-th derivatives of λ, a and Π at 0. 

- M P + M 2 ≥ K . ( 17 
)
Assume moreover that λ • is C M -smooth and that there exists a positive symmetric matrix

Σ 2 such that λ u -1 ∼ -ψ(u) := - 1 2 Σ 2 * u ⊗2 , as u → 0 . ( 18 
)
Assume that, for every k < P , λ

(k) 0 = a (k)
0 with a t = e -ψ(t) , for every k < P . Assume moreover that the functions Π and R are C 2K -smooth. Let f, g : M → C be such that

ℓ∈Z d ( f (•, ℓ) + g(•, ℓ) B ′ ) < ∞ . ( 19 
)
Then M f.g•T n dν = ℓ,ℓ ′ ∈Z d 2K m=0 1 m! M j=0 i m+j (j)! Φ (m+j) ℓ ′ -ℓ an n d+m+j 2 * (E μ[v ℓ ′ Π (m) 0 (u ℓ )]⊗(λ n /a n ) (j) 0 )+o(n -K-d 2 ) . ( 20 
) If moreover ℓ∈Z d |ℓ| 2K ( f (•, ℓ) + g(•, ℓ) B ′ ) < ∞, then M f.g • T n dν = m,j,r i j+m m! r! j! Φ (j+m+r) (0) n j+d+m+r 2 * (λ n /a n ) (j) 0 * ℓ,ℓ ′ ∈Z d (ℓ ′ -ℓ) ⊗r ⊗ E μ[v ℓ ′ Π (m) 0 (u ℓ )] + o(n -K-d 2 ) , ( 21 
)
where the sum is taken over the (m, j, r) with m, j, r non negative integers such that j+m+r ∈ 2Z and r+m+j

2 -⌊ j P ⌋ ≤ K.
Observe that

(λ n /a n ) (j) 0 = k 1 m 1 +...+krmr=j n! m 1 ! • • • m r !(n -m 1 -... -m r )! ((λ/a) (k 1 ) 0 ) m 1 • • • ((λ/a) (kr ) 0 ) mr ,
where the sum is taken over r ≥ 1, m 1 , ..., m r ≥ 1, k r > ... > k 1 ≥ P (this implies that m 1 + ... + m r ≤ j/P ). Hence (λ n /a n ) (j) 0 is polynomial in n with degree at most ⌊j/P ⌋.

Remark 2.5. Note that [START_REF] Nagaev | More exact statement of limit theorems for homogeneous Markov chains[END_REF] holds true as soon as M ≥ 2KP/(P -2) and M in (20) can be replaced by (2Km)P/(P -2). Moreover [START_REF] Pène | Mixing rate in infinite measure for Z d -extensions, application to the periodic Sinai billiard[END_REF] provides an expansion of the following form:

M f.g • T n dν = K m=0 c m (f, g) n d 2 +m + o(n -K-d 2 ) . Remark 2.6. If Π is C M -smooth, using the fact (λ n /a n ) (j) 0 = O(n ⌊j/P ⌋ ), if ℓ∈Z d |ℓ| M ( f (•, ℓ) + g(•, ℓ) B ′ ) < ∞ the right hand side of (21) can be rewritten 1 n d 2 ℓ,ℓ ′ ∈Z d M L=0 1 n L/2 Φ (L) (0) L! i L ∂ L ∂t L E μ v ℓ ′ .e -it * (ℓ ′ -ℓ) .λ n t Π t .u ℓ e n 2 Σ 2 * t ⊗2 |t=0 + o(n -K-d 2 )
.

If moreover sup u∈[-b,b] d (R n u ) (m) (B,B) = O(ϑ n
) for every m = 0, ..., M , then it can also be rewritten

1 n d 2 ℓ,ℓ ′ ∈Z d M L=0 Φ (L) (0) L! i L ∂ L ∂t L E μ u ℓ .e it * Sn-(ℓ ′ -ℓ) √ n .v ℓ ′ • T n e 1 2 Σ 2 * t ⊗2 |t=0 + o(n -K-d 2 ) ,
where we used [START_REF] Krengel | On mixing in infinite measure spaces[END_REF].

Proof of Theorem 2.4. We assume, up to a change of b that Hypothesis 2.2 holds true. Due to [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF] and to [START_REF] Krengel | On mixing in infinite measure spaces[END_REF], in L(B, B), we have

P n (1 Sn=ℓ •) = 1 (2π) d [-π,π] d e -it * ℓ P n t (•) dt = 1 (2π) d [-b,b] d e -it * ℓ λ n t Π t (•) dt + O(ϑ n ) = 1 (2π) d n d 2 [-b √ n,b √ n] d e -it * ℓ √ n λ n t/ √ n Π t/ √ n (•) dt + O(ϑ n ) = 1 (2π) d n d 2 [-b √ n,b √ n] d e -it * ℓ √ n λ n t/ √ n 2K m=0 1 m! Π (m) 0 (•) * t ⊗m n m 2 dt + o(n -K-d 2 ) ,
due to the dominated convergence theorem since there exists [START_REF] Nagaev | More exact statement of limit theorems for homogeneous Markov chains[END_REF], we obtain

x t/ √ n ∈ (0, t/ √ n) such that Π t/ √ n (•) = 2K-1 m=0 1 m! Π (m) 0 (•) * t ⊗m n m 2 + 1 (2K)! Π (2K) 0 (x t/ √ n ) * t ⊗2K n K . Recall that (λ n /a n ) (j) 0 = O(n ⌊j/P ⌋ ), so λ n t/ √ n -a t M j=0 1 j! (λ n /a n ) (j) 0 * t ⊗j n j 2 ≤ n ⌊ M P ⌋ a t |t| M n M 2 η(t/ √ n) , with lim t→0 η(t) = 0 and sup [-b,b] d |η| < ∞. Due to
P n (1 Sn=ℓ •) = 1 (2π) d n d 2 [-b √ n,b √ n] d e -it * ℓ √ n e -1 2 Σ 2 * t ⊗2 2K m=0 1 m! Π (m) 0 (•) * t ⊗m n m 2   1 + M j=P 1 j! (λ n /a n ) (j) 0 * t ⊗j n j 2   dt + o n -K-d 2 = 2K m=0 M j=0 i m+j n m+j+d 2 m! j! Φ (m+j) ℓ √ n * Π (m) 0 (•) ⊗ (λ n /a n ) (j) 0 + o(n -K-d 2 ).
This combined with ( 9) and ( 19) gives [START_REF] Pène | Asymptotic of the number of obstacles visited by the planar Lorentz process[END_REF]. We assume from now on that

ℓ∈Z d |ℓ| 2K ( f (•, ℓ) + g(•, ℓ) B ′ ). Recall that (λ n /a n ) (j)
0 is polynomial in n of degree at most ⌊j/P ⌋. Hence, due to the dominated convergence theorem, we can replace Φ

(m+j) ℓ ′ -ℓ √ n in (20) by 2K-m-j+2⌊ j P ⌋ r=0 1 r! n r 2 Φ (m+j+r) (0) * (ℓ ′ -ℓ) ⊗r .
Hence we have proved [START_REF] Pène | Mixing rate in infinite measure for Z d -extensions, application to the periodic Sinai billiard[END_REF]. Now, we come back to the case of Z 2 -periodic Sinai billiards, with the notations of Section 1.

Young towers for billiards

Recall that, in [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF], Young constructed two dynamical systems ( M , T , μ) and ( M , T , μ) and two measurable functions π : M → M and π : M → M such that

π • T = T • π, π * μ = μ, π • T = T • π, π * μ = μ
and such that, for every measurable f : M → C constant on every stable manifold, there exists f : M → C such that f • π = f • π. We consider the partition D on M constructed by Young in [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF] together with the separation time given, for every x, y, by s 0 (x, y) := min{n ≥ -1 : D( T n+1 x) = D( T n+1 y)}.

It will be worth noting that, for any x, y, the sets ππ -1 {x} and ππ -1 {y} are contained in the same connected component of M \ s 0 (x,y) k=0

T -k S 0 .

Let p > 1 and set q such that 1 p + 1 q = 1. Let ε > 0 and β ∈ (0, 1) be suitably chosen and let us define

f = sup ℓ f| ∆ℓ ∞ e -ℓε + sup Â∈ D esssup x,y∈ Â | f (x) -f (y)| β s 0 (x,y) e -ℓε . Let B := { f ∈ L q C ( M , μ) : f < ∞}.
Young proved that the Banach space (B, • ) satisfies • q ≤ • , that the transfer opertor P on B ( P being defined on L q as the adjoint of the composition by T on L p ) is quasicompact on B. We assume without any loss of generality (up to an adaptation of the construction of the tower) that the dominating eigenvalue of P on B is 1 and is simple.

Since κ : M → Z 2 is constant on the stable manifolds, there exists κ : M → Z 2 such that κ • π = κ • π. We set Ŝn := n-1 k=0 κ • T k . For any u ∈ R 2 and f ∈ B, we set Pu ( f ) := P (e iu * κ f ). Proposition 3.1. t → λ t is an even function.

Proof. Let Ψ : M → M be the map which sends (q, v)

∈ M to (q, v ′ ) ∈ M such that ( n(q), v ′ ) = -( n(q), v). Then κ • T k • Ψ = -κ • T -k-1 .
Hence, S n as the same distribution (with respect to μ) as -S n and so

∀t ∈ [-b, b] 2 , E µ [e -it * Sn ] = E µ [e it * Sn ] ∼ λ n t E μ[Π t 1] ∼ λ n -t E μ[Π -t 1]
as n goes to infinity, and so λ is even.

Let Z m k be the partition of M \ m j=k T -j (S 0 ) into its connected components. We also write

Z ∞ k := j≥k Z j k .
Proposition 3.2. Let k be a nonnegative integer and let u, v : M → C be respectively Z k -kmeasurable and Z ∞ -k -measurable functions. Then there exists û, v :

M → C such that u • T k • π = û • π and v • T k • π = v • π.
Moreover, û ∈ B and for every t ∈ R, P 2k

t (e -it * Ŝk û) = P 2k (e it * Ŝk • T k û) and

P 2k (e it * Ŝk • T k û) ≤ (1 + 2β -1 ) u ∞ , (22) 
and ∀n > k, E μ[u.e it * Sn .v • T n ] = E μ[v.e it * Ŝk P n t (e -it * Ŝk û)] . ( 23 
)
Proof. Using several times P m (f.g

• T m ) = g. P m f and P m t = P m (e it Ŝm •), we obtain E μ[u.e it * Sn .v • T n ] = E μ[u • T k .e it * Sn • T k .v • T n+k ] = E μ[û.e it * Ŝn • T k .v • T n ] = E μ[ P n+k (û.e it * ( Ŝn-k • T k + Ŝk • T n ) .v • T n )] = E μ[ P k (e it * Ŝk v. P n (e it * ( Ŝn-k • T k ) .û))] = E μ[ P k (e it * Ŝk v. P n t (e -it * Ŝk û))] ,
since Ŝn-k • T k = Ŝn -Ŝk . Hence, we have proved (23) (since P preserves μ).

Proofs of our main results in the finite horizon case

We assume throughout this section that the billiard has finite horizon. The Nagaev-Guivarc'h method [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF][START_REF] Nagaev | More exact statement of limit theorems for homogeneous Markov chains[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF] has been applied in this context by Szász and Varjú [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] (see also [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF]) to prove Hypotheses 2.1 and 2.2 hold for B 0 = B the Young Banach space. More precisely, we have the following. 

(i) for every t ∈ [-b, b] 2 , P n t = λ n t Π t + N n t and Π 0 = E μ[•], Π t Pt = Pt Π t = λ t Π t , Π 2 t = Π t ;
(ii) there exists ϑ ∈ (0, 1) such that, for every positive integer m,

sup t∈[-b,b] 2 (N n ) (m) t L(B,B) = O(ϑ n ) and sup t∈[-π,π] 2 \[-b,b] 2 P n t L(B,B) = O(ϑ n ); (iii) we have λ t = 1 -1 2 Σ 2 * t ⊗2 = O(|t| 3 ); (iv) there exists σ > 0 such that, for any t ∈ [-b, b] 2 , |λ t | ≤ e -σ|t| 2 and e -1 2 Σ 2 * t ⊗2 ≤ e -σ|t| 2 .
Our first step consists in stating a high order expansion of the following quantity

E μ[u.1 Sn=ℓ .v • T n ]
for u and v dynamically Lispchitz on M . Let us recall that, due to [START_REF] Conze | Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications[END_REF], this result corresponds to a mixing result for observables supported on a single cell. We start by studying this quantity for some locally constant observables. This result is a refinement of [22, prop. 4.1] (see also [21, prop 3.1]. Let Φ be the density function of B, which is given by Φ

(x) = e -(Σ 2 ) -1 * x ⊗2 2 2π √ det Σ 2 .
4.1. A first local limit theorem. We set a t := e -1 2 Σ 2 * t ⊗2 . Note that the uneven derivatives of λ/a at 0 are null as well as its three first derivatives. Proposition 4.2. Let K be a positive integer and a real number p > 1. There exists c > 0 such that, for any k ≥ 1, if u, v : M → C are respectively Z k -k -measurable and Z ∞ -k -measurable, then for any n > 3k and ℓ ∈ Z 2

E μ u1 {Sn=ℓ} .v • T n - 2K-2 m=0 1 m! 2K-2-m j=0 i m+2j (2j)! Φ (m+2j) ℓ √ n n j+1+ m 2 * (A m (u, v) ⊗ (λ n /a n ) (2j) 0 ) ≤ ck 2K-1 v p u ∞ n K+ 1 4 , (24) 
with, for every m ∈ {0, ..., 4K -4},

A m (u, v) - ∂ m ∂t m E μ[u.e it * Sn .v • T n ] λ n t |t=0 ≤ cn m ϑ n-2k v p u ∞ , (25) 
|A m (u, v)| ≤ c k m v p u ∞ and (λ n /a n ) (m) 0 = O(n m/4 ). ( 26 
)
In particular, for K = 2, we obtain

E μ u1 {Sn=ℓ} .v • T n - Φ( ℓ √ n ) n A 0 (u, v) - i n 3 2 Φ ′ ( ℓ √ n ) * A 1 (u, v) + 1 n 2 Φ"( ℓ √ n ) * A 2 (u, v) - A 0 (u, v) n 2 .Φ (4) ℓ √ n * (λ n /a n ) (4) 0 ≤ ck 3 v p u ∞ n 9 4 
. Remark 4.3. Due to [START_REF] Simányi | Toward a proof of recurrence for the Lorentz process[END_REF] and ( 26), ( 24) can be rewritten as follows:

E μ u1 {Sn=ℓ} .v • T n - 4K-4 m=0 i m m! Φ (m) ( ℓ √ n ) n 1+ m 2 * e n 2 Σ 2 * t ⊗2 E μ[u.e it * Sn .v • T n ] (m) |t=0 ≤ ck 4K-4 v p u ∞ n K+ 1 4 . Proof of Proposition 4.2. Since u • T k is Z 2k 0 -measurable and v • T k is Z ∞ 0 -measurable, there exist û, v : M → C such that û • π = u • T k • π and v • π = v • T k • π, with û ∈ B.
As in the proof of [START_REF] Pène | Back to balls in billiards[END_REF]Prop. 4.1], we set

C n (u, v, ℓ) := E μ[u.1 {Sn=ℓ} .v • T n ] .
Due to [START_REF] Pène | Potential kernel, hitting probabilities and distributional asymptotics[END_REF], we obtain

C n (u, v, ℓ) = 1 (2π) 2 [-π,π] 2 e -it * ℓ E μ[u.e it * Sn .v • T n ] dt = 1 (2π) 2 [-π,π] 2 e -it * ℓ E μ[e it * Ŝk v. P n t (e -it * Ŝk û)] dt . (27) 
Let Ξ k,t := e it * Ŝk Π t (e -it * Ŝk •). We will write Ξ

(m) k,0 for ∂ m ∂t m (Ξ k,t ) |t=0 .
Due to items (i) and (ii) of Proposition 4.1 and due to [START_REF] Pène | Back to balls in billiards[END_REF], it comes 

C n (u, v, ℓ) = 1 (2π) 2 [-b,b] 2 e -it * ℓ λ n-2k t E μ[e it * Ŝk v.Π t P 2k t (e -it * Ŝk û)] dt + O(ϑ n-2k u ∞ . v p ) = 1 (2π) 2 [-b,b] 2 e -it * ℓ λ n t E μ[v.Ξ k,t û] dt + O(ϑ n-2k u ∞ . v p ) , (28) since 
Observe that

1 (2π) 2 [-b,b] 2 |t| j |λ t | n dt ≤ 1 (2π) 2 n j+2 2 [-b √ n,b √ n] 2 |t| j e -σ|t| 2 dt , (30) 
and so

C n (u, v, ℓ) = 1 (2π) 2 [-b,b] 2 e -it * ℓ λ n t 2K-2 m=0 1 m! A m (u, v) * t ⊗m dt + O k 2K-1 v p u ∞ n K+ 1 2 , (31) 
with

A m (u, v) := E μ[v.Ξ (m) k,0 û]. Indeed Ξ (2K-1) k,s
û is a linear combination of terms of the form 

e is * Ŝk .(i Ŝk ) ⊗a ⊗ Π (b) s P 2k (⊗(i Ŝk • T k ) ⊗c e is * Ŝk • T k û) ⊗ (λ -2k ) (d)
∀t ∈ [-b, b] 2 , E μ[v.Ξ k,t .û] = λ n-2k t E ν [v.e it * Ŝk Π t P 2k t (e -it * Ŝk û)] λ n t = E μ[u.e it * Sn .v • T n ] -E μ[e it * Ŝk v.N n-2k t P 2k t (e -it * Ŝk û)] λ n t , so that E μ[v.Ξ (m) k,0 .û] = E μ[u.e it * Sn .v • T n ] λ n t (m) |t=0 + O n m ϑ n-2k v p u ∞ .
Recall that a t = e -1 2 Σ 2 * t ⊗2 . Since the three first derivatives of λ and a coincide, we have (λ n /a n ) (j) 0 = O(n j/4 ) and

λ n t -a n t 4K-4-2m j=0 1 j! (λ n /a n ) (j) 0 * t ⊗j ≤ c K n 4K-3-2m 4 a n t |t| 4K-3-2m .
Due to the analogue of ( 30) with λ t replaced by a t , we obtain

C n (u, v, ℓ) = 1 (2π) 2 [-b,b] 2 e -it * ℓ e -n 2 Σ 2 * t ⊗2 2K-2 m=0 1 m! A m (u, v) * t ⊗m   1 + 4K-4-2m j=4 1 j! (λ n /a n ) (j) 0 * t ⊗j   dt + O k 2K-1 v p u ∞ n K+ 1 4 . Note that 1 (2π) 2 [-b,b] 2 e -it * ℓ e -n 2 Σ 2 * t ⊗2 t ⊗m dt = 1 (2π) 2 n m 2 +1 [-b √ n,b √ n] 2 e -it * ℓ √ n e -1 2 Σ 2 * t ⊗2 t ⊗m dt = i m n m 2 +1 Φ (m) ℓ √ n + o(n -K-1 4 ). (32) 
Hence we have proved that

E μ u1 {Sn=ℓ} .v • T n - 2K-2 m=0 i m m! Φ (m) ( ℓ √ n ) n 1+ m 2 * A m (u, v) - 2K-2 m=0 4K-4-2m j=4 i m+j m! j! n 1+ m+j 2 Φ (m+j) ℓ √ n * A m (u, v) ⊗ (λ n /a n ) (j) 0 ≤ ck 2K-1 v p u ∞ n K+ 1 4
, and so ( 24) using (32) and the fact that the uneven derivatives of (λ/a) at 0 are null.

Generalization.

Proposition 4.4. Let K be a positive integer. Let ξ 0 ∈ (max(ξ, ϑ), 1). There exists c 0 > 0 such that, for every u, v : M → C dynamically Lipschitz continuous functions, with respect to d ξ with ξ ∈ (0, 1) and for every ℓ

∈ Z 2 E μ u1 {Sn=ℓ} .v • T n - 2K-2 m=0 1 m! 2K-2-m j=0 i m+2j (2j)! Φ (m+2j) ℓ √ n n j+1+ m 2 * (A m (u, v) ⊗ (λ n /a n ) (2j) 0 ) ≤ c 0 (log n) 4K-2 n K+ 1 4 v (ξ) u (ξ) , ( 33 
) with A m (u, v) such that A m (u, v) -E μ[u.e it * Sn .v • T n ]/λ n t (m) |t=0 ≤ c 0 u (ξ) u (ξ) ξ (log n) 2 0 (34) and |A m (u, v)| ≤ c 0 u (ξ) v (ξ) .
Proof. For every positive integer k, we define

u k := E μ[u|Z k -k ] and v k := E[v|Z k -k ] . Note that u -u k ∞ ≤ L ξ (u)ξ k , v -v k ∞ ≤ L ξ (v)ξ k , and E μ u1 {Sn=ℓ} .v • T n -E μ u k 1 {Sn=ℓ} .v k • T n ≤ u (ξ) v (ξ) ξ k . Now we take k = k n = ⌈(log n) 2 ⌉.
Note that, for n large enough, n > 3k n . We set

A m,n (u, v) := E μ[u.e it * Sn .v • T n ]/λ n t (m)
|t=0 . Note that, for every integers k, n > 0,

|A m,n (u, v) -A m,n (u k , v k ) ≤ ∂ m ∂t m e it * Sn λ n t |t=0 L 1 (μ) u (ξ) v (ξ) ξ k ≤ cm n m u (ξ) v (ξ) ξ k .
For every integers n, n ′ such that 0 < n ≤ n ′ ≤ 2n, we have [START_REF] Simányi | Toward a proof of recurrence for the Lorentz process[END_REF]. Hence, we conclude that (A m,n (u, v)) n is a Cauchy sequence so that A m (u, v) is well defined and that

A m,n (u, v) -A m,n ′ (u, v) ≤ A m,n (u kn , v kn ) -A m,n ′ (u kn , v kn ) + (1 + 2 m )c m n m u (ξ) v (ξ) ξ kn ≤ K m u (ξ) v (ξ) ξ kn 0 , due to
|A m (u, v) -A m,n (u, v)| ≤ K m u (ξ) v (ξ) j≥0 ξ k 2 j n 0 = O u (ξ) u (ξ) ξ kn 0 .
Since Applying Proposition 4.2 to the couple (u (kn) , v (kn) ) leads to (33).

Proofs of our main results.

Theorem 4.5. Let f, g : M → R be two bounded observables such that

ℓ∈Z 2 f 1 C ℓ (ξ) + g1 C ℓ (ξ) < ∞ . Then M f.g • T n dν = 2K-2 m=0 1 m! 2K-2-m j=0 i m+2j (2j)! ℓ,ℓ ′ ∈Z 2 Φ (m+2j) ℓ ′ -ℓ √ n * (A m (u ℓ , v ℓ ′ )) n j+1+ m 2 * (λ n /a n ) (2j) 0 ) + o(n -K ) , ( 35 
)
with u ℓ (q, v) = f (q + ℓ, v) and v ℓ (q, v) = f (q + ℓ, v) and with A m (u, v) given by (34).

If moreover, ℓ∈Z 2 |ℓ| 2K-2 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ) ) < ∞, then M f.g • T n dν = K-1 L=0 cL n 1+L 2K-2-2L j=0 (-1) j Φ (2j+2L) (0) (2j)!n j * (λ n /a n ) (2j) 0 + o(n -K ) (36) with cL (f, g) := r,m≥0 : r+m=2L i m m! r! ℓ,ℓ ′ ∈Z 2 (ℓ ′ -ℓ) ⊗r ⊗ A m (u ℓ , v ℓ ′ ) . Since (λ n /a n ) (2j) 0 = O(n j/2
), we conclude that:

Remark 4.6. Assume ℓ∈Z 2 |ℓ| 2K-2 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ) ) < ∞ and M f.g dν = O(n -K ). Then M f.g dν = Φ (2K-2) (0) * cK-1 (f, g) n K + o(n -K ) ,
and cK-1 (f, g) = lim n→+∞

(-1) K-1 (2K-2)! ℓ,ℓ ′ ∈Z 2 E μ u ℓ . ∂ 2K-2 ∂t 2K-2 λ -n t e it * (Sn-(ℓ ′ -ℓ)) |t=0 .v ℓ ′ • T n .
Corollary 4.7. Under the assumptions of Theorem 4.5 ensuring (36), using the fact that (λ/a)

(2j) 0 = O(n j/2 ), as in Remarks 2.6 and 4.3, if ℓ∈Z 2 |ℓ| 4K-4 ( f 1 C ℓ (ξ) + g1 C ℓ (ξ)
) < ∞, the right hand side of (36) can be rewritten

n -d 2 ℓ,ℓ ′ ∈Z 2 4K-4 L=0 Φ (L) (0) L! i L ∂ L ∂t L E μ u ℓ .e it * (Sn-(ℓ ′ -ℓ)) √ n .v ℓ ′ • T n e 1 2 Σ 2 * t ⊗2 |t=0 + o(n -K ) .
Proof of Theorem 4.5. We have

M f.g • T n dν = ℓ,ℓ ′ ∈Z 2 E μ[u ℓ 1 {Sn=ℓ ′ -ℓ} v ℓ ′ • T n ].
Hence, (35) follows directly from Proposition 4.4. Due to the dominated convergence theorem,

lim n→+∞ n K-1-m+j 2 ℓ,ℓ ′ ∈Z 2   Φ (m+j) ℓ ′ -ℓ √ n - 2K-2-m-(j/2) r=0 Φ (m+j+r) (0) r! * ℓ ′ -ℓ √ n ⊗r   * (λ n /a n ) (j) 0 ⊗ A m (u ℓ , v ℓ ′ ) = 0 ,
(where we used ( 26)) and to the fact that the uneven derivatives of Φ are null and that Φ (2k

) (0) = (-Σ 2 ) ⊗k Φ(0). Therefore M f.g • T n dν = 2K-2 m=0 2K-2-m r=0:r+m∈2Z Φ(0) m! r! 2K-2-m-r j=0 (-1) j (2j)! (-Σ -2 ) ⊗(j+ m+r 2 ) n j+1+ m+r 2 * (λ n /a n ) (2j) 0 * ℓ,ℓ ′ ∈Z 2 i m (ℓ ′ -ℓ) ⊗r ⊗ A m (u ℓ , v ℓ ′ ) + o(n -K ) ,
which ends the proof of (36).

Proof of Theorem 1.2. This comes from (36) combined with the fact that (λ n /a n ) (2j) 0 is a polynomial in n of degree bounded by j/2.

Proof of Theorem 1.3. Due to (36) of Theorem 4.5, we obtain [START_REF] Chernov | Chaotic billiards[END_REF] with Ã2 (f, g) = a 2,0,0 (f, g) + a 0,2,0 (f, g) + a 1,1,0 (f, g) , where a m,r,j (f, g) corresponds to the contribution of the (m, r, j)-term in the sum of the right hand side of (36). Moreover, due to Proposition A.2,

a 2,0,0 (f, g) = ℓ,ℓ ′ ∈Z 2 A 2 (u ℓ , v ℓ ′ ) = -lim n→+∞    M f dν -1 j,m=-n M g.(κ • T j ⊗ κ • T m -E μ[κ • T j ⊗ κ • T m ])] dν + M g dν n-1 j,m=0 M f.[κ • T j ⊗ κ • T m -E μ[κ • T j ⊗ κ • T m ]] dν +2 n-1 r=0 M f.κ • T r dν ⊗ -1 m=-n M g.κ • T m dν + M f dν M g dν(E μ[S ⊗2 n ] -nΣ 2 ) , a 0,2,0 (f, g) = - ℓ,ℓ ′ ∈Z 2 A 0 (u ℓ , v ℓ ′ ).(ℓ ′ -ℓ) ⊗2 = - ℓ,ℓ ′ ∈Z 2 (ℓ ′ -ℓ) ⊗2 C ℓ f dν C ℓ ′ g dν , a 1,1,0 (f, g) = -2i ℓ,ℓ ′ ∈Z 2 A 1 (u ℓ , v ℓ ′ ) ⊗ (ℓ ′ -ℓ) = 2 lim n→+∞    ℓ,ℓ ′ ∈Z 2 C ℓ ′ g dν n-1 r=0 C ℓ f.((ℓ ′ -ℓ) ⊗ κ • T r ) dν + ℓ,ℓ ′ ∈Z 2 C ℓ f dν -1 m=-n C ℓ ′ g.((ℓ ′ -ℓ) ⊗ κ • T m ) dν    .
For the contribution of the term with (m, r, j) = (0, 0, 2), note that

(λ n /a n ) (4) 0 = n(λ/a) (4) 0 = n(λ (4) 
0 -3(Σ 2 ) ⊗2 ). Moreover, due to Proposition A.3,

λ (4) 0 -3(Σ 2 ) ⊗2 = lim n→+∞ E μ[S ⊗4 n ] -3n 2 (Σ 2 ) ⊗2 n + 6Σ 2 ⊗ B 0 = Λ 4 .
Note that

a 2,0,0 (f, g) = -lim n→+∞ M f dν M g((I 0 -I -n ) ⊗2 -E μ[S ⊗2 n ]) dν + M g dν M f ((I n -I 0 ) ⊗2 -E μ[S ⊗2 n ]) dν +2 M f (I n -I 0 ) dν ⊗ M g(I 0 -I -n ) dν - M f dν M g dν B 0 , a 0,2,0 (f, g) = - M f.I ⊗2 0 dν M g dν - M f dν M g.I ⊗2 0 dν + 2 M f I 0 dν ⊗ M gI 0 dν and a 1,1,0 (f, g) = lim n→+∞ 2 M gI 0 dν ⊗ M f (I n -I 0 ) dν -2 M g dν M f.I 0 ⊗ (I n -I 0 ) dν +2 M f dν M g.I 0 ⊗ (I 0 -I -n ) dν -2 M f I 0 dν ⊗ M g(I 0 -I -n ) dν .
Hence we have proved [START_REF] Chernov | Chaotic billiards[END_REF] with

Ã2 (f, g) := - M f dν B- 2 (g) - M g dν B+ 2 (f ) + M f dν M g dν B 0 + 2 B + 1 (f ) ⊗ B - 1 (g) , with B+ 2 (f ) := lim m→+∞ M f I ⊗2 m -E[S ⊗2 m ] dν , B - 2 (g) := lim m→-∞ M g I ⊗2 m -E[S ⊗2 m ] dν .
Remark 4.8. Let f, g : M → R be two bounded observables such that

ℓ∈Z 2 |ℓ| 4 f 1 C ℓ (ξ) + g1 C ℓ (ξ) < ∞ (37) 
Assume moreover that M f dν M g dν = 0 and that Ã2 (f, g) = 0. Due to Remark 4.6,

M f.g • T n dν = (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 * ℓ,ℓ ′ ∈Z 2 A 4 (u ℓ , v ℓ ′ ) 24 + A 0 (u ℓ , v ℓ ′ ) 24 (ℓ ′ -ℓ) ⊗4 + i A 1 (u ℓ , v ℓ ′ ) 6 ⊗ (ℓ ′ -ℓ) ⊗3 - 1 4 A 2 (u ℓ , v ℓ ′ ) ⊗ (ℓ ′ -ℓ) ⊗2 - i 6 A 3 (u ℓ , v ℓ ′ ) ⊗ (ℓ ′ -ℓ) + o(n -3 ) ,
where u ℓ (q, v) := f (q + ℓ, v) and v ℓ (q, v) := g(q + ℓ, v).

Proof of Proposition 1.6. We apply Remark 4.8. Using the definitions of A 0 and A 1 , we observe that

∀ℓ, ℓ ′ ∈ Z 2 , A 0 (u ℓ , v ℓ ′ ) = A 1 (u ℓ , v ℓ ′ ) = 0 (since E μ[u ℓ ] = E μ[v ℓ ′ ] = 0) and ℓ,ℓ ′ ∈Z 2 A 4 (u ℓ , v ℓ ′ ) = A 4   ℓ∈Z 2 u ℓ , ℓ ′ ∈Z 2 v ℓ ′   = 0 . Moreover ℓ,ℓ ′ ∈Z 2 A 3 (u ℓ , v ℓ ′ ) ⊗ (ℓ ′ -ℓ) = ℓ,ℓ ′ ∈Z 2 h ℓ q ℓ ′ A 3 (f 0 , g 0 ) ⊗ (ℓ ′ -ℓ) = 0 since ℓ∈Z 2 h ℓ = ℓ q ℓ = 0. Therefore M f.g • T n dν = - 1 4 (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 * ℓ,ℓ ′ ∈Z 2 A 2 (u ℓ , v ℓ ′ ) ⊗ (ℓ ′ -ℓ) ⊗2 + o(n -3 ) = 1 2 (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 * ℓ,ℓ ′ ∈Z 2 h ℓ q ℓ ′ A 2 (f 0 , g 0 ) ⊗ ℓ ⊗ ℓ ′ + o(n -3 ) = 1 2 (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 A 2 (f 0 , g 0 ) ⊗ ℓ∈Z 2 h ℓ .ℓ ⊗ ℓ ′ ∈Z 2 q ℓ ′ .ℓ ′ + o(n -3 ) = - (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 *   j≥0 E μ[f 0 .κ • T j ] ⊗ m≤-1 E μ[g 0 .κ • T m ] ⊗ ℓ∈Z 2 h ℓ .ℓ ⊗ ℓ ′ ∈Z 2 q ℓ ′ .ℓ ′   + o(n -3 ) = - (Σ -2 ) ⊗2 2π √ det Σ 2 n 3 *   j≥0 M f I 0 ⊗ κ • T j dν ⊗ m≤-1 M gI 0 ⊗ κ • T m dν   + o(n -3 ) .

Proof of the mixing result in the infinite horizon case

Proof of Theorem 1.1. In [START_REF] Szász | Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon[END_REF], Szász and Varjú implemented the Nagaev-Guivarc'h perturbation method via the Keller-Liverani theorem [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] to prove that Hypothesis 2.1 holds true for the dynamical system ( M , μ, T ) with the Young Banach space B, with B 0 := L 1 (μ) and with λ having the following expansion:

λ t -1 ∼ Σ 2 ∞ * (t ⊗2
) log |t| . Hence Hypothesis 2.2 holds also true, with Θ n = √ n log n Id and with Y a gaussian random variable with distribution N (0, Σ 2 ∞ ) with density function Φ(x) = exp(-

1 2 (Σ 2 ∞ ) -1 * x ⊗2 )/(2π det Σ 2 ∞
). Let k n := ⌈log 2 n⌉. Let u n (x) and v n (x) correspond to the conditional expectation of respectively f and g over the connected component of M \ kn m=-kn T -m S 0 containing x. First note that

M f.g • T n dν = M u n .v n • T n dν + O L ξ (f ) M |g| dν + L ξ (g) M |f | dν ξ kn . (38) 
As noticed in Proposition 3.2, there exist fn , ĝn :

M × Z 2 → C such that ∀x ∈ M , fn (π(x), ℓ) = u n ( T kn (π(x)) + ℓ) ,
∀x ∈ M , ĝn (π(x), ℓ) = v n ( T kn (π(x)) + ℓ) , with the notation (q, v) + ℓ = (q + ℓ, v) for every (q, v) ∈ M . For n large enough, n > 3k n and, due to [START_REF] Pène | Potential kernel, hitting probabilities and distributional asymptotics[END_REF],

M u n .v n • T n dν = ℓ,ℓ ′ ∈Z 2 E μ[u n (• + ℓ).1 Sn=ℓ ′ -ℓ .v n ( T n (•) + ℓ ′ )] = ℓ,ℓ ′ ∈Z 2 1 (2π) 2 [-π,π] 2 e -it * (ℓ ′ -ℓ) E μ[u n (• + ℓ).e it * Sn .v n ( T n (•) + ℓ ′ )] = ℓ,ℓ ′ ∈Z 2 1 (2π) 2 [-π,π] 2 e -it * (ℓ ′ -ℓ) E μ[ Ĝn,t (•, ℓ ′ ) P n-2kn t P 2kn ( Fn,t (•, ℓ))] dt ,
where Fn,t , Ĝn,t : M → Z 2 → C are the functions defined by Fn,t (x, ℓ) := fn (x, ℓ).e it * Ŝkn ( T kn (x)) , Ĝn,t (x, ℓ) := ĝn (x, ℓ).e it * Ŝkn (x) .

Moreover sup n,t P 2kn Fn,t (•, ℓ) ≤ (1 + 2β -1 ) f 1 C ℓ ∞ . Hence, due to Hypothesis 2.1,

M u n .v n • T n dν = O(ϑ n-2kn ) + ℓ,ℓ ′ ∈Z 2 1 (2π) 2 [-π,π] 2 e -it * (ℓ ′ -ℓ) E μ[ Ĝn,t (•, ℓ ′ )λ n-2kn t Π t P 2kn ( Fn,t (•, ℓ))] dt = O(ϑ n-2kn ) + ℓ,ℓ ′ ∈Z 2 1 a 2 n (2π) 2 [-anπ,anπ] 2 e -iu * ℓ ′ -ℓ an E μ[ Ĝn,u/an (•, ℓ ′ )λ n-2kn u/an Π u/an P 2kn ( Fn,u/an (•, ℓ))] du = o(a -2 n ) + ℓ,ℓ ′ ∈Z 2 1 a 2 n (2π) 2 [-anπ,anπ] 2 E μ[ Ĝn,0 (•, ℓ ′ )e -1 2 Σ 2 ∞ * u ⊗2 Π 0 P 2kn ( Fn,u/an (•, ℓ))] du = o(a -2 n ) + ℓ,ℓ ′ ∈Z 2 1 a 2 n (2π) 2 [-anπ,anπ] 2 E μ[ Ĝn,0 (•, ℓ ′ )]e -1 2 Σ 2 ∞ * u ⊗2 E μ[ Fn,0 (•, ℓ))] du ,
where we used the change of variable u = a n t with a n := (n -2k n ) log(n -2k n ), and twice the dominated convergence theorem. Therefore

M u n .v n • T n dν = Φ (0) a 2 n (2π) 2 M u n dν M v n dν + o(a -2 n ) .
The conclusion of the theorem follows from this last formula combined with (38) and with the facts that a 2 n ∼ n log n and that

M u n dν M v n dν = M f dν M g dν ,
due to the dominated convergence theorem.

Appendix A. Billiard with finite horizon: about the coefficients A m Let W s (resp. W u ) be the set of stable (resp. unstable) H-manifolds. In [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF], Chernov defines two separation times s + and s -which are dominated by s and such that, for every positive integer k,

∀W u ∈ W u , ∀x, ȳ ∈ W u , s + ( T -k x, T -k ȳ) = s + (x, y) + k, ∀W s ∈ W s , ∀x, ȳ ∈ W s , s -( T k x, T k ȳ) = s -(x, y) + k.
Proposition A.1 ([6], Theorem 4.3 and remark after). There exist C 0 > 0 and ϑ 0 ∈ (0, 1) such that, for every positive integer n, for every bounded measurable u, v

: M → R, E μ[u.v • T n ] -E μ[u]E μ[v] ≤ C 0 L + u v ∞ + L - v u ∞ + u ∞ v ∞ ϑ n 0 , with L + u := sup W u ∈W u sup x,y∈W u , x =y (|u(x) -u(y)|ξ -s + (x,y) ), and 
L - v := sup W s ∈W s sup x,y∈W s , x =y (|v(x) -v(y)|ξ -s -(x,y) ) . Note that L + u ≤ L ξ (u1 M ), L - u ≤ L ξ (u1 M ) , L + u• T -k ≤ L + u ξ k and L - v• T k ≤ L - v ξ k .
We will set ũ := u -E μ[u] and ṽ := v -E μ[v]. We will express the terms A m (u, v) for m ∈ {1, 2, 3, 4} in terms of the follwing quantities:

B + 1 (u) := j≥0 E μ[u.κ • T j ] , B - 1 (v) := m≤-1 E μ[v.κ • T m ] , B + 2 (u) := j,m≥0 E μ[ũ.κ • T j ⊗ κ • T m ] , B - 2 (v) := j,m≤-1 E μ[ṽ.κ • T j ⊗ κ • T m ] , B - 0 (v) := k≤-1 |k|E μ[ṽ.κ • T k ] , B + 0 (u) = k≥0 kE μ[ũ.κ • T k ] , B 0 := B - 0 (κ) + B + 0 (κ) = m∈Z |m|E μ[κ ⊗ κ • T m ] , B + 0,2 (u) := k,m≥0 max(k, m)E μ[ũ.κ • T k ⊗ κ • T m ] . B - 0,2 (v) := k,m≥1 max(k, m)E μ[ṽ.κ • T -k ⊗ κ • T -m ] , B + 3 (u) := k,r,m≥0 E μ[ũ.κ • T min(k,r,m) κ • T max(k,r,m) ⊗ κ • T med(k,r,m) -E μ[κ • T max(k,r,m) ⊗ κ • T med(k,r,m) ] ] , B - 3 (v) := m,r,s≤-1 E μ[ṽ.κ • T max(m,r,s) ⊗ κ • T min(m,r,s) ⊗ κ • T med(m,r,s) -E μ[κ • T min(m,r,s) ⊗ κ • T med(m,r,s) ] ] ,
with med(m, r, s) the mediane of (m, r, s).

Proposition A.2. Let u, v : M → C be two dynamically Lipschitz continuous functions, with respect to d ξ with ξ ∈ (0, 1). Then

A 0 (u, v) = E μ[u].E μ[v] (39) 
A 1 (u, v) = i lim n→+∞ E μ[u.S n .v • T n ] = i B + 1 (u)E μ[v] + i B - 1 (v)E μ[u] (40) 
A 2 (u, v) = lim n→+∞ (n E μ[u]E μ[v]Σ 2 -E μ[u.S ⊗2 n .v • T n ]) (41) = -2 B + 1 (u) ⊗ B - 1 (v) -E μ[v]B + 2 (u) -E μ[u]B - 2 (v) + E μ[u]E μ[v] B 0 , ( 42 
) Moreover A 3 (u, v) = lim n→+∞ 3inΣ 2 ⊗ E μ[u.S n .v • T n ] -iE μ[u.S ⊗3 n .v • T n ] = 3A 1 (u, v) ⊗ B 0 + 3iΣ 2 ⊗ E μ[u]B - 0 (v) + E μ[v]B + 0 (u) -iE μ[v]B + 3 (u) -iE μ[u]B - 3 (v) -3iB - 2 (v) ⊗ B + 1 (u) -3iB + 2 (u) ⊗ B - 1 (v) (43)
and

A 4 (u, v) = lim n→+∞ E μ[u.S ⊗4 n .v • T n ] + (λ -n ) (4) 0 E μ[u]E μ[v] + 6nΣ 2 ⊗ E μ[u.S ⊗2 n .v • T n ] = 6B 0 A 2 (u, v) -6Σ 2 ⊗ E μ[u]B - 0,2 (v)) -6E μ[v]B + 0,2 (u) +E μ[u]E μ[v](A 4 (1, 1) -6B ⊗2 0 ) -12Σ 2 ⊗ (B + 1 (u) ⊗ B - 0 (v) + B - 1 (v) ⊗ B + 0 (u) -B + 1 (u) ⊗ B - 1 (v)) +4B + 1 (u) ⊗ B - 3 (v) + 6B + 2 (u) ⊗ B - 2 (v) + 4 B - 1 (v) ⊗ B + 3 (u) . Proof.
As in the proof of Theorem 4.4, we set

A m,n (u, v) := E μ[v.e it * Sn .u • T n ]/λ n t (m) |t=0 .
We will only use Proposition A.1 and the fact that

λ t = 1 -1 2 Σ 2 * t ⊗2 + 1 4! λ (4) 0 * t ⊗4 + o(|t| 4 ) to compute A m (u, v) = lim n→+∞ A m,n (u, v).
• First we observe that A 0,n (u, v) = E μ[u.v • T n ] and we apply Proposition A.1.

• Second,

A 1,n (u, v) = i E μ[u.S n .v • T n ] = i n-1 k=0 E μ[u.κ • T k .v • T n ] = i ⌊n/2⌋ k=0 E μ[u.κ • T k ]E μ[v] + i n-1 ⌊n/2⌋+1 E μ[u]E μ[v.κ • T -(n-k) ] + O nϑ n/2 0 u (ξ) u (ξ) = i E μ[v] k≥0 E μ[u.κ • T k ] + i E μ[u] m≤-1 E μ[v.κ • T m ] + O nϑ n/2 0 u (ξ) u (ξ) ,
where we used several times Proposition A.1, combined with the fact that E μ

[κ] = 0. • Third, A 2,n (u, v) = -E μ[u.S ⊗2 n .v • T n ] + nΣ 2 E μ[u]E μ[v] (44) = - n-1 k,m=0 E μ[u.(κ • T k ⊗ κ • T m ).v • T n ] + nΣ 2 E μ[u]E μ[v] = - n-1 k,m=0 E μ[ũκ • T k ⊗ κ • T m .ṽ • T n ] - n-1 k,m=0 E μ[u]E μ[κ • T k ⊗ κ • T m ṽ • T n ] + E μ[ũ.κ • T k ⊗ κ • T m ]E μ[v] +(nΣ 2 - n-1 k,m=0 E μ[κ • T k ⊗ κ • T m ])E μ[u]E μ[v] (45) 
-On the first hand

nΣ 2 - n-1 k,m=0 E μ[κ • T k ⊗ κ • T m ] = n k∈Z E μ[κ ⊗ κ • T k ] - n k=-n (n -|k|)E μ[κ ⊗ κ • T k ] = k∈Z min(n, |k|)E μ[κ ⊗ κ • T k ], which converges to k∈Z |k|E μ[κ ⊗ κ • T k ].
-On the second hand, for 0 ≤ k ≤ m ≤ n, due to Proposition A.1 (treating separately the cases k

≥ n/3, m -n ≥ n/3 et n -m ≥ n/3), E μ[ũ.κ • T k ⊗ κ • T m .ṽ • T n ] = E μ[ũ.κ • T k ] ⊗ E μ[ṽ.κ • T n-m ] + O( u (ξ) v (ξ) ϑ n/3 0 ). (46) Analogously E μ[κ • T k ⊗ κ • T m ṽ • T n ] = O( v (ξ) ϑ (n-k)/2 0 ) (47) E μ[ũ.κ • T k ⊗ κ • T m ] = O( u (ξ) ϑ m/2 0 ) . (48) Hence n-1 k,m=0 E μ[ũ.κ • T k ⊗ κ • T m ] = B + 2 (ũ) + O(ϑ n/2 0 u (ξ) ) , n-1 k,m=0 E μ[κ • T k ⊗ κ • T m ṽ • T n ] = B - 2 (v) + O(ϑ n/2 0 v (ξ) , (49) 
and

n-1 k,m=0 E μ[ũ.κ • T k ⊗ κ • T m .ṽ • T n ] =   n-1 k=0 E μ[ũ.κ ⊗2 • T k .ṽ • T n ] + 2 0≤k<m<n E μ[ũ.κ • T k ⊗ κ • T m .ṽ • T n ]   = 2 0≤k<m<n E μ[ũ.(κ • T k )] ⊗ E μ[ṽ.κ • T n-m ] + O(ϑ n/2 0 u (ξ) v (ξ) ) = 2B + 1 (u) ⊗ B - 1 (v) + O(ϑ n/2 0 u (ξ) v (ξ) ) ,
where we used the fact that E

μ[ũ.κ ⊗2 • T k .ṽ • T n ] = O( u (ξ) v (ξ) ϑ n/ 2 
0 ). Therefore we have proved (42).

• Let us prove (43). By bilinearity, we have

A 3,n (u, v) = A 3,n (ũ, ṽ) + E μ[u]A 3,n (1, ṽ) + E μ[v]A 3,n (ũ, 1) + E μ[u]E μ[v]A 3,n (1, 1). ( 50 
) Note that A 3,n (1, 1) = -iE μ[S ⊗3 
n ] = 0. since (S n ) n has the same distribution as (-S n ) n (see the begining of the proof of Proposition 3.1). We will use the following notations: c (k,m,r) denotes the number of uples made of k, m, r (with their multiplicities) and we will write F for F -E μ[F ] when F is given by a long formula.

-We start with the study of A 3,n (ũ, 1).

A 3,n (ũ, 1) = -iE μ[ũ.S ⊗3 n ] + 3inΣ 2 ⊗ E μ[ũ.S n ] = -i 0≤k≤m≤r≤n-1 c k,m,r E μ[ũ.κ • T k ⊗ κ • T m ⊗ κ • T r ] + 3inΣ 2 ⊗ E μ[ũ.S n ] = -i 0≤k≤m≤r≤n-1 c k,m,r E μ[ũ.κ • T k ] ⊗ E μ[κ • T m ⊗ κ • T r ] + 3inΣ 2 ⊗ E μ[ũ.S n ] -i 0≤k≤m≤r≤n-1 c k,m,r E μ   ũ.κ • T k ⊗ κ • T m ⊗ κ • T r   A 3,n (ũ, 1) (51) = -3i k≥0 m∈Z max(0, n -|m| -k)E μ[ũ.κ • T k ] ⊗ E μ[κ.κ • T m ] + 3inΣ 2 ⊗ E μ[ũ.S n ] -i n-1 k,m,r=0 E μ   ũ.κ • T min(k,m,r) ⊗ κ • T med(k,m,r) ⊗ κ • T max(k,m,r)   = 3i k≥0 m∈Z (|m| + k)E μ[ũ.κ • T k ] ⊗ E μ[κ.κ • T m ] -3in (B + 1 (u) -E μ[ũ.S n ]) ⊗ Σ 2 -iB + 3 (ũ) + O(ϑ n/3 0 u (ξ) ) (52) 
and so

A 3,n (ũ, 1) = -iB + 3 (ũ) + 3iB + 0 (ũ) ⊗ Σ 2 + 3iB 0 ⊗ B + 1 (ũ) . (53) 
-Analogously,

A 3,n (1, ṽ) = -iB - 3 (ṽ) + 3iB - 0 (ṽ) ⊗ Σ 2 + 3iB 0 ⊗ B - 1 (ṽ) . ( 54 
) -Finally A 3,n (ũ, ṽ) = -iE μ[ũ.S ⊗3 n .ṽ • T n ] + 3i nΣ 2 ⊗ E μ[ũ.S n .ṽ • T n ] = -i n-1 k,m,r=0 E μ[ũ.κ • T k ⊗ κ • T m ⊗ κ • T r .ṽ • T n ] + 3inΣ 2 ⊗ Ã1,n (ũ, ṽ) = -i n-1 k,m,r=0 E μ[ũ.κ • T k ⊗ κ • T m ⊗ κ • T r .ṽ • T n ] + O(n 2 ϑ n/2 0 u (ξ) v (ξ) ) . Assume 0 ≤ k ≤ m ≤ r ≤ n -1. Considering separately the cases k ≥ n/4, m -k ≥ n/4, r -m ≥ n/4 and n -r ≥ n/4, we observe that E μ[ũ.κ • T k ⊗ κ • T m . ⊗ κ • T r .ṽ • T n ] = E μ[ũ.κ • T k ] ⊗ E μ[ṽ.κ • T -(n-r) ⊗ κ • T -(n-m) ] +E μ[ṽ.κ • T -(n-r) ] ⊗ E μ[ũ.κ • T k ⊗ κ • T m ] + O(ϑ n/4 0 v (ξ) u (ξ) ) . (55) 
And so A 3,n (ũ, ṽ) = -3iB + 1 (ũ)B - 2 (ṽ) -3iB - 1 (ṽ)B + 2 (ũ) .

This combined with (50), ( 53) and (54) leads to (43).

• It remains to prove (44). Observe first that

A 4,n (u, v) = (λ -n ) (4) 0 E μ[ū]E μ[v] + 6nΣ 2 ⊗ E μ[u.S ⊗2 n .v • T n ] + E μ[u.S ⊗4 n .v • T n ] = (λ -n ) (4) 0 E μ[ū]E μ[v] + 6nΣ 2 ⊗ nΣ 2 E μ[u]E μ[v] -A 2,n (u, v) + E μ[u.S ⊗4 n .v • T n ] ( 57 
)
where we used (44). Note that

E μ[u.S ⊗4 n .v • T n ] = E μ[ũ.S ⊗4 n .ṽ • T n ] + E μ[u]E μ[S ⊗4 n .ṽ • T n ] +E μ[v]E μ[ũ.S ⊗4 n ] + E μ[u]E μ[v]E μ[S ⊗4 n ]. ( 58 
)
We now study separately each term of the right hand side of this last formula. But, on the other hand, treating separately the cases k ≥ n/5, mk ≥ n/5, rm ≥ n/5, sr ≥ n/5 and ns ≥ n/5, we obtain that, for every 0 ≤ k ≤ m ≤ r ≤ s ≤ n,

E μ   ũ.κ • T k ⊗ κ ⊗ κ • T r-m • T m ⊗ κ • T s .ṽ • T n   = E μ[ũ.κ • T k ] ⊗ E μ[ κ ⊗ κ • T r-m • T m ⊗ κ • T s .ṽ • T n ] + E μ[ũ.κ • T k ⊗ κ • T m ] ⊗ E μ[κ • T r ⊗ κ • T s .ṽ • T n ] + E μ[ũ.κ • T k ⊗ κ ⊗ κ • T r-m • T m ] ⊗ E μ[κ • T s .ṽ • T n ] + O(ϑ n/5 0 u (ξ) v (ξ) ). ( 61 
)
Due to (48),

E μ   κ.κ • T r-m • T m .κ • T s .ṽ • T n   = O(ϑ n-m 0 u (ξ) v (ξ) ) , E μ[ũ.κ • T k . κ.κ • T r-m • T m ]E μ[κ • T s .ṽ • T n ] = O(ϑ m 0 ϑ n-s 0 u (ξ) v (ξ) ) , E μ[ũ.κ • T k ⊗ κ • T m ] = O(ϑ m 0 u (ξ) ). Therefore 0≤k≤m≤r≤s≤n-1 c (k,m,r,s) E μ[ũ.κ • T k ⊗ κ • T m ⊗ κ • T m ⊗ κ • T s .ṽ • T n ] = 4 k≥0 E μ[ũ.κ • T k ]B - 3 (ṽ) + 4B + 3 (ũ) ⊗ s≥1 E μ[κ • T -s .ṽ] +6 m,k≥0 E μ[ũ.κ • T k ⊗ κ • T m ] ⊗ r,s≥1 E[ṽ.κ • T -r ⊗ κ • T -s ] +O ϑ n/5 0 u (ξ) v (ξ) . (62) 
Putting together (57), ( 59), ( 60) and (62) leads to A 4,n (ũ, ṽ) = -12

k≥0 E μ[ũ.κ • T k ] s≥1 E μ[κ • T -s .ṽ](s + k -1) ⊗ Σ 2 +4B + 1 (u) ⊗ B - 3 (ṽ) + 4 B - 1 (v) ⊗ B + 3 (ũ) +6B + 2 (u) ⊗ B - 2 (v) -12B + 1 (ũ) ⊗ B - 1 (ṽ) ⊗ B 0 + O ϑ n/5 0 u (ξ) v (ξ) (63) 
-Second:

E μ[ũ.S ⊗4 n ] = 0≤k≤m≤r≤s≤n-1 c (k,m,r,s) E μ ũ.κ • T k ⊗ κ • T m ⊗ κ • T r ⊗ κ • T s . (64) 
But, due to (55), for 0 ≤ k ≤ m ≤ r ≤ s ≤ n -1, we have

E μ[ũ.κ • T k ⊗ κ • T m ⊗ κ • T r ⊗ κ • T s ] = E μ[ũ.κ • T k ] ⊗ E μ[κ ⊗ κ • T r-m ⊗ κ • T s-m ] +E μ[ũ.κ • T k ⊗ κ • T m ] ⊗ E μ[κ ⊗ κ • T s-r ] + O( u (ξ) v (ξ) ϑ s/3 0 ) . Therefore E μ[ũ.S ⊗4 n ] = 4 k≥0 E μ[S ⊗3 n-k ] +6 k,m≥0 r∈Z max(0, (n -max(k, m) -|r|))E μ[ũ.κ • T k ⊗ κ • T m ] ⊗ E μ[κ ⊗ κ • T r ] = 6nB + 2 (ũ) ⊗ Σ 2 -6 k,m≥0 r∈Z (max(k, m) + |r|)E μ[ũ.κ • T k ⊗ κ • T m ] ⊗ E μ[κ ⊗ κ • T r ] since E μ[S ⊗3 n ] = 0. It comes E μ[ũ.S ⊗4 n ] = 6nB + 2 (ũ) ⊗ Σ 2 -6B + 0,2 (ũ) ⊗ Σ 2 -6B + 2 (ũ) ⊗ B 0 + O(ϑ n/2 0 ) (65) 
-Analogously,

E μ[ṽ • T n .S ⊗4 n ] = 6nB - 2 (ṽ) ⊗ Σ 2 -6B - 0,2 (ṽ) ⊗ Σ 2 -6B - 2 (ṽ) ⊗ B 0 + O(ϑ n/2 0 ) . (66) 
Formula (44) follows from (58), (63), (65) and (66).

Proposition A. 

Theorem 2 . 4 .

 24 Assume Hypothesis 2.1 with B 0 = B. Let K, M, P be three integers such that K ≥ d/2, 3 ≤ P ≤ M + 1 and

Proposition 4 . 1 (

 41 [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF][START_REF] Pène | Planar Lorentz process in a random scenery[END_REF]). There exist a real b ∈ (0, π) and three C ∞ functions t → λ t , t → Π t and t → N t defined on [-b, b] 2 and with values in C, L(B, B) and L(B, B) respectively such that

s

  over nonnegative integers a, b, c, d such that a + b + c + d = 2K -1, and these terms are in O(k 2K-1 u ∞ ) in B, uniformly in k. Moreover, due to (29), to (23) and to Item (i) of Proposition 4.1, we obtain

E- 1 c 1 c 1 c 1 c 12 k≥0E

 111112 μ[ũ.κ • T k ⊗ κ • T m .κ • T r ⊗ κ • T s .ṽ • T n ] = 0≤k≤m≤r≤s≤n(k,m,r,s) E μ   ũ.κ • T k ⊗ κ ⊗ κ • T r-m • T m .κ • T s .ṽ • T n (k,m,r,s) E μ[ũ.κ • T k .κ • T s .ṽ • T n ] ⊗ E μ[κ ⊗ κ • T r-m ](59)with c (k,m,r,s) the number of 4-uples made of k, m, r, s (with the same multiplicities).Due to (46),0≤k≤m≤r≤s≤n-(k,m,r,s) E μ[ũ.κ • T k ⊗ κ • T s .ṽ • T n ] ⊗ E μ[κ ⊗ κ • T r-m ] = 0≤k≤m≤r≤s≤n-(k,m,r,s) E μ[ũ.κ • T k ] ⊗ E μ[ṽ.κ • T -(n-s) ] ⊗ E μ[κ ⊗ κ • T r-m ] + O(n 4 ϑ n/3 0 u (ξ) v (ξ) ) = k≥0 E μ[ũ.κ • T k ] ⊗ s≥1 E μ[ṽ.κ • T -s ] ⊗ n-s m=k n-s r=m c (k,m,r,n-s) E μ[κ ⊗ κ • T r-m ] + O(n 4 ϑ n/3 0 u (ξ) v (ξ) ) = k≥0 E μ[ũ.κ • T k ] ⊗ s≥1 E μ[ṽ.κ • T -s ] ⊗ 12E μ[S ⊗2 n-s-k+1 ] + O(n 4 ϑ n/3 0 u (ξ) v (ξ) ) = k≥0 E μ[ũ.κ • T k ] ⊗ s≥1 E μ[ṽ.κ • T -s ]12((nsk + 1)Σ 2 -r∈Z |r|E μ[κ ⊗ κ • T r ] + O(n 4 ϑ nΣ 2 -r∈Z |r|E μ[κ ⊗ κ • T r ] μ[ũ.κ • T k ] ⊗s≥1 E μ[ṽ.κ • T -s ](s + k -1) ⊗ Σ 2 + O(n 4 ϑ n/3 0 u (ξ) v (ξ) ) .

  2,n (1, 1) + A 4,n (1, 1) , and we conclude due to (34) and due to λ

=

  -Σ 2 (coming from Item (iii) of Proposition 4.1).

  3. The fourth derivatives of λ at 0 are given by⊗4 n ] -3n 2 (Σ 2 ) ⊗2 n + 3(Σ 2 ) ⊗2 + 6Σ 2 ⊗ B 0 . Proof. Derivating four times E μ[e it * Sn ] = λ n t E μ[e it * Sn /λ n t ] leads to E μ[S ⊗4n ] = (λ n )

	λ (4) 0 = lim
	(4) 0 + 6(λ n ) (2) 0 ⊗ A 2,n (1, 1) + A 4,n (1, 1)
	= nλ

n→+∞ E μ[S
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