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Boundary Mesh Refinement for Semi-Lagrangian Schemes

We study semi-Lagrangian schemes for the Dirichlet problem for second-order degenerate elliptic PDEs. Like other wide stencil schemes, these schemes have to be truncated near the boundaries to avoid "over-stepping". The various modifications proposed in the literature lead to either reduced consistency orders for those points, or even a loss of consistency with the differential operator in the usual sense. We propose a local mesh refinement strategy near domain boundaries which achieves a uniform order of consistency up to the boundary in the first case, and in both cases reduces the width of the region where overstepping occurs, so that the practically observed convergence order is unaffected by overstepping. We demonstrate this numerically for a linear parabolic equation and a second order HJB equation.

Introduction

In this paper, we investigate the convergence behaviour of semi-Lagrangian schemes for second order degenerate elliptic equations on bounded domains.

For concreteness, we consider the Hamilton-Jacobi-Bellman (HJB) equation

u t (t, x) + sup α∈A {-L α [u](t, x) -c α (t, x)u(t, x) -f α (t, x)} = 0, (t, x) ∈ (0, T ] × Ω, (1) 
u(0, x) = ψ(0, x), x ∈ Ω, (2) 
u(t, x) = ψ(t, x), (t, x) ∈ (0, T ] × ∂Ω,

where

Q T := (0, T ] × Ω with Ω := Ω ∪ ∂Ω ⊆ R d , A is a compact set, L α [u](t, x) = tr[a α (t, x)D 2 u(t, x)] + b α (t, x)Du(t, x) (4) 
is a second order differential operator, and the known function ψ contains the initial and spatial boundary values. Linear parabolic equations are a special case where |A| = 1, while fully-nonlinear equations of Isaacs-type are written as min max problems. The construction of the scheme in this paper is analogous in both of these cases.

The coefficients a α = 1 2 σ α σ α,T , b α , c α , f α , and the data ψ in (1) take their values, respectively, in S d , the space of d × d symmetric matrices, R d , R, R, and R, σ α ∈ R d×P , such that a α is positive semi-definite. We assume the usual well-posedness conditions, i.e. Lipschitz continuity of the coefficients in x uniformly in α, Hölder continuity with exponent 1 2 in time and continuity in α for each (t, x) ∈ Q T [START_REF] Lions | Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 2: viscosity solutions and uniqueness[END_REF]. This guarantees existence and uniqueness of the solution in the viscosity sense [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] as well as a comparison principle.

In this paper, we focus on semi-Lagrangian schemes for the approximation of ( 1)-(3) as introduced in [START_REF] Camilli | An approximation scheme for the optimal control of diffusion processes[END_REF][START_REF] Menaldi | Some estimates for finite difference approximations[END_REF] and analysed more recently in [START_REF] Bonaventura | Semi-Lagrangian methods for parabolic problems in divergence form[END_REF][START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF][START_REF] Falcone | Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations[END_REF][START_REF] Ferretti | On the relationship between Semi-Lagrangian and Lagrange-Galerkin schemes[END_REF]. For convenience of the reader and to introduce the notation, we briefly describe the specific scheme used here.

Following loosely [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF], we define a non-degenerate polyhedral coverage C = {C j } j∈J of Ω, where J is the index set of the cells. The elements of the set C are chosen to satisfy

int(C j ∩ C i ) = ∅, ∀ i = j, j∈J C j ⊇ Ω, ν∆x ≤ sup j∈J {diam B C j } ≤ sup j∈J {diam C j } ≤ ∆x,
for some ν ∈ (0, 1), where 'int' and 'diam' are the interior and the diameter, and B C j is the greatest ball contained in C j .

We define the subset of interior cells C = {C ∈ C : C ⊆ Ω} as the ones fully contained in the domain, and the nodes N := {x i } i∈I as the set of all the vertices of elements in C, where we denote by I the index set of the nodes with N x := |N |.

We assume non-negative basis functions {w i (•) : i ∈ I} associated with the mesh nodes, such that for any continuous function φ : Ω → R

[I ∆x φ](x) = i∈I φ(x i )w i (x), (5) 
for all x ∈ Ω, x i ∈ N . For simplicity, we focus our attention occasionally on cuboid meshes and multilinear interpolants, defined by the standard piecewise multilinear basis. The interpolation error is then O ∆x 2 for sufficiently smooth functions, and this is the only property we will use for the consistency analysis. The non-negativity of the basis is required only for the monotonicity of the interpolation operation and subsequently for convergence of the scheme to the viscosity solution.

Writing

σ α = (σ α 1 , σ α 2 , . . . , σ α P ) ∈ R d×P , where σ α p ∈ R d for p ∈ {1, 2, . . . , P } is the p-th column of σ α , by the usual arguments, 1 2 tr σ α σ α,T D 2 φ(x) = 1 2 P p=1 φ(x + kσ α p ) -2φ(x) + φ(x -kσ α p ) k 2 + O(k 2 ), (6) 
b α Dφ(x) = φ(x + k 2 b α ) -φ(x) k 2 + O(k 2 ), (7) 
for k > 0 and any smooth function φ. For brevity we write b α ≡ b α (t, x) and σ α ≡ σ α (t, x). When these approximations are used for points in N , the displaced points x + k 2 b α and x ± kσ α p do not generally coincide with nodes in N . Then, φ is approximated by its interpolant I ∆x φ. In the case of linear basis functions, the resulting scheme is referred to as the Linear Interpolation Semi-Lagrangian (LISL) scheme. We ignore for the time being the situation where x + k 2 b α or x ± kσ α p lies outside any of the mesh cells ("oversteps"), which of course will be the focus of the main body of the article.

The consistency error is easily seen to be (see [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF])

O k 2 + ∆x 2 k 2 .
The first term is the consistency error for the finite difference approximation of the first and second order derivatives in ( 6) and ( 7), whereas the second term corresponds to the linear interpolation error when replacing φ by its interpolant in ( 6) and [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. The optimal choice k = √ ∆x makes the consistency error proportional to ∆x. Following the notation in [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF], the LISL approximations to (4) can be expressed as

L α ∆x [I ∆x φ](t, x) := M p=1 [I ∆x φ](t, x + y α,+ p (t, x)) -2φ(t, x) + [I ∆x φ](t, x + y α,- p (t, x)) 2∆x , (8) 
for x ∈ N , and some M ≥ 1. The functions y α,± • (t, x) determine the stencil of the scheme at (t, x).

Different spatial schemes can be obtained depending on the values taken by M and y α,± p (t, x) in [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF]. In the following, we study specifically the approximation in [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF] with

y α,± p = ± √ ∆xσ α p , p ≤ P, y α,± P +1 = ∆xb α , M = P + 1.
Other schemes are defined similarly. The scheme above has more flexibility in defining consistent boundary modifications, as explained in [START_REF] Reisinger | Boundary treatment and multigrid preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman equations[END_REF]. Finally, a fully discrete scheme is obtained by combining (8) with a time stepping scheme. We introduce a time mesh T ∆t = {t n : 0 ≤ n ≤ N t } ⊆ [0, T ], for simplicity with t n = n∆t, i.e. with uniform step size ∆t > 0. We then define the standard θ-scheme by

u(t n , x) -u(t n-1 , x) ∆t -inf α∈A {θL α ∆x [I ∆x u](t n-1 , x) + (1 -θ)L α ∆x [I ∆x u](t n , x)} = 0, (9) 
where we have set c = f = 0 in (1) for simplicity. In the tests we will focus on θ = 0 (explicit Euler) and θ = 1 (implicit Euler). Although the scheme can in principle be defined in this way for all x ∈ Ω, we restrict the scheme to x ∈ N .

Domain overstepping and stencil truncation

We now focus on the boundary of the domain and the definition of the scheme there. We take Ω ⊂ R d for d ≥ 1 a general domain with curved boundary, but for simplicity illustrate the method for C defined by a Cartesian mesh on R d with uniform mesh width ∆x. Then we choose C and N as explained in Section 1. See Figure 1.
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Figure 1: An elliptical domain and a mesh made of square cells. In situation a, x + y α,± p (t, x) / ∈ Ω, while in situation b, x + y α,± p (t, x) ∈ Ω, but the cell it is contained in has vertices outside Ω. The modified stencil in Sections 2.2 -2.4 uses values from the boundary.

Overstepping

Now consider a mesh node x ∈ N in the vicinity of the boundary. In the two situations sketched in Fig. 1 the interpolation at the point x + y α,± p (t, x) fails for given t, α and p. We say in these cases that the stencil "oversteps". We now discuss several possibilities to deal with these situations. They are all based on a local modification of the step y α,± p (t, x) and of k, combined in some cases with a modification of the interpolation weights.

Where the stencil oversteps, we define ŷα,± p (t, x) = µ α,± p (t, x)y α,± p (t, x), where µ α,± p (t, x) = min µ ≥ 0 : x + µy α,± p (t, x) ∈ ∂Ω .

In case a in Fig. 1 this means µ < 1, while in case b we have µ > 1.

Remark 2.1. On rectangular domains, the elements of the Cartesian mesh cover exactly the domain and case b does not occur. Moreover, interior mesh points cannot be arbitrarily close to the boundary, but are always at least ∆x away. This can be enforced in the general case by removing the outermost layer of cells in C, such that again a distance of ∆x between non-boundary mesh points and the domain boundary is ensured. This allows the derivation of CFL conditions for the explicit schemes as given below (Proposition 2.2 for the scheme in Section 2.4 and similar for other schemes).

Constant extrapolation

When the stencil oversteps, constant extrapolation simply uses instead the value at the boundary in the direction of the stencil step. This can be written as

Lα ∆x [I ∆x φ](t, x) := M p=1 [I ∆x φ](t, x + ŷα,+ p (t, x)) -2φ(t, x) + [I ∆x φ](t, x + ŷα,- p (t, x)) 2∆x . (11) 
Note that the scheme is generally not consistent up to the boundary. A proof of convergence is not available to the best of our knowledge.

Stencil cropping

The scheme in [START_REF] Feng | Convergent semi-lagrangian methods for the monge-ampère equation on unstructured grids[END_REF] shrinks the stencil so that it does not overstep. This corresponds to

Lα ∆x [I ∆x φ](t, x) := M p=1 [I ∆x φ](t, x + ỹα,+ p (t, x)) -2φ(t, x) + [I ∆x φ](t, x + ỹα,- p (t, x)) 2 k2 , (12) 
where ỹα,±

p = ± kσ α p ∀p = 1 . . . P, ỹα,± P +1 = k2 b α and 0 < k ≡ k(t, x, α) = θ∆x for θ ∈ (0, 1] is the biggest step such that x + ỹα,± p ∈ Ω, ∀p = 1 . . . M .
Generally this means the scheme is not consistent up to the boundary in the sense of [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], however, [START_REF] Feng | Convergent semi-lagrangian methods for the monge-ampère equation on unstructured grids[END_REF] can still prove a generalised consistency condition and convergence for viscosity solutions on convex domains.

Stencil truncation

In contrast to the above two schemes, the one in [START_REF] Reisinger | Boundary treatment and multigrid preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman equations[END_REF] is designed to be consistent in the whole of the domain. Hence, the objective is to find truncated or extended stencil vectors ŷα,± p (t, x) and corresponding finite difference weights

A α p ≡ A α p (t, x) and B α p ≡ B α p (t, x), such that x + ŷα,± p (t, x) ∈ ∂Ω and the truncated scheme Lα ∆x [I ∆x φ](t, x) := M p=1 A α p [I ∆x φ](t, x + ŷα,+ p (t, x)) -(A α p + B α p )φ(t, x) + B α p [I ∆x φ](t, x + ŷα,- p (t, x)) 2∆x ( 13 
)
is a consistent approximation of (4) as ∆x → 0. If the stencil does not overstep, we have that ŷα,± p (t, x) = y α,± p (t, x) and

A α p = B α p = 1. For all p ∈ [[1, P + 1]], let µ α,± p ∈ [0, 1]
be as in 10, then define

A α P +1 = B α P +1 = 1 µ α,+ P +1 = 1 µ α,- P +1 (14) and, for p ∈ [[1, P ]], A α p = 2 (µ α,+ p ) 2 + µ α,+ p µ α,- p , B α p = 2 (µ α,- p ) 2 + µ α,- p µ α,+ p . ( 15 
)
Proposition 2.1 (Consistency, see Corollary 2.3 in [START_REF] Reisinger | Boundary treatment and multigrid preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman equations[END_REF]). For the truncated scheme, ( 13), ( 14) and ( 15), the following holds: The local consistency error for points with truncation and p = P + 1 is O( √ ∆x) if only one side of the stencil oversteps, and O(1) if both sides overstep.

Remark 2.2. The scheme can be made consistent (of order O(∆x)) for the case where both sides of the stencil overstep by using the exact boundary value in the truncated scheme (13) instead of the interpolant. We therefore assume in the following that this is done. Proposition 2.2 (Monotonicity and stability, see Corollary 2.5 in [START_REF] Reisinger | Boundary treatment and multigrid preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman equations[END_REF]). In the case of overstepping and θ < 1 in ( 9), monotonicity requires that ∆t ≤ C 1 ∆x 3/2 if only one side of the diffusion stencils oversteps, or ∆t ≤ C 2 ∆x 2 if both sides overstep. However, if the stencil is not truncated, the positivity condition remains as in [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF], that is ∆t ≤ C 3 ∆x, where C 1 , C 2 , C 3 > 0 are sufficiently small constants depending on the coefficients σ α , b α and c α , but independent of ∆x and ∆t.

As the scheme is consistent up to the boundary in the classical sense, convergence follows directly from the framework in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF].

Local mesh refinement

We now consider a refinement of the mesh in boundary layers of width O( √ ∆x) where the semi-Lagrangian scheme oversteps. The objective is to improve the local consistency error of the truncated stencil in Section 2.4 from O( √ ∆x) to O(∆x), and for all schemes to reduce the width of the region where the stencil oversteps from O( √ ∆x) to O(∆x). For this purpose, we combine a local refinement of the mesh with appropriate changes to the stencil step k in [START_REF] Camilli | An approximation scheme for the optimal control of diffusion processes[END_REF] in the region near the boundary.

General mesh construction

Let us consider a mesh defined by cells C and N x nodes N ⊂ Ω with refinement parameter ∆x > 0, as in Section 1. For simplicity, we assume that σ α (t, x) = σ(x).

Since it is primarily the overstepping of the diffusion stencil that reduces the local truncation error, we split N and C into three subsets. We will subsequently define new step sizes k i for nodes in N i , and a refinement with mesh size h i for the cells in C i .

Definition 3.1. Define C 1 = {C ∈ C : ∃x ∈ C, θ ∈ [0, 1], 1 ≤ p ≤ P : x + θ √ ∆xσ p (x) ∈ Ω or x -θ √ ∆xσ p (x) ∈ Ω} * C 2 = {C ∈ C\C 1 : ∃x ∈ C 1 , 1 ≤ p ≤ P : x + k 1 σ p (x) ∈ C or x -k 1 σ p (x) ∈ C} C 3 = C\(C 1 ∪ C 2 ).
Then define

N 1 = C 1 ∩ N the nodes of elements in C 1 , N 2 = (C 2 ∩ N )\N 1
, the nodes of elements in C 2 which are not already in N 1 , and

N 3 = N \(N 1 ∪ N 2 ). Therefore, C = C 1 ∪ C 2 ∪ C 3 with C i ∩ C j =
∅ for i = j and i, j ∈ {1, 2, 3}, and similarly for the nodes. This ensures that if k 1 , k 2 ≤ k, all nodes that overstep are contained in N 1 , and that no node in C 1 steps into C 3 after refinement.

We emphasise the need for the three region construction, with an overlapping layer C 2 of a fine mesh (as in C 1 ) and wide stencil (as in C 3 ). This prevents the situation where a narrow stencil steps into the coarse mesh, which would spoil consistency.

Next, we refine the mesh elements in C 1 and C 2 with mesh-refinement parameter proportional to h 1 = h 2 ∼ ∆x γ , where γ > 1 is a parameter to be determined so that the resulting local consistency error is at least O(∆x). After refinement, we remove the cells which are not fully in Ω to create a new set of cells C with vertices N . By refining C and then pruning the refined cells outside Ω, the space between C and ∂Ω gets refined, which would not happen if we simply refined C.

To determine γ, we procede in reverse order starting with C 3 . As the stencil may step into the finer regions C 1 and C 2 , the consistency error there is

O k 2 3 + h 2 1 k 2 3 + h 2 2 k 2 3 + h 2 3 k 2 3 = O k 2 3 + ∆x 2 k 2 3 + ∆x 2γ k 2 3 ,
where the first term corresponds to the consistency error of the finite difference approximation of the second order derivative and the last terms to the interpolation error in the original and the refined regions respectively. As γ ≥ 1, we do not modify the stencil step, i.e. k 3 ∼ O( √ ∆x). Similarly, the local consistency error for nodes N 2 after refinement is

O k 2 2 + h 2 1 k 2 2 + h 2 2 k 2 2 + h 2 3 k 2 2 = O k 2 2 + ∆x 2 k 2 2 + ∆x 2γ k 2 2 .
Choosing k 2 ∼ O( √ ∆x) the local consistency error is O(∆x), for all γ ≥ 1. Finally, the local consistency error for points in C 1 after refinement is

O k 1 + h 2 1 k 2 1 + h 2 2 k 2 1 = O k 1 + ∆x 2γ k 2 1 ,
where we have assumed that the exact boundary value is used in the case of stencil truncation (see Remark 2.2). Choosing γ = 3 2 and k 1 ∼ O(∆x) the truncation error is O(∆x).

Figure 2 shows a locally refined mesh and describes the effects of the refinement. Figure 2 gives a distorted view for illustration purposes, where in reality C 2 is substantially smaller than C 1 , and C 1 is substantially smaller than C 3 . Remark 3.1. Figure 2 shows that the local refinement leaves 'hanging nodes' at the interface between C 2 and C 3 . These nodes do not pose a problem for semi-Lagrangian discretizations. For the interpolation, the 'hanging nodes' are not used for stencil points with any neighbours belonging to C 3 . coarse black mesh for C 1 , fine black mesh for C 2 and fine white mesh for C 3 . Shown dashed is also the original coarse mesh. The stencil is shrunk for the nodes a and b from Figure 1 earlier, which both lie in C 3 , and does not overstep anymore. The stencil for the new node c oversteps in both ways that a and b did before refinement, but by a lesser distance. The stencil is not shrunk for nodes in C 1 and C 2 . Point d illustrates the situation where the larger stencil steps from region C 3 into the finer region C 2 , which can only improve the interpolation error. In e, the larger stencil steps from region C 2 into both the fine region C 1 and the coarse region C 3 . The latter highlights the importance of the three-region construction, which guarantees that no fine stencil steps into the coarse mesh. This would make the scheme inconsistent for those points.

Mesh construction in one dimension

In our numerical tests we focus on one-dimensional examples, i.e. the case Ω = (x min , x max ) ⊂ R. The construction of the refined mesh is simpler in this case and we report here for completeness its main steps as implemented in the code used in Section 4.

Let

∆ max = √ ∆x σ ∞ ,
where σ ∞ ≡ sup (t,x,α)∈[0,T ]×Ω×A |σ α (t, x)|, denote the maximum step of the SL scheme subject to the volatility σ. Defining a global maximum step is not strictly necessary and it is only done to make the a priori definition of the sets C i , i = 1, 2, 3 easier. The width of C 2 especially is not optimal here, but this does not affect the complexity significantly. Define

x i 1 = min {x i ∈ N : x min + ∆ max ≤ x i } , x i 2 = min {x i ∈ N : x i 1 + ∆ max ≤ x i } x i 3 = max {x i ∈ N : x max -∆ max ≥ x i } , x i 4 = max {x i ∈ N : x i 3 -∆ max ≥ x i } .
Then, the sets C i are defined as follows:

C 1 = [x min , x i 1 ] ∪ [x i 3 , x max ], C 2 = (x i 1 , x i 2 ] ∪ [x i 4 , x i 3 ), C 3 = (x i 2 , x i 4 ).
At this point a refinement of the mesh proportional to ∆x 3/2 is considered in C 1 ∪ C 2 (see Figure 3) defining the new mesh N . Given that the width of the stencil is of length O( √ ∆x), the cardinality of

x min x i 1 x i 2 x i 4 x i 3 x max N ∩ C 1 N ∩ C 2 N ∩ C 3 x min + ∆max x i 1 + ∆max x i 3 -∆max xmax -∆max x min x i 1 x i 2 x i 4 x i 3 x max N ∩ C 1 N ∩ C 2 N ∩ C 3
N 1 ∪ N 2 is |N 1 ∩ N 2 | ∼ O( √ N x )
. Moreover, after the refinement, the number of nodes in this region of width O( √ ∆x) is O(N x ).

Properties of the refined scheme

Let ∆t, ∆x > 0 be the time and space mesh refinement parameters and T ∆t ⊆ [0, T ] and

C ⊆ Ω ⊆ C ⊂ R d as above, with N t = |T ∆t | -1 and N x = |N | = O(∆x -d ).
The cardinality of the refined mesh N in d dimensions is still O(N x ) = O(∆x -d ). Moreover, the analysis in Section 3.1 gives the following result. Proposition 3.1 (Complexity and consistency). If we define sets of mesh cells according to Definition 3.1 and further refine the ones in C 1 ∪ C 2 with mesh refinement parameter O(∆x 3/2 ), the complexity of the method is O(N t N x ) = O(∆t -1 ∆x -d ). If for the nodes requiring truncation in N 1 we use k 1 ∼ O(∆x), then, globally the consistency error of this modified scheme becomes

|1 -2θ| 2 |φ tt | 0 ∆t + C ∆t 2 |φ ttt | 0 + ∆x(|D 2 φ| 0 + |D 3 φ| 0 + |D 4 φ| 0 ) . ( 16 
)
As shown in Corollary 2.2, an undesirable side-effect of stencil truncation is the worsening of the CFL condition of the scheme. The local refinement of the grid results in a stricter CFL condition compared to the one in Corollary 2.2, as shown in the following. Proposition 3.2 (Monotonicity and stability). Additionally, provided that all the nodes are O(∆x 3/2 ) away from the boundary of the domain, a scheme with θ < 1 requires ∆t ∼ O(∆x 5/2 ) if only one side of the stencil oversteps or ∆t ∼ O(∆x 3 ) if both sides of the stencil overstep. Remark 3.2. Similar to Remark 2.1, ensuring that all nodes in the mesh are at least O(∆x 3/2 ) away from the boundary of the domain can be achieved by removing the outermost layer of the cells inside the domain after refinement.

Numerical tests

We consider the HJB equation in a bounded set Ω := (x min , x max ). Denoted by N x the number of mesh points, in one dimension, ∆x =

x max -x min N x -1 .

Let (x j ) be a uniform mesh on [x min , x max ] with x j = x min + j∆x, j = 1, . . . , N x and t n = n∆t, ∆t = T Nt . We are going to test both the explicit and the implicit scheme (θ = 0 and θ = 1, respectively, in ( 9)).

Test 1: Linear equation

We first test the scheme on a linear second order equation since, already in this simplified case, the main features of the scheme can be observed. In particular, we consider a classical Black-Scholes equation in Ω with a smooth initial datum: with

u t -1 2 (σx) 2 u xx -(bx)u x = f (t, x), t ∈ (0, T ), x ∈ Ω, (17) 
u(t, x) = v(t, x), t ∈ (0, T ), x ∈ ∂Ω, (18) 
u(0, x) = sin(πx), x ∈ Ω, (19) 
f (t, x) = 1 2 (1 -t)(πσx) 2 -1 sin π x - t 2 -(1 -t) π 2 + πbx cos π x - t 2 .
The equation has the exact solution:

v(t, x) = (1 -t) sin π x - t 2 .
x min x max b σ T -1 1 2 1 0.5 for the truncated stencil scheme without mesh refinement,

N x N t = Nx-1 2 N t = (N x -1) 3/2 N t = (Nx-1) 5/2 20 L ∞ -error rate L ∞ -
N t ∼ N 5/2 x
for the scheme with mesh refinement) is confirmed by the results in Tables 2 to 5. The mesh refinement has little impact on the performance of the scheme with truncated stencil (last column of Tables 2 and3). Clear improvements can be observed if a constant extrapolation of the boundary conditions is performed outside the domain (Tables 4 and5). It is worthwhile to recall that in this last case the scheme is not consistent and the convergence is numerically achieved because consistency is lost only for points within a distance of √ ∆x of the boundary, and ∆x after mesh refinement. Similar results are obtained for the implicit scheme (Table 6). Here, no CFL condition is required and this allows us to take ∆t proportional to ∆x, i.e., N t proportional to N x .

Test 2: Controlled drift-diffusion equation

The second test we propose is a HJB equation with coefficients independent of (t, x):

u t + sup a 1 ,a 2 -1 2 a 2 u xx -2au x = 0, t ∈ (0, T ), x ∈ Ω, (20) 
u(t, x) = ψ(t, x), t ∈ (0, T ), x ∈ ∂Ω, (21) 
u(0, x) = ψ(0, x), x ∈ Ω, (22) 
where ψ(0, •) is defined by

ψ(0, x) =    5x(1 + x) 4 if -1 < x ≤ 0 5x(1 -x) 4 if 0 ≤ x < 1 0 if |x| ≥ 1.
We use the parameters in Table 7. In order to compare our numerical results we use a reference numerical solution computed in a larger domain Ω 1 = (-5, 5) with zero boundary conditions, using a second order (in time and space) BDF scheme (see [START_REF] Bokanowski | High-order filtered schemes for time-dependent second order HJB equations[END_REF]) with N x = 5121 × 5 and N t = (N x -1)/10. The boundary value ψ(t, x) at x = ±1 is obtained using this reference numerical solution. The initial condition and the solution at terminal time are shown in Figure 5. We report here, in Table 8, only the results obtained by the implicit scheme. However, under the CFL condition N t ∼ N 5/2

x , similar results can be obtained using the explicit scheme. The truncated scheme converges with order one (first two columns in Table 8). The scheme with constant extrapolation of boundary conditions converges with asymptotic order 1/2 (third column in Table 8) which becomes order 1 applying the mesh refinement (fourth column in Table 8). We point out that in this example the main contribution to the error comes from the points where the solution changes concavity (Figure 6), which correspond to discontinuities in the second order derivative. This explains the almost absence of differences in Table 8 (columns 1,2,4) and the fact that the order 1/2 in the third column is recovered after a quite big number of mesh refinements. Figure 6 compares the error obtained using the constant extrapolation of boundary conditions (left) and the truncated stencil (right). One can notice that the use of the constant extrapolation creates some instability at the left hand boundary, that is where such a scheme strongly modifies the nature of the exact solution outside the computational domain.

Test 3: Nonsmooth initial data

Let us consider the following problem:

u t + sup σ min ,σmax -1 2 (σx) 2 u xx -bxu x + ru = 0, t ∈ (0, T ), x ∈ Ω, (23) 
u(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω, (24) 
u(0, x) = ψ(0, x), x ∈ Ω, (25) 
where ψ(0, •) is defined by with K 1 , K 2 > 0. This type of equations typically arises in financial applications when pricing options under uncertain volatility model, see [START_REF] Lyons | Uncertain volatility and the risk-free synthesis of derivatives[END_REF]. The initial condition ψ(0, •) (Figure 7 (left)) has the shape of a butterfly payoff, for which a detailed study of finite difference numerical approximation has been proposed in [START_REF] Pooley | Numerical convergence properties of option pricing PDEs with uncertain volatility[END_REF].

ψ(0, x) = max -2K 1 |x -K 2 | + K 1 , 0
In our numerical tests we use the parameters in Table 9. As in the previous example, in order to compute errors and rate of convergence, a reference numerical solution computed using a second order BDF scheme with N x = 5120 and N t = (N x -1)/10. The initial condition and the solution at terminal time are shown in Figure 7. The convergence orders are as previously. Figure 8 compares the error obtained using the constant extrapolation of boundary conditions (left) and the truncated stencil (right). The instability at the boundary created by the constant extrapolation of the boundary conditions is even more evident in this example.

Last, we test the stencil cropping presented in [START_REF] Feng | Convergent semi-lagrangian methods for the monge-ampère equation on unstructured grids[END_REF] (see Section 2.3). In order to 

Conclusions

In this paper we have presented and discussed a local mesh refinement for SL schemes approximating viscosity solutions to second order HJB equations in bounded domains with Dirichlet boundary conditions. In order to test our mesh refinement, we have considered different treatments for the 'overstepping' phenomena, which typically arise when this kind of wide stencil schemes is used. When a constant extrapolation of boundary conditions (Section 2.2) is applied, the local refinement of the mesh improves the observed order of convergence from order 1/2 to order 1. The scheme remains non-consistent with the differential operator in the neighborhood of the boundary and the mesh refinement has only the role of reducing the region of non-consistency. For the scheme with cropped stencil described in [START_REF] Feng | Convergent semi-lagrangian methods for the monge-ampère equation on unstructured grids[END_REF] (see also Section 2.3) the tests we performed do not show any benefits coming from the local mesh refinement since the scheme alone, even if not consistent up to the boundary, already shows a first order of convergence. The effects of the mesh refinement on the scheme with truncated stencil defined in [START_REF] Reisinger | Boundary treatment and multigrid preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman equations[END_REF] (also Section 2.4) consist in the improvement of the global truncation error from order 1/2 to order 1. Among other things, this permits to estimate the order of convergence of the scheme using the techniques in [START_REF] Barles | Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF]. However, from the numerical point of view, no substancial difference in the rate of convergence of the scheme is observable, due to the fact that the truncation error of order √ ∆x of the scheme without mesh refinement only occurs in a region of diameter √ ∆x.

In the numerical tests presented in Section 4 only the one-dimensional case was taken into account. Already in this simple setting the main feature of the scheme and the effects of the mesh refinement can be clearly observed. Numerical experiments in more dimensions and a deeper understanding of the numerical instabilities observed when a constant extrapolation of the boundary conditions is applied are the subject of future research.
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 32 Figure 2: Locally refined mesh. The regions in Definition 3.1 are shown in different styles:coarse black mesh for C 1 , fine black mesh for C 2 and fine white mesh for C 3 . Shown dashed is also the original coarse mesh. The stencil is shrunk for the nodes a and b from Figure1earlier, which both lie in C 3 , and does not overstep anymore. The stencil for the new node c oversteps in both ways that a and b did before refinement, but by a lesser distance. The stencil is not shrunk for nodes in C 1 and C 2 . Point d illustrates the situation where the larger stencil steps from region C 3 into the finer region C 2 , which can only improve the interpolation error. In e, the larger stencil steps from region C 2 into both the fine region C 1 and the coarse region C 3 . The latter highlights the importance of the three-region construction, which guarantees that no fine stencil steps into the coarse mesh. This would make the scheme inconsistent for those points.
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 3 Figure 3: Mesh refinement in one dimension. Definition of sets C i , i = 1, 2, 3 (top) and refined mesh (bottom).
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 4 Figure 4: (Test 1) Plot of the value function at time t = 0 (left) and t = T (right).
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 27 Parameters used in numerical experiments for Test 2.
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 5 Figure 5: (Test 2) Plot of the value function at time t = 0 (left) and t = T (right).
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 6 Figure 6: (Test 2) Exact solution (green), numerical solution (blue) and error (red) obtained with N x = 161 and N t = 16 using the constant extrapolation of boundary conditions (left) and the truncated stencil (right).
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 7 Figure 7: (Test 3) Plot of the value function at time t = 0 (left) and t = T (right).

Figure 8 :

 8 Figure 8: (Test 3) Exact solution (green), numerical solution (blue) and error (red) obtained with N x = 321 and N t = 32 using the constant extrapolation of boundary conditions (left) and the truncated stencil (right).
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 2 (Test 1) Explicit scheme. Truncated stencil without mesh refinement.For our numerical tests we used the parameters in Table1. The initial condition and the solution at terminal time are shown in Figure 4. The necessity of the CFL condition for No refinement With refinement No refinement With refinement L ∞ -error rate L ∞ -error rate L ∞ -error rate L ∞ -error rate

	error	rate L ∞ -error	rate

Table 8 :

 8 No refinement With refinement No refinement With refinement L ∞ -error rate L ∞ -error rate L ∞ -error rate L ∞ -error rate (Test 2) Implicit scheme.

			Truncated stencil	Constant extrapolation	
	N x	N t					
	21	2	2.61E-01	-2.63E-01	-2.61E-01	-2.63E-01	-
	41	4	1.75E-01 0.58 1.75E-01	0.58 1.75E-01 0.58 1.75E-01	0.58
	81	8	1.05E-01 0.73 1.05E-01	0.73 1.05E-01 0.74 1.05E-01	0.73
	161	16 5.62E-02 0.91 5.62E-02	0.91 5.61E-02 0.91 5.61E-02	0.91
	321	32 2.88E-02 0.96 2.88E-02	0.96 2.87E-02 0.96 2.88E-02	0.96
	641	64 1.41E-02 1.03 1.41E-02	1.03 1.40E-02 1.03 1.41E-02	1.03
	1281 128 6.50E-03 1.11 6.50E-03	1.11 1.08E-02 0.38 6.50E-03	1.11
	2561 256 3.45E-03 0.91 3.45E-03	0.91 8.58E-03 0.33 3.45E-03	0.91

avoid the case where the cropped stencil falls exactly on mesh points (this would make the scheme consistent since the interpolation would not be performed) we progressively divide the stencil by π until it fits into the domain Ω. The scheme shows a first order of convergence even without mesh refinement (Table 11). We observed the same also for the other examples in this section (not reproduced here). However, since consistency is not satisfied for those points where the cropping is performed, we cannot expect this to hold in general and the observed behavior in our tests might also be related to the fact that our solutions are almost linear close to the boundary, which makes the contribution to the error coming from the interpolation negligible.