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DUALITY-BASED A POSTERIORI ERROR ESTIMATES FOR SOME

APPROXIMATION SCHEMES FOR CONVEX OPTIMAL CONTROL

PROBLEMS

ATHENA PICARELLI AND CHRISTOPH REISINGER

Abstract. We introduce a class of numerical schemes for Hamilton-Jacobi-Bellman equations
based on a novel Markov chain approximation of the associated optimal control problem, which

uses, in turn, a piecewise constant policy approximation, Euler-Maruyama time stepping, and

a Gauß-Hermite approximation of the Gaußian increments. We provide one-sided (lower) error
bounds of order arbitrarily close to 1/2 in time and 1/3 in space for Lipschitz viscosity solutions,

coupling probabilistic arguments with regularization techniques as introduced by Krylov. The
order for sufficiently regular solutions is 1 in both time and space. For a class of convex problems

arising in optimal investment, we use duality results to derive also a posteriori upper error bounds

which are empirically of the same order as the lower bounds, as confirmed in our numerical tests.

1. Introduction

Let (Ω,F,P) be a probability space with filtration {Ft, t ≥ 0} induced by an Rp-Brownian motion
B(·) (p ≥ 1). We consider a controlled process governed by{

dX(s) = µ(s,X(s), αs)ds+ σ(s,X(s), αs) · dB(s), s ∈ (t, T ),
X(t) = x,

(1.1)

where µ and σ take values, respectively, in R and Rp. We assume that the control vector process
α ∈ A is progressively measurable and takes values in the set A ⊆ Rd. For any x ∈ R, we will
denote by Xα

t,x(·) the strong solution of (1.1).
Given a utility function U , the aim is to maximize for any x ≥ 0 the quantity

J(t, x) := E
[
U(Xα

t,x(T ))
]
.

It is well known that this problem is related to the solution of a Hamilton-Jacobi-Bellman (HJB)
equation, of the form −∂tv + infa∈A

{
µ(t, x, a)∂xv − 1

2σσ
T (t, x, a)∂xxv

}
= 0, (t, x) ∈ [0, T )× R,

v(T, x) = U(x), x ∈ R.
(1.2)

The possible degeneracy of the diffusion term makes it necessary to consider solutions in the viscosity
sense (see [7]). Furthermore, explicit solutions for this kind of nonlinear equations are rarely
available, so that their numerical approximation becomes vital. The seminal work by Barles and
Souganidis [4] establishes the basic framework for convergence of numerical schemes to the viscosity
solution. The fundamental properties required are: monotonicity, consistency, and stability of the
scheme. We recall that, in multiple dimensions, standard finite difference schemes are in general non-
monotone. As an alternative to finite difference schemes, semi-Lagrangian (SL) schemes [20, 6, 9]
are monotone by construction. The scheme we present in this paper belongs to this family.
In general, the provable order of convergence for second order HJB equations is significantly less
than one. By a technique pioneered by Krylov based on “shaking the coefficients” and mollification
to construct smooth sub- and/or super-solutions, [15, 17, 1, 2, 3] prove certain fractional convergence
orders, mainly using PDE-based techniques i.e., a comparison principle and the consistency error.
Here we study a family of SL schemes based on a discrete time approximation of the optimal
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control problem. We aim to provide error estimates making use of purely probabilistic techniques
and directly comparing the two optimal control problems. An important step in order to define our
scheme is to approximate the set of controls A by piecewise constant controls. This introduces an
asymmetry between the upper and the lower bound of the error. For a particular class of convex
optimal control problems, typically utility maximisation problems arising in financial applications,
we propose to overcome this issue using information coming from a dual problem.

The main contributions of this paper are as follows. We propose new discrete approximations of
controlled diffusion processes based on piecewise constant controls over intervals of length h and M
Gauß-Hermite points. We present a novel analysis technique for the resulting semi-discrete approx-
imations by probabilistic techniques and direct use of the dynamic programming principle. This
allows us to derive one-sided error bounds of order h(M−1)/2M + ∆x(M−1)/(3M−1) for timestep h
and spatial mesh size ∆x, for Lipschitz viscosity solutions (assumptions (H1) to (H3) below). They
coincide with the two-sided bounds in [9] for the standard linear-interpolation semi-Lagrangian
scheme, i.e. M = 2, and improve them for M > 2. For sufficiently smooth solutions, the corre-
sponding error bounds are of order 1 in both h and ∆x. Moreover, for convex control problems for
which duality holds (such as under assumptions (H4) to (H7) below), two-sided a posteriori bounds
of the same order are obtained.

The paper is organised as follows. We present the setting and main assumptions for the optimal
control problem in Section 2. For a very general class of discrete time schemes, in Section 3 we
describe the main idea of the paper and explain how duality techniques can be used for obtaining
error estimates. In Section 4 the Markov-chain approximation scheme is introduced and one-sided
(lower) a priori error bounds are obtained by using purely probabilistic arguments. The dual
problem, its numerical approximation and the a posteriori error bounds are discussed in Sections
6 and 7. Numerical tests are presented in Section 8.

2. Main assumptions and preliminary results

We consider standard assumptions on the optimal control problem:

(H1) A is a compact set;
(H2) µ : [0, T ] × R × A → R and σ : [0, T ] × R × A → Rp are continuous functions and there

exists K0 ≥ 0 such that

|µ(t, x, a)− µ(t, y, a)|+ ‖σ(t, x, a)− σ(t, y, a)‖ ≤ K0|x− y| ∀ t ∈ [0, T ], x, y ∈ R, a ∈ A,
|µ(t, x, a)− µ(s, x, a)|+ ‖σ(t, x, a)− σ(s, x, a)‖ ≤ K0|t− s|1/2 ∀ t, s ∈ [0, T ], x ∈ R, a ∈ A;

(H3) U is a Lipschitz continuous function with Lipschitz constant L.

For any choice of the control α ∈ A we will denote by Xα
t,x(·) the unique strong solution of (1.1).

The value function of the optimal control problem we consider is defined by

v(t, x) := sup
α∈A

E
[
U(Xα

t,x(T ))
]
. (2.1)

Under these assumptions one can prove the following regularity result on v:

Proposition 2.1 ([24, Proposition 3.1, Chapter IV]). Let (H1)-(H3) be satisfied. There exists
K ≥ 0 (depending only on T and the constant K0 in (H2)) such that

|v(t, x)− v(s, y)| ≤ LK
(
|x− y|+ (1 + |x|∨|y|)|t− s|1/2)

for any x, y ∈ R and t, s ∈ [0, T ] (where L denotes the Lipschitz constant of U and K only depends
on T and K0 in assumption (H2)).

For any [0, T − t]-valued stopping time θ, v satisfies the Dynamic Programming Principle (DPP)

v(t, x) = sup
α∈A

E
[
v(t+ θ,Xα

t,x(t+ θ))
]
, (2.2)

which can be used to characterize v as the viscosity solution of (1.2).



DUALITY-BASED A POSTERIORI ERROR ESTIMATES 3

3. The main idea

In this section, we are going to heuristically describe the main idea of our approach for a very
general class of discrete-time schemes. To this end, we introduce a time mesh for N ≥ 1 by

h = T/N and tn = nh,

for n = 0, . . . , N .

3.1. Piecewise constant control approximation. The first step in our approximation is to
introduce a time discretization of the control set. We consider the set Ah of controls α ∈ A which
are constant in each interval [tn, tn+1], for n = 0, . . . , N − 1, i.e.

Ah :=
{
α ∈ A : αs ≡

N−1∑
i=0

ai1s∈[ti,ti+1) s.t. ai ∈ A, i = 0, . . . , N − 1
}
.

In what follows, we will identify any element of α ∈ Ah by the sequence of random variables ai
taking values in A (denoted ai ∈ A for simplicity) and will write α ≡ (a0, . . . , aN−1). We denote
by vh the value function obtained by restricting the supremum in (2.1) to controls in Ah, that is

vh(t, x) := sup
α∈Ah

E[U(Xα
t,x(T ))]. (3.1)

Clearly, since Ah ⊆ A, one has

v(t, x) ≥ vh(t, x), (3.2)

for any t ∈ [0, T ], x ∈ R. An upper bound for the error related to this first approximation is
obtained (under suitable assumptions, and for a bounded set A) by Krylov in [18],

v(t, x) ≤ vh(t, x) + Ch1/6 (3.3)

for some constant C possibly depending on x. The arguments we are going to develop in Sections
6 and 7 aim to derive error bounds using purely probabilistic arguments and without making use
of such a (pessimistic, in many cases) result.
Taking θ ≡ h in (2.2), the DPP for the value function vh reads

vh(t, x) = sup
a∈A

E
[
vh(t+ h,Xa

t,x(t+ h))
]
. (3.4)

In particular, the restriction of the control set to Ah implies that the supremum in (3.4) is taken over
the set of control values A (compare this with (2.2)). The family of schemes we have in mind are
recursively defined by an approximation of (3.4) and lead to the definition of a numerical solution
V approximating vh.

3.2. Markov chain approximation. Let us consider a numerical approximation S of the argu-
ment of the supremum in (3.4) such that

S[f(tn+1, ·)](tn, x, a) ≈ E
[
f(tn+1, X

a
tn,x(tn+1))

]
,

for any smooth function f : R+ × R→ R and a ∈ A. Then we consider V defined by{
V (t

N
, x) = U(x),

V (tn, x) = sup
a∈A
S[V (tn+1, ·)](tn, x, a), n = N − 1, . . . , 0.
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If the set A is compact and the scheme S is sufficiently accurate, we hope to obtain (after a
regularization procedure, if necessary) the following bound for the error between vh and V :

sup
n=0,...,N

∣∣∣vh(tn, x)− V (tn, x)
∣∣∣

≤ sup
n=0,...,N−1

sup
a∈A

∣∣∣E[vh(tn+1, X
a
tn,x(tn+1))

]
− S[V (tn+1, ·)](tn, x, a)

∣∣∣
≤ . . . ≤ Chβ ,

for some β � 1/6 and C eventually depending on x. Considering this together with (3.2)-(3.3),
we can provide an accurate lower bound for the quantity (v− V ), whereas the upper bound on the
error will remain restricted to order 1/6, irrespective of the accuracy of the approximation of vh we
consider. The situation is illustrated in Figure 1.
In the absence of further information, this is the best order we can establish theoretically in this
way, even if the practically observed order is typically much larger than 1/6. We therefore propose
a way to bypass this bottleneck.

3.3. New error estimates using duality results. For a class of optimal control problems which
have a special convex structure, it is possible to define a dual problem of the form

ṽ(t, y) := inf
ν∈V

E
[
Ũ(Y νt,y(T ))

]
, (3.5)

for some given dynamics Y νt,y(·) and cost function Ũ , such that the primal and dual value functions
are related by a conjugate relation:

v(t, x) = inf
y>0

{
ṽ(t, y) + xy

}
. (3.6)

Applying the same steps as above to the dual problem and defining its numerical approximation
Ṽ , the situation in terms of error estimates is reversed, due to the fact that we face a minimization
problem. This means that if the duality result (3.6) holds true, we are in the situation shown in
Figure 2. Here we also use the fact that if

|ṽ(tn, y)− Ṽ (tn, y)| ≤ Chβ

for some C ≡ C(y), then∣∣∣ inf
y≥0
{ṽ(tn, y) + xy} − inf

y≥0
{Ṽ (tn, y) + xy}

∣∣∣ ≤ C̃hβ
for some C̃ ≡ C̃(x).
These considerations can be used in order to provide:

• A posteriori error estimates based on the computation of the quantity∣∣∣V (tn, x)− inf
y≥0

{
Ṽ (tn, y) + xy

}∣∣∣.
In fact, if V and infy≥0

{
Ṽ (t, y) + xy

}
are seen empirically to be at a distance of order hβ

or less, this will guarantee that the scheme considered has order of convergence at least β.
Observe that the quantity above can be easily computed from V and Ṽ as discussed in [11,
Section 3.4].

• A priori error estimates if a duality relation holds not only for the continuous problem, but
also for the approximated value functions V and Ṽ . If we assume to be able to prove that
the relation

V (tn, x) = inf
y≥0

{
Ṽ (tn, y) + xy

}
holds up to some error of order greater or equal than β, we obtain that the a priori bound
on the error |V − v| reduces to the narrow area around v that appears in Figure 2.

We pursue the first approach here and plan to investigate the second one in future work.
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Figure 1. Error bounds without duality arguments.
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Figure 2. Error bounds with duality arguments.

4. Markov-chain approximation schemes

We now present a particular class of schemes which are based on a Markov chain approxima-
tion of the optimal control problem (3.1). This follows the classical philosophy presented in [19],
although they take the opposite direction and use finite difference approximations to construct
Markov chains, while here we use time stepping schemes and quadrature formulae to define semi-
Lagrangian schemes. Similar probabilistic interpretations of such schemes have been given in [6]
for the time-dependent case and in [20] for the infinite horizon case. What is new here is the con-
struction of schemes with provable higher order error bounds, and the direct use of the dynamic
programming principle for the discrete approximation to derive these bounds.

4.1. Euler-Maruyama scheme. We start with an approximation of the process Xα
t,x(·) by the

Euler-Maruyama scheme. For any given α ≡ (a0, . . . , aN−1) ∈ Ah, we consider the following
recursive relation:

X(ti+1) = X(ti) + µ(ti, X(ti), ai)h+ σ(ti, X(ti), ai) ·∆Bi (4.1)

for i = 0, . . . , N − 1. The increments ∆Bi := (B(ti+1) − B(ti)) are independent, identically dis-
tributed random variables such that

∆Bi ∼
√
hN (0, Ip) ∀i = 0, . . . , N − 1. (4.2)

We will denote by Xα,EM
tn,x (·) the solution to (4.1) associated with the control α ≡ (an, . . . , aN−1) ∈

Ah and such that Xα,EM
tn,x (tn) = x. Under assumptions (H1)-(H2), the rate of strong convergence

of the scheme (4.1) is 1/2 [13]. Although the result from there is not directly applicable here as
the coefficients are non-Lipschitz in time due to the jumps in the control process, we can follow
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the same steps as in the proof of [21, Theorem 1.1, Chapter I], utilising the fact that the controls
α ∈ Ah are constant over individual timesteps. Therefore we have:

Proposition 4.1 ([13, Theorem 10.3.5]). Let assumptions (H1)-(H2) be satisfied. Then there exists
a constant K

EM
(independent of h) such that

E
[ ∣∣Xα

tn,x(T )−Xα,EM
tn,x (T )

∣∣ ] ≤ K
EM

(1 + |x|)h1/2

for any α ∈ Ah, n = 0, . . . , N, x ∈ R.

As a consequence, thanks to the Lipschitz continuity of U , we can conclude that, denoting

v
EM

(tn, x) := sup
α∈Ah

E
[
U(Xα,EM

tn,x (T ))
]
,

for any n = 0, . . . , N − 1, x ≥ 0,

|vh(tn, x)− v
EM

(tn, x)| ≤ sup
α∈Ah

∣∣∣E[U(Xα
tn,x(T ))

]
− E

[
U(Xα,EM

tn,x (T ))
]∣∣∣

≤ LK
EM

(1 + |x|)h1/2. (4.3)

Moreover, v
EM

still satisfies a DPP,

v
EM

(tn, x) = sup
a∈A

E
[
v
EM

(tn+1, X
a,EM
tn,x (tn+1))

]
, (4.4)

for any n = 0, . . . , N − 1.

4.2. Gauß-Hermite quadrature. Recalling that ∆Bi ∼
√
hN (0, Ip), we can also write (4.4) as

v
EM

(tn, x) = sup
a∈A

∫
Rp

v
EM

(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a) · y

) e− |y|22

(2π)p/2
dy. (4.5)

The discrete-time scheme we are going to define is based on the Gauß-Hermite approximation of
the right-hand term in (4.5).
Let us consider for simplicity p = d = 1. Let M ≥ 2 and let us denote by {zi}i=1,...,M the zeros of
the Hermite polynomial H

M
of order M and by {ωi}i=1,...,M the corresponding weights given by

wi =
2M−1M !

√
π

M2[H
M−1

(zi)]2
, i = 1, . . . ,M.

Therefore, defining

λi :=
ωi√
π

and ξi :=
√

2zi, i = 1, . . . ,M,

for any smooth real-valued function f (say f at least C2M ) we can make use of the following
approximation (see [12, p. 395] for instance):∫ +∞

−∞
f(y)

e−
y2

2

√
2π

dy =

∫ +∞

−∞
f(
√

2y)
e−y

2

√
π
dy ≈

M∑
i=1

1√
π
wif(

√
2zi) =

M∑
i=1

λif(ξi). (4.6)

Observe that λi ≥ 0,∀i = 1, . . . ,M and
∑M
i=1 λi = 1. Defining the sequence of i.i.d. random

variables {ζn}n=0,...,N−1 such that for any n = 0, . . . , N − 1

P(ζn = ξi) = λi, i = 1, . . . ,M,

we have

E[ζn] = 0 and Var[ζn] = 1 ∀n = 0, . . . , N − 1.
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ξi λi

M = 2 ±1 1/2
M = 3 0 2/3

±
√

3 1/6

M = 4 ±
√

3−
√

6 (3 +
√

6)/12

±
√

3 +
√

6 (3−
√

6)/12

Figure 3. Analytical expressions of {(ξi, λi)}i=1,...,M for
M = 2, 3, 4. We refer to [5, p. 464] for numerical approxi-
mations of {(zi, wi)}i=1,...,M for larger M .

For any control α ≡ (an, . . . , aN−1) ∈ Ah, in the sequel we will denote by Xα,h
tn,x(·) the Markov chain

approximation of the process Xα,EM
tn,x (·) recursively defined by{

Xα,h
tn,x(tn) = x,

Xα,h
tn,x(ti+1) = Xα,h

tn,x(ti) + µ(ti, X
α,h
tn,x(ti), ai)h+

√
hσ(ti, X

α,h
tn,x(ti), ai)ζi,

(4.7)

for i = n, . . . , N − 1. Therefore, starting from (4.5) and applying the Gauß-Hermite quadrature
formula (4.6), our scheme will be defined by

V (tn, x) = sup
a∈A

∑M
i=1 λiV

(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a)ξi

)
= sup

a∈A
E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
, n = N − 1, . . . , 0,

V (tN , x) =U(x).

(4.8)

Referring to the notation in Section 3, one has

S[V (tn+1, ·)](tn, x, a) := E
[
V
(
tn+1, x+ hµ(tn, x, a) +

√
hσ(tn, x, a)ζn

)]
.

Remark 1. We point out that for M = 2, (4.10) is the semi-Lagrangian (SL) scheme introduced
by Camilli and Falcone in [6] (for now, without considering the interpolation on the space grid).

Iterating, we obtain the following representation formula for V :

V (tn, x) = sup
α∈Ah

E
[
U(Xα,h

tn,x(T ))
]
.

Remark 2. In the case of a multi-dimensional Brownian motion, one possibility to define an
approximation is by a tensor product of the formula (4.6), that is∫

Rp

f(
√

2y)
e−|y|

2

πd/2
dy ≈

M∑
i1,...,ip=1

λi1 · · ·λipf(ξi1 , . . . , ξip), (4.9)

and {ζi}i=n,...,N−1 are i.i.d. random variables in Rp such that if ξj ≡ (ξj1 , . . . , ξjp),

P
(
ζi = ξj

)
= λj1 · · ·λjp .

Then one can define an approximation to v by
V (tn, x) = sup

a∈A

∑M
i1...ip=1 λi1 · · ·λipV

(
tn+1, x+ µ(tn, x, a)h+

√
hσ(tn, x, a) · ξi

)
= sup

a∈A
E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
, n = N − 1, . . . , 0,

V (tN , x) =U(x).

(4.10)

In the following, we restrict ourselves to the case p = d = 1 for brevity.
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4.3. The rate of weak convergence. In this section we prove the rate of weak convergence of

the random walk Xα,h
tn,x(·) defined by (4.7) to the process Xα,EM

tn,x (·) given by the Euler-Maruyama
scheme (4.1). For a smooth function f : R→ R we aim to estimate

sup
a∈A

∣∣∣ E[f(Xa,EM
tn,x (tn+1))

]
− E

[
f(Xa,h

tn,x(tn+1))
] ∣∣∣,

which leads to the weak convergence error for the approximation in (4.7).

Proposition 4.2. Let assumptions (H1)-(H2) be satisfied and let M ≥ 2. Then there exists a
constant C ≡ C(M) such that for any function f ∈ C2M (R;R) one has∣∣∣ E[f(Xa,EM

tn,x (tn+1))
]
− E

[
f(Xa,h

tn,x(tn+1))
] ∣∣∣ ≤ C‖f (2M)‖∞(1 + x2M )hM ,

for any x ∈ R, a ∈ A, h ≥ 0 and n = 0, . . . , N − 1.

Proof. We adapt a standard argument from numerical quadrature. Let us denote z = x+hµ(tn, x, a).
By Taylor expansion, we can write

E
[
f(Xa,EM

tn,x (tn+1))
]
=

∫ +∞

−∞
f(z +

√
2hσ(tn, x, a)y)

e−y2

√
π
dy

=

∫ +∞

−∞

{ 2M−1∑
k=0

f (k)(z)

k!
(
√
2hσ(tn, x, a)y)

k +
f (2M)(ẑ)

(2M)!
(
√
2hσ(tn, x, a)y)

2M

}
e−y2

√
π
dy,

for some ẑ. In the same way we get

E
[
f(Xa,h

tn,x(tn+1))
]
=

M∑
i=1

ωi√
π

{ 2M−1∑
k=0

f (k)(z)

k!
(
√
2hσ(tn, x, a)ξi)

k +
f (2M)(z̃)

(2M)!
(
√
2hσ(tn, x, a)ξi)

2M

}
,

for some z̃. At this point we recall that, by construction, the Gauß-Hermite quadrature formula is
exact for any polynomial of degree ≤ 2M − 1, so for any k ∈ {0, . . . , 2M − 1} we have

1√
π

f (k)(z)

k!
(
√

2hσ(tn, x, a))k
{∫ +∞

−∞
yke−y

2

dy −
M∑
i=1

wiz
k
i

}
= 0.

This implies that∣∣∣ E[f(Xa,EM
tn,x (tn+1))

]
− E

[
f(Xa,h

tn,x(tn+1))
] ∣∣∣

≤
∣∣∣ ∫ +∞

−∞

f (2M)(ẑ)

(2M)!
(
√
2hσ(tn, x, a)y)

2M e−y2

√
π
dy −

M∑
i=1

wi√
π

f (2M)(z̃)

(2M)!
(
√
2hσ(tn, x, a)zi)

2M
∣∣∣

≤ C‖f (2M)‖∞hM (1 + x2M ),

where the constant C depends on M and the constants in assumption (H2) and we used the fact
that |σ(t, x, a)| ≤ C0(1 + |x|) for some C0 ≥ 0 depending on K0 in (H2). �

5. A lower bound for v

In order to obtain error estimates for the scheme described in Section 4, we will adapt the tech-
nique of “shaking coefficients” and regularization introduced by Krylov in [15, 17] and studied later
by many authors (see for instance [1, 2, 3]) for obtaining the rate of convergence of monotone nu-
merical scheme for second order HJB equations. We do so without passing by the PDE consistency
error and work instead with the direct estimates we presented in the previous section. We refer
to Remark 3 for a discussion on the regular case.
In this section we work for simplicity with p = d = 1.
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5.1. Regularization. Let ε > 0 and let Eh be the set of progressively measurable processes e
bounded by ε that are constant in each time interval [ti, ti+1], that is,

Eh :=
{

prog. meas. process e: e(s) ≡ ei, ∀s ∈ [ti, ti+1) with |ei| ≤ ε
}
.

For any pair (α, e) ∈ Ah × Eh, let us consider the process Xα,e
tn,x(·) defined as an ε-perturbation of

the dynamics (4.1):{
Xα,e
tn,x(ti+1) = Xα,e

tn,x(ti) + µ(ti, X
α,e
tn,x(ti) + ei, ai)h+ σ(ti, X

α,e
tn,x(ti) + ei, ai)∆Bi

Xα,e
tn,x(tn) = x,

(5.1)

for i = n, . . . , N − 1. We define the following “perturbed” value function:

vε(tn, x) := sup
α∈Ah,e∈Eh

E
[
U(Xα,e

tn,x(T ))
]

(5.2)

for n = 0, . . . , N, x ∈ R.

Proposition 5.1. Let assumptions (H1)-(H3) be satisfied. Then there exists a constant C ≥ 0
such that

|v
EM

(tn, x)− vε(tn, x)| ≤ LCε
and

|vε(tn, x)− vε(tn, y)| ≤ LC|x− y|,
for any n = 0, . . . , N and x, y ∈ R.

Proof. Let us fix a control α ∈ Ah and e ∈ Eh. For any i = n, . . . , N − 1, we denote for simplicity

Xα,EM
tn,x (ti) ≡ XEM

i and Xα,e
tn,x(ti) ≡ Xe

i .

By the definition of processes (4.1) and (5.1) one has

XEM
i+1 −Xe

i+1 =
(
XEM
i −Xe

i

)
+ h
(
µ(ti, X

EM
i , ai)− µ(ti, X

e
i + ei, ai)

)
+
√
h
(
σ(ti, X

EM
i , ai)− σ(ti, X

e
i + ei, ai)

)
∆Bi

for any i = n, . . . , N − 1. Then(
XEM
i+1 −Xe

i+1

)2

=
(
XEM
i −Xe

i

)2

+ h2
(
µ(ti, X

EM
i , ai)− µ(ti, X

e
i + ei, ai)

)2

+ h
(
σ(ti, X

EM
i , ai)− σ(ti, X

e
i + ei, ai)

)2

∆B2
i

+ 2h
(
XEM
i −Xe

i

)(
µ(ti, X

EM
i , ai)− µ(ti, X

e
i + ei, ai)

)
+ 2
√
h
(
XEM
i −Xe

i

)(
σ(ti, X

EM
i , ai)− σ(ti, X

e
i + ei, ai)

)
∆Bi

+ 2h3/2
(
µ(ti, X

EM
i , ai)− µ(ti, X

e
i + ei, ai)

)(
σ(ti, X

EM
i , ai)− σ(ti, X

e
i + ei, ai)

)
∆Bi.

Taking the expectation, a straightforward calculation shows that

E
[(
XEM
i+1 −Xe

i+1

)2]
≤ E

[(
XEM
i −Xe

i

)2]
+K2

0h
2E
[(
XEM
i −Xe

i − ei
)2]

+K2
0hE

[(
XEM
i −Xe

i − ei
)2

∆B2
i

]
+ hE

[(
XEM
i −Xe

i

)2

+
(
µ(ti, X

EM
i , ai)− µ(ti, X

e
i + ei, ai)

)2]
≤ E

[(
XEM
i −Xe

i

)2](
1 + 2K2

0h
2 + 4K2

0h+ h
)

+ ε2
(

2K2
0h

2 + 4K2
0h
)

≤ E
[(
XEM
i −Xe

i

)2](
1 + Ch

)
+ ε2Ch,
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where we also used the inequality 2ab ≤ (a2 + b2) and denoted by C any positive constant indepen-
dent of h, e and α.
By iteration (using the fact that 1 + Ch ≤ eCh) we finally get

E
[∣∣∣Xα,EM

tn,x (ti)−Xα,e
tn,x(ti)

∣∣∣2] ≤ ε2eCTT,

for any i = n, . . . , N and we can conclude that

|v
EM

(tn, x)− vε(tn, x)| ≤ sup
α∈Ah,e∈Eh

E
[∣∣U(Xα,EM

tn,x (T ))− U(Xα,e
tn,x(T ))

∣∣] ≤ LCε
so that the first property is proved. The Lipschitz continuity of vε follows by the estimate

E
[

sup
i=n,...,N

∣∣Xα,e
tn,x(ti)−Xα,e

tn,y(ti)
∣∣] ≤ K|x− y|

that leads to

|vε(tn, x)− vε(tn, y)| ≤ LK|x− y|,
for any n = 0, . . . , N , x, y ∈ R, where the constant K is the same constant that appears in
Proposition 2.1. �

Moreover, the value function vε satisfies the following DPP:

vε(tn, x) = sup
a∈A,|e|≤ε

E
[
vε(tn+1, X

a,e
tn,x(tn+1))

]
, (5.3)

for any n = 0, . . . , N − 1.
The step that follows consists in a regularization of the function vε. For the regularization procedure,
we consider a smooth function δ : R→ [0,+∞) supported in the unit ball B1(0) with

∫
R δ(x) dx = 1,

and we define {δε}ε>0 as the following sequence of mollifiers:

δε(x) :=
1

ε
δ
(x
ε

)
.

Then define, for any n = 0, . . . , N ,

vε(tn, x) :=

∫
R
vε(tn, x− ξ)δε(ξ)dξ. (5.4)

Proposition 5.2. Let assumptions (H1)-(H3) be satisfied. The function vε(tn, ·) defined by (5.4)
is C∞ for any n = 0, . . . , N . Moreover,

(i) there exists a constant C ≥ 0 such that∣∣vε(tn, x)− vε(tn, x)
∣∣ ≤ LCε n = 0, . . . , N, x ∈ R;

(ii) for any k ≥ 1 one has ∥∥∥∥∂kvε∂xk

∥∥∥∥
∞
≤ LCkε1−k, (5.5)

for a certain constant Ck ≥ 0;
(iii) vε satisfies the following super-dynamic programming principle

vε(tn, x) ≥ sup
a∈A

E
[
vε(tn+1, X

a,EM
tn,x (tn+1))

]
(5.6)

for any n = 0, . . . , N − 1, x ∈ R.

Proof. The regularity of vε(tn, ·) and properties (i)-(ii) follow by the properties of mollifiers and
the Lipschitz continuity of vε (Proposition 5.1). It remains to prove (iii). By the definition of vε,
equality (5.3) and using the fact that

Xa,ξ
tn,x−ξ(tn+1) = Xa,EM

tn,x (tn+1)− ξ ∀n = 0, . . . , N − 1, a ∈ A, |ξ| ≤ ε,



DUALITY-BASED A POSTERIORI ERROR ESTIMATES 11

we have

vε(tn, x) =

∫
R
vε(tn, x− ξ)δε(ξ)dξ

=

∫
R

sup
a∈A,|e|≤ε

E
[
vε(tn+1, X

a,e
tn,x−ξ(tn+1))

]
δε(ξ)dξ

≥
∫
R

sup
a∈A

E
[
vε(tn+1, X

a,ξ
tn,x−ξ(tn+1))

]
δε(ξ)dξ

≥ sup
a∈A

∫
R
E
[
vε(tn+1, X

a,EM
tn,x (tn+1)− ξ)

]
δε(ξ)dξ

= sup
a∈A

E
[ ∫

R
vε(tn+1, X

a,EM
tn,x (tn+1)− ξ)δε(ξ)dξ

]
= sup
a∈A

E
[
vε(tn+1, X

a,EM
tn,x (tn+1))

]
,

which concludes the proof. �

5.2. A lower bound for the discrete time scheme. Applying (4.3), Proposition 5.1 and Propo-
sition 5.2(i), we obtain

v(tn, x) ≥ vε(tn, x)− LK
EM

(1 + |x|)h1/2 − LCε, (5.7)

for some new C. Recalling that vε satisfies the super-dynamic programming principle given by
Proposition 5.2(iii) and using the definition of V we also have for any n = 0, . . . , N − 1, x ∈ R

V (tn, x)− vε(tn, x)

≤ sup
a∈A

E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
− sup
a∈A

E
[
vε(tn+1, X

a,EM
tn,x (tn+1))

]
≤ sup
α∈A

{
E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
− E

[
vε(tn+1, X

a,h
tn,x(tn+1))

]
+ E

[
vε(tn+1, X

a,h
tn,x(tn+1))

]
− E

[
vε(tn+1, X

a,EM
tn,x (tn+1))

]}
≤ sup
a∈A

{
E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
− E

[
vε(tn+1, X

a,h
tn,x(tn+1))

]}
+ Cx2M‖∂2M

x vε‖∞hM

≤ sup
a∈A

{
E
[
V (tn+1, X

a,h
tn,x(tn+1))

]
− E

[
vε(tn+1, X

a,h
tn,x(tn+1))

]}
+ LCx2Mε1−2MhM , (5.8)

where for the last two inequalities we applied, respectively, Proposition 4.2 and Proposition 5.2(ii).
Observing that

E
[

sup
i=n,...,N

∣∣Xα,h
tn,x(ti)

∣∣2M] ≤ C(1 + x2M
)

for some C ≥ 0 independent of α, we can iterate inequality (5.8) and get

V (tn, x)− vε(tn, x) ≤ ‖V (tN , ·)− vε(tN , ·)‖∞ + LC(1 + x2M )ε1−2MhM−1

≤ LCε+ LC(1 + x2M )ε1−2MhM−1.

Therefore, by this last inequality and (5.7), we can conclude that for any n = 0, . . . , N, x ∈ R

v(tn, x) ≥ V (tn, x)− LC(1 + x2M )
(
ε1−2MhM−1 + h1/2 + ε

)
.

Balancing the quantities ε and h, i.e. taking ε = h(M−1)/2M and observing that 1/2 > (M −1)/2M
one has

v(tn, x) ≥ V (tn, x)− LC(1 + x2M )h(M−1)/2M . (5.9)
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Remark 3. If the value function v can be shown to be sufficiently smooth, the regularization step is
not necessary and it is also possible to consider the rate of weak convergence of the Euler-Maruyama
scheme, which is one, and under differentiability assumptions on U this gives

sup
i=n,...,N

∣∣∣E[U(Xα
tn,x(ti))− U(Xα,EM

tn,x (ti))
]∣∣∣ ≤ K̃EMh.

Thus, we obtain the following estimate

v(tn, x) ≥ V (tn, x) + Cx2MhM−1 + K̃EMh,

which is of order one as we would expect in the regular case.

5.3. The fully discrete scheme. In order to be able to compute the numerical solution practically,
we need to introduce also a discretization in space (otherwise the total number of nodes of all
trajectories grows exponentially in N). Let ∆x > 0 be the space step. We consider the space grid
G∆x := {xm = m∆x : m ∈ Z}. Let I[·] denote the linear (P1) interpolation operator with respect
to the space variable, satisfying for every Lipschitz function φ (with Lipschitz constant Lφ):

(i) I[φ](xm) = φ(xm), ∀m ∈ Z,
(ii) |I[φ](x)− φ(x)| ≤ Lφ∆x,
(iii) |I[φ](x)− φ(x)| ≤ C∆x2‖D2

xφ‖∞ if φ ∈ C2(R),
(iv) for any functions φ1, φ2 : R→ R, φ1 ≤ φ2 ⇒ I[φ1] ≤ I[φ2].

(5.10)

The solution of the fully discrete scheme, denoted by VF , is defined by:{
VF (tn, xm) = sup

a∈A

∑M
i=1 λi I[VF ](tn+1, X

a,h
tn,xm

(tn+1)),

VF (t
N
, xm) =U(xm),

(5.11)

for n = N − 1, . . . , 0 and m ∈ Z.

Lemma 5.1. Let assumptions (H1)-(H3) be satisfied. Then, there exists CI ≥ 0 such that

sup
n=0,...,N,
m∈Z

|V (tn, xm)− VF (tn, xm)| ≤ LCI
∆x

h
.

Proof. The result follows by properties (5.10)(ii),(iv) and by the Lipschitz continuity of V , which
can be easily proved under (H1)-(H3) (see also [9, Lemma 7.1]). �

Observe that, in absence of further regularity assumptions, this introduces the following “inverse”
CFL condition for the convergence of the fully discrete scheme:

∆x/h→ 0 as ∆x, h→ 0.

The contribution from the interpolation error has to be added to (5.9), giving an overall error of

O
(
h(M−1)/2M +

∆x

h

)
.

Optimising the choice of ∆x with respect to h we get

∆x ∼ h(3M−1)/2M . (5.12)

This effectively leads to order (M − 1)/(2M) in time and (M − 1)/(3M − 1) in space, which can
be made arbitrarily close to 1/2 and 1/3, respectively, by choosing M large enough.

On the other hand, if v is sufficiently smooth, (5.10)(iii) can be applied. This, together with

Remark 3, gives error estimates of order O(h + ∆x2

h ). In many cases, this corresponds to the
practically observed situation so that choosing ∆x ∼ h is sufficient to observe convergence, with
order 1, of the fully discrete scheme.
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Remark 4 (Comparison with existing results). By a Taylor expansion it is possible to compute
the consistency error of the scheme with respect to the HJB equation (1.2). For simplicity let us

consider the uncontrolled case with µ ≡ 0. Using the fact that
∑M
i=1 λi = 1,

∑M
i=1 λiξ

2
i = 1 and∑M

i=1 λiξ
2k+1
i = 0 (∀k ∈ N), one gets

1

h

(
v(tn+1, x)−

M∑
i=1

λiv(tn, x+
√
hσ(tn, x)ξi)

)
= vt(tn, x)− (σ(tn, x))2vxx(tn, x) +

h2

2
vtt(tn, x)− h2

4!
(σ(tn, x))4v4x(tn, x)

M∑
i=1

λiξ
4
i +O(h3),

which shows that the scheme has order 1 consistency, for all M . Applying the results in [9], this
would lead to error estimates of order h1/4 + ∆x/h, i.e., with the optimal choice of ∆x order 1/4
in h and 1/5 in ∆x. The improvement we get for the lower bound is due to the fact that, splitting
the two contributions of the error coming from the Euler-Maruyama time stepping and the Gauß-
Hermite quadrature formula, we can reduce the second one increasing M , whereas for the first one
the lower regularity requirement allows us to get order 1/2.

Remark 5. The upper bound with this approach would be restricted from (3.3) by order 1/6 in h
and consequently 1/7 in ∆x. Hence the technique of [9] gives the sharper result. We will discuss in
the subsequent sections how we can get improvements for certain convex problems.

6. An upper bound for the dual problem

The previous section gives an a priori lower bound for the difference between v and VF making
use of purely probabilistic arguments. With the objective pointed out in Section 3 to obtain an
accurate upper bound, we now restrict our attention on those problem for which it is possible to
define a dual problem.

6.1. Duality in continuous time. An important part of the literature dealing with financial
applications of optimal control theory applies, under suitable convexity assumptions, duality tech-
niques for solving problems of the form (1.1)-(2.1). The basic idea of this method is to write the
optimal control problem as a constrained optimization one with respect to the state variable and
then solve it generalising convex analysis techniques (see for instance [22] for a clear presentation
of the main concepts).

This approach leads to the definition of a dual problem, associated with the dynamics{
dY (s) = µ̃(s, Y (s), αs)ds+ σ̃(s, Y (s), αs) · dB(s), s ∈ (t, T ),
Y (t) = y,

(6.1)

and the dual value function as the solution of a minimization problem by

ṽ(t, y) := inf
ν∈V

E
[
Ũ(Y νt,y(T ))

]
, (6.2)

with suitably defined µ̃, σ̃, Ũ , and V. Under certain assumptions, such as those detailed below, the
primal and dual problem are linked by a conjugate relation:

v(t, x) = inf
y>0

{
ṽ(t, y) + xy

}
. (6.3)

For the duality result we mainly refer to [8], where a quite general set-up of an optimal invest-
ment problem involving portfolio constraints and nonlinear dynamics is discussed (see (6.4) below).
Moreover, an abstract formulation and framework for establishing duality results is given in [14]
and [23], where also some concrete examples are discussed in detail. In particular, we consider a
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special case of problem (1.1), (2.1) with dynamics{
dX(s) = X(s)

(
r(s) + αs · (b(s)− r(s)1) + g(s, αs)

)
ds+X(s)αs · ψ(s)dB(s), s ∈ (t, T ),

X(t) = x,
(6.4)

and with the following assumptions:

(H4) A ⊆ Rd is a closed and convex set such that 0 ∈ A.

(H5) (i) There exists K0 ≥ 0 such that

|r(t)− r(s)|+ ‖b(t)− b(s)‖+ ‖ψ(t)− ψ(s)‖ ≤ K0|t− s|1/2 ∀ t, s ∈ [0, T ].

(ii) g : [0, T ]×A→ R satisfies:
- there exists K1 ≥ 0 such that

|g(t, a)− g(t, a′)| ≤ K1|a− a′| ∀a, a′ ∈ A, t ∈ [0, T ];

‖g‖∞ ≤ K1;

|g(t, a)− g(s, a)| ≤ K1|t− s|1/2 ∀ t, s ∈ [0, T ], a ∈ A;

- for each t ∈ [0, T ], a→ g(t, a) is concave;
- g(t, 0) = 0 for all t ∈ [0, T ].

(H6) ψ satisfies the uniform ellipticity condition, i.e. there exists η > 0 such that

ξTψψTt ξ ≥ η|ξ|2 ∀t ∈ [0, T ], ξ ∈ Rd.
(H7) U ∈ C1((0,+∞);R);

U is concave and strictly increasing;
limx→+∞ U ′(x) = 0.

We can observe that, under (6.4), for any x > 0 also Xα
t,x(s) > 0,∀s ∈ [t, T ].

Remark 6. We point out that, as mentioned in [23, Section 6.5], the usual Inada condition

lim
x→0+

U ′(x) = +∞

(requested in [8]) is not necessary for proving the main duality results.

In this setting, it is possible to define a dual problem. This is given by the following dynamics{
dY (s) = −

(
r(s)+g̃(s, νs)

)
Y (s)ds+ (ψ(s)ψT (s))−1Y (s)(r(s)1−b(s)−νs) · ψ(s)dB(s), s ∈ [t, T ],

Y (t) = y,
(6.5)

where g̃(t, ν) := sup
a∈A

{
g(t, a)− aν

}
(6.6)

and ν is an Rd-valued adapted process. We denote by Ũ the convex conjugate of U , i.e.

Ũ(x) := sup
y>0
{U(y)− xy}.

We define the value of the dual problem by (6.2), where Y νt,y(·) denotes the solution to (6.5) asso-
ciated with the control ν and V is the set of adapted processes such that∫ T

0

‖νt‖2dt+

∫ T

0

g̃(t, νt)dt < +∞.

We denote by Γ ∈ Rd the set of values taken by the controls in V. One has the following duality:

Proposition 6.1 (Cuoco-Liu, [8]). Let assumptions (H4)-(H7) be satisfied. Then for any t ∈ [0, T ],
x > 0, the primal and dual value functions, v and ṽ, satisfy (6.3).

Remark 7. We point out that the results in [8] hold also if r, b, ψ and g are stochastic processes.
However, our approximation schemes make use of the Markovian framework.
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6.2. Approximation of the dual problem. The scheme presented in Section 4 can be used for
approximating the value function ṽ associated with the dual problem (6.1)-(6.2), defining recursively{

Ṽ (tn, y) = inf
γ∈Γ

E
[
Ṽ (tn+1, Y

γ,h
tn,y(tn+1))

]
, n = N − 1, . . . , 0,

Ṽ (t
N
, y) = Ũ(y),

(6.7)

where for any ν ≡ (γn, . . . , γN−1), with γi ∈ Γ ⊆ Rd ∀i = n, . . . , N − 1, we define{
Y ν,htn,y(tn) = y,

Y ν,htn,y(ti+1) = Y ν,htn,y(ti) + µ̃(ti, Y
ν,h
tn,y(ti), γi)h+

√
hσ̃(ti, Y

ν,h
tn,y(ti), γi) · ζi,

(6.8)

for i = n, . . . , N − 1. This leads to

Ṽ (tn, y) = inf
ν∈Vh

E
[
Ũ(Y ν,htn,y(T ))

]
,

where Vh denotes the set of processes ν ∈ V such that νs ≡ γi for any s ∈ [ti, ti+1]. In order to
derive similar error estimates to the primal problem, we make analogous assumptions for the dual

problem (but see Remark 8(3) for an important relaxation of (H3) and (H̃3)):

(H̃1) Γ is a compact set;

(H̃2) µ̃ : [0, T ]×R×Γ→ R and σ̃ : [0, T ]×R×Γ→ Rp are continuous functions and there exists

K̃0 ≥ 0 such that

|µ̃(t, x, γ)− µ̃(t, y, γ)|+ ‖σ̃(t, x, γ)− σ̃(s, y, γ)‖ ≤ K̃0|x− y| ∀ t ∈ [0, T ], x, y ∈ R, γ ∈ Γ,

|µ̃(t, x, γ)− µ̃(s, x, γ)|+ ‖σ̃(t, x, γ)− σ̃(s, x, γ)‖ ≤ K̃0|t− s|1/2 ∀ t, s ∈ [0, T ], x ∈ R, γ ∈ Γ;

(H̃3) Ũ is a Lipschitz continuous function with Lipschitz constant L̃.

Under these assumptions, the results of Propositions 2.1, 4.1, 4.2 also hold for the dual problem.

Remark 8. Assumptions (H1)-(H3) and (H̃1)–(H̃3) are necessary in order to derive the error
estimates of this and the following section. We discuss them here.

(1) The compacteness of A and Γ (assumptions (H1) and (H̃1)) has to be checked example by
example. In various cases, such as those in our numerical tests below, the boundedness of
the optimal controls α∗ ∈ A and ν∗ ∈ V is known in advance. In other cases see Remark 9.

(2) The assumptions (H2) and (H̃2) on the dynamics are satisfied in the examples we consider.

For (6.4), assumptions (H5),(H6) and (H̃1) are sufficient to ensure that for some C0 ≥ 0

‖(ψψT (t))−1(r(t)1− b(t)− γ)−(ψψT (s))−1(r(s)1− b(s)− γ)‖

+ |g̃(t, γ)− g̃(s, γ)|+ |r(t)− r(s)| ≤ C0|t− s|1/2,

for any γ ∈ Γ. The Lipschitzianity in x and y is automatically given by the linearity.

(3) In general, (H3) and (H̃3) are not simultaneously satisfied due to the Inada conditions.

Indeed, in our example of a power utility, only (H7) holds but U and Ũ are not Lipschitz
in 0. This forces us to introduce a further approximation of the problem and consequently
an additional error. Let ρ, c0 > 0 and x1 = c0/ρ, x2 = ρ, we define

Uρ(x) :=

 U(0) + U(x1)−U(0)
x1

x if 0 ≤ x ≤ x1

U(x) if x1 ≤ x ≤ x2

U(x2) if x ≥ x2,

so that Uρ → U as ρ→ +∞. We denote by Ũρ its convex conjugate

Ũρ(x) := sup
y>0
{Uρ(y)− xy}.
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These approximations are shown for a power utility in Figure 4. The difference between
v and the value function associated with Uρ can be estimated by using large deviations
arguments (see [10]) to bound

P
[(
Xα
t,x(T ) ≤ x1

)
∪
(
Xα
t,x(T ) ≥ x2

)]
. (6.9)

This decreases exponentially fast as ρ goes to 0, so it will not strongly modify our results.

Under assumptions (H̃1)-(H̃3), the regularization procedure presented in Section 5.1 can be
applied to the value function (6.2) associated with the dual problem.

Proposition 6.2. Let (H̃1)-(H̃3) be satisfied. For any ε > 0 there exists a function ṽε such that
ṽε(tn, ·) is C∞ for any n = 0, . . . , N and

(i) there exists C ≥ 0 such that∣∣∣ṽε(tn, y)− ṽEM (tn, y)
∣∣∣ ≤ L̃Cε,

for any n = 0, . . . , N , y ∈ R;
(ii) for any k ≥ 1 ∥∥∥∥∂kṽε∂yk

∥∥∥∥
∞
≤ ε1−kL̃Ck,

for some Ck ≥ 0;
(iii) ṽε satisfies the following sub-dynamic programming principle

ṽε(tn, y) ≤ inf
γ∈Γ

E
[
ṽε(tn+1, Y

γ,EM
tn,y (tn+1))

]
,

for any n = 0, . . . , N , y ∈ R, where Y γ,EMtn,y (·) denotes the Euler-Maruyama approximation
of the process defined by (6.1).

Proof. Under assumptions (H̃1)-(H̃3) the proof follows the same arguments of Proposition 5.2. �

6.3. An upper bound for ṽ. The approximation scheme we defined for the dual problem is almost
the same we used for the primal one, with the only difference that we have to handle a minimization
problem. Therefore, we can use the arguments in Section 5.2 to obtain an upper bound for the
difference (ṽ − Ṽ ). For some constant C ≥ 0, one has

ṽ(tn, y) ≤ Ṽ (tn, y) + L̃C̃(1 + y2M )h(M−1)/2M . (6.10)

If then the fully discrete solution of the dual problem is denoted by ṼF , under assumptions (H̃1)-

(H̃3) one also has

sup
n=0,...,N,
m∈Z

|Ṽ (tn, ym)− ṼF (tn, ym)| ≤ L̃C̃I
∆x

h
.

7. A posteriori error estimates for the discrete time scheme

We now assume all of (H1)–(H7) and (H̃1)-(H̃3). Using the conjugate dual property between v
and ṽ (see Proposition 6.1, under (H4)-(H7)), together with (6.10) we get

v(tn, x) = inf
y≥0

{
ṽ(tn, y) + xy

}
≤ inf
y≥0

{
Ṽ (tn, y) + xy + L̃C̃(1 + y2M )h(M−1)/2M

}
.

As the dynamics is linear, the dual value function is convex. Therefore, for any x > 0 the quantity
{Ṽ (tn, y) + xy} attains its infimum, say at some I(x) (which can be big as x approaches zero). It
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follows that for x > 0

inf
y≥0

{
Ṽ (tn, y) + xy + L̃C̃(1 + y2M )h(M−1)/2M

}
≤ Ṽ (tn, I(x)) + xI(x) + L̃C̃(1 + I(x)2M )h(M−1)/2M

= inf
y≥0

{
Ṽ (tn, y) + xy

}
+ L̃C̃(1 + I(x)2M )h(M−1)/2M .

Considering now the fully discrete scheme and putting together the upper and the lower bound one
finally obtains

−C(xi)
(
h(M−1)/2M +

∆x

h

)
≤ v(tn, xi)− VF (tn, xi) ≤ Gh,∆x(tn, xi) + C(xi)

(
h(M−1)/2M +

∆x

h

)
,

(7.1)

where we defined the numerical duality gap

Gh,∆x(tn, xi) :=
∣∣∣ inf
yj∈G∆x

{
ṼF (tn, yj) + xiyj

}
− VF (tn, xi)

∣∣∣ (7.2)

and C(xi) denotes any quantity depending on constants and the point xi (recall that such a quantity
increases as xi approaches 0 or +∞). It is important to note that the duality gap for the fully
discrete scheme is computable efficiently, see e.g. [11], such that (7.1) is a practically useful a
posteriori bound.

8. Numerical tests

We test our results on some examples. We consider d = p = 1 and the computational domain
[0, xmax]. We denote by N and J respectively the number of time and space steps, i.e.

h =
T

N
and ∆x = xmax/J.

We study the case of a power utility function:

U(x) =
xp

p
for some p ∈ (0, 1). (8.1)

In order to satisfy assumption (H3), we consider a modification of the utility function in a neigh-
borhood of 0, and truncate the function at some x = ρ (see Remark 8). The utility function U

and its conjugate Ũ , as well as its Lipschitz continuous approximation Uρ and its conjugate Ũρ are
shown in Figure 4. In order to not further complicate the notation, we simply denote by V and
Ṽ (instead of Vρ,F , Ṽρ,F or similar) the fully discrete numerical solutions of the primal and dual

problem associated respectively with Uρ and Ũρ.

Remark 9. For the optimisation over the controls in our computations, we truncate A and Γ
first to a finite interval and then discretise the interval by Na and Nν equally spaced mesh points,
respectively. This further approximation decreases the value of the discrete primal (maximisation)
problem and increases the value of the discrete dual (minimisation) problem, in the same way as
the piecewise constant (in time) control approximation does. This implies that this component of
the error is captured in the duality gap which we compute a posteriori. The approximation can
generally only be improved by increasing the size of the control intervals and decreasing the control
mesh spacing, concurrently with decreasing h and ∆x.

As the optimal control in our examples is bounded, the error of the control truncation is zero
if the interval is chosen large enough. It is seen from the computations that the contribution of
the control discretisation error is small, decreasing quadratically in N−1

a and N−1
ν since we have a

smooth dependence of the Hamiltonian on the control. In our tests, we take Na ∼ Nν ∼ N , such
that the control discretisation error becomes eventually negligible.
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Figure 4. The power utility function U with its conjugate Ũ (left) and the Lips-

chitz continuous approximation Uρ with its conjugate Ũρ (right). Here, xmax = 20,
ρ = 18 and c0 = 8.

Remark 10. It is clear that as xm approaches 0 or xmax it may happen that Xa,h
tn,xm

(tn+1) oversteps

the domain. In this case, we use linear extrapolation in order to define V and Ṽ outside the domain.

Remark 11. In our tests, we take M = 2 with ∆x ∼ h5/4 from (5.12), more specifically J ∼
dN5/4e. Taking M > 2 has only (theoretical) advantages for non-smooth solutions, while we would
observe order of convergence at most one for any choice of M ≥ 2 even in the smooth case. This is
due to the fact that the use of the Euler-Maruyama scheme reduces the order of consistency of the
overall scheme to one, regardless of the value of M (see also Remark 4). This has been confirmed
numerically for M = 4 with ∆x = h11/8, but we do not report the results here.
An improvement of the order of consistency might be achieved by combining higher values of M
with the use of higher order time-stepping schemes, for instance the higher order Taylor schemes
of [13]. This is beyond the scope of this paper and we leave it for future research.

Test 1: Merton problem. We first study the classical Merton problem. This corresponds to the
dynamics (6.4) with g ≡ 0, constant coefficients b, r, ψ and A = R. It is well known that for this
problem there exists a closed-form solution given by (see, e.g. [22])

v(t, x) = exp
{
t
(
a∗(b− r) + r − 1

2
(a∗)2(1− p)ψ2

)}
U(x),

where U and p are given in (8.1), and

a∗ :=
(b− r)
ψ2(1− p)

is the optimal control. We recall that in this case the dual problem is linear and no optimisation
is necessary since Γ = {0}. The values of the coefficients used in the test is given in Table 1. For
these values, setting A = [−1, 1] is sufficient to have a∗ ∈ A.

p r b ψ T xmax

0.5 0.8 1.2 1 0.5 20

Table 1. Test 1: Parameters used in numerical experiments.

Table 2 reports the error and the convergence rate of V to the exact solution v of the primal problem.
As expected, the order of convergence is around 1. It is important to notice that continuing to refine
the mesh without increasing ρ, we cannot get convergence to v. In fact, the probability in (6.9), even
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if small at points x far from the boundaries of the domain, is different from zero everywhere (see
also Figure 5, left). In Table 3, we report the numerical duality gap, i.e. the quantity Gh,∆x(T, x).
This quantity also decreases with order 1 or even slightly higher. In this case, the duality gap is
bigger than the error, but of the same order. In Figure 5 (right) we show the numerical solutions

V and Ṽ of the primal and the dual problem, together with the convex conjugate of Ṽ . Close to
x = 0 we do not observe convergence due to the local modification of U . Of course, this region can
be shrunk by choosing ρ bigger.

J N Error L1 Order L1 Error L2 Order L2 Error L∞ Order L∞

14 8 2.90E-01 - 2.43E-01 - 2.03E-01 -
32 16 1.56E-01 0.90 1.40E-01 0.80 1.34E-01 0.60
77 32 6.64E-02 1.23 6.70E-02 1.06 8.51E-02 0.66
182 64 1.83E-02 1.86 1.94E-02 1.79 3.09E-02 1.46
431 128 6.70E-03 1.45 6.78E-03 1.51 9.61E-03 1.68
1024 256 2.52E-03 1.41 2.59E-03 1.39 3.90E-03 1.30
2436 512 1.02E-03 1.31 1.04E-03 1.31 1.63E-03 1.26
5793 1024 4.27E-04 1.25 4.42E-04 1.24 7.57E-04 1.11

Table 2. Test 1: Local (x ∈ [1, 2]) errors and convergence order comparing V
with the exact solution v, for M = 2 (Gauß-Hermite quadrature), N = 4 · 2k (time
steps), J = dN5/4e (space steps), Na = 2k+1 (discrete controls), for k = 1, 2, . . . , 8.

J N Gap L1 Order L1 Gap L2 Order L2 Gap L∞ Order L∞

14 8 4.17E+00 - 3.49E+00 - 2.92E+00 -
32 16 1.99E+00 1.07 1.80E+00 0.95 1.84E+00 0.67
77 32 7.66E-01 1.38 7.61E-01 1.24 8.78E-01 1.07
182 64 4.00E-01 0.94 4.08E-01 0.90 5.10E-01 0.78
431 128 1.83E-01 1.12 1.87E-01 1.13 2.50E-01 1.03
1024 256 5.72E-02 1.68 6.00E-02 1.64 8.97E-02 1.48
2436 512 1.69E-02 1.76 1.73E-02 1.79 2.42E-02 1.89
5793 1024 6.40E-03 1.40 6.58E-03 1.40 9.08E-03 1.41

Table 3. Test 1: Local (x ∈ [1, 2]) duality gap Gh,∆x from (7.2) and related
convergence order, for M = 2 (Gauß-Hermite quadrature), N = 4 ·2k (time steps),
J = dN5/4e (space steps), Na = 2k + 1 (discrete controls), for k = 1, 2, . . . , 8.

Test 2: Cuoco and Liu example. This example is taken from [8]. In this paper, the authors
consider the nonlinear dynamics in (6.4) (i.e. g 6≡ 0) and portfolio constraints (i.e. A ( R). We still
consider a power utility and d = 1. Let A be defined by

A =
{
a ∈ R : max(0,−a)λ− + max(0, a)λ+ ≤ 1

}
for some λ− ≥ 0 and λ+ ∈ [0, 1]. The function g is defined by

g(a) = −r(1 + ιλ−) max(0,−a)− (R− r)
(
1−max(0, a)− ιλ−max(0,−a)

)
,

where R ≥ r and ι ∈ [0, 1]. The values used in our numerical simulation are reported in Table 4.
Observe that the choice λ+ = λ− = 1 corresponds to A = [−1, 1]. In order to define Γ, we use the
explicit expression given in [8, Section 5.2] for the optimal control. From this, for the data in Table
4, we can take Γ = [−1, 1] to guarantee ν∗t ∈ Γ for any t ∈ [0, T ]. Table 5 reports the numerical

duality gap and the corresponding convergence order. The numerical solutions V and Ṽ of the
primal and the dual problem, together with the convex conjugate of Ṽ are shown in Figure 6. Still
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Figure 5. Test 1: Numerical solution V (in black) compared with the exact

solution (blue, left) and the convex conjugate of Ṽ (magenta, right). The dashed
red line represents the error (left) and the numerical duality gap (right).

p r R b ψ T xmax ι λ+ λ−
0.5 0.8 1 1.2 0.5 0.5 20 0.5 1 1

Table 4. Test 2: Parameters used in numerical experiments.

J N Gap L1 Order L1 Gap L2 Order L2 Gap L∞ Order L∞

14 8 2.30E+01 - 8.08E+00 - 4.10E+00 -
32 16 1.55E+01 0.57 5.09E+00 0.66 2.14E+00 0.94
77 32 7.01E+00 1.14 2.19E+00 1.22 9.01E-01 1.25
182 64 4.23E+00 0.73 1.31E+00 0.74 5.09E-01 0.82
431 128 2.49E+00 0.76 7.80E-01 0.75 3.21E-01 0.67
1024 256 1.43E+00 0.80 4.51E-01 0.79 1.83E-01 0.81
2436 512 6.33E-01 1.18 2.00E-01 1.18 8.05E-02 1.18
5793 1024 1.86E-01 1.76 6.00E-02 1.74 2.52E-02 1.68

Table 5. Test 2: Global duality gap Gh,∆x from (7.2) and related convergence
order, for M = 2 (Gauß-Hermite quadrature), N = 4 · 2k (time steps), J = dN5/4e
(space steps), Na = Nν = 2k + 1 (discrete controls), for k = 1, 2, . . . , 8.

we can observe a peak of the gap close to x = 0, but in this case convergence to zero of the duality
gap is globally achieved (see Table 5). However for small values of x we loose speed of convergence,
which is in line with the local analysis in Section 7.

9. Conclusion and perspectives

This paper analyses numerical schemes for HJB equations based on a discrete time approximation
of the optimal control problem. Using purely probabilistic arguments and under very general
assumptions, in Section 5 we give an a priori lower bound for the solution generated by such an
approximation. The error bound obtained in this way allows us to improve the results available in
the literature. For a suitable class of convex optimal control problems, an upper bound is obtained
a posteriori using the numerical approximation of the dual problem.

Our numerical tests confirm the results given by the theoretical analysis and suggest a conver-
gence to zero with order one of the numerical duality gap. Establishing rigorously a duality relation
between the numerical approximations of the primal and the dual problem seems to us an interest-
ing direction of research that we would like to pursue. Beyond the independent theoretical interest,
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Figure 6. Test 2: Numerical solution V (black) compared with the convex con-

jugate of Ṽ (magenta). The dashed red line represents the numerical duality gap.

this would also allow us to obtain an a priori upper bound for the numerical error. The possibility
of improving the order by higher order time stepping is also left for future research.
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