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Abstract

In this paper we study a higher order viscous quasi-geostrophic type equation. This equation
was derived in [11] as the limit dynamics of a singularly perturbed Navier-Stokes-Korteweg
system with Coriolis force, when the Mach, Rossby and Weber numbers go to zero at the
same rate.

The scope of the present paper is twofold. First of all, we investigate well-posedness of such
a model on the whole space R2: we prove that it is well-posed in Hs for any s ≥ 3, globally in
time. Interestingly enough, we show that this equation owns two levels of energy estimates,
for which one gets existence and uniqueness of weak solutions with different regularities
(namely, H3 and H4 regularities); this fact can be viewed as a remainder of the so called
BD-entropy structure of the original system.

In the second part of the paper we investigate the long-time behaviour of these solutions.
We show that they converge to the solution of the corresponding linear parabolic type equa-
tion, with same initial datum and external force. Our proof is based on dispersive estimates
both for the solutions to the linear and non-linear problems.
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1. Introduction

In this paper we are concerned with well-posedness and log-time dynamics issues for the non-linear
parabolic-type equation

(1) ∂t
(
Id−∆ + ∆2

)
r + ∇⊥(Id−∆)r · ∇∆2r + µ∆2(Id−∆)r = f ,

where r and f are functions of (t, x) ∈ R+ × R2. The parameter µ > 0 will be kept fixed throughout
all the paper; it can be interpreted as a sort of viscosity coefficient. We supplement equation (1) with
the initial condition r|t=0 = r0, where r0 is a suitably smooth function defined over R2.
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1.1. Derivation of the model. Equation (1) was derived in [11] as the equation describing the
limit dynamics, for ε→ 0, of the following singular perturbation problem:

(2)


∂tρε + div (ρεuε) = 0

∂t (ρεuε) + div
(
ρεuε ⊗ uε

)
+

1

ε2
∇P (ρε) +

1

ε
e3 × ρεuε − νdiv

(
ρεDuε

)
− 1

ε2
ρε∇∆ρε = 0 .

The previous equations are posed on R2× ]0, 1[ and supplemented by conplete slip boundary condi-
tions, which allow to avoid boundary layers effects.

System (2) is the so-called Navier-Stokes-Korteweg system; it describes the dynamics of a compress-
ible viscous fluid, whose motion is mainly influenced by internal tension forces and Earth rotation.
Here above, at each value of ε fixed, the scalar function ρε = ρε(t, x) ≥ 0 represents the density of the
fluid, uε = uε(t, x) ∈ R3 its velocity field and the function P (ρε) its pressure. The number ν > 0 is
the viscosity coefficient; the viscous stress tensor is supposed to depend on (and possibly degenerate
with) the density. Finally, the term ρε∇∆ρε is the capillarity tensor, which takes into account the
effects of a strong surface tension, while the term e3×ρε uε = ρε

(
−u2

ε, u
1
ε, 0
)

is the Coriolis operator,
which takes into account effects due to the fast rotation of the ambient space. We refer e.g. to [5], [13]
and references therein for more details on the previous model.

The scaling introduced in (2) corresponds to taking the Mach number Ma, the Rossby number Ro
and the Weber number We to be all proportional to the small parameter ε. In turn, this means that we
are studying the incompressible, fast rotation and strong capillarity limits at the same time, focusing
our attention on their mutual interaction. See again [13] and the references therein for additional
comments about the adimensionalisation of the equations and for more insights on this scaling.

A similar asymptotic analysis was performed e.g. in [15] for the classical barotropic Navier-Stokes
equations (no capillarity forces were taken into account), and, for models much closer to (2), in e.g. [4]
and [16]. Notice however that, in these last two references, the low Mach and low Rossby numbers
limit was coupled with a vanishing capillarity limit, which corresponds to take We of a smaller order
ε1−α, for some α ∈ ]0, 1]: then the authors found that the limit dynamics was characterized by a
quasi-geostrophic equation

(3) ∂t
(
r − ∆r

)
+ ∇⊥r · ∇∆r +

ν

2
∆2r = 0

over R2. We will say something more about this system in Subsection 1.2 below. For the time being,
let us just mention that this equation is well-known in physical theories for geophysical flows (see
e.g. [22], [25]) as an approximate model when considering the limit of fast Earth rotation.

Let us comment on the fact that, although the original problem (2) is three-dimensional, the limit
system (1), or its analogue (3) in absence of capillarity effects, becomes 2-D. This issue is not surprising
at all, since it is an expression of the celebrated Taylor-Proudman theorem for geophysical flows (see
e.g. [22]). More precisely, it is well-known that fast rotation has a stabilizing effect on the fluid motion,
in the sense that it introduces some vertical rigidity: then, the dynamics tends to be purely horizontal,
meaning that it takes place on planes which are hortogonal to the rotation axis.

As a final comment, we want to highlight the strong analogy linking equations (1) and (3): they
both share the same structure, although in (1) we can notice the presence of higher order derivatives
and, more importantly, of the operator Id−∆ in some terms. We remark that, in light of the study
carried out in [11], the presence of higher order derivatives in (1) has to be interpreted as a remainder
of the action of strong capillarity forces, which persist also after passing to the limit for ε → 0 in
(2). We then expect this equation to be somehow more pertinent in physical approximations when
describing non-homogeneous flows with strong internal tension forces, or whenever one wants to keep
track of potential energy due to steep changes of density in small regions (like in diffuse interface
theories and propagation of interfaces, for instance).

We also point out that the ∂tr term, appearing in both equations (1) and (3), is a remainder of
the balance between pressure forces and Coriolis effects. Technically, it arises from the singular limit
problem, when using the mass equation to get rid of the singular behaviour of the rotation term.
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1.2. Related works, and content of the paper. To the best of our knowledge, the derivation
of (2) given in [11] is completely new, and we are not aware of previous studies carried out on this
equation. As already pointed out, it is fair to mention that it shares strong similarities with the quasi-
geostrophic equation (3), which has been esxtensively studied so far, also from the mathematical point
of view. See e.g. books [18] and [19], and paper [20] for interesting recent advances. We remark here
also the analogy of our equation with equations for second-grade fluids, and especially with the so-
called Leray-α and Euler-α equations, which are often adopted as sub-grid scale models for turbulence.
We refer the interested reader to e.g. [14] and [6] and the references quoted therein.

However, it is important to highlight some apparently small differences which exist between equa-
tions (1) and (3), and which make the analysis carried out in the present paper not to be an obvious
adaptation of what is known for the quasi-geostrophic equation. Apart from the higher order operators
involved in the former model, the probabily most relevant difference is represented by the appearing of
the operator Id−∆: in particular, in (1) we lose the stream-function relation linking, in the convective
term, the transport velocity field to the transported quantity. More precisely, if we set v := ∇⊥r in
(3), we notice that rot v = ∆r, which is exactly the transported term; on the contrary, in (1), if we
set u := ∇⊥(Id−∆), we get that rotu is different from both ∆2r and (Id−∆ + ∆2)r.

This fact slightly complicates the structure of our equation. As a matter of fact, as a consequence of
the presence of this operator Id−∆, simple energy estimates do not work anymore: after multiplying
(1) by r and integrating by parts, it seems impossible to get rid of a fourth-order derivative occurring
in the convective term, which cannot be absorbed since one disposes at most of three derivatives for
r (thanks to the smoothing effect provided by the viscosity term). We refer also to the beginning of
Subsection 3.2 for further comments about this point. This problem forces us to test the equation
rather against (Id−∆)r: an easy inspection of the structure of the convective term shows that it thus
identically vanishes, and this is the key to get first-order energy estimates. The reason why they are
called “first-order” will be manifest in a while; for the time being, let us point out that, in this way,
one gets bounds for r in L∞T (H3) ∩ L2

T (H4). For the reason expressed above, such a regularity seems
to be the minimal one which is required for bluiding up a theory of weak solutions for equation (1).
Indeed, thanks exactly to this energy estimate of first kind, we are able to prove existence of weak
solutions to (1), which are weak solutions à la Leray (see the masterwork [17] about the homogeneous
incompressible Navier-Stokes equations), since they possess finite energy. But this is not all: taking
advantage of the fact that the space dimension is d = 2, by the study of the associated parabolic
equation (which can be viewed as the analogue of the time-dependent Stokes problem in our context)
we are able to show that weak solutions are in fact unique, and that they actually verify an energy
equality.

Let us go further: after observing once again the particular form of the convective term, it is not
hard to convince oneself that this term identically vanishes also when tested against the quantity
Dr := (Id−∆ + ∆2)r. Therefore, if one multiply the equation by Dr, one finds a second energy
conservation, which gives propagation of L∞T (H4) ∩ L2

T (H5) regularity (provided the initial datum
and the external force are smooth enough). This is a remarkable property of our system, which can
be viewed as a remainder of the BD-entropy structure owned by the primitive system (2), see e.g.
papers [4] and [5]. Furthermore, the previous cancellations in the convective term and the second-order
energy conservation prompt us to look also for propagation of intermediate and higher regularities,
and indeed we are able to prove existence and uniqueness of solutions at the Hs level of regularity,
for any s ≥ 3.

The proof of higher regularity energy estimates (namely, for s > 4) relies on a paralinearization
of the convective term and a special decomposition for treating it, which has already been used
in [9]: in particular, thanks to this approach we are able to reproduce the special cancellations in the
transport operator, up to some remainders; now, a careful analysis of these remainder terms allows us
to control them by the Hs-energy of the solution r, so that one can conclude by an application of the
Gronwall lemma. On the contrary, propagation of intermediate regularities (namely for 3 < s < 4) is
surprisingly more involved, since now the special cancellations concern only the lower order item in
the convective term, and no more ∆2r, which hence needs to be controlled very carefully. This can
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be done by resorting once again to a paralinearization of the transport term and to delicate estimates
concerninig the commutators involved in the computations; eventually, we manage to bound all the
terms, and Gronwall lemma allows us to close the estimates as before.

The well-posedness having been established, globally in time, we pass to investigate the log-time
dynamics. Not too surprisingly, we show the convergence of solutions to (1) to solutions of the related
linear parabolic equation with same bulk force and initial datum, namely{

∂t
(
Id−∆ + ∆2

)
w + µ∆2(Id−∆)w = f

w|t=0 = r0 .

For proving this result, we follow an approach initiated in [23] for the Navier-Stokes equations (see
also [24] and [1]), and adapted in [8] for the classical quasi-geostrophic equation (roughly, the term
∂tr in (3) is missing). In our case, some complications appear at the technical level: once again, they
come from the higher order differential operators involved in the computations, and by somehow the
non-homogeneity of the operator Id−∆. The latter point entails the presence of remainder terms in
the estimates, which require some little effort to be absorbed; the former point is more deep, and we
are going to comment it in a while.

The approach we adopt is the following: first of all we establish decay properties for the solution
w of the linear equation. Even though the operator is parabolic, we have to notice that its symbol
(or better, the elliptic part of its symbol) vanishes at order 4 close to 0; so we expect to recover a
worst decay than for e.g. the classical heat equation. However, since we are interested in first-type
energy estimates, it is enough for us to bound the L∞ norm of higher order derivatives of w: this
is a key point, since for them we can establish a faster decay (namely, like t−1/2 rather than t−1/4).
Nonetheless, this decay reveals to be not enough for our scopes, so that we need to find dispersion
properties also for the solution r to the original equation (1): this can be done with some more work,
looking at both first- and second-type energy estimates. Finally, as a last step, we take advantage of
these properties to establish decay for the difference z := r − w in the H3 norm.

1.3. Organization of the paper. Before going on, let us give an overview of the paper. In the next
section we present our main assumptions and state our main results. In Section 3 we discuss some
mathematical properties of equation (1): namely, we study in detail the non-linear term (transport
operator) and we present the basic energy estimates, of first and second type, as mentioned above.
Section 4 is devoted to the theory of weak solutions related to minimal (namely H3) regularity initial
data; in Section 5 we show propagation of higher regularities. Finally, in Section 6 we study the
long-time dynamics. We collect in Appendix A some tools from Littlewood-Paley theory which are
needed in the course of our study.

Acknowledgements. The work of the second author has been partially supported by the LABEX
MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissement d’Avenir”
(ANR-11-IDEX-0007), and by the project BORDS, both operated by the French National Research
Agency (ANR).

2. Well-posedness results

In R+ × R2, let us consider the scalar equation

(4)

{
∂t
(
Id−∆ + ∆2

)
r + ∇⊥(Id−∆)r · ∇∆2r + µ∆2(Id−∆)r = f

r|t=0 = r0 ,

where r and f are functions of (t, x) and r0 is a function defined on the whole R2. The parameter
µ > 0 is fixed, and it can be interpreted as a sort of viscosity coefficient.

We are interested in both weak and strong solutions theory for the previous equation. Let us start
by considering the former framework, and more precisely by giving the definition of weak solution
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which is relevant for us. We point out that our analysis relies basically on energy estimates, so that
we will look for weak solutions à la Leray.

Definition 2.1. Let r0 belong to H3(R2) and f ∈ L2
loc

(
R+;H−2(R2)

)
. Then r is a weak solution to

equation (4) on [0, T [×R2, supplemented with initial datum r0 and external force f , if

r ∈ L∞
(
[0, T [ ;H3(R2)

)
∩ L2

(
[0, T [ ;H4(R2)

)
and it solves the equation in the weak sense: for any φ ∈ C∞0

(
[0, T [×R2

)
one has

−
ˆ T

0

ˆ
R2

(
Id−∆ + ∆2

)
r ∂tφdx dt −

ˆ T

0

ˆ
R2

∆2r ∇⊥(Id−∆)r · ∇φdx dt +

+µ

ˆ T

0

ˆ
R2

∆(Id−∆)r∆φdx dt =

ˆ T

0

〈f(t), φ(t)〉H−2×H2 dt +

ˆ
R2

(
(Id−∆)r0 φ − ∇∆r0 · ∇φ

)
dx ,

where we have denoted by 〈· , ·〉H−s×Hs the duality pair of H−s ×Hs, for any s > 0.
The solution is said to be global if the previous properties are satisfied for all fixed T > 0.

Remark 2.2. The requirement r0 ∈ H3 may look to be “too much” for a weak solutions theory.
Nonetheless, this is somehow the natural regularity for the initial datum, because it is imposed by
the singular perturbation problem from which our model derives. In addition, it also seems to us the
minimal smoothness which is needed to get basic energy estimates (see also Subsection 3.2 below with
respect to this point).

We now state our first main result. It asserts the existence and uniqueness of weak solutions to
our system, for any given initial datum and external force.

Theorem 2.3. For all initial datum r0 ∈ H3(R2) and all external force f ∈ L2
loc

(
R+;H−2(R2)

)
,

there exists a unique global in time weak solution r to equation (4), such that

r ∈ C
(
R+;H3(R2)

)
∩ L∞loc

(
R+;H3(R2)

)
∩ L2

loc

(
R+;H4(R2)

)
.

Moreover, for any T > 0 fixed, r satisfies the following energy equality, for all t ∈ [0, T ]:

E [r(t)] + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + 2‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ =

= E [r0] +

ˆ t

0

〈f(τ), (Id−∆)r(τ)〉H−2×H2 dτ ,

where, for all functions ϕ ∈ H3, we have defined E [ϕ] to be the quantity

E [ϕ] :=
(
‖ϕ‖2L2 + 2‖∇ϕ‖2L2 + 2‖∆ϕ‖2L2 + ‖∇∆ϕ‖2L2

)
/2 .

We postpone to Subsection 5.1 (see Theorem 5.1 therein) a similar statement, for slightly more
regular initial data and external forces. That statement corresponds to energy estimates of second
kind, as pointed out in the Introduction.

Let us now devote attention to more regular solutions, for which we are able to establish existence
and uniqueness, globally in time. More precisely, we have the following general statement.

Theorem 2.4. Let s > 0, and assume the initial datum r0 to belong to H3+s(R2) and the external
force f ∈ L2

loc

(
R+;Hs−2(R2)

)
. Then system (4) admits a unique global in time solution

r ∈ C
(
R+;H3+s(R2)

)
∩ L∞loc

(
R+;H3+s(R2)

)
∩ L2

loc

(
R+;H4+s(R2)

)
.

Moreover, there exist two positive constants C1 and C2 such that

‖r(t)‖2H3+s +

ˆ t

0

‖∇∆2r(τ)‖2Hsdτ ≤ C1

(
‖r0‖2H3+s +

1

µ

ˆ t

0

‖f(τ)‖2Hs−2dτ
)

exp

{
C2

µ
F (t)

}
,
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is fulfilled for any time t ∈ R+, where we have defined the function

F (t) :=


e2µ t

(
‖r0‖2H3 + 1

µ

´ t
0
‖f(τ)‖2H−2 dτ

)2

if 0 < s < 1

µ2 t if s = 1

eµ t
(
‖r0‖2H3 + 1

µ

´ t
0
‖f(τ)‖2H−2 dτ

)
if s > 1 .

We postpone to Section 5 the precise statements, with the previse energy estimates, concerning
the various cases s = 1 (see Subsection 5.1), s > 1 (treated in Subsection 5.2) and 0 < s < 1 (see
Subsection 5.3).

3. Mathematical structure of the equation

In this section we show some mathematical properties of equation (4). The main goal is to establish
energy estimates for smooth solutions: this will be done in Subsection 3.2. It is interesting to notice
that we can identify two kinds of energy estimates: this fact seems to be a sort of remainder of the
BD entropy structure of the original Navier-Stokes-Korteweg system.

Energy estimates will be the key to the proof of our main theorems. However, first of all we need
to study the structure of the bilinear term: the next subsection is devoted to this.

3.1. Analysis of the bilinear term. We start by studying the bilinear term in (4), namely the
operator Λ formally defined by the formula

(5) Λ(ρ, ζ) := div
(
∇⊥(Id−∆)ρ ∆2ζ

)
.

We collect in the next statement some continuity properties and useful formulas related to it.

Lemma 3.1. The bilinear operator Λ, defined in (5) above, acts continuously on the following spaces:

(a) from H3 ×H4 into H−(2+s), for all s > 0 arbitrarily small;
(b) from H3+s ×H4 into H−(2−s), for all 0 < s < 1;
(c) from H4 ×H4 into H−(1+s), for all s > 0 arbitrarily small;
(d) for all s > 0, from H4+s ×H4 into H−1.

Moreover, given s ∈ ]0, 1[ , for any (ρ, ζ) ∈ H3+s ×H4 and any φ ∈ H2−s, one has the identity

〈Λ(ρ, ζ) , φ〉H−(2−s)×H2−s = −〈Λ
(
φ̃, ζ
)
, (Id−∆)ρ〉H−(2−σ)×H2−σ ,

where we have defined σ = 1− s and φ̃ := (Id−∆)−1φ. The same formula holds true also for ρ ∈ H4

and φ ∈ H1+s, for some s > 0 arbitrarily small, up to take the H−(1+s)×H1+s duality on the left-hand
side, and the H−(2−s) ×H2−s duality on the right-hand side.
In particular, for all tempered distributions ρ and ζ in H4, one has 〈Λ(ρ, ζ) , (Id−∆)ρ〉H−2×H2 = 0.

Proof. By density of C∞0 into Hσ for any σ ≥ 0, it is enough to prove the previous properties assuming
that all the functions involved in the computations are smooth.

First of all, by integrating by parts once, we have

(6) 〈Λ(ρ, ζ) , φ〉H−(2+s)×H2+s = −
ˆ
R2

∇⊥(Id−∆)ρ · ∇φ∆2ζ dx .

Then, by Hölder inequality there exists a constant C > 0 such that∣∣〈Λ(ρ, ζ) , φ〉H−(2+s)×Hs+2

∣∣ ≤ C
∥∥∇⊥(Id−∆)ρ

∥∥
L2

∥∥∆2ζ
∥∥
L2 ‖∇φ‖L∞ .

Now, since s > 0 (and the space dimension d is equal to 2), the space H1+s embeds continuously into
L∞, so that ‖∇φ‖L∞ ≤ C ‖φ‖Hs+2 .

The other properties easily follow in an analogous way, by using, in estimating the integral in (6),
the Sobolev embeddings H1 ↪→ Lp for all p ∈ [2,+∞[ and Hs ↪→ Lq, where q = 2/(1− s), which hold
true in dimension d = 2 (see also Theorem 1.66 of [2]).
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As for the identity given in the statement of the lemma, by density again and continuity properties
of Λ established above, it is enough to work with smooth compactly supported functions.

First of all we observe that, for all g and h in C∞0 , one has ∇⊥g · ∇h = −∇g · ∇⊥h pointwise. In

addition, we remark that if φ ∈ H2−s, then φ̃ ∈ H4−s = H3+σ, by definition of σ = 1 − s, and if
ρ ∈ H3+s, then (Id−∆)ρ ∈ H1+s = H2−σ.

When ρ ∈ H4 and φ ∈ H1+s, the proof is exactly identical, but one has to work in the right spaces
where the formula is continuous. �

The requirement ζ ∈ H4 is somehow critical in the theory of weak solutions. However, if one
disposes of more regularity for ζ, some easy generalizations of the previous lemma can be obtained.
Here we limit ourselves to state the following properties.

Lemma 3.2. For all s > 0, Λ acts continuously from H4 ×H4+s into H−1. In particular, for any
ρ ∈ H4 and ζ ∈ H5, one has the equality

〈Λ(ρ, ζ) , ∆2ζ〉H−1×H1 = 0 .

Proof. First of all, let us take q = 2/(1 − s) and p > 2 such that 1/q + 1/p = 1/2. Hence, making
use of Sobolev embeddings, we can estimate

|〈Λ(ρ, ζ) , φ〉H−1×H1 | ≤ C
∥∥∇⊥(Id−∆)ρ

∥∥
Lp

∥∥∆2ζ
∥∥
Lq
‖∇φ‖L2

≤ C
∥∥∇⊥(Id−∆)ρ

∥∥
H1

∥∥∆2ζ
∥∥
Hs
‖∇φ‖L2 .

The equality 〈Λ(ρ, ζ) , ∆2ζ〉H−1×H1 = 0 can be obtained arguing once again by density. First of
all, for smooth functions we have the identity

〈Λ(ρ, ζ) , ∆2ζ〉H−1×H1 = −
ˆ
R2

∇⊥(Id−∆)ρ · ∇∆2ζ ∆2ζ dx ;

now, since ∇∆2ζ ∆2ζ = ∇
(
|∆2z|2/2

)
, integrating by parts with respect to the ∇⊥ operator gives us

0. One then concludes the proof by noticing that both sides of the final expression are continuous on
H4 ×H5. �

Remark 3.3. By Bony’s paraproduct decomposition (60) and Proposition A.5, it is possible to see
that the statement of Lemma 3.1 is not optimal. For instance, using also the fact that the space
dimension is d = 2, one has that Λ maps continuously H4 × H4+s into Hs−1−δ for any δ > 0
arbitrarily small when 0 < s < 1, into H−δ for all δ > 0 when s = 1, and into L2 when s > 1. In
particular, for all ζ ∈ H4+s with s > 1/2, it makes sense to apply Λ(ρ, ζ) to ∆2ζ, obtaining that
〈Λ(ρ, ζ) , ∆2ζ〉H−(s−1−δ)×H1−s+δ = 0 (where δ > 0 is fixed small enough).

We preferred to keep the previous statement for simplicity of exposition, since this version is enough
for our scopes.

Remark 3.4. We also point out that, whenever we take (ρ, φ) ∈ H4 ×H1+s or (ρ, φ) ∈ H4+s ×H1,
for some s > 0, we have the identity

〈Λ(ρ, ρ) , φ〉 = −
ˆ
R2

∇⊥(Id−∆)ρ · ∇φ
(
Id−∆ + ∆2

)
ρ dx ,

where the symbol 〈 · , · 〉 denotes the suitable duality pair, respectively in the spaces H−(1+s) ×H1+s

and H−1 ×H1.
Indeed, working first with C∞0 functions, several integrations by parts lead us to

〈Λ(ρ, ρ) , φ〉 = −
ˆ
R2

∇⊥(Id−∆)ρ · ∇φ ∆2ρ dx = −
ˆ
R2

div
(
∇⊥(Id−∆)ρ φ

)
∆2ρ dx

=

ˆ
R2

∇⊥(Id−∆)ρ · ∇∆2ρ φ dx =

ˆ
R2

∇⊥(Id−∆)ρ · ∇
(
Id−∆ + ∆2

)
ρ φ dx

= −
ˆ
R2

∇⊥(Id−∆)ρ · ∇φ
(
Id−∆ + ∆2

)
ρ dx ,
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where, in the last equality of the second line, we have used that ∇g × ∇⊥g = 0 pointwise, for all
smooth g.

The analysis of the bilinear operator will be of fundamental importance in the theory weak solu-
tions with minimal regularity, as well as in the propagation of higher smoothness, for which we refer
respectively to Sections 4 and 5.

3.2. Basic energy estimates. In the present subsection, we want to keep studying the structure of
our equation, by establishing (formal) energy estimates for smooth enough solutions. As announced
above, it is interesting to notice that we can identify two levels energy conservation laws, which
correspond to different levels of regularity of solutions.

Energy estimates of the first kind involve the quantity (Id−∆)r: this seems to us the minimal
kind of regularity which can be derived. Indeed we are not able to deduce anything from testing the
equation just on r: this fact may seem surprising, but actually it is quite natural if one looks at the
transport term. As a matter of fact, taking the L2 scalar product of the bilinear term with r and
integrating by parts, it is impossible to get rid of a fourth-order term; but the viscosity term gives
a control on the derivatives of r up to the third order, so that the bilinear term seems to be out of
control at this stage. See also relation (7) below about this point. On the other hand, testing the
bilinear operator on −∆r will allow us to erase this bad term (keep in mind also Lemma 3.1).

In the end, we obtain the following statement.

Proposition 3.5. Let us fix an r0 ∈ H3(R2) and a forcing term f ∈ L2
loc

(
R+;H−2(R2)

)
. Let r be a

smooth solution of equation (4) with external force f and initial datum r0.
Then, there exists a constant C > 0 such that, for any time t ≥ 0 fixed, one has the estimate

‖r(t)‖2L2 + ‖∇r(t)‖2L2 + ‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 + µ

ˆ t

0

‖∆r(τ)‖2H2 dτ ≤

≤ C eµ t
(
‖r0‖2L2 + ‖∇r0‖2L2 + ‖∆r0‖2L2 + ‖∇∆r0‖2L2 +

1

µ

ˆ t

0

‖f(τ)‖2H−2 dτ

)
.

Proof. The proof is carried out in two steps: the former consists testing the equation on r, while in
the latter we test it on −∆r; finally, it is just a matter of summing up the two expressions.

Let us start by taking the L2 scalar product of equation (4) by r: easy computations lead us to

1

2

d

dt

ˆ (
|r|2 + |∇r|2 + |∆r|2

)
dx −(7)

−
ˆ
∇⊥(Id−∆)r · ∇r ∆2r dx + µ

ˆ (
|∆r|2 + |∇∆r|2

)
dx = 〈f, r〉H−2×H2 .

Now, we take the L2 scalar product of the equation by −∆r: this time we get

1

2

d

dt

ˆ (
|∇r|2 + |∆r|2 + |∇∆r|2

)
dx +(8)

+

ˆ
∇⊥(Id−∆)r · ∇∆r ∆2r dx + µ

ˆ (
|∇∆r|2 + |∆2r|2

)
dx = 〈f,−∆r〉H−2×H2 .

Summing up (7) and (8) and integrating in time, we find the equality

‖r(t)‖2L2 + 2 ‖∇r(t)‖2L2 + 2 ‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 +

+ 2µ

ˆ t

0

(
‖∆r(τ)‖2L2 + 2‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ =

= ‖r0‖2L2 + 2 ‖∇r0‖2L2 + 2 ‖∆r0‖2L2 + ‖∇∆r0‖2L2 + 2

ˆ t

0

〈f(τ), (Id−∆)r(τ)〉H−2×H2 dτ .

for all t ≥ 0, owing to the fact that
´
∇⊥(Id−∆)r·∇(Id−∆)r ∆2r = 0. For simplicity, let us introduce

the notation

X(t) := ‖r(t)‖2L2 + ‖∇r(t)‖2L2 + ‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 ,
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and let us set X0 to be the same quantity computed on the initial datum.
Now we estimate the forcing term in the following way:

|〈f, (Id−∆)r〉H−2×H2 | ≤ ‖f‖H−2 ‖(Id−∆)r‖H2

≤ C ‖f‖H−2

(
‖r‖L2 + ‖∇r‖L2 + ‖∆r‖L2 + ‖∇∆r‖L2 + ‖∆2r‖L2

)
,

and an application of Young inequality immediately gives us

X(t) + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + ‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ ≤(9)

≤ X0 +
C

µ

ˆ t

0

‖f(τ)‖2H−2 dτ + µ

ˆ t

0

(
‖r(τ)‖2L2 + ‖∇r(τ)‖2L2

)
dτ .

At this point, Gronwall lemma allows us to obtain the claimed estimate. �

Remark 3.6. We point out here that having additional regularity in space on f , like e.g. f ∈
L2

loc(R+;L2), does not help to improve the estimates. Indeed, the presence of the lower order term
forces us to apply Gronwall’s inequality, and this produces an exponential growth in time of the norm
of the solution.

On the other hand, we have to notice that, whenever f ≡ 0, the estimates simply reduce to

X(t) + µ
∥∥∆2r

∥∥2

L2
t (H

2)
≤ C X0, where X(t) and X0 are the quantities introduced in the proof of the

previous proposition. See also Lemma 6.9 below for a similar estimate in the case when f 6= 0.

This having been established, let us derive higher regularity estimates, under suitable assumptions
on the initial datum and the external force.

Proposition 3.7. Suppose now that r0 ∈ H4(R2) and f ∈ L2
loc

(
R+;H−1(R2)

)
. Let r be a smooth

solution of equation (4) with external force f and initial datum r0.
Then, there exists a constant C > 0 such that, for any time t ≥ 0 fixed, one has the estimate

‖r(t)‖2L2 + ‖∇r(t)‖2L2 + ‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 + ‖∆2r(t)‖2L2 + µ

ˆ t

0

‖∇∆2r(τ)‖2L2 dτ ≤

≤ C eµ t
(
‖r0‖2L2 + ‖∇r0‖2L2 + ‖∆r0‖2L2 + ‖∇∆r0‖2L2 + ‖∆2r0‖2L2 +

1

µ

ˆ t

0

‖f(τ)‖2H−1 dτ

)
.

Proof. We start by multiplying equation (4) by ∆2r. We notice that, in light of Lemma 3.2 above,
the transport term identically vanishes. So, straightforward computations give us the equality

(10)
1

2

d

dt

ˆ (
|∆r|2 + |∇∆r|2 + |∆2r|2

)
dx + µ

ˆ (
|∆2r|2 + |∇∆2r|2

)
dx = 〈f,∆2r〉H−1×H1 .

The control of the forcing term can be performed similarly as before: we have∣∣〈f,∆2r〉H−1×H1

∣∣ ≤ ‖f‖H−1

∥∥∆2r
∥∥
H1 ≤ C ‖f‖H−1

(
‖∆2r‖L2 + ‖∇∆2r‖L2

)
.

Applying Young inequality to the previous relation, inserting the result in (10) and integrating in
time, we finally find

(11) Y (t) + µ

ˆ t

0

(
‖∆2r(τ)‖2L2 + ‖∇∆2r(τ)‖2L2

)
dτ ≤ C

(
Y0 +

1

µ

ˆ t

0

‖f(τ)‖2H−1 dτ

)
,

where we have defined

(12) Y (t) := ‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 + ‖∆2r(t)‖2L2

and Y0 to be the same quantity, when computed on the initial datum r0.
At this point, we sum inequality (11) to the one found in Proposition 3.5. Noticing that eµt ≥ 1

for all t ≥ 0, and that H−1 ↪→ H−2, it is easy to get the desired estimate. �
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Remark 3.8. When f is globally integrable in time, i.e. f ∈ L2
(
R+;H−1(R2)

)
, one gets the better

estimate Y (t) + µ
∥∥∆2r

∥∥2

L2
t (H

1)
≤ K

(
Y0 + ‖f‖2

L2
t (H

−1)

)
.

In particular, whenever f ≡ 0, one has no more the exponential growth of the Sobolev norms in the
estimates of both Propositions 3.5 and 3.7, and the regularity in time (see the statement of Theorem
2.3) becomes global. We refer again to Lemma 6.9 below for further results in this spirit.

We postpone to Section 5 the proof of both intermediate and higher order energy estimates, because
they are based on a different technique (namely, a paralinearization of the equation and on a broad
use of paradifferential calculus).

4. Weak solutions theory

This section is devoted to the proof of Theorem 2.3. Namely, in a first time we will establish
existence of global in time weak solutions to equation (4) having minimal regularity. Then, we will
derive their uniqueness by studying a higher order parabolic equation, which can be viewed as the
analogue of the time-dependent Stokes problem in our context. Besides, this analysis will allow us to
recover the energy equality.

In fact, our system shares a lot of similarities with the homogeneous incompressible Navier-Stokes
equations; hence, in this section we mainly resort to arguments which are typical for dealing with that
problem (we refer e.g. to Chapters 2 and 3 of [7]).

4.1. Global in time existence. We start by treating the existence issue. First of all, let us define

the Fourier multipliers a(ξ) := (1 + |ξ|2 + |ξ|4) and d(ξ) := a−1(ξ); let respectively A and D̃ be the
related pseudo-differential operators, defined by the formula

(13) Ag := F−1
(
(1 + |ξ|2 + |ξ|4)ĝ(ξ)

)
and D̃g := F−1

(
(1 + |ξ|2 + |ξ|4)−1ĝ(ξ)

)
for any g ∈ S(R2), where S denotes the Schwartz class and F the Fourier transform in the space

variables. Straightforward computations show that A and D̃ are continuous operator respectivly from
Hs+4 to Hs and from Hs to Hs+4, for any real s (see also Proposition 2.78 of [2]), and each of them
is the inverse operator of the other.

Applying operator D̃ to system (4), we can recast it in the following form:

(14)

{
∂tr + D̃Λ(r, r) + µD̃∆2(Id−∆)r = D̃f

r|t=0 = r0 .

Our next goal is to contstruct smooth approximate solutions to system (14), and then prove that
they converge to a weak solution of the original equation (4).

4.1.1. Construction of approximate solutions and uniform bounds. Denoting by 1A the characteristic
function of a set A, for any n we introduce the regularizing operator Jn by the formula

Jng := F−1
(
1{|ξ|2≤n}(ξ) ĝ(ξ)

)
,

which localizes the Fourier transform of g in the ball Bξ(0, n
1/2). Correspondingly, we define the

space L2
n := JnL2; remark that, for any n ≥ 1, functions in L2

n are actually smooth, since they have
compact spectrum, and more precisely the embedding L2

n ⊂ Hs holds for all s ∈ R. We also set

rn0 := Jnr0 and fn(t) := Jnf(t) .

Notice that, for all time T > 0 fixed, we have the inequalities ‖rn0 ‖H3 ≤ C ‖r0‖H3 and ‖fn‖L2
T (H−2) ≤

C ‖f‖L2
T (H−2), together with the convergence properties

(15) lim
n→+∞

‖rn0 − r0‖H3 = 0 and lim
n→+∞

‖fn − f‖L2
T (H−2) = 0 .

The former limit can be easily proved by using dyadic characterization of Sobolev spaces (see e.g.
Lemma A.4 in the Appendix); for the latter, one has also to apply Lebesgue dominated convergence
theorem in order to deal with the time integral.
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Now, we consider the approximate system

(16)

{
∂tr + JnD̃Λ(r, r) + µJnD̃∆2(Id−∆)r = D̃fn

r|t=0 = rn0 ,

for which we can show existence of global in time smooth solutions.

Proposition 4.1. For all n ≥ 1 fixed, system (16) admits a unique classical solution rn, which is
globally defined in time and which fulfills

rn ∈ L∞loc

(
R+;H3(R2)

)
∩ L2

loc

(
R+;H4(R2)

)
.

Moreover for all T > 0, there exists a positive constant CT , possibly depending on T but not on n,
such that

‖rn‖L∞T (H3) + ‖rn‖L2
T (H4) ≤ CT

(
‖r0‖H3 + ‖f‖L2

T (H−2)

)
.

Proof. To begin with, let us define the functional Ln by the formula

Ln(g) := −JnD̃
(
∇⊥(Id−∆)g · ∇∆2g

)
− µ D̃∆2(Id−∆)Jng .

Observe that, using the embeddings L2
n ⊂ Hs for all s ∈ R to control the bilinear term, one easily

deduces that Ln is an endomorphism of the space L2
n; more precisely, there exists a constant Cn such

that, for any function g ∈ L2
n,

‖Ln(g)‖L2
n
≤ Cn ‖g‖L2

n
.

Next, we rewrite system (16) as an ODE in the closed subspace L2
n:

(17) ∂tr = Ln(r) + D̃fn , with r|t=0 = rn0 .

Then, Cauchy-Lipschitz theorem yields the existence of a unique maximal solution rn which belongs
to C1

(
[0, Tn[ ;L2

n

)
, for some positive time Tn (notice that, actually, rn is C∞ in time).

Next, we observe that, from equation (17), Lemma 3.1 and the continuity of D̃ as an operator from
Hs to Hs+4, we infer the estimate

‖∂trn(t)‖L2 ≤ C
(
‖fn(t)‖L2 + n ‖rn(t)‖L2 + n5/2 ‖rn(t)‖2L2

)
.

From this inequality we deduce that, if ‖rn(t)‖L2 is bounded on some interval [0, T [ , then ‖∂trn(t)‖L2

remains bounded too. Therefore, by Cauchy criterion, the solution can be extended beyond T . This
immediately implies that Tn = +∞ for all n, provided we show a uniform bound on ‖rn(t)‖L2 .

Hence, our next goal is to get estimates on rn, uniformly in n ∈ N. Recall that rn is a classical
solution of (16): then, applying operator A to the equation, where A has been defined in (13) above,
we see that rn satisfies

(18) ∂t(Id−∆ + ∆2)rn + JnΛ(rn, rn) + µJn∆2(Id−∆)rn = fn .

Now, we multiply both the left and right-hand side by (Id−∆)rn and we integrate over R2. Notice
that Jn is a self-adjoint operator on L2, J 2

n ≡ Jn and Jnrn = rn; then, the bilinear term iden-
tically vanishes, thanks to the last property of Lemma 3.1. Therefore, the same computations as in
Proposition 3.5 entail

‖rn(t)‖2H3 + µ

ˆ t

0

‖∆rn(τ)‖2H2 dτ ≤ C eµ t
(
‖rn0 ‖2H3 +

1

µ

ˆ t

0

‖fn(τ)‖2H−2 dτ

)
,

for some constant C > 0 not depending on n ≥ 1. This estimate, together with the properties of the
appoximate families

(
rn0
)
n

and
(
fn
)
n
, immediately implies that, for all T > 0 fixed, there exists a

constant CT > 0 such that

sup
t∈[0,T ]

‖rn(t)‖2H3 + µ

ˆ T

0

‖rn(t)‖2H4 dt ≤ CT

(
‖r0‖H3 + ‖f‖2L2

T (H−2)

)
.

The proposition is hence completely proved. �
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As a consequence of the previous proposition, up to the extraction of a subsequence, we gather the
existence of a function

(19) r ∈ L∞loc

(
R+;H3(R2)

)
∩ L2

loc

(
R+;H4(R2)

)
such that rn

∗
⇀ r

in the previous space, where the symbol
∗
⇀ denotes the convergence in the weak-∗ topology.

4.1.2. Compactness and convergence. The previous convergence property is not enough to pass to the
limit in the weak formulation of equation (16), the problem relying of course in the convergence of the
non-linear term. Therefore, we need to derive compactness properties for the family of approximate
solutions

(
rn
)
n
: this is our next goal.

Lemma 4.2. The family of smooth solutions
(
rn
)
n

, constructed in the previous paragraph, is compact

in the space L2
T

(
H3

loc(R2)
)

for all time T > 0 fixed. In particular, up to a further extraction, rn strongly
converges to r in the previous space.

Proof. We start by considering equation (17). Since
(
rn
)
n
⊂ L2

T (H4) by Proposition 4.1, we get, for
some C > 0 independent of n, the bound∥∥D̃∆2(Id−∆)Jnrn

∥∥
L2
T (H2)

≤ C .

On the other hand, combining the previous property with the fact that
(
rn
)
n

is uniformly bounded

also in L∞T (H3), by Lemma 3.1 we deduce that∥∥JnD̃Λ(rn, rn)
∥∥
L2
T (H2−s)

≤ C ,

where s > 0 is arbitrarily small and the estimate is still uniform with respect to n ≥ 1.
These inequalities together with equation (17) imply that the sequence

(
∂tr

n
)
n

is uniformly bounded

in L2
T (H2−s), and then it follows that

(
rn
)
n

is uniformly bounded in C0,1/2
T (H2−s).

Hence, by Ascoli-Arzelà and Rellich-Kondrachov theorems we gather that
(
rn
)
n

is compactly in-

cluded in e.g. the space L∞T (Hα
loc), for all 2 − s ≤ α < 3. Therefore, up to passing to a suitable

subsequence, we can assume the strong convergence

rn −→ r in L∞T (H2
loc) .

Finally, combining this fact with the uniform boundedness
(
rn
)
n
⊂ L2

T (H4) again gives us the strong

convergence in L2
T (H3

loc), as claimed. �

Thanks to the previous result, we can now pass to the limit in the weak formulation of equation
(18), and prove that r is a weak solution to the original system (4). This concludes the proof of the
existence part of Theorem 2.3.

Proposition 4.3. The limit-point r of the sequence
(
rn
)
n

, identified in (19) above, solves equation

(4) in the weak sense. Moreover, it verifies the energy inequality stated in Proposition 3.5.

Proof. Let us write down the weak formulation of (18): for φ ∈ C∞0
(
[0, T [×R2

)
, we have

−
ˆ T

0

ˆ
R2

(
Id−∆ + ∆2

)
rn ∂tφ −

ˆ T

0

ˆ
R2

∆2rn ∇⊥(Id−∆)rn · ∇Jnφ +

+µ

ˆ T

0

ˆ
R2

∆(Id−∆)rn Jn∆φ =

ˆ T

0

〈fn(t), φ(t)〉H−2×H2 +

ˆ
R2

(
(Id−∆)rn0 φ − ∇∆rn0 · ∇φ

)
.

Thanks to the weak convergence properties of rn and the strong convergence properties of the ap-
proximate initial data, it is easy to pass to the limit in the ∂tφ terms and on the right-hand side of
the previous equality.
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As for the “viscosity” and transport terms, first of all we notice that, by Lemma 2.4 of [7], the
strong convergence Jnφ → φ holds true in C

(
[0, T ];Hs

)
for all s ≥ 0. So, taking e.g. s = 0 and using

the uniform boundedness of
(
∆(Id−∆)rn

)
n

in L2
T (L2) we immediately get

lim
n→+∞

ˆ T

0

ˆ
R2

∆(Id−∆)rn Jn∆φ = lim
n→+∞

ˆ T

0

ˆ
R2

∆(Id−∆)rn ∆φ =

ˆ T

0

ˆ
R2

∆(Id−∆)r∆φ .

Moreover, picking some s > 1 and taking advantage of the uniform boundedness of the family(
∆2rn ∇⊥(Id−∆)rn

)
n

in e.g. L2
T (L1), we have

lim
n→+∞

ˆ T

0

ˆ
R2

∆2rn ∇⊥(Id−∆)rn · ∇Jnφ = lim
n→+∞

ˆ T

0

ˆ
R2

∆2rn ∇⊥(Id−∆)rn · ∇φ ,

so that we reduce our convergence problem to study the limit of the term on the right-hand side of
the previous equality. Now, for this term we can use the weak convergence ∆2rn ⇀ ∆2r in L2

T (L2)
and the strong convergence (recall Lemma 4.2 above) of ∇⊥(Id−∆)rn to ∇⊥(Id−∆)r in L2

T (L2): we
finally obtain

lim
n→+∞

ˆ T

0

ˆ
R2

∆2rn ∇⊥(Id−∆)rn · ∇φ =

ˆ T

0

ˆ
R2

∆2r ∇⊥(Id−∆)r · ∇φ ,

and this completes the proof that r is indeed a weak solution of equation (4).
The proof of the energy inequality directly follows from the weak convergence properties

(
rn
)
n

to

r combined with Fatou’s lemma, and the strong convergence properties (15). �

To complete this part, we want to establish continuity properties of the solution in time. This
analysis will justify also in which sense the initial datum is taken at t = 0.

Proposition 4.4. Let r be a weak solution to equation (4) related to the initial datum r0 ∈ H3

and to the external force f ∈ L2
loc

(
R+;H−2(R2)

)
, which moreover satisfies the energy inequality of

Proposition 3.5.
Then (Id−∆ + ∆2)r ∈ C

(
R+;H−2(R2)

)
.

We start by proving a preliminary lemma, which will be fundamental also in the proof of uniqueness
of weak solutions, carried out in Subsection 4.2.

Lemma 4.5. Under the hypotheses of Proposition 4.4, we have, for all time T > 0,

Λ(r, r) ∈ L4/3
(
[0, T ];H−3/2(R2)

)
.

Proof of Lemma 4.5. By definition, we have Λ(r, r) = div
(
∇⊥(Id−∆)r ∆2r

)
, with ∇⊥(Id−∆)r ∈

L∞T (L2) ∩ L2
T (H1) and ∆2r ∈ L2

T (L2) thanks to the energy inequality.
By interpolation and Gagliardo-Nirenberg inequality (see Corollary 1.2 of [7]), we deduce that

∇⊥(Id−∆)r belongs to L4
T (L4), and hence ∇⊥(Id−∆)r ∆2r ∈ L

4/3
T (L4/3). At this point, Sobolev

embeddings imply that L4/3 ↪→ H−1/2, and this property concludes the proof of the Lemma. �

We are now in the position of proving Proposition 4.4.

Proof of Proposition 4.4. Since r is a weak solution to equation (4), we know that

∂t(Id−∆ + ∆2)r = f + µ∆2(Id−∆)r − Λ(r, r)

in the sense of distributions. By hypothesis, f ∈ L2
T (H−2), while the viscosity term belongs to the

same space in view of (19). Moreover, thanks to Lemma 4.5, we get Λ(r, r) ∈ L
4/3
T (H−2).

As a consequence, keeping in mind that r0 ∈ H3, we deduce that (Id−∆ + ∆2)r ∈ C0,1/4
T (H−2),

which in particular implies the claim of the proposition. �
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4.2. Uniqueness of weak solutions. The present subsection is devoted to the proof of uniqueness
of weak solutions to our equation.

Rather than proving directly stability estimates, in a first time we focus on the study of a higher
order parabolic equation related to our problem, which can be viewed as a sort of generalization of
the time-dependent Stokes equation in our context. In passing, this analysis will allow us to improve
time regularity of solutions, and to justify the energy equality in Theorem 2.3.

After that, we will come back to the problem of uniqueness of weak solutions for (4). The previous
part will be fundamental in the proof of uniqueness, since we will exploit the underlying parabolic
structure of our equation.

4.2.1. A higher order parabolic equation. The scope of the present paragraph is to study existence
and uniqueness of weak solutions to the following higher order parabolic-type equation:

(20)

{
∂t
(
Id−∆ + ∆2

)
w + µ∆2(Id−∆)w = f + g

w|t=0 = w0 .

The weak formulation of (20) is the same as the one given in Definition 2.1 above, with the appropriate
modifications in order to treat also the g term and to erase the bilinear term.

We notice that, the non-linear term having disappeared, this equation has “basic” energy estimates.
Namely we can obtain a priori bounds by multiplying this equation just by w, and then we can build
up a theory of weak solutions for initial data just in H2 (and suitable external forces).

Nonetheless, in view of the application of this study to our problem, we keep considering here initial
data w0 in H3, and external forces f in L2

T (H−2). Moreover, in order to be able to deal with the

bilinear term Λ, we add also a second forcing term g ∈ L4/3
T (H−3/2), keep in mind Lemma 4.5.

We aim at proving the following result.

Theorem 4.6. Let w0 ∈ H3(R2), f ∈ L2
loc

(
R+;H−2(R2)

)
and g ∈ L4/3

loc

(
R+;H−3/2(R2)

)
be given.

Then there exists a unique weak solution w to equation (20), which belongs to the energy space

C
(
R+;H3(R2)

)
∩ L∞loc

(
R+;H3(R2)

)
∩ L2

loc

(
R+;H4(R2)

)
.

In addition, w satisfies the energy equality

E [w(t)] + µ

ˆ t

0

(
‖∆w(τ)‖2L2 + 2‖∇∆w(τ)‖2L2 + ‖∆2w(τ)‖2L2

)
dτ =

= E [w0] +

ˆ t

0

〈f(τ), (Id−∆)w(τ)〉H−2×H2 dτ +

ˆ t

0

〈g(τ), (Id−∆)w(τ)〉H−3/2×H3/2 dτ ,

where the functional E is defined as in the statement of Theorem 2.3.

Proof. To begin with, let us prove existence. The argument being very similar to the one used in the
previous subsection, we will just sketch it.

Resorting to the same notations as in Paragraph 4.1.1, we set wn0 = Jnw0, fn = Jnf and gn = Jng.
Then, we first solve the approximate problem∂tw

n + µJnD̃∆2(Id−∆)wn = D̃fn + D̃gn

wn|t=0 = wn0 .

This is an ODE on the space L2
n, so that Cauchy-Lipschitz theorem provides us with a global solution

wn belonging to the space C1
(
R+;L2

n

)
. Moreover, since wn is a classical solution, we can recast the

previous equation in the form

(21) ∂t
(
Id−∆ + ∆2

)
wn + µJn∆2(Id−∆)wn = fn + gn .
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Taking the L2 scalar product of this equation with (Id−∆)wn and then integrating in time (recall
also the formal computations performed in Subsection 3.2) lead us to

E [wn(t)] + µ

ˆ t

0

(
‖∆wn‖2L2 + 2‖∇∆wn‖2L2 + ‖∆2wn‖2L2

)
dτ =(22)

= E [wn0 ] +

ˆ t

0

〈fn, (Id−∆)wn〉H−2×H2 dτ +

ˆ t

0

〈gn, (Id−∆)wn〉H−3/2×H3/2 dτ .

Notice that, from this relation, we immediately deduce uniform bounds for wn in the spaces of Theorem
4.6. As a matter of fact, the control of the term in fn is straightforward, while for gn it is enough to
observe that, by interpolation and Young inequality, one has∣∣〈gn, (Id−∆)wn〉H−3/2×H3/2

∣∣ ≤ ‖gn‖H−3/2 ‖(Id−∆)wn‖1/2H1 ‖(Id−∆)wn‖1/2H2

≤ Cµ ‖gn‖4/3H−3/2 ‖(Id−∆)wn‖2/3H1 + ε µ ‖(Id−∆)wn‖2H2

≤ Cµ ‖gn‖4/3H−3/2

(
1 + ‖(Id−∆)wn‖2H1

)
+ ε µ ‖(Id−∆)wn‖2H2 ,

for all ε > 0 small enough (so that the last term can be absorbed on the left-hand side).
Next, we claim that

(
wn
)
n

is a Cauchy sequence in the space Cloc

(
R+;H3

)
∩ L2

loc

(
R+;H4

)
. Indeed,

let us set δknϕ := ϕn+k − ϕn, where the function ϕ can be either w or f or g. Then, by linearity of
equation (21), it is easy to derive an energy estimate for δknw: exactly as above, one finds

E [δknw(t)] + µ

ˆ t

0

(
‖∆δknw‖2L2 + 2‖∇∆δknw‖2L2 + ‖∆2δknw‖2L2

)
=(23)

= E [δknw0] +

ˆ t

0

〈δknf, (Id−∆)δknw〉H−2×H2 +

ˆ t

0

〈δkng, (Id−∆)δknw〉H−3/2×H3/2 .

The term in f can be bounded as follows (recall the computations in the proof of Proposition 3.5):∣∣∣∣ˆ t

0

〈δknf, (Id−∆)δknw〉H−2×H2

∣∣∣∣ ≤ Cµ

ˆ t

0

∥∥δknf∥∥2

H−2 + Cµ

ˆ t

0

(
‖δknw‖2L2 + ‖∇δknw‖2L2

)
+

+
µ

4

ˆ t

0

(
‖∆δknw‖2L2 + ‖∇∆δknw‖2L2 + ‖∆2δknw‖2L2

)
.

As for the term in g, we can argue as here above to get∣∣〈δkng, (Id−∆)δknw〉H−3/2×H3/2

∣∣ ≤ Cµ

ˆ t

0

∥∥δkng∥∥4/3

H−3/2

(
1 + E [δknw]

)
+

+ Cµ

ˆ t

0

(
‖δknw‖2L2 + ‖∇δknw‖2L2

)
+
µ

4

ˆ t

0

(
‖∆δknw‖2L2 + ‖∇∆δknw‖2L2 + ‖∆2δknw‖2L2

)
.

Inserting these last inequalities into (23) and applying Gronwall lemma, we are finally led to

E [δknw(t)] + µ

ˆ t

0

(
‖∆δknw‖2L2 + 2‖∇∆δknw‖2L2 + ‖∆2δknw‖2L2

)
≤

≤ C1

(
E [δknw0] +

ˆ t

0

∥∥δknf∥∥2

H−2 +

ˆ t

0

∥∥δkng∥∥4/3

H−3/2

)
exp

(
C2 t + 2C2

ˆ t

0

‖g‖4/3
H−3/2

)
,

for some constants C1 and C2 just depending on µ. In the end, this estimate proves our claim. In
particular,

(
wn
)
n

strongly converges in Cloc

(
R+;H3

)
∩ L2

loc

(
R+;H4

)
.

Hence, let us call w the limit of the sequence
(
wn
)
n

in C
(
R+;H3

)
∩ L2

loc

(
R+;H4

)
. Thanks to

these properties, it is easy to pass to the limit in the weak formulation of the linear equation (21). As
for the energy equality, we notice that

(
(Id−∆)wn

)
n

is uniformly bounded in L∞T (H1) ∩ L2
T (H2) ↪→

L4
T (H3/2); then, thanks to the strong convergence of

(
fn
)
n

in L2
T (H−2) and of

(
gn
)
n

in L
4/3
T (H−3/2),

we can pass to the limit also in (22). Finally, uniqueness can be proved by a stability estimate,
which is obtained arguing exactly as for showing that

(
wn
)
n

is a Cauchy sequence in the space

Cloc

(
R+;H3

)
∩ L2

loc

(
R+;H4

)
. �
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From this result, we immediately infer the energy equality stated in Theorem 2.3.

Corollary 4.7. Let r be a weak solution to (4), related to the initial datum r0 ∈ H3 and the external
force f ∈ L2

loc

(
R+;H−2(R2)

)
, which moreover satisfies the energy inequality of Proposition 3.5.

Then r ∈ C
(
R+;H3(R2)

)
and it verifies the energy equality stated in Theorem 2.3.

Proof. Thanks to Lemma 4.5, r solves the parabolic equation (20), with external force f + g, where
this time g = Λ(r, r). Then, Theorem 4.6 implies that r belongs to C

(
R+;H3(R2)

)
and it satisfies

the equality

E [r(t)] + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + 2‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ =

= E [r0] +

ˆ t

0

〈f(τ), (Id−∆)r(τ)〉H−2×H2 dτ −
ˆ t

0

〈Λ(r, r)(τ), (Id−∆)r(τ)〉H−3/2×H3/2 dτ .

At this point, we notice that the last term on the right-hand side actually vanishes, thanks to Lemma
3.1, and then the energy equality is fulfilled. �

4.2.2. Stability estimates and uniqueness. In this paragraph, we prove stability estimates for solutions
to equation (4). Also in this case, the analysis performed for system (20) will be fundamental.

Theorem 4.8. For j = 1, 2, let us take rj0 ∈ H3(R2) and f j ∈ L2
loc

(
R+;H−2(R2)

)
, and let us

denote by rj the respective weak solutions to equation (4).
Let us define δr0 := r1

0 − r2
0, δf := f1 − f2 and δr := r1 − r2. Then, there exist two positive

constants Cµ and Kµ, just depending on µ, such that, for all time t > 0, one has the estimate

E [δr(t)] + µ

ˆ t

0

(
‖∆δr(τ)‖2L2 + ‖∇∆δr(τ)‖2L2 + ‖∆2δr(τ)‖2L2

)
dτ ≤

≤ Cµ

(
E [δr0] +

ˆ t

0

‖δf(τ)‖2H−2 dτ

)
exp
(
Kµ e

2µ tm2(t)
)
,

where we have defined the function

m(t) := min

{
‖r1

0‖2H3 +

ˆ t

0

‖f1(τ)‖2H−2 dτ , ‖r2
0‖2H3 +

ˆ t

0

‖f2(τ)‖2H−2 dτ

}
.

Proof. We start by remarking that δr is a solution of an equation of type (20), with initial datum δr0

and external force δf − δΛ, where we have set δΛ := Λ(r1, r1) − Λ(r2, r2). Then, by Theorem 4.6
we gather the energy equality

E [δr(t)] + µ

ˆ t

0

(
‖∆δr(τ)‖2L2 + 2‖∇∆δr(τ)‖2L2 + ‖∆2δr(τ)‖2L2

)
dτ =(24)

= E [δr0] +

ˆ t

0

〈δf(τ), (Id−∆)δr(τ)〉H−2×H2 dτ −
ˆ t

0

〈δΛ(τ), (Id−∆)δr(τ)〉H−3/2×H3/2 dτ .

As usual, we can control the δf term by the quantity

(25) Cµ

ˆ t

0

‖δf‖2H−2 dτ +
µ

4

ˆ t

0

(
‖δr‖2L2 + ‖∇δr‖2L2 + ‖∆δr‖2L2 + ‖∇∆δr‖2L2 + ‖∆2δr‖2L2

)
dτ .

Let us now focus on the term in δΛ. By definition, we have
ˆ t

0

〈δΛ, (Id−∆)δr〉H−3/2×H3/2 dτ =

=

ˆ t

0

ˆ
R2

∇⊥(Id−∆)r1 · ∇(Id−∆)δr ∆2r1 dx dτ −
ˆ t

0

ˆ
R2

∇⊥(Id−∆)r2 · ∇(Id−∆)δr ∆2r2 dx dτ ,
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but, using the pointwise relations ∇⊥g · ∇g = 0 and ∇⊥g · ∇h = −∇g · ∇⊥h, straightforward compu-
tations allow us to writeˆ t

0

〈δΛ, (Id−∆)δr〉H−3/2×H3/2 dτ =

ˆ t

0

ˆ
R2

∇⊥(Id−∆)r2 · ∇(Id−∆)r1 ∆2δr dx dτ(26)

=

ˆ t

0

ˆ
R2

∇⊥(Id−∆)r2 · ∇(Id−∆)δr ∆2δr dx dτ

=

ˆ t

0

ˆ
R2

∇⊥(Id−∆)r1 · ∇(Id−∆)δr ∆2δr dx dτ .

By symmetry, without loss of generality we choose to work with the second formulation. By Hölder
and Gagliardo-Nirenberg inequality we immediately infer∣∣∣∣ˆ t

0

〈δΛ, (Id−∆)δr〉H−3/2×H3/2

∣∣∣∣ ≤ C
∥∥∆2δr

∥∥
L2 ‖∇(Id−∆)δr‖L4

∥∥∇(Id−∆)r2
∥∥
L4

≤ C
∥∥∆2δr

∥∥
L2 ‖∇(Id−∆)δr‖1/2L2

∥∥∇2(Id−∆)δr
∥∥1/2

L2

∥∥∇(Id−∆)r2
∥∥
L4 .

Now we remark that, by the continuity of the Calderón-Zygmund operator ∇2(−∆)−1 on L2, we can
estimate

∥∥∇2(Id−∆)δr
∥∥
L2 ≤ C ‖∆(Id−∆)δr‖L2 ≤ C ‖∆δr‖H2 ; then we are led to∣∣∣∣ˆ t

0

〈δΛ, (Id−∆)δr〉H−3/2×H3/2

∣∣∣∣ ≤ C

ˆ t

0

‖∆δr‖3/2H2 ‖δr‖1/2H3

∥∥∇(Id−∆)r2
∥∥
L4 dτ

≤ µ

4

ˆ t

0

‖∆δr‖2H2 dτ + Cµ

ˆ t

0

‖δr‖2H3

∥∥∇(Id−∆)r2
∥∥4

L4 dτ .

We remark that ‖δr‖2H3 is controlled by E [δr]. Hence, combining this last inequality together with
(23) and (25) gives us

E [δr(t)] + µ

ˆ t

0

(
‖∆δr‖2L2 + ‖∇∆δr‖2L2 + ‖∆2δr‖2L2

)
dτ ≤

≤ C

(
E [δr0] + Cµ

ˆ t

0

‖δf‖2H−2 dτ + Cµ

ˆ t

0

E [δr]
∥∥∇(Id−∆)r2

∥∥4

L4 dτ

)
,

and and the application of Gronwall lemma allows us to conclude that

E [δr(t)] + µ

ˆ t

0

(
‖∆δr‖2L2 + ‖∇∆δr‖2L2 + ‖∆2δr‖2L2

)
dτ ≤

≤ Cµ

(
E [δr0] +

ˆ t

0

‖δf‖2H−2 dτ

)
exp

(ˆ t

0

∥∥∇(Id−∆)r2(τ)
∥∥4

L4 dτ

)
.

Obviously, working on the third formulation in (26), one gets exactly the same estimate, up to replace∥∥∇(Id−∆)r2
∥∥4

L4
tL

4 with
∥∥∇(Id−∆)r1

∥∥4

L4
tL

4 inside the exponential term, so that one can take the

minimum value of the two quantities.
Finally we observe that, by Gagliardo-Nirenberg inequality and the uniform bounds provided by

Proposition 4.3, for any j ∈ {1, 2} one gets

ˆ t

0

∥∥∇(Id−∆)rj(τ)
∥∥4

L4 dτ ≤ ‖rj‖2L∞t (H3) ‖r
j‖2L2

t (H
4) ≤ Cµ e

2µ t

(
‖rj0‖2H3 +

ˆ t

0

‖f j‖2H−2 dτ

)2

,

and this estimate completes the proof of the theorem. �

In turn, the previous theorem immediately implies uniqueness of weak solutions, so that the proof
of Theorem 2.3 is finally completed.

Corollary 4.9. Weak solutions to system (14), in the sense of Definition 2.1, are uniquely determined
by the initial datum r0 ∈ H3(R2) and the external force f ∈ L2

loc

(
R+;H−2(R2)

)
.
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5. Propagation of higher regularities

In the previous part, we have settle down the theory of weak solutions for equation (4) under
minimal smoothness assumptions on the initial data and forcing terms. In this section, we aim at
investigating more regular solutions. Of course, from Theorem 2.3 one gathers for free existence and
uniqueness of weak solutions at the H3 level of regularity; our goal is then proving propagation of the
initial smoothness.

We start by discussing, in Subsecton 5.1, solutions corresponding to H4 initial data and L2
T (H−1)

external forces. They deserve special attention, because their theory will directly follow from the
energy estimates of second kind, which we have presented in Subsection 3.2.

Subsections 5.2 and 5.3 are devoted to propagation of Hs regularities, respectively for s > 1 and
0 < s < 1. The method of the proof is analogous to both cases: after a paralinearization of our
equation, we will perform energy estimates for the solution in each dyadic block of a Littlewood-
Paley decomposition, estimating carefully the remainder terms which arise from the paralinearization.
As already explained in the Introduction, in the former case, this strategy will allow us to recover
fundamental algebraic cancellations in the non-linear term, which we have already exploited in a crucial
way for the basic energy estimates of Subsection 3.2. In the latter case, instead, these cancellations
do not involve anymore the highest order term, thus they are only of partial help: propagation of
intermediate smoothness requires a more delicate analysis.

5.1. On the H4-theory for weak solutions. In this subsection we discuss briefly the case when
r0 ∈ H4 and f ∈ L2

T (H−1). One can prove the following statement, analogous to Theorem 2.3.

Theorem 5.1. For all r0 ∈ H4(R2) and f ∈ L2
loc

(
R+;H−1(R2)

)
, there exists a unique global in time

weak solution r to equation (4), such that

r ∈ C
(
R+;H4(R2)

)
∩ L∞loc

(
R+;H4(R2)

)
∩ L2

loc

(
R+;H5(R2)

)
.

Moreover, for any T > 0 fixed, r satisfies the following energy equality, for all t ∈ [0, T ]:

Ẽ [r(t)] + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + 2‖∇∆r(τ)‖2L2 + 2‖∆2r(τ)‖2L2 + ‖∇∆2r(τ)‖2L2

)
dτ =

= Ẽ [r0] +

ˆ t

0

〈f(τ), (Id−∆ + ∆2)r(τ)〉H−1×H1 dτ ,

where, for all functions ϕ ∈ H4, we have defined Ẽ [ϕ] to be the quantity

Ẽ [ϕ] :=
(
‖ϕ‖2L2 + 2‖∇ϕ‖2L2 + 3‖∆ϕ‖2L2 + 2‖∇∆ϕ‖2L2 + ‖∆2ϕ‖2L2

)
/2 .

The proof of the previous statement follows exactly the main lines of the arguments given in
Subsections 4.1 and 4.2 above. So, here we will limit ourselves to pointing out the main differences
and crucial points.

We start by remarking that, thanks to the additional regularity of r, one can give a weak formulation
of equation (4) which is slightly different from the one proposed in Definition 2.1: namely, for any
φ ∈ C∞0

(
[0, T [×R2

)
one has

−
ˆ T

0

ˆ
R2

(
Id−∆ + ∆2

)
r ∂tφdx dt −

ˆ T

0

ˆ
R2

∆2r ∇⊥(Id−∆)r · ∇φdx dt −

−µ
ˆ T

0

ˆ
R2

∇∆(Id−∆)r · ∇φdx dt =

ˆ T

0

〈f(t), φ(t)〉H−1×H1 dt +

ˆ
R2

(Id−∆ + ∆2)r0 φdx .

Let us come back to the proof of Theorem 5.1. First of all, the construction of smooth approximate
solutions

(
rn
)
n

is absolutely analogous to the one given in Paragraph 4.1.1. At this point, however,

one uses Proposition 3.7 to get more precise uniform bounds on the family
(
rn
)
n
. In particular, we

derive that the limit point r of this sequence verifies

r ∈ L∞loc

(
R+;H4(R2)

)
∩ L2

loc

(
R+;H5(R2)

)
,
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and the weak-∗ convergence holds in this space. On the other hand, from Lemma 3.2 and Sobolev
embeddings, one easily gathers that

(
Λ(rn, rn)

)
n

is uniformly bounded in e.g. L4
T (H−1). Using this

property and going along the guidelines of the proof to Lemma 4.2, it is easy to prove compactness
of
(
rn
)
n

in e.g. L2
T (H4

loc), and then to pass to the limit in the weak formulation of (4). In addition,

taking advantage once again of the regularity of the non-linear term, one can prove that (Id−∆+∆2)r
belongs to C0,1/4

(
R+;H−1(R2)

)
.

Energy equality and uniqueness are also in this case consequences of the analysis of the parabolic
equation (20). Performing energy estimates at the H4 level (namely, testing against the function
(Id−∆ + ∆2)w), one can easily get the analogue of Theorem 4.6. From this fact, combined with the
property Λ(r, r) ∈ L2

T (H−1) (keep in mind Lemma 3.2 again), we deduce that our weak solution r
belongs actually to C

(
R+;H4

)
and it verifies the energy equality stated in Theorem 5.1. Finally, the

proof of the stability estimates, and then of uniqueness, is absolutely analogous to the previous one.
As a last comment, we notice that the energy equality of Theorem 5.1 easily implies the estimate

claimed in Theorem 2.4 for the case s = 1 (keep in mind also Proposition 3.7).

We conclude this part by remarking that H4 regularity seems to us the minimal one required to
give sense to the inviscid problem, namely equation (4) with µ = 0. The study of the inviscid case goes
beyond the scopes of the present paper; however, for the sake of completeness we give the following
statement.

Theorem 5.2. Let r0 ∈ H4(R2) and f ∈ L2
loc

(
R+;L2(R2)

)
, and fix µ = 0 in equation (4).

Then there exists a global in time weak solution r ∈ L∞
(
R+;H4(R2)

)
to that equation, which

moreover verifies the energy estimate

‖r(t)‖H4 ≤ C

(
‖r0‖H4 +

ˆ t

0

‖f(τ)‖L2 dτ

)
,

for a universal constant C > 0 and for all t > 0.

The previous statement can be easily derived from the analysis carried out here. Its proof uses the
following ingredients:

(i) construction of a sequence of smooth approximate solutions
(
rn
)
n
, as done in Paragraph 4.1.1;

(ii) proof of uniform bounds for those approximate solutions, priveded by Proposition 3.7, where one
takes µ = 0 (notice that, since we can take the L2 norm of f , we have no factor µ−1 in front of
it);

(iii) gain of compactness properties for
(
rn
)
n
, by an inspection of the equation (arguing as in Lemma

4.2, one can deduce e.g. that
(
rn
)
n

is compact in the space L∞T (H3−ε) for all ε > 0 arbitrarily

small);
(iv) passing to the limit in the weak formulation of the equation.

We will not pursue the study of the inviscid case further here.

5.2. Higher order energy estimates. This section is devoted to the proof of Theorem 2.4 when
s > 1. As explained at the beginning of this section, the main point is to establish higher order a priori
estimates. Indeed, once a priori bounds are obtained, both existence and uniqueness of solutions at
this level of regularity will be straightforward consequences of the analysis carried out above.

Therefore, we just focus on energy estimates: we aim at proving the following statement.

Proposition 5.3. Let us assume the initial datum r0 to be in H4+σ(R2) and the source term f in
L2

loc

(
R+;Hσ−1(R2)

)
, for some σ > 0. Let r be the solution to system (4) given by Theorem 5.1. Then

r belongs to
C(R+, H

4+σ(R2)) ∩ L∞loc

(
R+;H4+σ(R2)

)
∩ L2

loc

(
R+;H5+σ(R2)

)
.

Mreover, there exist two positive constants C1 and C2, depending just on the regularity index σ, such
that the following estimate holds true for all t ≥ 0:

Eσ[r(t)] + µ

ˆ t

0

(
‖∆2r(τ)‖2Hσ + ‖∇∆2r(τ)‖2Hσ

)
dτ ≤(27)
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≤ C1

(
Eσ[r0] +

1

µ

ˆ t

0

‖f(τ)‖2Hσ−1 dτ
)

exp

{
C2

µ
eµ t

(
‖r0‖2H3 +

1

µ

ˆ t

0

‖f(τ)‖2H−2 dτ
)}

,

where, for all σ ≥ 0 and functions ϕ ∈ H4+σ(R2), we have defined Eσ[ϕ] by

Eσ[ϕ] := ‖∆ϕ‖2Hσ + ‖∇∆ϕ‖2Hσ + ‖∆2ϕ‖2Hσ .

The proof of the above result relies on a coupling between the second-order energy law, given by
Proposition 3.7, and a fine analysis of the non-linear terms. This latter is based on a paralinearization
of the operator Λ, defined in (5), and a special decomposition (already used in [9] and first introduced
in [21]) in order to treat the remainder which arise.

Remark 5.4. Let us point out that estimate (27) gives a control on the high frequencies of the
solution r. On the other hand, the control on the low frequencies comes from Theorem 5.1 (see also
Proposition 3.7). Hence, combining Propositions 5.3 and 3.7, one immediately gets:

‖r(t)‖2L2 + ‖∆r(t)‖2H2+σ + µ

ˆ t

0

‖∇∆2r(τ)‖2Hσ dτ ≤

≤ C1 e
µt
(
‖r0‖2Hσ+4 +

1

µ

ˆ t

0

‖f(τ)‖2Hσ−1 dτ
)

exp
{
C2 e

µ t
(
‖r0‖2H3 +

1

µ

ˆ t

0

‖f(τ)‖2H−2 dτ
)}

,

for two new suitable positive constants C1 and C2. This inequality easily leads to the one stated in
Theorem 2.4 for the case s > 1 (s = 1 + σ here).

Whenever the source-term f is null, one can achieve the following better estimate, for any t ≥ 0:

‖r(t)‖2Hσ+4 + µ

ˆ t

0

‖∇∆2r(τ)‖2Hσ dτ ≤ C1 ‖r0‖2Hσ+4 eC2‖r0‖2H3 .

In this case, the solution acquires global integrability in time: namely, r ∈ L∞
(
R+;Hσ+4(R2)

)
, with

∇∆2r ∈ L2
(
R+;Hσ(R2)

)
.

We are now in the position to proving Proposition 5.3. In what follows, we will repeadetly use
the isomorphism of Hilbert spaces Hσ(R2) ∼= Bσ2,2(R2) (see also relation (59) in the Appendix),

where Bσ2,2(R2) stands for a nonhomogeneous Besov space (see Definition A.2 below). For the sake of
completeness, we postpone to Appendix A some specifics of these functional spaces, highlighting the
main properties we are interested in; we refer to that Section also for the notations we are going to
use in the course of the proof.

Proof of Proposition 5.3. Since r0 belongs to H4+σ(R2), which is embedded in H4(R2), and f belongs
to L2

loc

(
R+;Hσ−1(R2)

)
↪→ L2

loc

(
R+;H−1(R2)

)
, thanks to Proposition 3.7 and Theorem 5.1 we can

assume, as a starting point, that

r ∈ C
(
R+;H4(R2)

)
∩ L∞loc

(
R+;H4(R2)

)
∩ L2

loc

(
R+;H5(R2)

)
.

In virtue of the previous identification Hσ(R2) ∼= Bσ2,2(R2), it is apparent that our goal is to
establish suitable estimates on the frequency localization rj(t) := ∆jr(t) of the solution r, for any
j ≥ −1. Consequently, we separately take into consideration low and high frequencies of r.

More precisely, let us fix a N ∈ N large enough, whose value will be determined in the course of
the proof (the choice N ≥ 7 will be enough for us), and let us set

(28) rl(t) := SNr(t) =
∑

−1≤j≤N−1

rj(t) and rh(t) := (Id−SN ) r(t) =
∑
j≥N

rj(t) .

Notice that r(t) = rl(t) + rh(t).
Thanks to this relation and the inequality (a+ b)2 ≤ 2

(
a2 + b2

)
, it is easy to see that it is enough

to estimate the quantity on the left-hand side of (27), when computed for rl and rh separately.
We begin with considering the low frequency term rl. By spectral localization and the fact that

SN is a bounded operator from Lp into itself, for any p ∈ [1,∞], we infer that there exists a positive
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constant C, depending also on the fixed σ and N , such that

Eσ
[
rl(t)

]
+ µ

ˆ t

0

(∥∥∆2rl(τ)
∥∥2

Hσ
+
∥∥∇∆2rl(τ)

∥∥2

Hσ

)
dτ ≤(29)

≤ C

(
E0
[
rl(t)

]
+ µ

ˆ t

0

(∥∥∆2rl(τ)
∥∥2

L2 +
∥∥∇∆2rl(τ)

∥∥2

L2

)
dτ

)
≤ C

(
Y (t) + µ

ˆ t

0

(∥∥∆2r(τ)
∥∥2

L2 +
∥∥∇∆2r(τ)

∥∥2

L2

)
dτ

)
,

where Y (t) is the quantity defined in (12). Thus the H4-energy estimate (11), provided by Proposition
3.7, immediately implies

(30) Eσ
[
rl(t)

]
+ µ

ˆ t

0

(∥∥∆2rl(τ)
∥∥2

Hσ
+
∥∥∇∆2rl(τ)

∥∥2

Hσ

)
dτ ≤ C

(
Y0 +

1

µ

ˆ t

0

‖f(τ)‖2H−1 dτ
)
,

where Y0 is the same quantity of Y (t), when computed on the initial datum r0. Notice that this
estimate is even better than what one needs, since its right-hand side can be easily bounded by the
right-hand side of (27): indeed, one has Y (t) ≡ E0(t) ≤ Es(t) for all s > 0 and all t ≥ 0.

Now we focus on Eσ
[
rh(t)

]
, the term of higher-frequencies origin. We claim that it is enough to

prove the following inequality:

Eσ
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆2rh
∥∥2

Hσ
+
∥∥∇∆2rh

∥∥2

Hσ

)
dτ ≤(31)

≤ Eσ [r0] +
C

µ

(ˆ t

0

‖f‖2Hσ−1 dτ +

ˆ t

0

(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
Eσ[r] dτ

)
,

for a suitable positive constant C, which may depend on the fixed parameters σ > 0 and N ∈ N.
Indeed, suppose that (31) holds true: then, we can sum it to (30). By the fact that (a + b)2 ≤

2
(
a2 + b2

)
and the embedding Hs−1 ↪→ H−1 for all s > 0, we immediately deduce the analogue of

(31) but for the whole r: namely,

Eσ [r(t)] + µ

ˆ t

0

(∥∥∆2r
∥∥2

Hσ
+
∥∥∇∆2r

∥∥2

Hσ

)
dτ ≤(32)

≤ Eσ [r0] +
C

µ

(ˆ t

0

‖f‖2Hσ−1 dτ +

ˆ t

0

(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
Eσ[r] dτ

)
.

Next, we observe that, thanks to the estimate provided by Proposition 3.5, we haveˆ t

0

(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
dτ ≤

ˆ t

0

‖∆r(τ)‖2H2 dτ ≤
C

µ
eµ t

(
‖r0‖2H3 +

1

µ

ˆ t

0

‖f‖2H−2 dτ
)
.

Thus, an application of Gronwall Lemma to (32), combined with the previous inequality, immediately
implies estimate (27).

In the light of the previous discussion, in order to complete the proof of Proposition 5.3, it is
sufficient to establish inequality (31). The rest of the proof is devoted to this goal.

To begin with, we make a paralinearization of equation (4); namely, denoting u := ∇⊥(Id−∆)r,
we expand the bilinear term Λ(r, r) into

Λ(r, r) = u · ∇∆2r = Tu·∇∆2r + T ′∇∆2r·u ,

where the bilinear operator T is the non-homogeneous paraproduct operator, defined in (61) in the
Appendix, and we have set

T ′vu := Tvu + R(u, v) =
∑
q≥−1

∆quSq+2v .

In particular, by (60) we deduce that the equality u v = Tuv + T ′vu holds true for all tempered
distributions u and v for which the product is well-defined.



22 Francesco De Anna & Francesco Fanelli

Then, we apply the operator ∆j , for any index j ≥ N , to the resulting equation: we gather that
the function rj = ∆jr is a smooth solution of the PDE

(33) ∂t
(
Id−∆ + ∆2

)
rj + Tu·∇∆2rj + µ∆2(Id−∆)rj = ∆jf − ∆jT

′
∇∆2r·u + [Tu· , ∆j ]∇∆2r .

Next, we perform energy estimates of second type on the previous equation: multiplying both sides
of (33) by ∆2rj and integrating over R2, we achieve

1

2

d

dt

[
‖∆rj‖2L2 + ‖∇∆rj‖2L2 + ‖∆2rj‖2L2

]
+ µ

[
‖∆2rj‖2L2 + ‖∇∆2rj‖2L2

]
=(34)

=

ˆ
∆jf ∆2rj −

ˆ (
Tu·∇∆2rj

)
∆2rj︸ ︷︷ ︸

I(j)1

+

ˆ [
Tu·,∆j

]
∇∆2r∆2rj︸ ︷︷ ︸
I(j)2

−
ˆ

∆jT
′
∇∆2r·u∆2rj︸ ︷︷ ︸
I(j)3

.

The nonlinear terms of the above equality are bounded making use of Lemma 5.5 below, whose
proof is postponed at the end of this section.

Lemma 5.5. The following inequalities are satisfied, for some suitable constants also depending on
the fixed value of σ > 0:

(i) I(j)
1 (t) ≤ C ‖∇u(t)‖L2

∥∥∆2rj(t)
∥∥
L2

∥∥∇∆2rj(t)
∥∥
L2 ;

(ii) I(j)
2 (t) ≤ C ‖∇u(t)‖L2

∥∥∆2r(t)
∥∥
Hσ

∥∥∇∆2rj(t)
∥∥
L2 aj(t) 2−jσ ;

(iii) I(j)
3 (t) ≤ C

∥∥∆2r
∥∥
L2 ‖∇u‖Hσ

∥∥∇∆2rj
∥∥
L2

∑
q≥j−5

2−qσ bq .

where the sequences (aj(t))j≥−1 and (bq(t))q≥−1 belong to `2 for any time t ≥ 0, and they verify the
inequality

sup
t≥0

∥∥∥(aj(t))j≥−1

∥∥∥
`2

+ sup
t≥0

∥∥∥(bq(t))q≥−1

∥∥∥
`2
≤ C .

Combining estimate (34) and Lemma 5.5 together, we gather

1

2

d

dt

(
‖∆rj‖2L2 + ‖∇∆rj‖2L2 +

∥∥∆2rj
∥∥2

L2

)
+ µ

(∥∥∆2rj
∥∥2

L2 +
∥∥∇∆2rj

∥∥2

L2

)
≤

≤ C 2−j ‖∆jf‖L2

∥∥∇∆2rj
∥∥
L2 + C

(
‖∇u‖L2

∥∥∆2rj
∥∥
L2

∥∥∇∆2rj
∥∥
L2 +

+ ‖∇u‖L2

∥∥∆2r
∥∥
Hσ

aj 2−jσ
∥∥∇∆2rj

∥∥
L2 +

∥∥∆2r
∥∥
L2 ‖∇u‖Hσ

∥∥∇∆2rj
∥∥
L2

∑
q≥j−5

2−qσ bq

)
.

Hence, we multiply both sides by 22jσ, and we take the integral in time; after using Young inequality
for each term on the right-hand side of the previous relation, we perform a sum over j ≥ N , and we
finally deduce that

Eσ
[
rh(t)

]
+ 2µ

ˆ t

0

(∥∥∆2rh
∥∥2

L2 +
∥∥∇∆2rh

∥∥2

L2

)
dτ ≤

≤ Eσ
[
rh0
]

+
C

µ

∑
j≥N

22j(σ−1)‖∆jf‖2L2
t (L

2) + µ
∑
j≥N

22jσ
∥∥∇∆2rj

∥∥2

L2
t (L

2)
+

+
C

µ

ˆ t

0

‖∇u‖2L2

∑
j≥N

22jσ
∥∥∆2rj

∥∥2

L2 dτ +
C

µ

ˆ t

0

‖∇u‖2L2

∥∥∆2r
∥∥2

Hσ

∑
j≥N

a2
j dτ +

+
C

µ

ˆ t

0

∥∥∆2r
∥∥2

L2 ‖∇u‖
2
Hσ

∑
j≥N

 ∑
q≥j−5

2−(q−j)σ bq

2

dτ .
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Observe that, by definition of rh, we can absorbe the third term in the right-hand side into the left-
hand side. Moreover, recalling the properties of the sequences

(
aj(t)

)
j≥−1

and
(
bq(t)

)
q≥−1

stated in

Lemma 5.5 above, we can estimate∑
j≥N

aj(τ)2 ≤
∥∥∥(aj(τ)

)
j≥−1

∥∥∥2

`2
≤ C

∑
j≥N

 ∑
q≥j−5

2−(q−j)σ bq(τ)

2

≤
∥∥∥(θk)k≥−1

∗
(
bq(τ)

)
q≥−1

∥∥∥2

`2

≤
∥∥∥(θk)k≥−1

∥∥∥2

`1

∥∥∥(bq(τ)
)
q≥−1

∥∥∥2

`2
≤ C ,

where, for all k ≥ −1, we have defined θk = 2−kσ, and where the constants C are uniform with
respect to time. Therefore, we obtain the inequality

Eσ
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆2rh
∥∥2

L2 +
∥∥∇∆2rh

∥∥2

L2

)
dτ ≤(35)

≤ Eσ [r0] +
C

µ

ˆ t

0

‖f‖2Hσ−1 dτ +
C

µ

ˆ t

0

‖∇u‖2L2

∥∥∆2r
∥∥2

Hσ
dτ +

C

µ

ˆ t

0

∥∥∆2r
∥∥2

L2 ‖∇u‖
2
Hσ dτ ,

where we used also the fact that (Id−SN ) is a bounded operator from Lp into itself, so that Eσ
[
rh0
]

is actually bounded by Eσ [r0], up to a multiplicative constant.
At this point, since u = ∇⊥(Id−∆)r, we use the continuity of the Calderón-Zygmund operator

∇2(−∆)−1 over Lp for all 1 < p < +∞, to deduce

‖∇u‖2L2 ≤ C
(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
‖∇u‖2Hσ ≤ C

(
‖∆r‖2Hσ +

∥∥∆2r
∥∥2

Hσ

)
≤ Eσ[r] .

Therefore, from inequality (35) we immediately obtain, for all t ≥ 0, the bound

Eσ
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆2rh
∥∥2

L2 +
∥∥∇∆2rh

∥∥2

L2

)
dτ ≤

≤ Eσ [r0] +
C

µ

(ˆ t

0

‖f‖2Hσ−1 dτ +

ˆ t

0

(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
Eσ[r] dτ

)
,

which corresponds exactly to inequality (31). Therefore, as already explained above, this relation
concludes the proof of Proposition 5.3, provided we show the bounds of Lemma 5.5. �

In order to complete the proof to Proposition 5.3, it remains us to get the estimates of Lemma 5.5.

Proof of Lemma 5.5. We begin with proving inequality (i). First, using the almost-orthogonality
property of the dyadic blocks, namely the fact that ∆q∆j ≡ 0 for any couple (q, j) such that |q−j| ≥ 2

(see e.g. Proposition 2.10 of [2]), we can reformulate the term I(j)
1 as follows:

I(j)
1 =

ˆ
R2

(
Tu·∇∆2rj

)
∆2rj dx =

∑
q≥−1

ˆ
R2

(
Sq−1u ·∆q∇∆2rj

)
∆2rj dx

=
∑

q≥−1, |q−j|≤1

ˆ
R2

(
Sq−1u ·∆q∇∆2rj

)
∆2rj dx .

Next, we isolate the localized function Sj−1u from the above term: namely, we split I(j)
1 into

(36) I(j)
1 =

∑
q≥−1,
|q−j|≤1

ˆ (
(Sq−1 − Sj−1)u ·∆q∇∆2rj

)
∆2rj +

ˆ (
Sj−1u · ∇∆2rj

)
∆2rj ,



24 Francesco De Anna & Francesco Fanelli

where we have used also the fact that
∑
|q−j|≤1 ∆qrj = rj , i.e.

∑
|q−j|≤1 ∆q ≡ 1 on the support of

∆j . Such a decomposition has two fundamental consequencies in our estimates. First of all, since
Sj−1u = ∇⊥(Id−∆)Sj−1r is divergence-free, by an integration by parts we gather that the last
non-linear term in equality (36) is null:

(37)

ˆ
R2

Sj−1u · ∇∆2rj ∆2rj dx = 0 .

We remark that this cancellation, which can be viewed as the analogue of Lemma 3.2 in a frequency
localization context, plays a main rule: indeed it allows one to get a better estimate in the case s > 1

with respect to the case 0 < s < 1, see the statement of Theorem 2.4. Therefore, I(j)
1 reduces to

I(j)
1 =

∑
|q−j|≤1

ˆ (
(Sq−1 − Sj−1)u ·∆q∇∆2rj

)
∆2rj

≤
∑
|q−j|≤1

‖(Sq−1 − Sj−1)u‖L∞
∥∥∆q∇∆2rj

∥∥
L2

∥∥∆2rj
∥∥
L2 .

Now we observe that (this is the second main consequence of decomposition (36) above), if one fixes
N ∈ N large enough (e.g. N ≥ 5 is fine at this level), the support of the Fourier transform of the
term (Sq−1 − Sj−1)u is contained in an annulus, whose radius is proportional to 2q (since j and q are
comparable). Hence, Bernstein inequality and the property |q − j| ≤ 1 yield the following chain of
inequalities:

‖(Sq−1 − Sj−1)u‖L∞ ≤ C 2q ‖(Sq−1 − Sj−1)u‖L2 ≤ C ‖(Sq−1 − Sj−1)∇u‖L2 ≤ C ‖∇u‖L2 .

Summarizing what we have done until now, we finally get inequality (i):

I(j)
1 ≤ C

∑
|q−j|≤1

‖∇u‖L2

∥∥∆q∇∆2rj
∥∥
L2

∥∥∆2rj
∥∥
L2 ≤ C ‖∇u‖L2

∥∥∆2rj
∥∥
L2

∥∥∇∆2rj
∥∥
L2 .

Next, we take into consideration inequality (ii), involving the nonlinear term I(j)
2 . Let us immedi-

ately remark that, by spectral localization, one has the equality

I(j)
2 =

ˆ
R2

[
Tu·,∆j

]
∇∆2r∆2rj dx =

ˆ
R2

∑
|q−j|≤4

[
Sq−1u , ∆j

]
∇∆2rq ∆2rj dx .

Thus, Hölder inequality implies

I(j)
2 ≤

∑
|q−j|≤4

∥∥[Sq−1u , ∆j

]
∇∆2rq

∥∥
L2

∥∥∆2rj
∥∥
L2 .

Making use of Bernstein inequality and the commutator estimate provided by Lemma A.6, since j
and q are comparable, one gets∥∥[Sq−1u , ∆j

]
∇∆2rq

∥∥
L2 ≤ C 2−q ‖Sq−1∇u‖L∞

∥∥∇∆2rq
∥∥
L2 ≤ C ‖Sq−1∇u‖L2 ‖∇∆2rq‖L2 ,

and hence one deduces (by Bernstein inequalities again)

I(j)
2 ≤ C

∑
|q−j|≤4

‖∇u‖L2

∥∥∆2rq
∥∥
L2

∥∥∇∆2rj
∥∥
L2 ≤ Cσ ‖∇u‖L2

∥∥∆2r
∥∥
Hσ

∥∥∇∆2rj
∥∥
L2 aj(t) 2−jσ ,

where the constant Cs depends also on s and the sequence
(
aj(t)

)
j≥−1

∈ `2 is defined by the relation

aj(t) :=
∑
|q−j|≤4

2qσ
∥∥∆2rq(t)

∥∥
L2 /

∥∥∆2r(t)
∥∥
Hσ

for j ≥ N , aj(t) = 0 otherwise.

It is worth to remark that∥∥(aj(t))j
∥∥2

`2
≤ C

‖∆2r(t)‖2Hσ

∑
j≥N

∑
|q−j|≤4

22qσ
∥∥∆2rq(t)

∥∥
L2 ≤ C ,

for any time t ∈ R+. Thus inequality (ii) is proven.
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It remains to control I(j)
3 , the non-linear term given by the reminder ∆jT

′
∇∆2r·u. Since div u = 0,

by a repeated use of Bernstein inequalities, one has

I(j)
3 =

ˆ
∆jT

′
∇∆2r·u∆2rj =

∑
q≥j−5

ˆ
∆jdiv

(
∆quSq+2∆2r

)
∆2rj

≤ C
∑
q≥j−5

2j
∥∥∆j

(
∆quSq+2∆2r

)∥∥
L2

∥∥∆2rj
∥∥
L2 ≤ C

∑
q≥j−5

‖∆qu‖L∞
∥∥Sq+2∆2r

∥∥
L2

∥∥∇∆2rj
∥∥
L2

≤ C
∥∥∆2r

∥∥
L2

∥∥∇∆2rj
∥∥
L2

∑
q≥j−5

‖∆q∇u‖L2 .

At this point, we remark that∑
q≥j−5

‖∆q∇u‖L2 ≤ ‖∇u‖Hσ
∑
q≥j−5

2−qσ bq ,

where the sequence
(
bq(t)

)
q≥−1

is defined, for all t ≥ 0, by the formula

bq(t) := ‖∇u(t)‖−1
Hσ 2qσ ‖∆q∇u(t)‖Hσ .

Notice that
(
bq(t)

)
q≥−1

belongs to `2 and it has unitary norm. In the end, we gather

I(j)
3 ≤ C

∥∥∆2r
∥∥
L2 ‖∇u‖Hσ

∥∥∇∆2rj
∥∥
L2

∑
q≥j−5

2−qσ bq .

This estimate concludes the proof of inequality (iii), and so of the whole Lemma. �

5.3. Propagation of intermediate regularities. The central issue to be discussed in what follows
is the propagation of regularities when the initial datum r0 is assumed to belong to H3+s, with
s ∈ ]0, 1[ . This result completes the analysis started in the previous section, devoted to the propagation
of higher regularities H4+s, with s > 0. We aim at proving the following result.

Proposition 5.6. Let us assume the initial datum r0 to be in H3+s(R2) and the source term f to be
in L2

loc

(
R+;Hs−2(R2)

)
, for some s ∈ ]0, 1[ . Let r be the solution to (4), given by Theorem 2.3. Then

r ∈ C
(
R+;H3+s(R2)

)
∩ L∞loc

(
R+;H3+s(R2)

)
∩ L2

loc

(
R+;H4+s(R2)

)
.

Moreover, there exist two positive constant C1 and C2, depending just on the regularity index s, such
that the following estimate holds true for all t ≥ 0:

Ẽs[r(t)] + µ

ˆ t

0

(
‖∆r(τ)‖2Hs + ‖∇∆r(τ)‖2Hs + ‖∆2r(τ)‖2Hs

)
dτ ≤(38)

≤ C
(
Ẽs[r0] +

1

µ

ˆ t

0

‖f(τ)‖2Hs−2 dτ
)

exp

{
C2

µ
e2µ t

(
‖r0‖2H3 +

1

µ

ˆ t

0

‖f(τ)‖2H−2 dτ
)2
}
,

where, for all s ≥ 0 and all functions ϕ ∈ Hs+3, we have defined Ẽs[ϕ] by

Ẽs[ϕ] := ‖ϕ‖2Hs + ‖∇ϕ‖2Hs + ‖∆ϕ‖2Hs + ‖∇∆ϕ‖2Hs .

Remark 5.7. The proof of Proposition 5.6 should be seen as a coupling technique between the proof
to Proposition 5.3 and the one to Theorem 2.3, where we introduced a first-type balance equation.
This balance was achieved as an energy estimate of the continuum variable (Id−∆)r, leading to the
non-trivial cancellation of the most challenging non-linear term:

(39) 〈Λ(r, r), (Id−∆)r〉L2 = 0

One should expect this cancellation to be somehow preserved also in higher regularities than L2(R2).
Moreover, once introduced the paradifferential localization used in Proposition 5.3, it is natural to
believe that a similar approach can be performed also in the case of low regularities, treated in
Proposition 5.6.

Eventually this claim results to be false, since the structure of the system does not allow any sort
of preservation of the identity (39), whenever L2 is replaced by Hs with s > 0. More specifically,
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Bony’s decomposition, that was successful for Proposition 5.6, here fails when used to cancel the
corresponding term in (37): namely, one has 〈Λ(Sq−1r, ∆qr), (Id−∆)∆qr〉L2 6= 0. Moreover, we
notice that, by symmetry, one can write

Λ(ρ, ζ) = ∇⊥(Id−∆)ρ · ∇∆2ζ = −∇⊥∆2ζ · ∇(Id−∆)ρ ,

from which we deduce the cancellation of the term 〈Λ(∆qr, Sq−1r), (Id−∆)∆qr〉L2 . But this relation
reveals to be only of partial help, since it does not allow to get rid of the most dangerous term (i.e. the
previous one 〈Λ(Sq−1r, ∆qr), (Id−∆)∆qr〉L2 , where the high frequencies of the highest order term
appear).

The previous remark, although being quite technical, represents one of the main challenges when
propagating H3+s(R2) regularity, with s ∈ ]0, 1[ : we cannot rely on our previous energy balances and
we need to independently estimate each non-linear term. This fact is deeply analyzed in Lemma 5.8
below, whose proof is postponed at the end of this section.

Proof. With the notations introduced in (28), we decompose once again r = rl + rh. In the same
spirit of the proof of Proposition 5.3, it is enough to separately estimate the quantity on the left-hand
side of (38) when computed in rl and in rh.

Similarly as for proving inequality (29) in the previous subsection, one can control the low-
frequencies rl through

Ẽs[rl(t)] + µ

ˆ t

0

(
‖∆rl(τ)‖2Hs + 2‖∇∆rl(τ)‖2Hs + ‖∆2rl(τ)‖2Hs

)
dτ ≤(40)

≤ C

(
Ẽ0[rl(t)] + µ

ˆ t

0

(
‖∆rl(τ)‖2L2 + 2‖∇∆rl(τ)‖2L2 + ‖∆2rl(τ)‖2L2

)
dτ

)
≤ C

(
Ẽ0[r0] +

C

µ

ˆ t

0

‖f(τ)‖2H−2 dτ

)
,

and this last quantity is clearly controlled by the right-hand side of (41). Thus, we can focus on the

control of Ẽs[rh(t)], the term of higher-frequencies origin.
We start by multiplying equation (33) by (Id−∆)rj and integrating in R2: we gather

1

2

d

dt

(
‖rj‖2L2 + 2‖∇rj‖2L2 + 2‖∆rj‖2L2 + ‖∇∆rj‖2L2

)
+(41)

+ µ
(
‖∆rj‖2L2 + 2‖∇∆rj‖2L2 + ‖∆2rj‖2L2

)
= 〈∆jf , (Id−∆)rj〉H−2×H2 −

−
ˆ
R2

(
Tu·∇∆2rj

)
(Id−∆)rj︸ ︷︷ ︸

J (j)
1

+

ˆ
R2

[
Tu·,∆j

]
∇∆2r (Id−∆)rj︸ ︷︷ ︸
J (j)

2

−
ˆ
R2

∆jT
′
∇∆2r·u (Id−∆)rj︸ ︷︷ ︸
J (j)

3

.

We provide now an important lemma, that allow us to control each non-linear term on the right-hand
side. Its proof is postponed at the end of this section.

Lemma 5.8. The following inequalities are satisfied for some suitable constants, which depend also
on the value of s > 0:

(i) J (j)
1 (t) ≤ C

∥∥u∥∥1/2

L2

∥∥∇u∥∥1/2

L2 ‖∇∆rj‖1/2L2

∥∥(∆rj , ∆2rj)
∥∥3/2

L2

(ii) J (j)
2 (t) ≤ C ‖∇u(t)‖L2 ‖∇∆r(t)‖Hs

∥∥(∆rj , ∆2rj)
∥∥
L2 aj(t) 2−js

(iii) J (j)
3 (t) ≤ C

∥∥∆2r
∥∥
L2 ‖u‖Hs

∥∥(∆rj , ∆2rj)
∥∥
L2

∑
q≥j−5

2−qs bq ,

where we clarify the notation ‖(f, g)‖X = ‖f‖X + ‖g‖X , for any elements f , g in a normed space
X. The sequences (aj(t))j≥−1 and (bj(t))j≥−1 belong to `2 for any time t > 0, and they fulfill the
inequality

sup
t≥0

∥∥∥(aj(t))j≥−1

∥∥∥
`2

+ sup
t≥0

∥∥∥(bj(t))j≥−1

∥∥∥
`2
≤ C,
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for a suitable positive constant C.

Combining estimate (41) together with Lemma 5.8, we obtain

1

2

d

dt

(
‖rj‖2L2 + 2‖∇rj‖2L2 + 2‖∆rj‖2L2 + ‖∇∆rj‖2L2

)
+ µ

(
‖∆rj‖2L2 + 2‖∇∆rj‖2L2 + ‖∆2rj‖2L2

)
≤

≤ C
(

2−2j‖∆jf‖L2‖(∆rj ,∆2rj)‖L2 +
∥∥u∥∥1/2

L2

∥∥∇u∥∥1/2

L2 ‖∇∆rj‖1/2L2

∥∥(∆rj ,∆
2rj)

∥∥3/2

L2 +

+ ‖∇u‖L2 ‖∇∆r‖Hs
∥∥(∆rj ,∆

2rj)
∥∥
L2 aj2

−js +
∥∥∆2r

∥∥
L2 ‖∇u‖Hs ‖(∇rj ,∇∆rj)‖L2

∑
q≥j−5

2−qs bq

)
.

Hence, we multiply both sides by 22js, and we take the integral in time; after using Young inequality
for each term on the right-hand side of the previous relation, we perform a sum over j ≥ N , and we
finally deduce that

Ẽs
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆rh
∥∥2

L2 +
∥∥∇∆rh

∥∥2

L2 +
∥∥∆2rh

∥∥2

L2

)
dτ ≤

≤ Ẽs
[
rh0
]

+
C

µ

∑
j≥N

22j(s−2)‖∆jf‖2L2
t (L

2) +
µ

2

∑
j≥N

22js
∥∥(∆rj ,∆

2rj)
∥∥2

L2
t (L

2)
+

+
C

µ

ˆ t

0

‖u‖2L2‖∇u‖2L2

∑
j≥N

22js ‖∇∆rj‖2L2

 dτ +

+
C

µ

ˆ t

0

‖∇u‖2L2 ‖∇∆r‖2Hs

∑
j≥N

a2
j

 dτ +
C

µ

ˆ t

0

∥∥∆2r
∥∥2

L2 ‖u‖
2
Hs

∑
j≥N

 ∑
q≥j−5

2−(q−j)s bq

2

dτ .

Observe that, by definition of rh, we can absorbe the third term in the right-hand side into the left-
hand side. Moreover, recalling the properties of the sequences

(
aj(t)

)
j≥−1

and
(
bq(t)

)
q≥−1

stated in

Lemma 5.8 above, we can estimate∑
j≥N

aj(τ)2 ≤ C,
∑
j≥N

( ∑
q≥j−5

2−(q−j)s bq(τ)
)2
≤ C ,

where the constant C is uniform with respect to time. Therefore, we obtain the inequality

Ẽs
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆rh
∥∥2

L2 + 2
∥∥∇∆rh

∥∥2

L2 +
∥∥∆2rh

∥∥2

L2

)
dτ ≤ Ẽs [r0] +(42)

+
C

µ

ˆ t

0

‖f‖2Hs−2 dτ +
C

µ

ˆ t

0

(‖u‖2L2 + 1)‖∇u‖2L2 ‖∇∆r‖2Hs dτ +
C

µ

ˆ t

0

∥∥∆2r
∥∥2

L2 ‖u‖
2
Hs dτ ,

where we used also the fact that (Id−SN ) is a bounded operator from Lp to itself, so that Ẽs
[
rh0
]

is

actually bounded by Ẽs [r0], up to a multiplicative constant.
At this point, since u = ∇⊥(Id−∆)r, we use the continuity of the Calderón-Zygmund operator

∇2(−∆)−1 over Lp for all 1 < p < +∞, to deduce

‖u‖2L2 ≤ C
(
‖∇r‖2L2 + ‖∇∆r‖2L2

)
‖∇u‖2L2 ≤ C

(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
‖u‖2Hs ≤ C

(
‖∇r‖2Hs + ‖∇∆r‖2Hs

)
≤ Ẽs[r] .

Therefore, from inequality (42) we immediately obtain, for all t ≥ 0, the bound

Ẽs
[
rh(t)

]
+ µ

ˆ t

0

(∥∥∆rh
∥∥2

Hs
+ 2

∥∥∇∆rh
∥∥2

Hs
+
∥∥∆2rh

∥∥2

Hs

)
dτ ≤
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≤ Ẽs [r0] +
C

µ

(ˆ t

0

‖f‖2Hs−2 dτ +

ˆ t

0

(
1 + ‖∇r‖2L2 + ‖∇∆r‖2L2

)(
‖∆r‖2L2 +

∥∥∆2r
∥∥2

L2

)
Es[r] dτ

)
.

Combining this relation together with (40), we finally gather an estimate for Ẽs[r(t)], namely

Ẽs [r(t)] + µ

ˆ t

0

(
‖∆r‖2Hs + 2 ‖∇∆r‖2Hs +

∥∥∆2r
∥∥2

Hs

)
dτ ≤ Ẽs [r0] +

+
C

µ

(ˆ t

0

‖f‖2Hs−2 dτ +

ˆ t

0

(
1 + ‖∇r‖2L2 + ‖∇∆r‖2L2

)
‖∆r‖2H2 Es[r] dτ

)
.

Then, Gronwall inequality together with Proposition 3.5 conclude the proof of Proposition 5.6. �

It remains us to show the estimates of Lemma 5.8.

Proof of Lemma 5.8. We begin with estimating the term J (j)
1 (t). Classical Hölder’s inequalities yield

J (j)
1 (t) =

ˆ
R2

(
Tu·∇∆2rj

)
(Id−∆)rj dx ≤

∥∥∥ ∑
|q−j|≤5

Sq−1u∆q∇∆2rj

∥∥∥
L2

∥∥∥(Id−∆)rj

∥∥∥
L2

≤
∑
|q−j|≤5

∥∥Sq−1u
∥∥
L4

∥∥∆q∇∆2rj
∥∥
L4

∥∥(rj , ∆rj)
∥∥
L2 .

On the other hand, by Gagliardo-Nirenberg inequality we infer ‖f‖L4 ≤ C ‖f‖1/2L2 ‖∇f‖1/2L2 , for a
positive constant C which does not depend on f . Thus, we deduce

J (j)
1 (t) ≤ C

∑
|q−j|≤5

∥∥Sq−1u
∥∥1/2

L2

∥∥Sq−1∇u
∥∥1/2

L2

∥∥∆q∇∆2rj
∥∥1/2

L2

∥∥∆q∆
3rj
∥∥1/2

L2

∥∥(rj , ∆rj)
∥∥
L2

≤ C
∥∥u∥∥1/2

L2

∥∥∇u∥∥1/2

L2

∥∥∇∆2rj
∥∥1/2

L2

∥∥∆3rj
∥∥1/2

L2

∥∥(rj , ∆rj)
∥∥
L2 .

Now, to handle the large number of derivatives in ∆3rj , we make use of the Bernstein inequalities
(see Lemma A.1 in the Appendix) to find∥∥∆3rj

∥∥
L2 ≤ C 22j ‖∆2rj‖L2 and 2j

∥∥(rj , ∆rj)
∥∥
L2 ≤ C

∥∥(∇rj , ∇∆rj)
∥∥
L2 ,

for a positive constant which does not depend on j. Using the same trick also to handle the term
∇∆2rj , we finally gather

J (j)
1 (t) ≤ C

∥∥u∥∥1/2

L2

∥∥∇u∥∥1/2

L2

∥∥∇∆rj
∥∥1/2

L2 ‖∆2rj‖1/2L2

∥∥(∆rj , ∆2rj)
∥∥
L2

≤ C
∥∥u∥∥1/2

L2

∥∥∇u∥∥1/2

L2 ‖∇∆rj‖1/2L2

∥∥(∆rj , ∆2rj)
∥∥3/2

L2 .

Hence inequality (i) is proven.

Next, we take into consideration inequality (ii), involving the nonlinear term J (j)
2 . We proceed

similarly as for proving (ii) in Lemma 5.5. By spectral localization, one has the equality

I(j)
2 =

ˆ
R2

[
Tu·,∆j

]
∇∆2r (Id−∆)rj dx =

ˆ
R2

∑
|q−j|≤4

[
Sq−1u , ∆j

]
∇∆2rq (Id−∆)rj dx .

Thus, Hölder’s inequality implies

J (j)
2 ≤

∑
|q−j|≤4

∥∥[Sq−1u , ∆j

]
∇∆2rq

∥∥
L2 ‖(Id−∆)rj‖L2 .

Making use of Bernstein inequality and the commutator estimate provided by Lemma A.6, since j
and q are comparable, one gets∥∥[Sq−1u , ∆j

]
∇∆2rq

∥∥
L2 ≤ C 2−q ‖Sq−1∇u‖L∞

∥∥∇∆2rq
∥∥
L2 ≤ C ‖Sq−1∇u‖L2 ‖∇∆2rq‖L2 ,

and hence one deduces (by Bernstein inequalities again)

J (j)
2 ≤ C

∑
|q−j|≤4

‖∇u‖L2

∥∥∇∆2rq
∥∥
L2 ‖(Id−∆)rj‖L2



On a higher-order Quasi-Geostrophic type equation 29

≤ C
∑
|q−j|≤4

‖∇u‖L2

∥∥∆2rq
∥∥
L2 2q ‖(rj , ∆rj)‖L2

≤ Cs ‖∇u‖L2

∥∥∆2r
∥∥
Hs
‖(∇rj , ∇∆rj)‖L2 aj(t) 2−js ,

where the constant Cs depends also on s, and the sequence
(
aj(t)

)
j≥−1

∈ `2 is defined by the relation

aj(t) :=
∑
|q−j|≤4

2qs
∥∥∆2rq(t)

∥∥
L2 /

∥∥∆2r(t)
∥∥
Hs

for j ≥ N , aj(t) = 0 otherwise.

As already exposed in Lemma 5.5, it is worth to remark that∥∥(aj(t))j
∥∥2

`2
≤ C

‖∆2r(t)‖2Hs

∑
j≥N

∑
|q−j|≤4

22qs
∥∥∆2rq(t)

∥∥
L2 ≤ C ,

for any time t ∈ R+. Thus inequality (ii) is proven.

It remains to control J (j)
3 , the non-linear term given by the reminder ∆jT

′
∇∆2r·u. Since div u = 0,

by a repeated use of Bernstein inequalities, one has

J (j)
3 =

ˆ
∆jT

′
∇∆2r·u (Id−∆)rj =

∑
q≥j−5

ˆ
∆jdiv

(
∆quSq+2∆2r

)
(Id−∆)rj

≤ C
∑
q≥j−5

2j
∥∥∆j

(
∆quSq+2∆2r

)∥∥
L1 ‖(Id−∆)rj‖L∞

≤ C
∑
q≥j−5

‖∆qu‖L2

∥∥Sq+2∆2r
∥∥
L2 ‖(∇rj , ∇∆rj)‖L∞

≤ C
∥∥∆2r

∥∥
L2

∥∥(∆rj , ∆2rj)
∥∥
L2

∑
q≥j−5

‖∆qu‖L2 .

At this point, we remark that ∑
q≥j−5

‖∆qu‖L2 ≤ ‖u‖Hs
∑
q≥j−5

2−qs bq ,

where the sequence
(
bq(t)

)
q≥−1

is defined, for all t ≥ 0, by the formula

bq(t) := ‖u(t)‖−1
Hs 2qs ‖∆qu(t)‖L2 .

Notice that
(
bq(t)

)
q≥−1

belongs to `2 and it has unitary norm. In the end, we gather

J (j)
3 ≤ C

∥∥∆2r
∥∥
L2 ‖u‖Hs

∥∥(∆rj , ∆2rj)
∥∥
L2

∑
q≥j−5

2−qs bq .

This estimate concludes the proof of inequality (iii), and so of the whole Lemma. �

6. Long-time dynamics

In this section, we investigate the long-time behaviour of (smooth enough) solutions to equation
(4). Not surprisingly, we prove that they converge to the solution of the linear parabolic equation (20)
with g = 0, which we recall here for convenience:

(43)

{
∂t
(
Id−∆ + ∆2

)
w + µ∆2(Id−∆)w = f

w|t=0 = w0 ,

where w0 and f are respectively the same initial datum and external force as for (4).

Remark 6.1. Equation (43) being linear, it is easy to establish energy estimates (see also the dis-
cussion at the beginning of Paragraph 4.2.1) of first and second type, and propagation of higher
regularities (just test the equation on (−∆)s(Id−∆)w, for s > 0, and repeat the computations as for
first-type energy estimates).
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For all r0 ∈ H3+s and f ∈ L2
T (Hs−2) for all T > 0, a straightforward adaptation of Theorem 4.6

(where we take g = 0) immediately gives us the existence and uniqueness of solutions

w ∈ C
(
R+;H3+s(R2)

)
∩ L∞loc

(
R+;H3+s(R2)

)
∩ L2

loc

(
R+;H4+s(R2)

)
,

which verify in addition the energy estimates

‖w(t)‖2H3+s + µ

ˆ t

0

‖∆w(τ)‖2H2+s dτ ≤ C eµ t
(
‖w0‖2H3+s +

1

µ

ˆ t

0

‖f(τ)‖2Hs−2 dτ

)
.

Remark 6.2. Notice that, whenever f ∈ L2
(
R+;Hs−2(R2)

)
, or f ∈ L1

(
R+;Hs−1(R2)

)
, one deduces

the uniform (in time) control

‖w(t)‖2H3+s +

ˆ t

0

‖∆r(τ)‖2H4+s dτ ≤ C ∀ t ≥ 0 .

Indeed, in the former instance this estimate is clear from the inequality in Remark 6.1 above, where
one can avoid the presence of the exponential term arguing as in Lemma 6.9 below (see also the
subsequent Remark 6.10 for further comments).

In the latter case, instead, let us sketch the proof for s = 0: the general case follows by similar
considerations. Summing up relations (7) and (8), estimating

〈f , (Id−∆)r〉H−1×H1 ≤ C ‖f‖H−1

√
X

and forgetting about the viscosity terms, one gets

d

dt
X ≤ C ‖f‖H−1

√
X =⇒

√
X(t) ≤

√
X0 + C

ˆ t

0

‖f(τ)‖H−1 dτ ≤ C .

Coming back to the resulting expression with the viscosity terms, using the previous bound and
integrating in time, one finally discovers the claimed inequality.

This having been pointed out, let us state the main result of this section. For reasons which will
appear clear in the course of the proof, we need to consider smooth enough initial data and forces.

Theorem 6.3. Let s > 0. Take an initial datum r0 ∈ H4+s(R2) and an external force f ∈
L2
(
R+;Hs−1(R2)

)
. Suppose that

f ∈ L∞
(
R+;Hs(R2)

)
∩ L∞

(
R+;L1(R2)

)
, ‖f(t)‖Hs∩L1 ≤ K (1 + t)−1−η ,

for some constant K > 0 and some exponent 1/2 < η < 1, for almost every t > 0. Let r be the
solution to equation (4), given by Theorem 2.4, and let w be the solution to (43), given by Remark
6.1 above.

Then, there exists a constant C > 0 (depending only on µ, K and ‖r0‖H4+s) such that, for all
t ≥ 0, one has

‖r(t) − w(t)‖H3 ≤ C (1 + t)1/2−η .

The rest of this section is devoted to the proof of the previous theorem. In a first time (see Sub-
section 6.1), we study the linear problem, establishing some decay properties for w. These properties
turn out to be not strong enough for proving our result; hence, we need to investigate the non-linear
equation (4) and to show (in Subsection 6.2) dispersive estimates also for r. Finally, in Subsection 6.3
we put these estimates together to gather the result.

6.1. The linear problem. Let us consider the linear problem (43): we want to analyse dispersive
properties for its solution w.

We recall that we have defined above A(D) := Id−∆ + ∆2, see (13); for notational convenience,
let us also set H(D) := ∆2

(
Id−∆

)
A−1(D), namely A(D) and H(D) are the pseudo-differential

operators associated to the Fourier multipliers

(44) a(ξ) := 1 + |ξ|2 + |ξ|4 and h(ξ) :=
1 + |ξ|2

1 + |ξ|2 + |ξ|4
|ξ|4 .
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The first step is to apply the Fourier transform F to equation (43) and rewrite it as

∂tŵ + µh(ξ) ŵ = f̂0 ,

where we have defined f0 := A−1(D)f . From this relation we immediately deduce that

(45) ŵ(t, ξ) = e−µh(ξ) t ŵ0 +

ˆ t

0

e−µh(ξ) (t−τ) f̂0(τ, ξ) dτ .

We first study the evolution through the free propagator, namely the case f = 0. From this analysis,
we will then deduce bounds for the term related to the external force in a standard way.

Hence, let us suppose f = 0 (and then f0 = 0) for a while. We begin with presenting an intermediate
estimate, which we include it for the sake of completeness.

Lemma 6.4. Let w solve equation (43) with initial datum w0 ∈ H2(R2) and f ≡ 0.
Then there exists a positive constant C > 0, just depending on µ > 0, such that, for all s > 0, one

has the following estimate:

‖w(t)‖L∞ ≤ C
(
‖w0‖L1 + ‖w0‖H1+s

)
(1 + t)−1/4 .

Proof. Recalling (see e.g. Theorem 1.19 of [2]) that F−1 = (2π)−d F̌ , where d is the space dimension
and F̌ is defined by the formula F̌h(ξ) = Fh(−ξ), by use of (45) we can estimate

(46) ‖w(t)‖L∞ ≤ C ‖ŵ(t)‖L1 , with ‖ŵ(t)‖L1 =

ˆ
R2

e−µh(ξ) t |ŵ0(ξ)| dξ .

We observe that this quantity remains finite for (say) t ∈ [0, 1]. Indeed, it is enough to multiply and
divide the term inside the integral by the factor (1+ |ξ|2)(1+s)/2 and use Cauchy-Schwarz inequality, to
bound it by C ‖w0‖H1+s . Hence, we can restrict our attention to large times: namely in what follows
we assume that t ≥ 1.

We now split the previous integral as the sum of the integral over the ball B(0, 1) of center 0
and radius 1 and the integral over the complement R2 \ B(0, 1). After passing in polar coordinates,
straightforward computations lead us toˆ

R2\B(0,1)

e−µh(ξ) t |ŵ0(ξ)| dξ ≤ C ‖ŵ0‖L∞
ˆ +∞

1

e−µh(r) t r dr ≤ C e−µ t ‖w0‖L1 ,

where, with a little abuse of notation, we have set h(r) = r4 (1 + r2)/(1 + r2 + r4).
As for the intregral over B(0, 1), instead, we use the fact that (1 + r2)/(1 + r2 + r4) ≥ 1/2 for

0 ≤ r ≤ 1. Hence, passing again in polar coordinates we can estimateˆ
B(0,1)

e−µh(ξ) t |ŵ0(ξ)| dξ ≤ C ‖ŵ0‖L∞
ˆ 1

0

e−µ t r
4/2 dr ,

and a simple change of variables implies the final estimateˆ
B(0,1)

e−µh(ξ) t |ŵ0(ξ)| dξ ≤ C

(µ t)
1/4
‖w0‖L1 .

The previous inequality completes the proof of the lemma. �

Let us remark that the decay estimate of Lemma 6.4 is much worse than the one expected for the
classical heat equation, namely ∼ t−d/2. As it appears clear from our computations, this is due to
the fact that our parabolic operator vanishes at a higher order for |ξ| ∼ 0.

Nontheless, exactly due to the high smoothing effect of the parabolic operator, we can improve the
decay rate if we consider first and higher order derivatives of w, and this with no loss of derivatives.
This is in sharp contrast with what happens in non-diffusive cases: we refer to e.g. paper [10],
concerning the inviscid incompressible porus medium equation, where the decay can be improved if
one accepts to lose a high enough number of derivatives.
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Lemma 6.5. Let f ≡ 0 and w0 ∈ H4+s(R2), for some s > 0. Let w be a solution to system (43).
Then the following estimates hold true:

‖∇w(t)‖L∞ ≤ C
(
‖w0‖L2 + min

{
‖w0‖L1 , ‖w0‖L2

}
+ ‖∇w0‖H1+s

)
(1 + t)−1/2

‖∇∆w(t)‖L∞ ≤ C
(

min
{
‖w0‖L1 , ‖w0‖L2

}
+ ‖∇w0‖L1 + ‖∇∆w0‖H1+s

)
(1 + t)−1 ,

for a suitable positive constant C, also depending on µ > 0.

Proof. As above, we can limit ourselves to consider the case t ≥ 1, since for t ∈ [0, 1] the quanti-
ties ‖∇w(t)‖L∞ and ‖∇∆w(t)‖L∞ remain uniformly bounded by (up to a multiplicative constant)
‖∇w0‖H1+s and ‖∇∆w0‖H1+s respectively.

Take then t ≥ 1. We start by considering ∇w. Arguing as in the proof of Lemma 6.4, we can
estimate

‖∇w(t)‖L∞ ≤ C

ˆ
R2

e−µh(ξ) t |ξ| |ŵ0(ξ)| dξ

≤ C

(ˆ
B(0,1)

e−µh(ξ) t |ξ| |ŵ0(ξ)| dξ +

ˆ
R2\B(0,1)

e−µh(ξ) t |ξ| |ŵ0(ξ)| dξ

)

≤ C

(ˆ
B(0,1)

e−2µh(ξ) t |ξ|2 dx

)1/2

‖w0‖L2 + C e−µ t min
{
‖w0‖L1 , ‖w0‖L2

}
,

where, in order to get the last line, we have also used Cauchy-Schwarz inequality. Passing now in
polar coordinates, it is easy to bound

ˆ
B(0,1)

e−2µh(ξ) t |ξ|2 dξ ≤ 2π

ˆ 1

0

e−µ t r
4

r3 dr ≤ C (µ t)−1 ,

which finally implies, for some suitable constant C > 0, also depending on µ,

‖∇w(t)‖L∞ ≤ C
(
‖w0‖L2 + min

{
‖w0‖L1 , ‖w0‖L2

})
(µ t)−1/2 .

Let us consider now the term ∇∆w. Applying the same technique as above, we easily find

‖∇∆w(t)‖L∞ ≤ C

ˆ
R2

e−µh(ξ) t |ξ|3 |ŵ0(ξ)| dξ

≤ C

(ˆ
B(0,1)

e−µh(ξ) t |ξ|2 |F(∇w0)(ξ)| dξ +

ˆ
R2\B(0,1)

e−µh(ξ) t |ξ|3 |ŵ0(ξ)| dξ

)

≤ C

(ˆ
B(0,1)

e−µh(ξ) t |ξ|2 dx

)
‖∇w0‖L1 + C e−µ t min

{
‖w0‖L1 , ‖w0‖L2

}
,

At this point, dealing with the integral in the last line is absolutely analogous to what we have done
before: this allows us to arrive at the claimed inequality. �

Remark 6.6. Let us come back to the estimate for ‖∇∆w(t)‖L∞ . Notice that, passing from the
second line to the last one, we could use Cauchy-Schwarz inequality for the former term, to obtain

‖∇∆w(t)‖L∞ ≤ C

(ˆ
B(0,1)

e−2µh(ξ) t |ξ|2 dx

)1/2 ∥∥∇2w0

∥∥
L2 + C e−µ t min

{
‖w0‖L1 , ‖w0‖L2

}
,

and this would give rise to the bound

‖∇∆w(t)‖L∞ ≤ C
(

min
{
‖w0‖L1 , ‖w0‖L2

}
+ ‖∆w0‖L2 + ‖∇∆w0‖H1+s

)
(1 + t)−1/2 ,

We now consider the case when the external force f is not 0.
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Lemma 6.7. Let s > 0 and f ∈ L2
(
R+;Hs

)
. Suppose moreover that there exist η ∈ ]0, 1[ and a

constant K > 0 such that, for almost every t ∈ R+, one has

‖f(t)‖Hs ≤ K (1 + t)−1−η .

Set f0 = A−1(D)f (as defined above) and let g be defined by the formula

ĝ(t, ξ) :=

ˆ t

0

e−µh(ξ) (t−τ) f̂0(τ, ξ) dτ .

Then there exists a constant C̃ > 0 such that the following estimate holds true, for all time t > 0:

‖∇g(t)‖L∞ + ‖∇∆g(t)‖L∞ ≤ C̃ K (1 + t)−1/2 .

Proof. These estimates are deduced in a standard way from the ones of Lemma 6.5. Indeed, arguing
as in the proof of that result, we easily get

‖∇g(t)‖L∞ ≤
ˆ t

0

ˆ
R2

e−µh(ξ) (t−τ) |ξ|
∣∣∣f̂0(τ, ξ)

∣∣∣ dξ dτ
≤ C

ˆ t

0

1

(1 + t− τ)1/2

(
‖f0(τ)‖L2 + ‖∇f0(τ)‖H1+s

)
dτ .

At this point, we use the fact that, since A is an operator of order 4, one can control

‖f0(τ)‖L2 + ‖∇f0(τ)‖H1+s ≤ C ‖f(τ)‖H−2+s ≤ C ‖f(τ)‖Hs .

Hence, using the dispersion hypothesis over the last quantity together with Lemma 2.4 of [10], we
gather

‖∇g(t)‖L∞ ≤ C K

ˆ t

0

1

(1 + t− τ)1/2

1

(1 + τ)1+η
dτ ≤ C ′K (1 + t)−1/2 .

The proof of the estimate for ‖∇∆g(t)‖L∞ is absolutely analogous. The only difference is the use
of Remark 6.6 in order to make the L2 norm of ∆f0(τ) appear; noticing that

‖∆f0(τ)‖L2 + ‖∇∆f0(τ)‖H1+s ≤ ‖f(τ)‖Hs

completes the proof of the estimate, and hence of the whole lemma. �

Putting Lemmas 6.5 and 6.7 together, by Duhamel’s formula (45) we finally get the next statement,
which reveals decay properties for the solutions to the linear problem (43).

Proposition 6.8. Let s > 0. Take an initial datum w0 ∈ H4+s(R2) and an external force f ∈
L∞
(
R+;Hs(R2)

)
such that

‖f(t)‖Hs ≤ K (1 + t)−1−η ,

for some constant K > 0 and some exponent η ∈ ]0, 1[ , for almost every t > 0. Let w be the solution
to system (43), with initial datum w0 and forcing term f .

Then there exist positive constants C1, depending on the viscosity µ, and K0, depending on the
H4+s(R2)-norm of w0 and on K appearing in the estimate for f , such that, for all times t > 0, one
has the inequality

‖∇w(t)‖L∞ + ‖∇∆w(t)‖L∞ ≤ C1K0 (1 + t)−1/2 .

6.2. Coming back to the non-linear problem. The decay rate provided by Proposition 6.8 for
the solution to the linear problem turns out to be too weak to prove the convergence of r to w. So,
we need to establish dispersion properties also for the solution r to the non-linear equation: this is
the main goal of the present section.

First of all, we need some preliminary lemmas.
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Lemma 6.9. Let r0 ∈ H3(R2) and f ∈ L2
(
R+;H−2(R2)

)
∩ L1

(
R+;H−2(R2)

)
. Denote by r the

unique solution to (4) related to the initial datum r0 and bulk force f , as given by Theorem 2.3.
Then, for all t ≥ 0, r satisfies the estimate

‖r(t)‖2H3 + µ

ˆ t

0

‖∆r(τ)‖2H2 dτ ≤ C .

Moreover, if r0 ∈ H4(R2) and f ∈ L2
(
R+;H−1(R2)

)
, then one also gets

‖∆r(t)‖2L2 + ‖∇∆r(t)‖2L2 + ‖∆2r(t)‖2L2 + µ

ˆ t

0

‖∆2r(τ)‖2H1 dτ ≤ C .

Proof. Arguing as in the proof of Proposition 3.5 and using the same notations adotped therein, it is
easy to obtain the following modified version of estimate (9):

X(t) + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + ‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ ≤(47)

≤ X0 +
C

µ

ˆ t

0

‖f(τ)‖2H−2 dτ + C

ˆ t

0

(
‖r(τ)‖L2 + ‖∇r(τ)‖L2

)
‖f(τ)‖H−2 dτ .

At this point, by Young inequality we can bound
ˆ t

0

(
‖r(τ)‖L2 + ‖∇r(τ)‖L2

)
‖f(τ)‖H−2 dτ ≤ 2

ˆ t

0

(
X(τ) + 1

)
‖f(τ)‖H−2 dτ ;

then, forgetting the viscosity term and applying Gronwall’s inequality give us

‖r(t)‖H3 ≤ C
(
‖r0‖H3 + ‖f‖2L2

t (H
−2) + ‖f‖L1

t (H
−2)

)
exp

(
C

ˆ t

0

‖f(τ)‖H−2 dτ

)
≤ C .

Now, insterting this estimate into (47) yields, for some positive constants C depending also on µ,

X(t) + µ

ˆ t

0

(
‖∆r(τ)‖2L2 + ‖∇∆r(τ)‖2L2 + ‖∆2r(τ)‖2L2

)
dτ ≤ C

(
X0 + ‖f‖2L2

t (H
−2) + ‖f‖L1

t (H
−2)

)
.

The former inequality is thus proved.
As for the latter one, it is just a matter of following the computations of Proposition 3.7, to get

estimate (11). Noticing that, under our hypotheses, the right-hand side is uniformly bounded in time
completes the proof of the second inequality, and thus of the lemma. �

Remark 6.10. Easy modifications in the control of the forcing term (keep in mind also Remark 6.2
above) show that:

• the former inequality still holds true even when f is not globally in L2(R+;H−2), provided
we assume that f ∈ L1

(
R+;H−1(R2)

)
;

• the latter inequality still holds true even when f is not globally in L2(R+;H−1), provided we
assume that f ∈ L1

(
R+;L2(R2)

)
.

The second preliminary result which is needed in our study is the following one.

Lemma 6.11. Let r0 ∈ H3(R2) and f ∈ L2
loc

(
R+;H−2(R2)

)
∩ L1

(
R+;H−1(R2)

)
. Denote by r the

unique solution to (4) related to the initial datum r0 and bulk force f , as given by Theorem 2.3.
Then r verifies, for almost every t > 0 and ξ ∈ R2, the pointwise estimate

|r̂(t, ξ)| ≤ |r̂0(ξ)| + |ξ| a−1(ξ)
√
t ‖r0‖2H3 +

ˆ t

0

a−1(ξ)
∣∣∣f̂(τ, ξ)

∣∣∣ dτ .
Proof. Passing in Fourier variables, we recast the equation for r in the following form:

∂tr̂ + µh(ξ) r̂ = f̂0 − a−1(ξ)F
(
u · ∇∆2r

)
,
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where we have set u = ∇⊥(Id−∆)r and f0 = A−1(D)f as before. Multiplying by r̂ and forgetting
about the viscosity term, we get, after integration in time,

|r̂(t, ξ)| ≤ |r̂0(ξ)| +
∣∣∣f̂0

∣∣∣ + a−1(ξ)
∣∣F(u · ∇∆2r

)∣∣ .
Now, since div u = 0, we deduce∣∣F(u · ∇∆2r

)∣∣ ≤ |ξ| ∥∥u ∆2r
∥∥
L1 ≤ |ξ| ‖u‖L2

∥∥∆2r
∥∥
L2 ≤ C |ξ| ‖r‖H3 ‖∆r‖H2 .

Plugging this estimate into the previous inequality and using Lemma 6.9 allow us to arrive at the
desired control. �

We are now ready to state and prove dispersive estimates for the solution r to the non-linear
problem. We will argue in a similar way as in [8] (see also the original approach of [23], [24] and [1]),
paying attention to remainders coming from the different operators involved in our computations.
Notice also that our result is consistent with Theorem 3.4 of [8] (our η here plays the same role of
their α, which has to be taken equal to 1 to match the order of the parabolic operator).

Proposition 6.12. Let r0 ∈ H3(R2) and f ∈ L2
loc

(
R+;H−2(R2)

)
∩ L1

(
R+;H−1(R2)

)
. Denote by

r the unique solution to (4) related to the initial datum r0 and bulk force f , as given by Theorem 2.3.
Suppose moreover that there exist positive constants K1 and K2 and exponents η ∈ ]0, 1[ and γ ≥ 0
such that, for almost every t > 0 and ξ ∈ R2, one has

‖f(t)‖H−1 ≤ K1 (1 + t)−1−η and
∣∣∣f̂(t, ξ)

∣∣∣ ≤ K2 (1 + |ξ|γ) .

Then there exists a constant C (just depending on µ, K1, K2 and ‖r0‖H3) such that, for all t > 0,
one gets the decay property

‖r(t)‖H3 ≤
C

(1 + t)η/2
.

Proof. Multiplying equation (4) in L2 as to get first-type energy estimates (see Proposition 3.5), by
Fourier-Plancherel theorem we get

1

2

d

dt

ˆ
R2

|r̂(t, ξ)|2
(
1 + 2|ξ|2 + 2|ξ|4 + |ξ|6

)
dξ+

+ µ

ˆ
R2

|ξ|4 |r̂(t, ξ)|2
(
1 + 2 |ξ|2 + |ξ|4

)
dξ =

ˆ
R2

f̂(t, ξ) (1 + |ξ|2)r̂(t, ξ) dξ .

For convenience of notation, we set R̂(t, ξ) := |ξ|
(
2 + 2 |ξ|2 + |ξ|4

)1/2
r̂(t, ξ). Then, from the previ-

ous relation we easily deduce

1

2

d

dt

ˆ
|r̂(t, ξ)|2 dξ +

1

2

d

dt

ˆ
|R̂(t, ξ)|2 dξ +

µ

2

ˆ
|ξ|2

∣∣∣R̂(t, ξ)
∣∣∣2 dξ ≤(48)

≤ C ‖f(t)‖H−1 ‖r‖H3 ≤ C ‖f(t)‖H−1 ‖r0‖H3 .

Next, for t ≥ 0, we define the ball Bt(0) ⊂ R2 as the ball centered in 0 and of radius ν(t), for some
function ν(t) to be determined later. Then we can writeˆ

|ξ|2
∣∣∣R̂(t, ξ)

∣∣∣2 dξ ≥ ˆ
R2\Bt(0)

|ξ|2
∣∣∣R̂(t, ξ)

∣∣∣2 dξ
≥ ν2(t)

ˆ
R2

∣∣∣R̂(t, ξ)
∣∣∣2 dξ − ν2(t)

ˆ
Bt(0)

∣∣∣R̂(t, ξ)
∣∣∣2 dξ ;

plugging this inequality into (48) and multiplying everything by 2 yield

d

dt

ˆ
|r̂(t, ξ)|2 dξ +

d

dt

ˆ
|R̂(t, ξ)|2 dξ + µ ν2(t)

ˆ
R2

∣∣∣R̂(t, ξ)
∣∣∣2 dξ ≤(49)

≤ C ‖f(t)‖H−1 ‖r0‖H3 + µ ν2(t)

ˆ
Bt(0)

∣∣∣R̂(t, ξ)
∣∣∣2 dξ .
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At this point, we notice that, after setting V(t) := µ
´ t

0
ν2(τ) dτ , we can write

d

dt

ˆ
|R̂(t, ξ)|2 dξ + µ ν2(t)

ˆ ∣∣∣R̂(t, ξ)
∣∣∣2 dξ = e−V(t) d

dt

(
eV(t)

ˆ ∣∣∣R̂(t, ξ)
∣∣∣2 dξ) .

Moreover we have

d

dt

ˆ
|r̂(t, ξ)|2 dξ = e−V(t) d

dt

(
eV(t)

ˆ
|r̂(t, ξ)|2 dξ

)
− µ ν2(t)

ˆ
|r̂(t, ξ)|2 dξ

≥ e−V(t) d

dt

(
eV(t)

ˆ
|r̂(t, ξ)|2 dξ

)
− µ ν2(t) ‖r0‖2H3 ,

where we have made use of Lemma 6.9 in passing to the last line. Putting all these relations into (49)
we gather

e−V(t) d

dt

(
eV(t)

(
‖r(t)‖2L2 + ‖R(t)‖2L2

))
≤(50)

≤ C ‖f(t)‖H−1 ‖r0‖H3 + µ ν2(t) ‖r0‖2H3 + µ ν2(t)

ˆ
Bt(0)

∣∣∣R̂(t, ξ)
∣∣∣2 dξ .

for a new constant C > 0 also depending on µ.
Now, we pass to estimate the last term in the previous inequality: Lemma 6.11 impliesˆ
Bt(0)

∣∣∣R̂(t, ξ)
∣∣∣2 =

ˆ
Bt(0)

|ξ|2
(
2 + 2 |ξ|2 + |ξ|4

)
|r̂(t, ξ)|2 dξ

≤ 2 ‖r0‖2H3 +

ˆ
Bt(0)

|ξ|4
(
2 + 2|ξ|2 + |ξ|4

)
a−2(ξ) t ‖r0‖4H3 dξ+

+

ˆ
Bt(0)

|ξ|2
(
2 + 2|ξ|2 + |ξ|4

)
a−2(ξ)

(ˆ t

0

∣∣∣f̂(τ, ξ)
∣∣∣ dτ)2

dξ

≤ C
(
‖r0‖2H3 + ν2(t) t ‖r0‖4H3 + ν4(t) (1 + νγ)

2
t2
)
,

where we have used also the pointwise hypothesis on
∣∣∣f̂(τ, ξ)

∣∣∣.
Hence, we can insert this bound into (50) and integrate the resulting expression in time: after

noticing that ‖R(t)‖2L2 ∼ ‖∇r(t)‖2H2 , we find, for a new constant C, depending also on µ and on
‖r0‖H3 ,

eV(t) ‖r(t)‖2H3 ≤ ‖r0‖2H3 + C

ˆ t

0

eV(τ)
(
ν2(τ) + ν4(τ) τ

)
dτ +(51)

+ C

ˆ t

0

eV(τ)
(
ν(τ)

)6
(1 + νγ)

2
τ2 dτ + C

ˆ t

0

eV(τ) ‖f(τ)‖H−1 dτ .

for a new constant C > 0 also depending on µ.
To conclude the proof, we choose the function ν2(t) := α/(1 + t), for some constant α > 0: then

we get V(t) = (1 + t)α. After remarking that the worst terms areˆ t

0

eV(τ) ν2(τ) dτ ≤ C (1 + t)α−1 and

ˆ t

0

eV(τ) ‖f(τ)‖H−1 dτ ≤ C (1 + t)α−η ,

we finally discover that ‖r(t)‖2H3 ≤ C (1 + t)−η, for a suitable positive constant C.
The proof of the proposition is then accomplished. �

We have to remark that, in light of Proposition 6.8 (see also Subsection 6.3 below) the previous
decay is not enough for our scopes. So, we need also the following statement.

Proposition 6.13. Under the hypotheses of Proposition 6.12, suppose moreover that r0 ∈ H4(R2)
and that f ∈ L1

(
R+;L2(R2)

)
is such that, for some η1 ∈ ]0, 1[ ,

‖f(t)‖L2 ≤ K (1 + t)−1−η1 .
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Then there exists a constant C (just depending on µ, K1, K2 of Proposition 6.12 and on K and
‖r0‖H4) such that, for all t > 0, one has

‖r(t)‖H4 ≤
C

(1 + t)η1/2
.

Proof. The proof of the previous statement follows the main lines of the proof to Proposition 6.12.
So, let us just sketch it.

We start by multiplying equation (4) by ∆2r, as in the proof of Proposition 3.7; after passing in
Fourier variables, thanks to the latter inequality in Lemma 6.9 we find

1

2

d

dt

ˆ
|ξ|4 |r̂(t, ξ)|2 dξ +

1

2

d

dt

ˆ
|R̂1(t, ξ)|2 dξ + µ

ˆ
|ξ|2

∣∣∣R̂1(t, ξ)
∣∣∣2 dξ ≤

≤ C ‖f(t)‖L2

∥∥∆2r
∥∥
L2 ≤ C ‖f(t)‖L2 ‖r0‖H4 ,

where we have defined R̂1(t, ξ) :=
(
|ξ|6 + |ξ|8

)1/2
r̂(t, ξ).

As above, we define Bt(0) to be the ball of center 0 and radius ν(t), for some positive function ν
to be defined later on. Therefore we can estimateˆ

|ξ|2
∣∣∣R̂1(t, ξ)

∣∣∣2 dξ ≥ ν2(t)

ˆ
R2

∣∣∣R̂1(t, ξ)
∣∣∣2 dξ − ν2(t)

ˆ
Bt(0)

∣∣∣R̂1(t, ξ)
∣∣∣2 dξ .

Moreover, if we set V(t) := µ
´ t

0
ν2(τ) dτ , then we have

d

dt

ˆ
|R̂1(t, ξ)|2 dξ + µ ν2(t)

ˆ ∣∣∣R̂1(t, ξ)
∣∣∣2 dξ = e−V(t) d

dt

(
eV(t)

ˆ ∣∣∣R̂1(t, ξ)
∣∣∣2 dξ) ,

while Lemma 6.9 implies that

d

dt

ˆ
|ξ|4 |r̂(t, ξ)|2 dξ ≥ e−V(t) d

dt

(
eV(t)

ˆ
|ξ|4 |r̂(t, ξ)|2 dξ

)
− µ ν2(t) ‖∆r(t)‖2L2 .

Putting these relations together, we deduce the estimate

e−V(t) d

dt

(
eV(t)

(
‖∆r(t)‖2L2 + ‖R1(t)‖2L2

))
≤(52)

≤ C ‖f(t)‖L2 ‖r0‖H4 + µ ν2(t) ‖∆r(t)‖2L2 + µ ν2(t)

ˆ
Bt(0)

∣∣∣R̂1(t, ξ)
∣∣∣2 dξ .

Once again, we resort to Lemma 6.11 to control the last term in the right-hand side of the previous
inequality. After some easy computations, we gatherˆ

Bt(0)

∣∣∣R̂1(t, ξ)
∣∣∣2 dξ ≤ ν2(t) ‖r0‖2H3 + t ν4(t) ‖r0‖4H3 + ν4(t)

(
1 + νγ(t)

)2
t2 .

Using this estimate in (52), together with the hypothesis over f and Proposition 6.12 for the term
‖∆r(t)‖2L2 , we finally find, after integration in time, for some constant C also depending on the norm
of the initial datum,

eV(t) ‖∆r(t)‖2H2 ≤ ‖r0‖2H4 +

ˆ t

0

eV(τ) (1 + τ)−1−η1 dτ +

ˆ t

0

eV(τ) ν2(τ) (1 + τ)−η +

+

ˆ t

0

eV(τ) ν4(τ)
(
1 + τ ν2(τ)

)
dτ +

ˆ t

0

eV(τ) ν6(τ) τ2
(
1 + νγ(τ)

)2
dτ .

As before, we define ν2(t) := α1/(1 + t), with α1 > 0 to be fixed. Then, the worst term is the first
integral in the right-hand side:ˆ t

0

eV(τ) (1 + τ)−1−η1 dτ ≤ C (1 + t)α1−η1 ,

while the other terms all present a better bound (namely, a bound in terms of a lower power of 1 + t).
The desired inequality easily follows. �
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6.3. Completing the proof. We are now ready to complete the proof of Theorem 6.3. To this end,
let us introduce the quantities

z(t, x) := r(t, x) − w(t, x) and z0 := r0 − w0 ≡ 0 .

Then, z satisfies the equation

(53) ∂t
(
Id−∆ + ∆2

)
z + µ∆2

(
Id−∆

)
z = −u · ∇∆2r ,

where u = ∇⊥(Id−∆)r, related to the initial datum z0 = 0.
First of all, we need the equivalent version of Lemma 6.11.

Lemma 6.14. Under the hypotheses of Theorem 6.3, z fulfills the pointwise estimate

|ẑ(t, ξ)| ≤ |ξ| a−1(ξ)
√
t ‖r0‖2H3

Proof. As done above, we recast equation (53) on the Fourier side: we have

∂tẑ + µh(ξ) ẑ = − a−1(ξ)F
(
u · ∇∆2r

)
.

Since div u = 0, we deduce∣∣F(u · ∇∆2r
)∣∣ ≤ |ξ| ∥∥u ∆2r

∥∥
L1 ≤ |ξ| ‖u‖L2

∥∥∆2r
∥∥
L2 ≤ C ‖r‖H3 ‖∆r‖H2 .

The desired estimate is thus a striaghtforward consequence of Lemma 6.9. �

Remark 6.15. We exlicitly point out here that, under our hypotheses, we can assume that there
exists a constant C > 0 large enough, so that

‖w(t)‖2H3 + µ

ˆ t

0

‖∆w(τ)‖2H2 dτ + ‖r(t)‖2H3 + µ

ˆ t

0

‖∆r(τ)‖2H2 dτ ≤ C

for all times t ≥ 0. This is a consequence of Lemma 6.9 and Remarks 6.2 and 6.10.

We are now in the position of proving Theorem 6.3. We argue in a similar way as in Proposition
6.12: so, let us perform energy estimates of first type for equation (53). We observe thatˆ

R2

∇⊥(Id−∆)r · ∇(Id−∆)z∆2r dx =

ˆ
R2

∇⊥(Id−∆)r · ∇(Id−∆)w∆2r dx ;

hence, after passing in Fourier variables, the same computations as before yield

d

dt

ˆ
|ẑ(t, ξ)|2 dξ +

d

dt

ˆ
|Ẑ(t, ξ)|2 dξ + µ

ˆ
|ξ|2

∣∣∣Ẑ(t, ξ)
∣∣∣2 dξ ≤(54)

≤ C ‖∇(Id−∆)r(t)‖L2

∥∥∆2r(t)
∥∥
L2 ‖∇(Id−∆)w(t)‖L2 ,

where we have defined Ẑ(t, ξ) := |ξ|
(
2 + 2 |ξ|2 + |ξ|4

)1/2
ẑ(t, ξ) as above.

Next, for t ≥ 0, we introduce the ball Bt(0) ⊂ R2 as the ball centered in 0 and of radius ν(t), for
some function ν(t) to be determined later. Then we can writeˆ

|ξ|2
∣∣∣Ẑ(t, ξ)

∣∣∣2 dξ ≥ ν2(t)

ˆ
R2

∣∣∣Ẑ(t, ξ)
∣∣∣2 dξ − ν2(t)

ˆ
Bt(0)

∣∣∣Ẑ(t, ξ)
∣∣∣2 dξ ,

and plugging this inequality into (54) we find, after setting V(t) := µ
´ t

0
ν2(τ) dτ ,

d

dt

ˆ
|ẑ(t, ξ)|2 dξ + e−V(t) d

dt

(
eV(t)

ˆ ∣∣∣Ẑ(t, ξ)
∣∣∣2 dξ)(55)

≤ C ‖∇(Id−∆)r(t)‖L2

∥∥∆2r(t)
∥∥
L2 ‖∇(Id−∆)w(t)‖L2 + µ ν2(t)

ˆ
Bt(0)

∣∣∣Ẑ(t, ξ)
∣∣∣2 dξ .

Repeating the computations performed for r̂ in the proof of Proposition 6.12, and using Remark
6.15 above, we can bound

d

dt

ˆ
|ẑ(t, ξ)|2 dξ = e−V(t) d

dt

(
eV(t)

ˆ
|ẑ(t, ξ)|2 dξ

)
− µ ν2(t)

ˆ
|ẑ(t, ξ)|2 dξ
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≥ e−V(t) d

dt

(
eV(t)

ˆ
|ẑ(t, ξ)|2 dξ

)
− C µν2(t) .

On the other hand, the last term in the right-hand side of (55) can be controlled in view of Lemma
6.14: denoting by C a positive constant possibly depending also on the norm of the initial datum r0,
we gatherˆ

Bt(0)

∣∣∣Ẑ(t, ξ)
∣∣∣2 =

ˆ
Bt(0)

|ξ|2
(
2 + 2 |ξ|2 + |ξ|4

)
|r̂(t, ξ)|2 dξ

≤ C

ˆ
Bt(0)

|ξ|4
(
2 + 2|ξ|2 + |ξ|4

)
a−2(ξ) t ‖r0‖4H3 dξ ≤ C ν2(t) t .

Therefore, plugging these inequalities into (55) leads us to

e−V(t) d

dt

(
eV(t)

(
‖z(t)‖2L2 + ‖Z(t)‖2L2

))
≤(56)

≤ C
(
‖∇(Id−∆)r(t)‖L2

∥∥∆2r(t)
∥∥
L2 ‖∇(Id−∆)w(t)‖L2 + ν4(t) t + ν2(t)

)
.

for a new constant C > 0 also depending on µ.
At this point, we use estimates provided by Propositions 6.8, 6.12 and 6.13 in order to bound

the first term in the right-hand side of the previous inequality. Since ‖Z(t)‖2L2 ∼ ‖∇z(t)‖2H2 , an
integration of (56) in time yields

eV(t) ‖z(t)‖2H3 ≤ C

ˆ t

0

eV(τ) (1 + τ)−(η+1/2) dτ + C

ˆ t

0

eV(τ)
(
ν4(τ) τ + ν2(τ)

)
dτ .(57)

To conclude the proof, we choose as before the function ν2(t) := β/(1 + t), for some constant
β > 0, so that V(t) = (1 + t)β . First of all, we notice thatˆ t

0

eV(τ)
(
ν4(τ) τ + ν2(τ)

)
dτ ≤ C

(
(1 + t)β−2 + (1 + t)β−1

)
≤ C (1 + t)β−1 .

Then, we treat the other integral: we haveˆ t

0

eV(τ) (1 + τ)−(η+1/2) dτ ≤ C (1 + t)β+1/2−η ,

and this inequality completes the proof of Theorem 6.3.

Appendix A. Fourier analysis toolbox

We recall here the main ideas of Littlewood-Paley theory, which we exploited in the previous
analysis. We refer e.g. to Chapter 2 of [2] for details.

For simplicity of exposition, let us deal with the Rd case; however, the whole construction can be
adapted also to the d-dimensional torus Td.

First of all, let us introduce the so called “Littlewood-Paley decomposition”, based on a non-
homogeneous dyadic partition of unity with respect to the Fourier variable.

We, fix a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a neighborhood
of B(0, 1) and such that r 7→ χ(r e) is nonincreasing over R+ for all unitary vectors e ∈ Rd. Set
ϕ (ξ) = χ (ξ)− χ (2ξ) and ϕj(ξ) := ϕ(2−jξ) for all j ≥ 0.

The dyadic blocks (∆j)j∈Z are defined by1

∆j := 0 if j ≤ −2, ∆−1 := χ(D) and ∆j := ϕ(2−jD) if j ≥ 0 .

We also introduce the following low frequency cut-off operator:

(58) Sju := χ(2−jD) =
∑
k≤j−1

∆k for j ≥ 0 .

1Throughout we agree that f(D) stands for the pseudo-differential operator u 7→ F−1(f Fu).
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By Remark 2.11 of [2], the operators Sj and ∆j map Lp into itself, for all j ≥ −1 and all p ∈ [1,+∞],
with norms independent of j and p.

The following classical property holds true: for any u ∈ S ′, then one has the equality u =
∑
j ∆ju

in the sense of S ′. Let us also mention the so-called Bernstein’s inequalities, which explain the way
derivatives act on spectrally localized functions.

Lemma A.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple
(p, q) in [1,+∞]2, with p ≤ q, and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λk+d( 1
p−

1
q ) ‖u‖Lp ;

supp û ⊂ {ξ ∈ Rd | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

By use of Littlewood-Paley decomposition, we can define the class of Besov spaces.

Definition A.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space Bsp,r is defined
as the subset of tempered distributions u for which

‖u‖Bsp,r :=
∥∥∥(2js ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Besov spaces are interpolation spaces between the Sobolev ones. In fact, for any k ∈ N and
p ∈ [1,+∞] we have the following chain of continuous embeddings:

Bkp,1 ↪→W k,p ↪→ Bkp,∞ ,

where W k,p denotes the classical Sobolev space of Lp functions with all the derivatives up to the order
k in Lp. Moreover, for all s ∈ R we have the isomorphism of Banach spaces Bs2,2

∼= Hs, with

(59) ‖f‖Hs ∼

∑
j≥−1

22js ‖∆jf‖2L2

1/2

.

More in general, the previous isomorphism is an isomorphism of Hilbert spaces. As a matter of fact,
if we define the Bs2,2 scalar product by the formula,

〈〈f, g〉〉Bσ2,2 :=
∑
q≥−1

22 q σ〈∆qf , ∆qg〉L2 ,

by Proposition 2.10 of [2] we get a scalar product which is equivalent to the classical one over Hs.
As an immediate consequence of the first Bernstein’s inequality, one gets the following embedding

result.

Proposition A.3. The space Bs1p1,r1 is continuously embedded in the space Bs2p2,r2 for all indices
satisfying p1 ≤ p2 and

s2 < s1 − d
(

1

p1
− 1

p2

)
or s2 = s1 − d

(
1

p1
− 1

p2

)
and r1 ≤ r2 .

We recall also Lemma 2.73 of [2].

Lemma A.4. If 1 ≤ r < +∞, for any f ∈ Bsp,r one has

lim
j→+∞

‖f − Sjf‖Bsp,r = 0 .

Let us now introduce the paraproduct operator (after J.-M. Bony, see [3]). Constructing the para-
product operator relies on the observation that, formally, any product of two tempered distributions
u and v, may be decomposed into

(60) u v = Tuv + Tvu + R(u, v) ,

where we have defined

(61) Tuv :=
∑
j

Sj−1u∆jv, and R(u, v) :=
∑
j

∑
|j′−j|≤1

∆ju∆j′v .
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The above operator T is called “paraproduct” whereas R is called “remainder”. We recall that, for
all u and v in S ′, the sequence

(
Sj−1u∆jv

)
j∈N is spectrally supported in dyadic annuli, whose radius

is proportional to 2j .
The paraproduct and remainder operators have many nice continuity properties. The following

ones have been of constant use in this paper (see the proof in e.g. Chapter 2 of [2]).

Proposition A.5. For any (s, p, r) ∈ R × [1,∞]2 and t > 0, the paraproduct operator T maps
continuously L∞ ×Bsp,r in Bsp,r and B−t∞,∞ ×Bsp,r in Bs−tp,r . Moreover, the following estimates hold:

‖Tuv‖Bsp,r ≤ C ‖u‖L∞ ‖∇v‖Bs−1
p,r

and ‖Tuv‖Bs−tp,r
≤ C‖u‖B−t∞,∞ ‖∇v‖Bs−1

p,r
.

For any (s1, p1, r1) and (s2, p2, r2) in R× [1,∞]2 such that s1 + s2 > 0, 1/p := 1/p1 + 1/p2 ≤ 1 and
1/r := 1/r1 + 1/r2 ≤ 1, the remainder operator R maps continuously Bs1p1,r1 ×B

s2
p2,r2 into Bs1+s2

p,r . In
the case s1 + s2 = 0, provided r = 1, operator R is continuous from Bs1p1,r1 ×B

s2
p2,r2 with values in the

space B0
p,∞.

We recall also a classical commutator estimate (see e.g. Lemma 2.97 of [2]).

Lemma A.6. Let Φ ∈ C1(Rd) such that
(
1 + | · |

)
Φ̂ ∈ L1. There exists a constant C such that, for

any function h for which ∇h ∈ Lp(Rd), for any f ∈ Lq(Rd) and for all λ > 0, one has∥∥[Φ(λ−1D), h
]
f
∥∥
Lr
≤ C λ−1 ‖∇h‖Lp ‖f‖Lq ,

where r ∈ [1,+∞] satisfies the relation 1/r = 1/p + 1/q.

Going along the lines of the proof, it is easy to see that the constant C depends just on the L1

norm of the function |x| k(x), where k = F−1
ξ Φ is the inverse Fourier transform of Φ.

To conclude, let us quote a compactness result (see Theorem 2.94 of [2]).

Theorem A.7. For any s′ < s, for all smooth φ in the Schwartz class S(Rd), the multiplication by

φ is a compact operator from Bsp,∞ into Bs
′

p,1.
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